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Abstract

We consider a system of weakly coupled singularly perturbed semilinear elliptic equations.
First, we obtain a Lipschitz regularity result for the associated ground energy function Σ

as well as representation formulas for the left and the right derivatives. Then, we show that
the concentration points of the solutions locate close to the critical points of Σ in the sense
of subdifferential calculus.
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1 Introduction and main results

In the asymptotic analysis of the singularly perturbed elliptic equation

−ε2∆u+ u = f(x, u) in Rn, u > 0 in Rn, (Pε)
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there are well known situations where the associated ground energy function Σ (cf. [30])
is C1-smooth and around its nondegenerate critical points the solutions uε of Pε exhibit a
spike-like profile as ε goes to zero. This is the case, for instance, for the power nonlinearity

f(x, u) = K(x)uq, 1 < q < n+2
n−2 , n ≥ 3,

where K(x) is a suitable C1 function (see e.g. [3, 4] and references therein). It turns out
that the C1 (and higher) smoothness of Σ is related to the crucial fact that, for every fixed
z ∈ Rn, the limiting autonomous equation

−∆u+ u = f(z, u) in Rn, u > 0 in Rn, (P0)

admits a unique solution, up to translations [30]. However, unfortunately, the uniqueness
feature for P0 is a delicate matter and it is currently available only under rather restrictive
assumptions on f (cf. e.g. [16]). What is known, in general, is only that Σ is a locally
Lipschitz continuous function which admits representation formulas for the left and right
derivatives (cf. [30, Lemma 2.3]). Motivated by these facts, recently, some conditions for
locating the concentration points for Pε in presence of a more general nonlinearity f , not
necessarily of power type, have been investigated (see [23] and also [24]). The underlying
philosophy is that when the limit problem P0 lacks of uniqueness up to translations, then
the ground energy function Σ could lose its additional regularity properties.

Nevertheless, in this (possibly nonsmooth) framework, it turns out that a necessary
condition for the solutions uε to concentrate (in a suitable sense) around a given point z is
that it is critical for Σ in the sense of the Clarke subdifferential ∂C , that is 0 ∈ ∂CΣ(z), or
in a even weaker sense. The main theme of this note is the search of suitable conditions for
locating the spikes, as ε→ 0, of the solutions to the semilinear model system

−ε2∆u+ u = K(x)vq, in Rn,

−ε2∆v + v = Q(x)up, in Rn,

u, v > 0, in Rn,

(Sε)

where p > 1 and q > 1 are lying below the so called “critical hyperbola”

Cn =
{
(p, q) ∈ (1,∞)× (1,∞) : 1

p+1 + 1
q+1 = 1− 2

n

}
, n ≥ 3,

which naturally arises in the study of this problem and constitutes the borderline between
existence and nonexistence results (cf. e.g. [10, 15]).

Now, according to the above discussion, the interest in looking for conditions for the
spike location of the solutions to (Sε) is mainly motivated by the following simple obser-
vation: contrary to the scalar case, there is no uniqueness result available in the literature
for the (radial) solutions to the (limiting) system associated with (Sε)

−∆u+ u = K(z)vq, in Rn,

−∆v + v = Q(z)up, in Rn,

u, v > 0, in Rn,

(Sz)
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where z ∈ Rn is frozen and acts as a parameter. As a consequence, in the vectorial case,
we do not know whether the (suitably defined) ground energy map Σ associated with (Sε)
(cf. Definition 1.2) is C1-smooth and admits an explicit representation formula. Hence, the
necessary conditions in terms of Clarke subdifferential (or weaker) appear here even more
natural than in the case of a single equation. See Section 1.2 for the statements of the main
results, Theorems 1.1 and 1.2. As far as we are aware, other criteria for the concentration
have been established so far, but all of them consider the scalar case. We refer the reader
e.g. to [3,20,29,30] for the case of power-like nonlinearities and to [23,24] for more general
classes of nonlinearities.

Semilinear systems like (Sε) naturally arise in the study of various kinds of nonlinear
phenomena such as population evolution, pattern formation, chemical reaction, etc., being
u and v the concentrations of different species in the process (see also [32] and references
therein). Visibly, the interest in the study of the various qualitative properties of (Sε) has
steadily increased in recent times. In a smooth bounded domain Ω, (S1) was extensively
studied by Clement, Costa, De Figueiredo, Felmer, Hulshof, Magalhães, van der Vorst
in [10–12, 14, 15]. The asymptotic analysis with respect to ε has been very recently per-
formed both with Dirichlet and Neumann boundary conditions by Pistoia-Ramos [18, 19]
and Ramos-Yang [22]. In the whole space Rn, the existence of least energy solutions to
(Sε) has been investigated by Alves-Carrião-Miyagaki, De Figueiredo, Yang and Sirakov
in [1,2,13,26,27,31], whereas the asymptotic behavior with respect to ε has been pursued
by Alves-Soares-Yang in [2]. Finally, for the exponential decay, the radial symmetry and
the regularity properties of the solutions to (Sz), we refer the reader to the quite recent
achievements of Busca-Sirakov and Sirakov [6, 27].

The outline of the paper is as follows: in Sections 1.1-1.2 we provide preliminary stuff
such as the (dual) variational framework and the (dual) ground energy function Σ and we
state the main results of the paper. Throughout Section 2 we deal with the Liploc regularity
and the representation formulas of the directional derivatives for Σ. Finally, in Section 3
we complete the proofs of the main results.

1.1 The dual variational functional

It is known, if e.g. p and q are both less than n+2
n−2 , then system (Sε) admits a natural vari-

ational structure (of Hamiltonian type) which is based on the strongly indefinite functional
fε : H1(Rn)×H1(Rn) → R,

fε(u, v) =
∫

Rn

ε2∇u · ∇v + uv − 1
q+1

∫
Rn

K(x)|v|q+1 − 1
p+1

∫
Rn

Q(x)|u|p+1.

