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1. Introduction

Let us consider the Schrödinger–Newton system


i�∂tu = − �2

2m
∆u + V (x)u − φu,

−∆φ = 4πγ|u|2,
(1.1)

where u : [0,∞) × R3 → C, φ : [0,∞) × R3 → R is the gravitational potential,
V : R3 → R is an external potential, m is the mass of the particle, γ = Gm2, where
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G is the Newton constant. Up to suitable rescalings, (1.1) can be rewritten as the
equation

iε∂tu
ε = −ε2

2
∆uε + V (x)uε − 1

ε2

(
1
|x| ∗ |u

ε|2
)

uε in [0,∞) × R
3. (1.2)

This equation was originally elaborated by Pekar23 around 1954 in the framework
of quantum mechanics. Subsequently, in 1976, Choquard (see Ref. 16) adopted the
equation as an approximation of the Hartree–Fock theory. More recently, in 1996,
Penrose24 settled it as a model of self-gravitating matter. From the point of view
of global well-posedness and smoothness for arbitrary initial data uε

0 ∈ H1(R3, C),
the Cauchy problem associated with (1.2) was completely investigated in Ref. 6.
Concerning the existence and qualitative properties of the associated standing wave
solutions, we refer the reader to the classical contributions by Lions18,19 on con-
centration compactness (see also Ref. 22 for a more general situation). For what
regards orbital stability of solutions to (1.2) — for a fixed ε — and with respect to
a suitable family of ground states, we refer to the contribution due to Cazenave and
Lions (Ref. 7, Theorem IV.2) and those by Grillakis and Shatah.12,13 Years later,
in the frame of stability theory for local Schrödinger equation

iε∂tu
ε = −ε2

2
∆uε + V (x)uε − |uε|2puε in [0,∞) × R

3, 0 < p <
2
3
, (1.3)

several contributions appeared about the study of the so-called semiclassical (or
point particle) limit behavior as the parameter ε vanishes, both for the standing
waves and the full evolutionary problem. Concerning the former, for local equa-
tions we refer to the monograph by Ambrosetti and Malchiodi1 and to the refer-
ences therein, while for nonlocal equations, we refer to Ref. 8 and to the related
references. About the latter, rigorous results about the soliton dynamics of local
Schrödinger equations were obtained in various papers, among which we mention
the contributions by Bronski and Jerrard5 and Keraani14 by means of arguments
which are purely based on the use of conservation laws satisfied by the equation
and by the associated Newtonian system ẍ(t) = −∇V (x(t)), combined with the
modulational stability estimates due to Weinstein.28,29 With different techniques
similar results were obtained in Ref. 10 by Fröhlich, Gustafson, Jonsson and Sigal
(see also Ref. 9). Roughly speaking, the soliton dynamics occurs when, choosing a
suitable initial datum uε

0(x) = r((x−x0)/ε) the corresponding solution uε(t) main-
tains the shape r((x− x(t))/ε), up to an estimable error and locally in time, in the
transition from quantum to classical mechanics, namely as ε → 0. For a nice survey
on solitons and their stability features, see the work by Tao.25 In the nonlocal case,
the semiclassical limit of the standing waves of (1.2) was recently studied by Wei
and Winter.27 The full evolution problem (1.2) was studied in a soliton dynamics
regime by Fröhlich, Tsai and Yau in Ref. 11 along the line followed in Ref. 10 for
the local case. On the contrary, to the best of the authors’ knowledge, there is no
nonlocal counterpart of the study of point particle dynamics along the technique
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initiated in the work by Bronski and Jerrard.5 This is precisely the aim of this
paper. Let r ∈ H1(R3) be the unique radial, positive solution of

−1
2
∆r + r −

(
1
|x| ∗ |r|

2

)
r = 0. (1.4)

The main tool exploited in Refs. 5 and 14 in the local case (1.3) is a kind of coercivity
estimate for the differences E(φ) − E(r) upon suitable complex-valued functions φ

such that ‖φ‖2 = ‖r‖2 for the energy functional E(φ) = ‖∇φ‖2
2/2−‖φ‖2p+2

2p+2/(p+1)
associated with −∆φ/2 + φ = |φ|2pφ on R3, obtained by exploiting the spectral
properties of its linearized operator. The first main result of the paper is the validity
of this property for the nonlocal equation (1.4). More precisely, let E : H1(R3, C) →
R be the energy functional defined by

E(φ) =
1
2

∫
|∇φ|2 − 1

2

∫∫ |φ(x)|2|φ(y)|2
|x − y|

and ‖ · ‖ denote the H1(R3, C)-norm. Then we have the following theorem.

Theorem 1.1. There exists a positive constant C such that

E(φ) − E(r) ≥ C inf
x∈R3, θ∈[0,2π)

‖φ − eiθr(· − x)‖2

+ o

(
inf

x∈R3, θ∈[0,2π)
‖φ − eiθr(· − x)‖2

)
,

for any φ ∈ H1(R3, C) such that ‖φ‖2 = ‖r‖2 and infx∈R3, θ∈[0,2π) ‖φ − eiθ

r(· − x)‖ ≤ ‖r‖.