However, as already done in [1, 2], for our purposes, as well as for dealing with possibly
supercritical values of p or q, we consider a corresponding dual variational structure, mainly
relying on the Legendre-Fenchel transformation (see e.g. [8, 9, 17] and references therein).
In the following, we just briefly recall some of the core ingredients, referring to [1, Section
2] for expanded details on this framework. For 1

p+1 + 1
q+1 > n−2

n , consider the linear
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operators

T1 : L
q+1

q (Rn) →W 2, q+1
q (Rn) ↪→ Lp+1(Rn),

T2 : L
p+1

p (Rn) →W 2, p+1
p (Rn) ↪→ Lq+1(Rn),

defined as
T1 = T2 = (−∆ + Id)−1.

Notice that T1 and T2 are continuous. Then, we consider the linear operator (take into
account the proper Sobolev embeddings)

T : L
p+1

p (Rn)× L
q+1

q (Rn) → Lp+1(Rn)× Lq+1(Rn), T =
[

0 T1

T2 0

]
,

explicitly defined by

〈Tη, ξ〉 = ξ1T1η2 + ξ2T2η1, ∀η = (η1, η2), ∀ξ = (ξ1, ξ2).

Finally we introduce the Banach space (H , ‖ · ‖H ),

H = L
p+1

p (Rn)× L
q+1

q (Rn), ‖η‖2
H = ‖η1‖2

L
p+1

p (Rn)
+ ‖η2‖2

L
q+1

q (Rn)

and the (dual) C1 functional Jε : H → R defined as

Jε(η) = p
p+1

∫
Rn

|η1|
p+1

p

Q
1
p (εx)

+ q
q+1

∫
Rn

|η2|
q+1

q

K
1
q (εx)

− 1
2

∫
Rn

〈Tη, η〉.

If ηε = (ηε
1, η

ε
2) is a critical point of Jε, then (uε(x), vε(x)) = (ūε(x

ε ), v̄ε(x
ε )), with

(ūε, v̄ε) = (T1η
ε
2, T2η

ε
1) ∈W

2, q+1
q ×W 2, p+1

p , (1.1)

corresponds to a solution to (Sε) with uε(x), vε(x) → 0 for |x| → ∞ (see [1, p.677]).
In light of the above summability, we have fε(uε, vε) ∈ R for all ε > 0. Analogously,
associated with (Sz), we introduce the limiting functional Iz : H → R

Iz(η) = p
p+1

∫
Rn

|η1|
p+1

p

Q
1
p (z)

+ q
q+1

∫
Rn

|η2|
q+1

q

K
1
q (z)

− 1
2

∫
Rn

〈Tη, η〉.

From the viewpoint of our investigation, the main advantage of exploiting the dual vari-
ational functional Iz is that it admits a mountain-pass geometry and the mountain-pass
value corresponds to the least possible energy of system (Sz). As we shall see in the next
section, this allows to provide in the vectorial framework a suitable definition of ground
energy function with nice features, similar to those available in the scalar case.
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1.2 Preliminaries and the main statements

In order to state the main achievements of the paper, we need some preparatory material.
For the sake of self-containedness we shall also recall a few pretty well known notions from
nonsmooth calculus (see e.g. [7]).

Definition 1.1 Let f : Rn → R be a locally Lipschitz function near a point z ∈ Rn.
The Clarke subdifferential of f at z is defined by

∂Cf(z) :=
{
η ∈ Rn : f0(z, w) ≥ η · w, for every w ∈ Rn

}
,

where f0(z, w) is the generalized derivative of f at z along w ∈ Rn, defined by

f0(z;w) := lim sup
ξ→z

λ→0+

f(ξ + λw)− f(ξ)
λ

.

Definition 1.2 The (dual) ground energy function Σ : Rn → R of (Sz) is given by

Σ(z) := inf
η∈Nz

Iz(η),

where Nz is the Nehari manifold of Iz, that is

Nz =
{
η ∈ H : η 6= (0, 0) and I ′z(η)[η] = 0

}
.

We shall denote by K ⊂ Rn the set of Clarke critical points of Σ, namely

K :=
{
z ∈ Rn : 0 ∈ ∂CΣ(z)

}
.

Definition 1.3 We say that the pair (uε, vε) is a strong solution to system (Sε) if
it is a distributional solution and (uε, vε) ∈ W 2,(q+1)/q(Rn) ×W 2,(p+1)/p(Rn). We
say that the pair ηε = (ηε

1, η
ε
2) corresponding to (uε, vε) through (1.1) is the related

dual solution.

Definition 1.4 We set

E :=
{
z ∈ Rn : there exists a sequence of strong solutions (uεh

, vεh
) of (Sε) with

|uεh
(z)|, |vεh

(z)| ≥ δ for some δ > 0, |uεh
(z + εhx)|, |vεh

(z + εhx)| → 0

as |x| → ∞ uniformly w.r.t. h, and εh
−nfεh

(uεh
, vεh

) → Σ(z) as h→∞
}
.

We say that E is the energy concentration set for (Sε).

Assume that K,Q ∈ C1(Rn) and

α ≤ K(x) ≤ β, α ≤ Q(x) ≤ β, for all x ∈ Rn, (1.2)

|∇K(x)|, |∇Q(x)| ≤ CeM |x|, for all x ∈ Rn with |x| large (1.3)

for some positive constants α, β, C and M .

The main result of the paper, linking the energy concentration set E with the set K of
Clarke critical set of Σ, is provided by the following
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Theorem 1.1 Assume that K,Q ∈ C1(Rn) and that (1.2)-(1.3) hold. Then E ⊂ K.

Remark 1.1 By [2, Theorem 1], under suitable assumptions, if there exists an ab-
solute minimum (or maximum) point z∗ for Σ, then z∗ ∈ E 6= ∅.

Remark 1.2 As a straightforward combination of Theorem 1.1 with the well known
convex hull characterization of ∂CΣ(z), if z is a concentration point for (Sε), then

0 ∈ Co
{

lim
j
∇Σ(ξj) : ξj 6∈ Ω and ξj → z

}
,

where Co{X} denotes the convex hull of X and Ω is any null set containing the set
of points at which Σ fails to be differentiable.