By combining Lions’s concentration-compactness18,19 with Ref. 7 ((ii) of
Theorem IV.1) and recalling the uniqueness of the ground state r, an equivalent
formulation of Theorem 1.1 could be given by dropping the o(·) term and adding
instead the requirement that the difference E(φ) − E(r) be small enough. For local
Schrödinger equations with power nonlinearity, Theorem 1.1 was proved in Refs. 28
and 29 while Ref. 21 contains a proof for the result for one-dimensional Schrödinger
systems. We shall prove Theorem 1.1 in Sec. 2 by virtue of a careful study of the
(real and imaginary) linearized operators L− and L+ associated with (1.4) on some
subspaces of H1(R3, C) defined by suitable orthogonality conditions. Once the esti-
mate of Theorem 1.1 holds true, a natural application is to obtain the soliton
dynamics behavior, in the semi-relativistic limit ε → 0, for the Cauchy problem




iε∂tu
ε = −ε2

2
∆uε + V (x)uε − 1

ε2

(
1
|x| ∗ |u

ε|2
)

uε,

uε(0, x) = r

(
x − x0

ε

)
e

i
ε x·v0 ,

(1.5)
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where x0 ∈ R3 and v0 ∈ R3 are, respectively, the initial position and velocity of


ẋ(t) = v(t),

v̇(t) = −∇V (x(t)),

x(0) = x0,

v(0) = v0.

(1.6)

Problem (1.5) is globally well-posed, provided that V ∈ Lm(R3)+L∞(R3), for some
m > 3/2 (see Ref. 6, Corollary 6.1.2 and Example 1). Denoting

‖ · ‖2
Hε

=
1
ε
‖∇ · ‖2

2 +
1
ε3

‖ · ‖2
2,

we prove the following theorem.

Theorem 1.2. Assume that V = V1 + V2 with V1 ∈ C3(R3) and D2V2 ∈ C2(R3),
where V2 is bounded from below. Therefore, for every ε small, we have∥∥∥∥uε(t, x) − r

(
x − x(t)

ε

)
ei v(t)·x

ε

∥∥∥∥
Hε

= O(ε),

on finite time intervals.

We shall prove Theorem 1.2 in Sec. 3 by showing a few preliminary facts about
the energy expansion and the momentum identity for (1.5) and then exploiting
Theorem 1.1 on a suitable auxiliary function related to the solution of (1.5). Once
that stage is achieved, the argument to get the uniform bound on the error — on
finite time intervals — follows as in Refs. 5 and 14. We stress that, in Ref. 11,
the authors approach the problem by a different technique and, furthermore, they
consider in (1.6) an additional friction force that they prove to be small as ε → 0.
Quite recently, Benci, Ghimenti and Micheletti in Refs. 2 and 3 obtained, for a
variant of the local equation (1.3), a soliton dynamics behavior with error estimate
on the whole [0,∞) and, in general, working for equations whose ground states
need not be unique or nondegenerate. In a forthcoming paper, we aim to use their
technique on a general nonlocal problem for which uniqueness and nondegeneracy
results are not available yet.

Notations.

(1) If u, v ∈ C, then u · v = Re(uv̄) = 1
2 (uv̄ + vū).

(2) H1(R3) = H1(R3, R) and H1(R3, C) are the Sobolev spaces endowed with the
norm ‖ · ‖ = (‖ · ‖2

2 + 1
2‖∇ · ‖2

2)1/2.
(3) If u, v ∈ H1(R3, C) we denote with (u, v) the scalar product in L2(R3, C) and

with (u, v)H1 = (u, v) + 1
2 (∇u,∇v).

(4) Cm(R3) is the space of u ∈ Cm(R3) with ‖Dαu‖∞ < ∞ for any |α| ≤ m.
(5) C denotes a generic positive constant which can changes from line to line.
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2. Proof of Theorem 1.1

2.1. Preliminary tools

In this section we collect a few basic properties about the ground state solutions to
(1.4) and its corresponding linearized operator.

2.1.1. The limit problem

Let us consider the eigenvalue problem

−1
2
∆ϕ −

(
1
|x| ∗ |ϕ|

2

)
ϕ = eϕ. (2.1)

A fundamental tool in our analysis is the following result due to Lieb (Ref. 16,
Theorem 8).

Theorem 2.1. If ϕ ∈ H1(R3), ‖ϕ‖2 = λ and

E(ϕ) = inf{E(φ) |φ ∈ H1(R3), ‖φ‖2 = λ},
then ϕ satisfies Eq. (2.1) for some e < 0. Moreover if ϕ ∈ H1(R3, C) satisfies (2.1)
(not necessarily a minimizer) for an arbitrary Lagrange multiplier e, then:

(i) |x|−1 ∗ |ϕ|2 ∈ Lp(R3), for every 4 ≤ p ≤ ∞;
(ii) (|x|−1 ∗ |ϕ|2)ϕ ∈ Lp(R3, C), for every 4

3 ≤ p ≤ 6;
(iii) |x|−1 ∗ |ϕ|2 is a continuous function which goes to zero at infinity;
(iv) if e < 0 then ϕ ∈ C∞(R3) and goes to zero at infinity (and hence ϕ is a

classical solution of (2.1)).

Moreover we also need the following proposition.

Proposition 2.1. Let r be the unique positive and radial solution of (1.4). Then:

(i) r has a nondegenerate linearization (the linearization of (1.4) around r has
a nullspace that is entirely due to the equations invariance under phase and
translation transformation);

(ii) r(0) = maxx∈R3 r(x) and if we take r(x) = r0(|x|), we have that r0 is strictly
decreasing and

lim
|x|→∞

r0(|x|)e|x||x| = λ0 > 0, lim
|x|→∞

r′0(|x|)
r0(|x|) = −1;

(iii) r can be obtained as the minimum point of E in

M = {u ∈ H1(R3) | ‖u‖2 = ‖r‖2}. (2.2)

Proof. For the proof of the uniqueness, (i) and (ii), we refer to Refs. 15, 16,
20 and 26. Here, for the sake of completeness, we prove (iii). We know that
for every α > 0, E has a unique radial and strictly positive minimum point on
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{u ∈ H1(R3) | ‖u‖2 = α} (see Ref. 16, Theorems 7 and 10). Let ū be such minimum
point on M. There exists λ > 0 such that

−1
2
∆ū −

(
1
|x| ∗ |ū|

2

)
ū = −λū.