Corollary 1.1 Under the (unproved) assumption that, for all z ∈ Rn, system (Sz)
admits a unique positive solution (up to translations), Σ is C1-smooth and

E ⊂ Crit
(
Q

q+1
pq−1 K

p+1
pq−1

)
,

where Crit(f) denotes the set of (classical) critical points of f .

In the following definition we consider solutions which concentrate close to a point z,
with bounded energy but not necessary stabilizing towards Σ(z).

Definition 1.5 Let m ≥ 1. We set

Em :=
{
z ∈ Rn : there exists a sequence of strong solutions (uεh

, vεh
) of (Sε) with

|uεh
(z)|, |vεh

(z)| ≥ δ for some δ > 0, |uεh
(z + εhx)|, |vεh

(z + εhx)| → 0

as |x| → ∞ uniformly w.r.t. h, and εh
−nfεh

(uεh
, vεh

) → m as h→∞
}
.

We say that Em is the concentration set for (Sε) at the energy level m.

Definition 1.6 Let m ≥ 1 and z ∈ Rn. For every w ∈ Rn we define Γ∓z,m(w) by

Γ−z,m(w) := sup
η∈Gm(z)

[
− 1
p+ 1

∂Q

∂w
(z)

∫
Rn

|η1|
p+1

p

Q
p+1

p (z)
− 1
q + 1

∂K

∂w
(z)

∫
Rn

|η2|
q+1

q

K
q+1

q (z)

]
,

Γ+
z,m(w) := − inf

η∈Gm(z)

[
− 1
p+ 1

∂Q

∂w
(z)

∫
Rn

|η1|
p+1

p

Q
p+1

p (z)
− 1
q + 1

∂K

∂w
(z)

∫
Rn

|η2|
q+1

q

K
q+1

q (z)

]
,

where Gm(z) denotes the set of all the nontrivial, radial, exponentially decaying
solutions of (Sz) having energy equal to m.

It is readily seen that Γ∓z,m(w) ∈ R for all z, w in Rn (see the proof of (2.11)). It is also
straightforward to check that, for any z ∈ Rn, the functions {w 7→ Γ∓z,m(w)} are convex.
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Definition 1.7 Let m ≥ 1. We set

Km :=
{
z ∈ Rn : 0 ∈ ∂Γ−z,m(0) ∩ ∂Γ+

z,m(0)
}
,

where ∂ stands for the subdifferential of convex functions,

∂Γ∓z,m(0) =
{
ξ ∈ Rn : Γ∓z,m(w) ≥ ξ · w, for every w ∈ Rn

}
.

It is known by standard convex analysis that ∂Γ∓z,m(0) 6= ∅, for every z ∈ Rn. Observe
that z ∈ Km if and only if 0 is a critical point for both Γ−z,m and Γ+

z,m. Of course, if
Gm(z) = {η0} was a singleton, then z ∈ Km if and only if

Γ−z,m(w) = Γ+
z,m(w) =

∂Iz
∂w

(η0) = 0, ∀w ∈ Rn.

Without forcing the energy levels of the solutions to approach the least energy of the
limit system, we get the following correlation between the sets Em and Km.

Theorem 1.2 Assume that K,Q ∈ C1(Rn) and (1.2)-(1.3) hold. Then Em ⊂ Km.

2 Properties of the ground energy function

Before coming to the proof of the results, we need some preliminary stuff.

2.1 Some preparatory lemmas

The next proposition is well known (see e.g. [31]); on the other hand, for the sake of
completeness and self-containedness, we give a brief proof.

Proposition 2.1 Let z ∈ Rn. Then (u, v) ∈ W 2, q+1
q (Rn)×W 2, p+1

p (Rn) is a solution
to (Sz) if and only if η = (η1, η2) = (T−1

2 v, T−1
1 u) ∈ H is a critical point of Iz.

Moreover, there holds fz(u, v) = Iz(η1, η2), where fz is the functional defined as

fz(u, v) =
∫

Rn

∇u · ∇v + uv − 1
q+1

∫
Rn

K(z)|v|q+1 − 1
p+1

∫
Rn

Q(z)|u|p+1.

Proof. Observe first that, if (u, v) ∈W 2, q+1
q (Rn)×W 2, p+1

p (Rn) solves (Sz), taking into
account the Sobolev embedding, the value fz(u, v) is indeed finite (cf. (1.1)). Let (u, v) be
a solution to (Sz). Then, since

η1 = T−1
2 v, η2 = T−1

1 u,

we have {
η2 = T−1

1 u = −∆u+ u = K(z)vq,

η1 = T−1
2 v = −∆v + v = Q(z)up.
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Therefore, we get

T2η1 = v =
η

1
q

2

K
1
q (z)

and T1η2 = u =
η

1
p

1

Q
1
p (z)

, (2.1)

and so (η1, η2) is a critical point of Iz . Vice versa, if (η1, η2) is a critical point of Iz , it
is readily seen that (2.1) hold, so that (T1η2, T2η1) = (u, v) is a solution to (Sz) (cf. [1,
p.677]). Furthermore, on the solutions to (Sz), we have

fz(u, v) =
(

1
2 −

1
p+1

) ∫
Rn

Q(z)up+1 +
(

1
2 −

1
q+1

) ∫
Rn

K(z)vq+1.

Then, in light of (2.1), we have

Iz(η) = p
p+1

∫
Rn

|η1|
p+1

p

Q
1
p (z)

+ q
q+1

∫
Rn

|η2|
q+1

q

K
1
q (z)

− 1
2

∫
Rn

〈Tη, η〉

=
(

p
p+1 −

1
2

) ∫
Rn

η1 T1η2 +
(

q
q+1 −

1
2

) ∫
Rn

η2 T2η1

=
(

p
p+1 −

1
2

) ∫
Rn

(−∆v + v)u+
(

q
q+1 −

1
2

) ∫
Rn

(−∆u+ u)v

=
(

1
2 −

1
p+1

) ∫
Rn

Q(z)up+1 +
(

1
2 −

1
q+1

) ∫
Rn

K(z)vq+1 = fz(u, v),

which concludes the proof.