It is easy to show that λ−1ū(λ−1/2x) is a radial and strictly positive solution of
(1.4). Then, by the uniqueness, we have that r(x) = λ−1ū(λ−1/2x) and, since
‖ū‖2

2 = ‖r‖2
2 = ‖ū‖2

2/
√

λ, we get λ = 1.

2.1.2. The linearized problem

Let r be the unique radial positive solution of (1.4) and consider the linearized
operator L for (1.4) at r, acting on L2(R3, C) with domain in H2(R3, C),

Lξ = −1
2
∆ξ + ξ −

(
1
|x| ∗ r2

)
ξ −

(
1
|x| ∗ (r(ξ + ξ̄))

)
r.

We can write

L =

(
L+ 0

0 L−

)
,

where L+ and L− act respectively on the real and imaginary part of ξ, i.e. if η is
real

L+η = −1
2
∆η + η −

(
1
|x| ∗ r2

)
η − 2

(
1
|x| ∗ (rη)

)
r and

L−η = −1
2
∆η + η −

(
1
|x| ∗ r2

)
η.

It can be proved (see Ref. 15) that

KerL+ = span{∂x1r, ∂x2r, ∂x3r}, (2.3)

KerL− = span{r}. (2.4)

2.2. Preliminary results

For j = 1, 2, 3, let us set

Ξj(r) := ∂xj ((|x|−1 ∗ r2)r) = (|x|−1 ∗ r2)∂xj r + 2(|x|−1 ∗ (r∂xj r))r.

Notice that Ξj(r) ∈ L2(R3). Indeed, for the first term it is enough to observe that
|x|−1 ∗ r2 ∈ L∞(R3), by (i) of Theorem 2.1. Moreover, writing |x|−1 = h1 +h2 with
h1 ∈ L∞(R3) and h2 ∈ L3/2(R3) yields

‖(|x|−1 ∗ (r∂xj r))r‖2
2 ≤ 2‖h1‖2

∞‖r‖4
2‖∂xjr‖2

2 + 2‖h2‖2
3/2‖r‖4

6‖∂xj r‖2
2.

We shall prove the following proposition.
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Proposition 2.2. Let w ∈ H1(R3, C) and u and v be the real and the imaginary
part of w. Let us assume that ‖w + r‖2 = ‖r‖2 and

(u, Ξj(r)) = 0 for j = 1, 2, 3. (2.5)

Then, there exist positive constants D, Dh such that

(L+u, u) ≥ D‖u‖2 − D1‖w‖4 − D2‖w‖3. (2.6)

In order to prove Proposition 2.2 we proceed by proving some preliminary results.
Let us set

V = {u ∈ H1(R3) | (u, r) = 0}.
Lemma 2.1. infV(L+u, u) = 0.

Proof. Since r is the minimum point of

I(u) = E(u) + ‖u‖2
2

on M (defined in (2.2)), then, for any smooth curve ϕ : [−1, 1] → M such that
ϕ(0) = r, we have that

d2I(ϕ(s))
ds2

∣∣∣∣
s=0

≥ 0.

Therefore, being I ′(r) = 0, we get

0 ≤ 〈I ′′(r)ϕ′(0), ϕ′(0)〉 = 2(L+ϕ′(0), ϕ′(0)).

Since the map s → ‖ϕ(s)‖2 is constant, we have that ϕ′(0) ∈ V . Then, by the
arbitrariness of ϕ′(0), we can say that infV(L+u, u) ≥ 0. On the other hand, for
every j = 1, 2, 3 we have that ∂xj r ∈ V and (L+∂xj r, ∂xj r) = 0 and then we
conclude.

Lemma 2.2. There exists C > 0 such that∫
(|x|−1 ∗ r2)u2 ≤ C‖u‖2

2 for all u ∈ L2(R3),∫
(|x|−1 ∗ (ru))ru ≤ C‖u‖2

2 for all u ∈ L2(R3).
(2.7)

Proof. By (i) of Theorem 2.1, inequality (2.7) easily follows. Moreover, combining
the Hardy–Littlewood–Sobolev (Ref. 17, Theorem 4.3) and Hölder inequality, we get∫

(|x|−1 ∗ (ru))ru ≤ C‖ru‖6/5‖ru‖6/5 ≤ C‖r‖2
3‖u‖2

2 ≤ C‖u‖2
2,

concluding the proof.

Moreover, we have the following lemma.
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Lemma 2.3. Assume that un ⇀ u in H1(R3) as n → ∞. Then, up to a
subsequence, we have

lim
n

∫
(|x|−1 ∗ r2)u2

n =
∫

(|x|−1 ∗ r2)u2, (2.8)

lim
n

∫
(|x|−1 ∗ (run))run =

∫
(|x|−1 ∗ (ru))ru. (2.9)

Proof. Up to a subsequence, un → u a.e. Since the sequence {u2
n} is bounded in

L6/5(R3), up to a subsequence, it converges weakly to some z ∈ L6/5(R3). Taking
into account the pointwise convergence of {un} to u, it follows that z = u2. Hence,
in order to get (2.8), it is sufficient to have |x|−1 ∗ r2 ∈ L6(R3) which follows from
(i) of Theorem 2.1. Concerning (2.9), we have∣∣∣∣

∫
(|x|−1 ∗ (run))run −

∫
(|x|−1 ∗ (ru))ru

∣∣∣∣ ≤ In + Jn,

where we have set

In =
∣∣∣∣
∫

(|x|−1 ∗ (run))(run − ru)
∣∣∣∣, Jn =

∣∣∣∣
∫

(|x|−1 ∗ (run − ru))ru
∣∣∣∣.