Definition 2.1 We say that η ∈ H is a dual solution to (Sz) if it is a critical point
of Iz. We say that η is a dual least energy solution to (Sz) if it is a dual solution
and, in addition, Iz(η) = Σ(z).

The next property, classical in the scalar case, will be pretty useful for our purposes.

Lemma 2.1 For every z ∈ Rn, let us set

b1(z) := inf
η∈H \{0}

sup
t≥0

Iz(tη),

b2(z) := inf
η∈Nz

Iz(η) = Σ(z),

b3(z) := inf
{
Iz(η) : η ∈ H \ {0} is a dual solution to (Sz)

}
.

Then b1(z) = b2(z) = b3(z). Moreover {z 7→ Σ(z)} is continuous.

Proof. The first equality follows from [1, Lemma 2]. Moreover in [1] it is proved that
b1(z) = b2(z) is a critical value so that also b2(z) = b3(z) follows. Finally, by virtue
of [2, Lemma 1], we know that Σ is continuous.
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Lemma 2.2 Let z ∈ Rn and define the (nonempty) set

H+ :=
{
η ∈ H :

∫
Rn

〈Tη, η〉 > 0
}
.

Then, for every η ∈ H+, there exists a unique maximum point tη > 0 of the map
φ : t ∈ (0,∞) 7→ Iz(tη). In particular, tηη ∈ Nz.

Proof. Let us observe that if φ′(t) = 0, then∫
Rn

〈Tη, η〉 = t
1−p

p

∫
Rn

|η1|
p+1

p

Q
1
p (z)

+ t
1−q

q

∫
Rn

|η2|
q+1

q

K
1
q (z)

.

Since the function g(t) = At
1−q

q + Bt
1−p

p with A,B > 0 is strictly decreasing for t > 0,
then φ has at most one critical value. It is easy to see that for all η ∈ H , φ(t) > 0 for t
small, while if η ∈ H+, it is readily seen that φ(t) < 0 for t large.

2.2 Conjecturing the representation of Σ

Consider for a moment the equation

−ε2∆u+ V (x)u = K(x)up, in Rn, (2.2)

with p subcritical and V and K potentials functions bounded away from zero. By the
results of [16], we know that there is uniqueness (up to translation) of positive solutions for

−∆u+ u = up, in Rn,

and, by a suitable change of variable, also for the “limit” problem at x = z of (2.2)

−∆u+ V (z)u = K(z)up, in Rn.

This allows to give an explicit representation for the ground state function associated
with (2.2), merely depending on the potentials V and K (see for example [4, 30]):

Σ(z) = Γ
V

p+1
p−1−

n
2 (z)

K
2

p−1 (z)
, (2.3)

for a suitable positive constant Γ. On the contrary, as already observed, to our knowledge
there is no (known) uniqueness result for the elliptic system

−∆ξ + ξ = ζq, −∆ζ + ζ = ξp, in Rn, (2.4)

and so, in general, we cannot provide an explicit expression for Σ for (Sz). Slightly more
generally, if V is smooth and α ≤ V (x) ≤ β, consider the system

−∆u+ V (z)u = K(z)vq, in Rn,

−∆v + V (z)v = Q(z)up, in Rn,

u, v > 0, in Rn.

(2.5)
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Assuming that (2.4) has a unique solution (ξ, ζ), then we claim that

Σ(z) = Γ
V

(p+1)(q+1)
pq−1 −n

2 (z)

Q
q+1

pq−1 (z)K
p+1

pq−1 (z)
(2.6)

for a suitable positive constant Γ. Indeed, by rescaling

u(x) = $1ξ(µx) and v(x) = $2ζ(µx),

where we have set

µ = µ(z) := V
1
2 (z),

$1 = $1(z) :=
V

q+1
pq−1 (z)

Q
q

pq−1 (z)K
1

pq−1 (z)
,

$2 = $2(z) :=
V

p+1
pq−1 (z)

Q
1

pq−1 (z)K
p

pq−1 (z)
,

it is easy to see that (u, v) is the unique solution of the system (2.5). Hence, by a straight-
forward calculation, we reach (2.6). Let us observe that the exponent of V (z) in (2.6) is
equal to zero if, and only if, the pair (p, q) belongs to Cn. Then, for problems with powers
p, q close to the set Cn, the potential V is expected to have a weak influence in the location
of concentration points. Notice that the same phenomenon appears in the scalar case (cf.
formula (2.3)), since p+1

p−1 −
n
2 ∼ 0 if and only if p ∼ n+2

n−2 = 2∗−1, where 2∗ is the critical
Sobolev exponent forH1. Finally, we just wish to mention that, incidentally, the exponents

θ1 =
p+ 1
pq − 1

, θ2 =
q + 1
pq − 1

in formula (2.6) also arise in the study of the blow-up rates for the parabolic system

ut = ∆u+ vq, vt = ∆v + up, x ∈ Ω, t > 0,

with initial data u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 and Dirichlet boundary
conditions u = v = 0 on ∂Ω. Here Ω is a ball in Rn and u0 and v0 are continuous which
vanish on the boundary. If u0, v0 are nontrivial C1 functions, the solution (u, v) blows up
at a finite time T < ∞, and ut ≥ 0, vt ≥ 0 on Ω × (0, T ), then there exist two constants
C > c > 0 with

c

(T − t)θ1
≤ max

Ω
u(x, t) ≤ C

(T − t)θ1
,

c

(T − t)θ2
≤ max

Ω
v(x, t) ≤ C

(T − t)θ2
,

for all t ∈ (0, T ). We refer the interested reader, e.g., to [28].