Observe that, since {u6/5
n } converges weakly to u6/5 in L2(R3) and r6/5 ∈ L2(R3),

we have ‖run‖6/5 → ‖ru‖6/5. Since run ⇀ ru in L6/5(R3) as n → ∞, the uniform
convexity of L6/5(R3) yields ‖run − ru‖6/5 → 0 as n → ∞. Therefore, from the
Hardy–Littlewood–Sobolev inequality, we deduce

In ≤ C‖run‖6/5‖run − ru‖6/5 → 0 and

Jn ≤ C‖run − ru‖6/5‖ru‖6/5 → 0,

which concludes the proof.

Let us set

V0 = {u ∈ H1(R3) | (u, r) = (u, Ξj(r)) = 0, j = 1, 2, 3}.
Concerning the coercivity of L+ on V0, we have the following lemma.

Lemma 2.4. infu∈V0
(L+u,u)
‖u‖2 > 0.

Proof. We claim, first, that infu∈V0
(L+u,u)
‖u‖2

2
> 0. To this aim, let us consider

α := inf
u∈V0,‖u‖2=1

(L+u, u).

We want to prove that α > 0. Since V0 ⊂ V , then α ≥ 0 in light of Lemma 2.1.
Suppose by contradiction that α = 0 and let {un} ⊂ H1(R3) be a minimizing
sequence. By virtue of Lemma 2.2, we readily have that {un} is bounded in H1(R3).
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Then there exists u ∈ H1(R3) such that, up to a subsequence, un ⇀ u in H1(R3)
and u ∈ V0. In turn, in light of Lemma 2.3, we deduce that

0 ≤ (L+u, u) ≤ lim inf
n

(
‖un‖2 −

∫
(|x|−1 ∗ r2)u2

n − 2
∫

(|x|−1 ∗ (run))run

)

= lim
n

(L+un, un) = 0,

so that (L+u, u) = 0. In turn, recalling that (L+un, un) → 0 as n → ∞, we get

‖u‖2 ≤ lim inf
n

‖un‖2 ≤ lim sup
n

‖un‖2

= lim
n

(
(L+un, un) +

∫
(|x|−1 ∗ r2)u2

n + 2
∫

(|x|−1 ∗ (run))run

)

= (L+u, u) +
∫

(|x|−1 ∗ r2)u2 + 2
∫

(|x|−1 ∗ (ru))ru = ‖u‖2.

Then {un} converges to u in H1(R3) and u solves the constrained minimization
problem. Then there exist five Lagrange multipliers λ, µ, γ1, γ2, γ3 ∈ R such that
for every η ∈ H1(R3)

(L+u, η) = λ(u, η) + µ(r, η) +
3∑

j=1

γj

∫
Ξj(r)η.

Since (L+u, u) = 0 and u ∈ V0, it follows immediately that λ = 0. We claim that,
for every h = 1, 2, 3,

0 = (L+u, ∂xh
r) =

3∑
j=1

γj

∫
Ξj(r)∂xh

r = γh

∫
Ξh(r)∂xh

r.

This follows by the following facts: (r, ∂xh
r) = 0, L+ is a self-adjoint operator,

∂xh
r ∈ KerL+, r ∈ H2(R3) and for every j = h it holds∫

Ξj(r)∂xh
r =

∫
∂xj

((
1
|x| ∗ r2

)
r

)
∂xh

r =
∫

∂xj

(
−1

2
∆r + r

)
∂xh

r

=
1
2

∫
∇∂xj r · ∇∂xh

r +
∫

∂xj r∂xh
r

=
1
2

∫
xjxh

|x|4 [(r′′0 (|x|)|x|)2 − (r′0(|x|))2] +
∫

xjxh

|x|2 (r′0(|x|))2 = 0.

(2.10)

Moreover ∫
Ξh(r)∂xh

r =
∫

∂xh

((
1
|x| ∗ r2

)
r

)
∂xh

r

=
∫

∂xh

(
−1

2
∆r + r

)
∂xh

r = ‖∂xh
r‖2. (2.11)
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It follows that γh = 0 for every h = 1, 2, 3, yielding in turn

(L+u, η) = µ(r, η) for every η ∈ H1(R3). (2.12)

Now we claim that µ = 0. Indeed if we suppose by contradiction that µ = 0,
then, from (2.12), u ∈ KerL+. Thus, from (2.3), we have that u = β · ∇r with
β = (β1, β2, β3) ∈ R3. Moreover, since u ∈ V0, then, using (2.10) and (2.11), we
have

0 =
∫

Ξj(r)(β · ∇r) = βj‖∂xj r‖2 for every j = 1, 2, 3.

Then β = 0, namely u = 0, contradicting ‖u‖2 = 1. Notice now that

L+(x · ∇r) = −∆r +
3∑

j=1

xj∂xj

[
−1

2
∆r + r −

(
1
|x| ∗ r2

)
r

]
= −∆r

and, furthermore,

L+(r) = −2(|x|−1 ∗ r2)r.

Then

L+

(
−µ

2
(r + x · ∇r)

)
= µr = L+u.

In turn, by the nondegeneracy of r (see formula (2.3)), we learn that there exists
ϑ = (ϑ1, ϑ2, ϑ3) ∈ R3 with

u = −µ

2
(r + x · ∇r) + ϑ · ∇r.