2.3 Local lipschitzian property of Σ

In the case of a single semilinear elliptic equation, it is known [30] that the ground energy
map enjoys a basic regularity property, in addition to the continuity, namely it is locally
Lipschitz continuous (hence differentiable a.e. by virtue of Rademacher’s theorem). Anal-
ogously, for system (Sε), we obtain the following:
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Theorem 2.1 Σ ∈ Liploc(Rn).

Proof. Let ρ0 > 0 and µ ∈ Rn with |µ| ≤ ρ0 and let ηµ be a (dual) solution to (Sµ) such
that Iµ(ηµ) = Σ(µ) (we already know that such a solution does exist, see [1]). Then, the
corresponding (direct) solution (uµ, vµ) satisfies

−∆u+ u = K(µ)vq, −∆v + v = Q(µ)up, in Rn. (2.7)

We also know that uµ and vµ are radially symmetric, radially decreasing with respect to,
say, the origin, and exponentially decaying (see [6, 13, 27], in particular [6, Theorem 2]
and [27, Theorem 1(a)]). We claim that there exist $1 > 0 and $2 = $2(ρ0) > 0
independent of µ such that

$1 ≤ ‖uµ‖Lp+1 ≤ $2 and $1 ≤ ‖vµ‖Lq+1 ≤ $2. (2.8)

Let us prove first the estimates from below. By multiplying the first equation of (2.7) by
uµ and taking into account (1.2), we get

‖uµ‖2
H1 =

∫
Rn

K(µ)vq
µuµ ≤ β‖vµ‖q

Lq+1‖uµ‖Lq+1 ≤ βS‖vµ‖q
Lq+1‖uµ‖H1 , (2.9)

where S is the Sobolev constant. Now, by multiplying the first equation of system (2.7) by
vµ and the second equation by uµ, and comparing the resulting equations, we have

‖vµ‖q
Lq+1 ≤

(
β
α

)q/(q+1)

‖uµ‖q(p+1)/(q+1)
Lp+1 . (2.10)

By combining inequalities (2.9) and (2.10), and using again the Sobolev inequality, the
assertion follows. The proof of the estimate from below for ‖vµ‖Lq+1 is similar. To prove
the inequalities from above, we simply observe that Σ is continuous and

max
|µ|≤ρ0

Σ(µ) = max
|µ|≤ρ0

Iµ(ηµ) = max
|µ|≤ρ0

fµ(uµ, vµ)

≥
(

α
2 −

α
q+1

)
‖vµ‖q+1

Lq+1 +
(

α
2 −

α
p+1

)
‖uµ‖p+1

Lp+1 .

Thus (2.8) follows. As a consequence, according to the definition of the dual norm ‖ · ‖H ,
we immediately obtain

α

√
$2p

1 +$2q
1 ≤ max

|µ|≤ρ0

‖ηµ‖H ≤ β

√
$2p

2 (ρ0) +$2q
2 (ρ0). (2.11)

Now, since ηµ ∈ Nµ, we get∫
Rn

〈Tηµ, ηµ〉 =
∫

Rn

|ηµ
1 |

p+1
p

Q
1
p (µ)

+
∫

Rn

|ηµ
2 |

q+1
q

K
1
q (µ)

> 0. (2.12)

Hence ηµ ∈ H+ and, by means of Lemma 2.2, there exists precisely one positive number
θ(µ, ξ) such that θ(µ, ξ)ηµ ∈ Nξ. By definition, this means that∫

Rn

〈Tηµ, ηµ〉 = θ(µ, ξ)
1−p

p

∫
Rn

|ηµ
1 |

p+1
p

Q
1
p (ξ)

+ θ(µ, ξ)
1−q

q

∫
Rn

|ηµ
2 |

q+1
q

K
1
q (ξ)

. (2.13)
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Moreover, we have θ(µ, µ) = 1. Collecting these facts, we see that, by the implicit function
theorem, θ is differentiable with respect to the variable ξ. Moreover, in light of (2.11), it
follows that θ(µ, ξ) remains bounded for µ and ξ varying in a bounded set. Indeed, by
combining (2.12) and (2.13), supposing for example that p ≤ q, we have

θ(µ, ξ)
p−1

p

[∫
Rn

|ηµ
1 |

p+1
p

Q
1
p (µ)

+
∫

Rn

|ηµ
2 |

q+1
q

K
1
q (µ)

]
=

∫
Rn

|ηµ
1 |

p+1
p

Q
1
p (ξ)

+ θ(µ, ξ)
1
q−

1
p

∫
Rn

|ηµ
2 |

q+1
q

K
1
q (ξ)

.

Then the (local) boundedness of θ(µ, ξ) follows immediately by (2.11) and by the fact that
1
q −

1
p ≤ 0. Let us now observe that

Iξ(θ(µ, ξ)ηµ) = θ(µ, ξ)
p+1

p
p

p+ 1

∫
Rn

|ηµ
1 |

p+1
p

Q
1
p (ξ)

+ θ(µ, ξ)
q+1

q
q

q + 1

∫
Rn

|ηµ
2 |

q+1
q

K
1
q (ξ)

− θ(µ, ξ)2

2

∫
Rn

〈Tηµ, ηµ〉.

The gradient of the function
{
ξ 7→ Iξ(θ(µ, ξ)ηµ)

}
is thus given by

∇ξIξ(θ(µ, ξ)ηµ)=− θ(µ, ξ)
p+1

p

p+ 1
∇ξQ(ξ)

∫
Rn

|ηµ
1 |

p+1
p

Q
p+1

p (ξ)

− θ(µ, ξ)
q+1

q

q + 1
∇ξK(ξ)

∫
Rn

|ηµ
2 |

q+1
q

K
q+1

q (ξ)

+∇ξθ(µ, ξ)
[
θ(µ, ξ)

1
p

∫
Rn

|ηµ
1 |

p+1
p

Q
1
p (ξ)

+ θ(µ, ξ)
1
q

∫
Rn

|ηµ
2 |

q+1
q

K
1
q (ξ)

− θ(µ, ξ)
∫

Rn

〈Tηµ, ηµ〉
]
,

and so, since θ(µ, ξ)ηµ ∈ Nξ, in turn we get

∇ξIξ(θ(µ, ξ)ηµ) =− θ(µ, ξ)
p+1

p

p+ 1
∇ξQ(ξ)

∫
Rn

|ηµ
1 |

p+1
p

Q
p+1

p (ξ)
(2.14)

− θ(µ, ξ)
q+1

q

q + 1
∇ξK(ξ)

∫
Rn

|ηµ
2 |

q+1
q

K
q+1

q (ξ)
.