We want to show that ϑ = 0. Since u ∈ V0, for every j = 1, 2, 3, we have

0 =
∫

Ξj(r)u = −µ

2

∫
Ξj(r)r − µ

2

∫
Ξj(r)x · ∇r + ϑj‖∂xj r‖2

where we have used (2.10) and (2.11). On the other hand, we have∫
Ξj(r)r = 3

∫ (
1
|x| ∗ r2

)
r∂xj r = 3

∫ (
−1

2
∆r + r

)
∂xj r

=
3
2

∫
∇r · ∇(∂xj r) + 3

∫
r∂xj r = 0 (2.13)

and, since the map x �→ (|x|−1 ∗ r2)r is radially symmetric,∫
Ξj(r)(x · ∇r) =

∫
∂xj

[(
1
|x| ∗ |r|

2

)
r

]
|x|r′0(|x|) = 0.

Then, for every j = 1, 2, 3, we get ϑj‖∂xjr‖2 = 0, yielding in turn ϑ = 0. Thus

u = −µ

2
(r + x · ∇r).
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But, since u ∈ V0,

0 = (u, r) = −µ

2
(‖r‖2

2 + (x · ∇r, r)). (2.14)

Moreover, integrating by parts, we have

(x · ∇r, r) =
1
2

3∑
h=1

∫
xh∂xh

(r2) = −3
2
‖r‖2

2.

Dropping in (2.14) we get the contradiction and so that the proof of the claim is
complete. Then, there exists a positive constant α0 > 0 such that

(L+u, u) ≥ α0‖u‖2
2 for every u ∈ V0. (2.15)

If we put |||u||| :=
√

(L+u, u) for u ∈ V0, it is readily checked that ||| · ||| satisfies
the required properties of a norm. Furthermore, if {un} is a Cauchy sequence in
(V0, ||| · |||), then, by (2.15), {un} strongly converges to a function u in L2(R3) and
u ∈ V0. Moreover, using Lemma 2.2, we have that {un} is a Cauchy sequence in
H1(R3) and then u has to be necessarily the strong limit in H1(R3). Therefore,
un → u in (V0, ||| · |||) and so we get that (V0, ||| · |||) is a Banach space and ||| · |||
is equivalent to the norm of H1(R3). This concludes the proof.

Proof of Proposition 2.2. Since ‖w + r‖2 = ‖r‖2, we have that

‖r‖2
2 = ‖r‖2

2 + ‖w‖2
2 + 2(u, r)

and then

(r, u) = −1
2
‖w‖2

2 = −1
2
(‖u‖2

2 + ‖v‖2
2). (2.16)

Without loss of generality, we can suppose that ‖r‖2 = 1. Let us write u = u‖ +u⊥
where u‖ = (u, r)r. We notice that u⊥ is orthogonal to r in L2(R3) and, combining
(2.5) with (2.13) we have that (u⊥, Ξj(r)) = 0 and namely u⊥ ∈ V0. Since L+ is
self-adjoint, we have that

(L+u, u) = (L+u‖, u‖) + 2(L+u⊥, u‖) + (L+u⊥, u⊥).

So we study separately each term in the right-hand side. By (2.16), the self-
adjointness of L+ and since r is solution of (1.4), we have that

(L+u‖, u‖) =
1
4
‖w‖4

2(L+r, r) = −1
2
‖r‖2‖w‖4

2 (2.17)

and

(L+u⊥, u‖) = −1
2
‖w‖2

2(u⊥, L+r) =
1
2
‖w‖2

2

∫
∇u⊥ · ∇r

=
1
2
‖w‖2

2

(∫
∇u · ∇r −

∫
∇u‖ · ∇r

)

≥ −1
2
‖w‖2

2‖∇w‖2‖∇r‖2. (2.18)
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Finally we notice that

‖∇u‖2
2 ≤ 2(‖∇u‖‖2

2 + ‖∇u⊥‖2
2) =

1
2
‖w‖4

2‖∇r‖2
2 + 2‖∇u⊥‖2

2

so that

‖∇u⊥‖2
2 ≥ 1

2
‖∇u‖2

2 −
1
4
‖w‖4

2‖∇r‖2
2.

Then, since u⊥ ∈ V0, applying Lemma 2.4 we have that

(L+u⊥, u⊥) ≥ C‖u⊥‖2 = C(‖u‖2
2 − ‖u‖‖2

2 + ‖∇u⊥‖2
2)

≥ C

(
‖u‖2

2 − |(u, r)|2 +
1
2
‖∇u‖2

2 −
1
4
‖w‖4

2‖∇r‖2
2

)

≥ C(‖u‖2 − ‖w‖4
2). (2.19)

Combining (2.17), (2.18) and (2.19) we get (2.6).

Concerning the coercivity of L−, we have the following proposition.

Proposition 2.3. infv �=0,(v,r)H1=0
(L−v,v)
‖v‖2 > 0.

Proof. Up to arguing as in the end of the proof of Lemma 2.4, it is enough to
prove that

inf
v �=0,(v,r)H1=0

(L−v, v)
‖v‖2

2

> 0.

Let us first prove that L− is non-negative. Since |x|−1 ∈ L3−δ(R3) + L3+δ(R3) and
r2 ∈ L(3−δ)′(R3)∩L(3+δ)′(R3) for δ > 0 small, by applying Lemma 2.20 of Ref. 17,
we have that x �→ |x|−1 ∗ r2 goes to zero for |x| → ∞ and so

lim
|x|→∞

[1 − (|x|−1 ∗ r2)] = 1.

In turn, from Ref. 4 (Theorem 3.1, p. 165), we learn that L− is bounded from
below and has a discrete spectrum over (−∞, 1) which consists of eigenvalues of
finite multiplicity. Moreover r ∈ KerL− and so 0 is an eigenvalue of L− and r is
a corresponding eigenfunction. But, from Ref. 4 (Theorem 3.4, p. 179), since the
smallest eigenvalue of L− is lower than 1, then it is simple and the corresponding
eigenfunction can be chosen to be positive everywhere. The positivity of r implies
that 0 is the smallest eigenvalue of L− and r is the corresponding eigenfunction.
Thus, for any v ∈ H1(R3), we have that (L−v, v) ≥ 0. Let us consider

ω := inf
(v,r)H1=0, ‖v‖2=1

(L−v, v)

and assume by contradiction that ω = 0. Let {vn} ⊂ H1(R3) be a minimizing
sequence. By virtue of (2.7), it follows that {vn} is bounded in H1(R3). Then
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there exists v ∈ H1(R3) such that, up to a subsequence, vn ⇀ v in H1(R3) and
(v, r)H1 = 0. In turn, in light of (2.8), we deduce that

0 ≤ (L−v, v) ≤ lim inf
n

(
‖vn‖2 −

∫
(|x|−1 ∗ r2)v2

n

)
= lim

n
(L−vn, vn) = 0,

so that (L−v, v) = 0. Hence, we obtain

‖v‖2 ≤ lim inf
n

‖vn‖2 ≤ lim sup
n

‖vn‖2 = lim
n

(
(L−vn, vn) +

∫
(|x|−1 ∗ r2)v2

n

)

= (L−v, v) +
∫

(|x|−1 ∗ r2)v2 = ‖v‖2.

Then {vn} converges to v in H1(R3) which implies that ‖v‖2 = 1 and v solves the
minimization problem. In turn, there exist two Lagrange multipliers λ, µ ∈ R such
that, for every η ∈ H1(R3), it holds

(L−v, η) = λ(v, η) + µ(r, η)H1 . (2.20)

Then, dropping η = v into (2.20) immediately yields λ = 0, so that, for any η ∈
H1(R3),

(L−v, η) = µ(r, η)H1 . (2.21)

Finally, by choosing now η = r into Eq. (2.21), and recalling that L−r = 0 yields

0 = (v, L−r) = (L−v, r) = µ‖r‖2,

where we used the fact that L− is self-adjoint. Then µ = 0, namely L−v = 0.
In light of (2.4), there is ϑ ∈ R\{0} with v = ϑr. Thus 0 = ϑ‖r‖2, which is a
contradiction. Then ω > 0 and the proof is complete.

For the proof of Theorem 1.1 we shall also need the following lemma.

Lemma 2.5. Let φ ∈ H1(R3, C) with

‖φ‖2 = ‖r‖2 and inf
x∈R3, θ∈[0,2π)

‖φ − eiθr(· − x)‖ ≤ ‖r‖.

Then infx∈R3,θ∈[0,2π) ‖φ−eiθr(·−x)‖2 is achieved at some x0 ∈ R3 and γ ∈ [0, 2π).

Proof. Consider the function Υ : R3 × [0, 2π) → R defined by setting

Υ(x, θ) = ‖φ − eiθr(· − x)‖2.

It is readily checked that Υ is continuous. Moreover, since ‖φ‖2 = ‖r‖2, we get

Υ(x, θ) = 2‖r‖2
2 +

1
2
‖∇r‖2

2 − 2Re

∫
eiθφ̄(y)r(y − x)dy

−Re

∫
eiθ∇φ̄(y) · ∇r(y − x)dy +

1
2
‖∇φ‖2

2.

Taking into account that the families of functions (r(·−x))x∈R3 and (∇r(·−x))x∈R3

are bounded in L2(R3) and converge pointwise (a.e.) to zero as |x| → ∞, it follows
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that they converge weakly to zero in L2(R3) as |x| → ∞. In turn, it readily follows
that, for any θ ∈ [0, 2π),

lim
|x|→∞

Υ(x, θ) = 2‖r‖2
2 +

1
2
‖∇r‖2

2 +
1
2
‖∇φ‖2

2 > ‖r‖2.

On the other hand, in light of the second assumption on the function φ, for every
δ > 0, there exist points x̃ ∈ R3 and θ̃ ∈ [0, 2π) such that Υ(x̃, θ̃) ≤ ‖r‖2 + δ. It
follows that the infimum of Υ over the unbounded set R3 × [0, 2π) coincides with
the infimum of Υ over the compact set B̄R(0) × [0, 2π] for every R > 0 sufficiently
large, yielding in turn the desired conclusion.

Proof of Theorem 1.1 concluded. Let φ ∈ H1(R3, C) be a function such that
‖φ‖2 = ‖r‖2 and infx∈R3, θ∈[0,2π) ‖φ − eiθr(· − x)‖ ≤ ‖r‖. In light of Lemma 2.5
there exist x0 ∈ R3, γ ∈ [0, 2π) with

inf
x∈R3, θ∈[0,2π)

‖φ − eiθr(· − x)‖2 = ‖φ − eiγr(· − x0)‖2.