From this representation formula, the Mean-Value Theorem and the local boundedness of
θ, the assertion readily follows.
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2.4 Left and right derivatives of Σ

Let us define S(z) as the set of all the positive (dual) solutions (η1, η2) of (Sz) at the energy
level Σ(z). The representation formulas for the (left and right) directional derivatives of Σ
are provided in the following

Theorem 2.2 The directional derivatives from the left and the right of Σ at every
point z ∈ Rn along any w ∈ Rn exist and(

∂Σ
∂w

)−
(z) = sup

η∈S(z)

∇zIz(η) · w,(
∂Σ
∂w

)+

(z) = inf
η∈S(z)

∇zIz(η) · w.

Explicitly, we have(
∂Σ
∂w

)−
(z) = sup

η∈S(z)

[
− 1
p+ 1

∂Q

∂w
(z)

∫
Rn

|η1|
p+1

p

Q
p+1

p (z)
− 1
q + 1

∂K

∂w
(z)

∫
Rn

|η2|
q+1

q

K
q+1

q (z)

]
(
∂Σ
∂w

)+

(z) = inf
η∈S(z)

[
− 1
p+ 1

∂Q

∂w
(z)

∫
Rn

|η1|
p+1

p

Q
p+1

p (z)
− 1
q + 1

∂K

∂w
(z)

∫
Rn

|η2|
q+1

q

K
q+1

q (z)

]
for every z, w ∈ Rn.

Proof. Let {µj} ⊂ Rn be a sequence converging to µ0 and let ηj = ηµj be a sequence of
(dual) solutions of least energy Σ(µj). We want to prove that, up to a subsequence,

ηµj → η0, strongly in H , η0 ∈ S(µ0). (2.15)

Consider the corresponding (direct) solutions (uµj
, vµj

) (resp. (u0, v0)) of (2.7) with µ =
µj (resp. µ = µ0). Since (uµj

, vµj
) is bounded in W 2,(q+1)/q(Rn) × W 2,(p+1)/p(Rn)

(cf. [2]), up to a subsequence, it converges weakly to a pair (u0, v0). In addition, since K
andQ are uniformly bounded, by virtue of the Schauder local regularity estimates (cf. [25]),
(uµj , vµj ) is bounded in C2,β

loc (Rn) for some β > 0 and

uµj
→ u0 and vµj

→ v0, locally in C2-sense, (2.16)

so that (u0, v0) solves (2.7) with µ = µ0. We claim that u0 > 0 and v0 > 0. By [6,
Theorem 2], for every j ≥ 1, uµj

and vµj
are radially symmetric and radially decreasing

with respect to some point, say the origin, that is

uµj
(x) = uj(r), vµj

(x) = vj(r),
d

dr
uj(r) < 0,

d

dr
vj(r) < 0, (2.17)

for every r > 0. Hence, for every j ≥ 1, we have

uµj
(0) ≤ −∆uµj

(0) + uµj
(0) = K(µj)vq

µj
(0) ≤ βvq

µj
(0),

vµj
(0) ≤ −∆vµj

(0) + vµj
(0) = Q(µj)up

µj
(0) ≤ βup

µj
(0).
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It follows that, for every j ≥ 1,

uµj
(0) ≤ βq+1upq

µj
(0).

Then there exists δ̂ > 0 such that uµj
(0) ≥ δ̂ for every j ≥ 1. Similarly, vµj

(0) ≥ δ̂ for
every j ≥ 1. Hence, letting j →∞, by (2.16), we conclude that u0(0) ≥ δ̂ and v0(0) ≥ δ̂,
which entails u0 6≡ 0 and v0 6≡ 0. Since we have u0 ≥ 0, v0 ≥ 0, K(µ0), Q(µ0) > 0 and

−∆u0 + u0 ≥ 0 and −∆v0 + v0 ≥ 0,

the claim just follows by a straightforward application of the maximum principle.
Observe that, by the continuity of Σ and by Fatou’s Lemma, we get

Σ(µ0) = lim
j→∞

Σ(µj) = lim
j→∞

Iµj
(ηj) ≥ Iµ0(η

0) ≥ Σ(µ0).

Hence
lim

j→∞
Iµj

(ηj) = Iµ0(η
0) = Σ(µ0),

which reads as

lim
j→∞

∫
Rn

|ηj
1|

p+1
p

Q
1
p (µj)

=
∫

Rn

|η0
1 |

p+1
p

Q
1
p (µ0)

, lim
j→∞

∫
Rn

|ηj
2|

q+1
q

K
1
q (µj)

=
∫

Rn

|η0
2 |

q+1
q

K
1
q (µ0)

.

In particular, taking into account (1.2), for any δ > 0, there exists ρ > 0 such that∫
{|x|≥ρ}

|ηj
1|

p+1
p < δ,

∫
{|x|≥ρ}

|ηj
2|

q+1
q < δ,

for every j ≥ 1 sufficiently large. Moreover, of course

lim
j→∞

∫
{|x|≤ρ}

|ηj
1|

p+1
p =

∫
{|x|≤ρ}

|η0
1 |

p+1
p , lim

j→∞

∫
{|x|≤ρ}

|ηj
2|

q+1
q =

∫
{|x|≤ρ}

|η0
2 |

q+1
q .