Let us set w(x) := e−iγφ(x + x0)− r(x). Denoting by u and v respectively the real
and the imaginary part of w, we claim that u satisfies (u, Ξj(r)) = 0 for j = 1, 2, 3
and (v, r)H1 = 0. Indeed, if, as in the proof of Lemma 2.5, for any φ ∈ H1(R3, C),
x ∈ R3, θ ∈ R we consider

Υ(x, θ) = ‖φ − eiθr(· − x)‖2

= ‖φ‖2 + ‖r‖2 − 2Re

∫
eiθφ̄(y)

(
−1

2
∆r + r

)
(y − x)dy

= ‖φ‖2 + ‖r‖2 − 2Re

∫
eiθφ̄(y)[(| · |−1 ∗ r2)r](y − x)dy,

we have

∂Υ
∂xj

(x, θ) = 2Re

∫
eiθφ̄(y + x)Ξj(r)(y)dy

and

∂Υ
∂θ

(x, θ) = 2Im

∫
eiθφ̄(y + x)

(
−1

2
∆r + r

)
(y)dy.

Since eiγ φ̄(· + x0) = w̄ + r, ∂xj Υ(x0, γ) = 0 and ∂θΥ(x0, γ) = 0, using (2.13), we
get the orthogonality conditions

(u, r) = 0 and (v, r)H1 = 0. (2.22)

Then we consider the action I(φ) = E(φ) + ‖φ‖2
2 and we control the norm of w in

terms of the difference I(φ) − I(r). Using the scale invariance of I, recalling that
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〈I ′(r), w〉 = 0 and using also

〈I ′′(ζ)ς, ς〉 = 2‖ς‖2 − 2
∫

(|x|−1 ∗ |ζ|2)|ς|2 − 4
[∫

(|x|−1 ∗ ReζReς)ReζReς

+ 2
∫

(|x|−1 ∗ ReζImς)ImζReς +
∫

(|x|−1 ∗ ImζImς)ImζImς

]

for ζ, ς ∈ H1(R3, C), the orthogonality conditions (2.22), Propositions 2.2 and 2.3,
and the Hardy–Littlewood–Sobolev inequality we have

I(φ) − I(r) = I(r + w) − I(r) = 〈I ′(r), w〉 +
1
2
〈I ′′(r + ϑw)w, w〉

= ‖w‖2 −
∫

(|x|−1 ∗ |r + ϑw|2)|w|2 − 2
∫

(|x|−1 ∗ (r + ϑu)u)(r + ϑu)u

− 2ϑ2

∫
(|x|−1 ∗ v2)v2 − 4ϑ

∫
(|x|−1 ∗ (r + ϑu)v)uv

= (L+u, u) + (L−v, v) − 2ϑ

∫
(|x|−1 ∗ ru)|w|2 − ϑ2

∫
(|x|−1 ∗ |w|2)|w|2

− 4ϑ

∫
(|x|−1 ∗ ru)u2 − 2ϑ2

∫
(|x|−1 ∗ u2)u2 − 2ϑ2

∫
(|x|−1 ∗ v2)v2

− 4ϑ

∫
(|x|−1 ∗ rv)uv − 4ϑ2

∫
(|x|−1 ∗ uv)uv

≥ D‖w‖2 − D1‖w‖4 − D2‖w‖3,

which concludes the proof.

3. Proof of Theorem 1.2

3.1. Preliminary results

Let uε be a solution of the Cauchy problem (1.5). The energy is defined as

Eε(t) =
1
2ε

∫
|∇uε(t, x)|2 +

1
ε3

∫
V (x)|uε(t, x)|2 − 1

2ε5

∫∫ |uε(t, x)|2|uε(t, y)|2
|x − y|

and Eε(t) = Eε(0) for every t ≥ 0. Moreover the mass conservation reads as

1
ε3

∫
|uε(t, x)|2 = ‖r‖2

2 =: m, t ≥ 0, ε > 0.

For both conservations we refer the reader to Ref. 6, Theorem 4.3.1. Setting

H(t) :=
1
2
m|v(t)|2 + mV (x(t)), t ≥ 0,

from system (1.6) it follows that H(t) = H(0), for all t > 0. We have the following
lemma.

Lemma 3.1. Eε(t) = E(r) + H(t) + O(ε2) for all t ∈ [0,∞) and ε > 0.
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Proof. First, we observe that∣∣∣∣∇
(

r

(
x − x0

ε

)
e

i
ε x·v0

)∣∣∣∣
2

=
1
ε2

∣∣∣∣∇r

(
x − x0

ε

)∣∣∣∣
2

+
|v0|2
ε2

r2

(
x − x0

ε

)
.

Then, by the conservation of energy Eε, for any t ∈ [0,∞) and ε > 0, there holds

Eε(t) = Eε(0) =
1

2ε3

∫ ∣∣∣∣∇r

(
x − x0

ε

)∣∣∣∣
2

+
|v0|2
2ε3

∫
r2

(
x − x0

ε

)

+
1
ε3

∫
V (x)r2

(
x − x0

ε

)
− 1

2ε5

∫∫
r2
(

x−x0
ε

)
r2
(

y−x0
ε

)
|x − y|

=
1
2

∫
|∇r|2 +

1
2
m|v0|2 +

∫
V (x0 + εx)r2(x) − 1

2

∫∫
r2(x)r2(y)
|x − y|

= E(r) + H(t) +
∫

V (x0 + εx)r2(x) − mV (x0).

Taking into account that, since ∇2V is bounded and∫
x∇V (x0)r2(x) = 0,

we have ∫
V (x0 + εx)r2(x) − mV (x0) = O(ε2)

and the assertion immediately follows.

Moreover we have the following lemma.

Lemma 3.2. There exists C > 0 such that ‖∇uε(t)‖2 ≤ C
√

ε for all t ∈ [0,∞)
and ε > 0.

Proof. Taking into account that V is bounded from below, that Eε(0) is bounded
with respect to ε by Lemma 3.1 and the energy and mass are conserved quantities,
there exists a positive constant C independent of ε such that, for all t ∈ [0,∞) and
ε > 0,

‖∇uε(t)‖2
2 ≤ εC +

1
ε4

∫∫ |uε(t, x)|2|uε(t, x)|2
|x − y| .