Then we have ηµj → η0 strongly in H , namely (2.15) holds true.
Without loss of generality, we can prove the formula of the right derivative of Σ in the

case n = 1, z = 0 and w = 1. For any η0 ∈ S(0), we get

Σ(ρ)− Σ(0) ≤ Iρ(ϑ(ρ, 0)η0)− I0(η0)

= ρ∇ξIξ(ϑ(ξ, 0)η0)|ξ=µ∈[0,ρ].

Whence, by virtue of (2.14) and the arbitrariness of η0 ∈ S(0),

lim sup
ρ→0+

Σ(ρ)− Σ(0)
ρ

≤ inf
η0∈S(0)

[
− Q′(0)
p+ 1

∫
Rn

|η0
1 |

p+1
p

Q
p+1

p (0)
− K ′(0)
q + 1

∫
Rn

|η0
2 |

q+1
q

K
q+1

q (0)

]
.

Moreover, similarly, we get

Σ(ρ)− Σ(0) ≥ Iρ(ϑ(ρ, ρ)ηρ)− I0(ϑ(0, ρ)ηρ)
= ρ∇ξIξ(ϑ(ξ, ρ)ηρ)|ξ=µ∈[0,ρ],
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so that, by exploiting (2.14) and (2.15), we conclude

lim inf
ρ→0+

Σ(ρ)− Σ(0)
ρ

≥ inf
η0∈S(0)

[
− Q′(0)
p+ 1

∫
Rn

|η0
1 |

p+1
p

Q
p+1

p (0)
− K ′(0)
q + 1

∫
Rn

|η0
2 |

q+1
q

K
q+1

q (0)

]
.

Then the desired formula for the right derivative of Σ follows. A very similar argument
provides the corresponding formula for the left derivative.

Remark 2.1 Nowadays, further regularity of Σ is, to our knowledge, an open prob-
lem. Actually, not even in the case of a single equation is the situation very well
understood. For instance, on one hand, if we consider the problem

−ε2∆u+ V (x)u = K(x)up in Rn, u > 0 in Rn,

then Σ ∈ Cm(Rn) provided that both the potentials V and K belong to Cm(Rn),
with m ≥ 1. On the other hand, if f is not a power (and does not satisfy conditions
ensuring uniqueness up to translations), for the equation

−ε2∆u+ V (x)u = K(x)f(u) in Rn, u > 0 in Rn,

we do not know which regularity beyond Liploc can be achieved by Σ. Even though
we do not have any specific counterexample, our feeling is that there exist functions
f for which the associated Σ fails to be C1 smooth. It is evident by the (left and
right) derivative formulas of Σ that its further regularity is related to the uniqueness
of positive radial solutions to −∆u+u = f(u) in Rn, u > 0 in Rn, which occurs just
for very particular nonlinearities f . Based upon these considerations, for semilinear
systems, the further regularity of Σ seems an ever harder matter, since as already
stressed nothing is known, so far, about the uniqueness of solutions to the system

−∆u+ u = f(v), −∆v + v = g(u), in Rn, u, v > 0 in Rn,

not even with the particular choices f(v) = vq and g(u) = up.

3 Proofs of results

3.1 Proof of Theorem 1.1

Let z ∈ E and let (uεh
, vεh

) ∈W 2, q+1
q (Rn)×W 2, p+1

p (Rn) be a corresponding a sequence
of strong solutions to (Sε) with |uεh

(z)|, |vεh
(z)| ≥ δ for some δ > 0, |uεh

(z + εhx)| →
0, |vεh

(z + εhx)| → 0 as |x| → ∞ uniformly w.r.t. h, and εh
−nfεh

(uεh
, vεh

) → Σ(z) as
h→∞. Let us set:

ϕh(x) = uεh
(z + εhx) and ψh(x) = vεh

(z + εhx),

for all h ≥ 1. Then, since (uεh
, vεh

) is a solution (Sε), (ϕh, ψh) is solution of

−∆ϕh + ϕh = K(z + εhx)ψ
q
h, −∆ψh + ψh = Q(z + εhx)ϕ

p
h. (3.1)
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By arguing as in the proof of Theorem 2.2, it is readily proved that, up to a subsequence,
(ϕh) and (ψh) converge weakly in W 2,(q+1)/q(Rn)×W 2,(p+1)/p(Rn) to some ϕ0 and ψ0

respectively. Let us now prove that there exist Θ > 0, ρ > 0 and h0 ≥ 1 such that

ϕh(x) ≤ ce−Θ|x| and ψh(x) ≤ ce−Θ|x|, for all |x| ≥ ρ and h ≥ h0. (3.2)

We follow the line of [13]. Since z ∈ E , then the functions ϕh and ψh decay to zero at
infinity, uniformly with respect to h. Hence, since p, q > 1, we can find ρ > 0, Θ > 0 and
h0 ≥ 1 such that

K(z + εhx)ψ
q
h ≤ (1−Θ2)ψh,

Q(z + εhx)ϕ
p
h ≤ (1−Θ2)ϕh,

for all |x| > ρ and h ≥ h0. Let us set

ξ(x) = µe−Θ(|x|−ρ), µ = max
|x|=ρ

max
h≥h0

(ψh + ϕh),

and introduce the set
A =

⋃
R>ρ

DR,

where, for any R > ρ, we put

DR =
{
ρ < |x| < R : ψh(x) + ϕh(x) > ξ(x) for some h ≥ h0

}
.

If A = ∅, we are done. Instead, if A is nonempty, there exists R∗ > ρ such that

∆(ξ − ψh − ϕh) ≤
[
Θ2 − Θ(n− 1)

|x|

]
ξ(x)−Θ2ψh −Θ2ϕh

≤ Θ2(ξ − ψh − ϕh) < 0, on DR for all R ≥ R∗.

Hence, by the maximum principle, since (ξ − ψh − ϕh)|{|x|=ρ} ≥ 0, we get

ξ − ψh − ϕh ≥ min
{
0, min
|x|=R

(ξ − ψh − ϕh)
}
, for all R ≥ R∗

so that, letting R → ∞, yields, for any ρ > 0, ψh(x) + ϕh(x) ≤ ξ(x) for |x| > ρ, which
contradicts the definition of DR∗ 6= ∅.

By virtue of the Schauder interior estimates (see e.g. [25]), ϕh → ϕ0 and ψh → ψ0

locally in C2 sense, so that (ϕ0, ψ0) is a (nontrivial, radial, decaying) solution to (Sz).
Moreover, in light of the exponential barriers provided by (3.2), since z ∈ E , it is not
difficult to see that (ϕ0, ψ0) ∈ S(z), for we have

Σ(z) =
(

1
2 −

1
q+1

) ∫
Rn

K(z)|ψ0|q+1 +
(

1
2 −

1
p+1

) ∫
Rn

Q(z)|ϕ0|p+1

= fz(ϕ0, ψ0) = Iz(η0),

where η0 is the dual solution corresponding to (ϕ0, ψ0).
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Let us now consider the Lagrangian L : Rn × R× R× Rn × Rn → R defined as

L (x, s1, s2, ξ1, ξ2) = ξ1 · ξ2 + s1s2 − 1
q+1K(z + εhx)s

q+1
2 − 1

p+1Q(z + εhx)s
p+1
1 .

Then system (3.1) rewrites as
−div (∂ξ2L (x, ϕh, ψh,∇ϕh,∇ψh)) + ∂s2L (x, ϕh, ψh,∇ϕh,∇ψh) = 0, in Rn,

−div (∂ξ1L (x, ϕh, ψh,∇ϕh,∇ψh)) + ∂s1L (x, ϕh, ψh,∇ϕh,∇ψh) = 0, in Rn,

ϕh, ψh > 0, in Rn.

By the Pucci-Serrin identity for systems [21, see §5], we have

n∑
i, l=1

∫
Rn

∂iq
l∂(ξ2)i

L (x, ϕh, ψh,∇ϕh,∇ψh)∂lψh

+
n∑

i, l=1

∫
Rn

∂iq
l∂(ξ1)i

L (x, ϕh, ψh,∇ϕh,∇ψh)∂lϕh

=
∫

Rn

[
(div q)L (x, ϕh, ψh,∇ϕh,∇ψh) + q · ∂xL (x, ϕh, ψh,∇ϕh,∇ψh)

]
,

for all q ∈ C1
c (Rn,Rn). Let us take, for λ > 0,

q(x) = (Υ(λx), 0, . . . , 0),

and Υ ∈ C1
c (Rn) such that Υ(x) = 1 if |x| ≤ 1 and Υ(x) = 0 if |x| ≥ 2. Then,

n∑
i=1

∫
Rn

λ∂iΥ(λx)∂iϕh ∂1ψh +
n∑

i=1

∫
Rn

λ∂iΥ(λx)∂iψh ∂1ϕh

=
∫

Rn

λ∂1Υ(λx)L (x, ϕh, ψh,∇ϕh,∇ψh)

+
∫

Rn

εhΥ(λx)
[
− 1

q+1∂1K(z + εhx)ψ
q+1
h − 1

p+1∂1Q(z + εhx)ϕ
p+1
h

]
.

By the arbitrariness of λ > 0, letting λ→ 0 and keeping h fixed, we obtain∫
Rn

[
− 1

q+1∂1K(z + εhx)ψ
q+1
h − 1

p+1∂1Q(z + εhx)ϕ
p+1
h

]
= 0.

Therefore, letting now h→∞, since in light of (1.3) we get

|∇K(z + εhx)|, |∇Q(z + εhx)| ≤ ceMεh|x|, for |x| large,

by virtue of (3.2), we have∫
Rn

[
− 1

q+1∂1K(z)ψq+1
0 − 1

p+1∂1Q(z)ϕp+1
0

]
= 0.
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Analogously, we can show that, for all w ∈ Rn,∫
Rn

[
− 1

q+1∇K(z)ψq+1
0 − 1

p+1∇Q(z)ϕp+1
0

]
· w = 0.

Hence

− 1
p+1

∂Q

∂w
(z)

∫
Rn

|η0
1 |

p+1
p

Q
p+1

p (z)
− 1

q+1

∂K

∂w
(z)

∫
Rn

|η0
2 |

q+1
q

K
q+1

q (z)
= 0. (3.3)

Since η0 ∈ S(z), by Theorem 2.2 we have(
∂Σ
∂w

)+

(z) = inf
η∈S(z)

∇zIz(η) · w

≤ − 1
p+1

∂Q

∂w
(z)

∫
Rn

|η0
1 |

p+1
p

Q
p+1

p (z)
− 1

q+1

∂K

∂w
(z)

∫
Rn

|η0
2 |

q+1
q

K
q+1

q (z)
= 0.

Then, by the very definition of (−Σ)0(z;w) (see Definition 1.1), we get

(−Σ)0(z;w) ≥
(
∂(−Σ)
∂w

)+

(z) ≥ 0, for every w ∈ Rn.

Then 0 ∈ ∂C(−Σ)(z) and, since ∂C(−Σ)(z) = −∂CΣ(z) (cf. [7]), we obtain z ∈ K.

3.2 Proof of Corollary 1.1

It suffices to combine Theorems 1.1 and 2.2, taking into account what discussed in Sec-
tion 2.2 about the conjectured explicit representation formula for Σ.

3.3 Proof of Theorem 1.2

Let m ≥ 1 and z ∈ Em. The assertion follows by mimicking the various steps in the proof
of Theorem 1.1 with Em in place of E , and combining formula (3.3) with the definitions of
Γ∓z,m and Km, taking into account that η0 ∈ Gm(z), as it holds Iz(η0) = m, being η0 the
strong limit of ηεj . Indeed, by (3.3), we have

Γ+
z,m(w) ≥ 0, ∀w ∈ Rn, Γ−z,m(w) ≥ 0, ∀w ∈ Rn,

so that 0 ∈ ∂Γ+
z,m(0) ∩ ∂Γ−z,m(0), yielding z ∈ Km.
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