Now, by the Hardy–Littlewood and Gagliardo–Nirenberg inequalities yields

1
ε4

∫∫ |uε(x, t)|2|uε(y, t)|2
|x − y| ≤ C

ε4
‖uε(t)‖4

12/5 ≤ C
√

ε

[‖uε(t)‖2
2

ε3

] 3
2

‖∇|uε(t)|‖2

≤ C
√

ε‖∇uε(t)‖2.

By combining the above inequalities the assertion follows.
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First of all, let us define the momentum

pε(t, x) :=
1
ε2

Im(ūε(t, x)∇uε(t, x)), x ∈ R
3, t ∈ [0,∞).

Lemma 3.3. The following identities hold:

∂t
|uε(t, x)|2

ε3
= −div(pε(t, x)), t ∈ [0,∞), x ∈ R

3,

∂t

∫
pε(t, x) = − 1

ε3

∫
∇V (x)|uε(t, x)|2, t ∈ [0,∞).

Proof. By multiplying the equation for uε by ūε and taking then the real part
easily yields the first identity, via trivial manipulations. Concerning the second
identity, since uε ∈ C([0,∞), H2(R3)) ∩ C1([0,∞), L2(R3)) by Ref. 6 (Theorem
5.2.1 and Remark 5.2.9) and the map t �→ ∫

pε
j(t, x) (j = 1, 2, 3) is C1([0,∞)) (see,

e.g. Ref. 10, Appendix A), we have

∂t

∫
pε

j(t, x) =
1
ε2

∫
Im(∂tū

ε∂ju
ε) − 1

ε2

∫
Im(∂j ū

ε∂tu
ε)

=
2
ε2

∫
Im(∂tū

ε∂ju
ε)

= −1
ε

∫
div(∂jRe(uε)∇Re(uε)) − 1

ε

∫
div(∂jIm(uε)∇Im(uε))

+
1
2ε

∫
∂j(|∇uε|2) +

1
ε3

∫
V (x)∂j |uε|2

− 1
ε5

∫ (
1
|x| ∗ |ū

ε|2
)

∂j |uε|2.

The first three terms as well as the last one in the above identity integrate to zero.
Furthermore, the integral involving the nonlocal term is zero too, since it holds∫ (

1
|x| ∗ |ū

ε|2
)

∂j |uε|2 = −
∫

∂j

(
1
|x| ∗ |ū

ε|2
)
|uε|2 = −

∫ (
1
|x| ∗ ∂j |ūε|2

)
|uε|2

= −
∫ (

1
|x| ∗ |ū

ε|2
)

∂j |uε|2.

Hence, the assertion follows.

3.2. Proof of Theorem 1.2 concluded

Once Theorem 1.1 holds true, the proof of Theorem 1.2 proceeds as in Refs. 5 and
14. Given T0 > 0 to be chosen suitably small, the function

Ψε(t, x) := e−
i
ε (εx+x(t))·v(t)uε(t, εx + x(t))
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satisfies ‖Ψε(t, ·)‖2 = ‖r‖2. Furthermore, taking into account Lemma 3.1, the
conservation of H and the characterization of r as infimum on M, by a direct
computation we end up with

0 ≤ E(Ψε(t)) − E(r)

= Eε(t) +
1
2
m|v(t)|2 − v(t)

∫
pε(t, x) − 1

ε3

∫
V (x)|uε(t, x)|2 − E(r)

= m|v(t)|2 − v(t)
∫

pε(t, x) + mV (x(t)) − 1
ε3

∫
V (x)|uε(t, x)|2 + O(ε2).

In turn 0 ≤ E(Ψε(t))−E(r) ≤ Cηε(t)+O(ε2), where ηε is defined in Ref. 14 (p. 179)
and satisfies ηε(0) = O(ε2). By Theorem 1.1 we know that there exist C, A > 0
such that

E(φ) − E(r) ≥ C inf
x∈R3, θ∈[0,2π)

‖φ − eiθr(· − x)‖2

for any φ ∈ H1(R3, C) such that

‖φ‖2 = ‖r‖2, inf
x∈R3, θ∈[0,2π)

‖φ − eiθr(· − x)‖ ≤ ‖r‖ and E(φ) − E(r) ≤ A.

Then, introducing

T ε = sup
{

t ∈ [0, T0] | ηε(s) ≤ A, inf
x∈R3, θ∈[0,2π)

‖Ψε(s, ·) − eiθr(· − x)‖ ≤ ‖r‖,

for all s ∈ [0, t]
}

and observing that Ψε(0, x) = r(x), it follows that T ε > 0 for any ε sufficiently
small and there exist families of functions θε : R → [0, 2π) and zε : R3 → R with∥∥∥∥uε(t, x) − e

i
ε (x·v(t)+θε(t))r

(
x − zε(t)

ε

)∥∥∥∥
2

Hε

≤ Cηε(t) + O(ε2)

for all t ∈ [0, T ε).

From this stage on, taking into account the mass and momentum identities of
Lemma 3.3, the conclusion ηε(t) ≤ Cε2 for all t ∈ [0, T ε), and hence in turn for
any t ∈ [0, T0], follows exactly as in Ref. 5 (Lemmas 3.4–3.6). The conclusion of
Lemma 3.2 is used in the proof of Lemma 3.5 in Ref. 5 to have ‖pε(t)‖1 ≤ C and
choose in turn T0 sufficiently small. Finally the assertion of Theorem 1.2 follows by
mimicking the continuation argument exploited in Ref. 5 (p. 185).
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