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Abstract. We are concerned with the existence and concentrating behav-
ior of positive ground state solutions for a quasilinear Kirchhoff equation
involving critical Sobolev exponent with competing potentials(
ε2a + εb

ˆ
R3

g2(u)|∇u|2dx

)[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]+ V (x)u

= Q(x)h(u) + K(x)|G(u)|4G(u)g(u), x ∈ R
3,

where a, b > 0 are constants, ε > 0 is a small parameter, and g is
an even differential function related to the quasilinear term, such that
G(t) =

´ t

0
g(s)ds. Under some suitable assumptions on V, Q, K and h,

we conclude that this equation admits a positive ground state solution
for all sufficiently small ε > 0 using variational methods, where the
decay rate of the obtained solution as |x| → +∞ and its concentration
on the set of minimal points of V and the sets of maximal points of Q
and K as ε → 0+ are also considered. In particular, we also investigate
the nonexistence of ground state solutions.
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1. Introduction and main results

The aim of this article is to consider the existence and concentrating behavior
of positive ground state solutions to a quasilinear Kirchhoff equation with
critical growth(

ε2a + εb

ˆ
R3

g2(u)|∇u|2dx

)[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]+ V (x)u

= Q(x)h(u) + K(x)|G(u)|4G(u)g(u), x ∈ R
3,

(1.1)
where a, b > 0 are constants and ε > 0 is a small parameter. The function g
is supposed to satisfy
(g) g ∈ C1(R,R) is an even positive function with g(0) = 1 and g′(t) ≥ 0

for all t ≥ 0.
For the potentials V,Q,K and the nonlinearity h, we make the following
assumptions:

(V ) V ∈ C0(R3,R) and 0 < V0 � infx∈R3 V (x) < lim inf |x|→∞ V (x) � V∞ <
+∞.

(Q) Q ∈ C0(R3,R), lim|x|→∞ Q(x) = Q∞ ∈ (0,∞) and Q(x) ≥ Q∞ for all
x ∈ R

3.
(K) K ∈ C0(R3,R), lim|x|→∞ K(x) = K∞ ∈ (0,∞) and K(x) ≥ K∞ for all

x ∈ R
3.

(K1) There exist some constants C0 > 0, δ0 > 0 and β ∈ [1, 3), such that

|K(x) − K(x0)| ≤ C0|x − x0|β whenever |x − x0| < δ0,

where x0 ∈ R
3 satisfies K(x0) = maxx∈R3 K(x) � K0 < +∞;

(K2) Θ ∩ Θ1 ∩ Θ2 �= ∅, where

Θ � {x ∈ R
3 : V (x) = V0},

Θ1 � {x ∈ R
3 : K(x) = K0 � max

x∈R3
K(x)},

Θ2 � {x ∈ R
3 : Q(x) = Q0 � max

x∈R3
Q(x)}.

Since we are interested in positive solutions, without loss of generality,
we assume that h ∈ C0(R,R) vanishes in (−∞, 0) and satisfies the following
conditions:
(H1) h(t) ∈ C0(R,R+) and h(t) = o(t) as t → 0+;
(H2) h(t) = o(t) as t → ∞;

(H3) The map t → h(t)
g(t)G3(t)

is strictly increasing on (0,+∞);

(H4) There exist two constants C1 > 0 and p ∈ (3, 5), such that h(t) ≥
C1G

p(t)g(t).
When a = 1 and b = 0 in Eq. (1.1), solutions of this type are related to

the existence of standing wave solutions for quasilinear Schrödinger equations
of the form

iε∂tz = −ε2Δz + W (x)z − k(x, z) − ωε2Δl(|z|2)l′(|z|2)z, x ∈ R
N , (1.2)
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where ω is a real constant, z : R × R
N → C, W : RN → R is an external

potential, l : R → R and k : R
N × R → R are suitable functions. If we

set z(t, x) = exp(−iEt)u(x) with E ∈ R and ε = 1 in (1.2), one obtains a
corresponding quasilinear Schrödinger equation

− Δu + a(x)u − Δl(u2)l′(u2)u = k(x, u), x ∈ R
N . (1.3)

Recently, authors in [11,35] studied the following generalized quasilinear
Schrödinger equation:

− div(g2(u)∇u) + g(u)g′(u)|∇u|2 + a(x)u = k(x, u), x ∈ R
N . (1.4)

The reason we call Eq. (1.4) a generalized one is that if one takes g2(u) =
1 + [l′(u2)]2

2 , then it reduces to Eq. (1.3). There are many interesting and
meaningful results on Eqs. (1.2), (1.3) and (1.4), we refer the reader to [1,6,
7,10,11,20,24,26,30,32] and their references therein.

If ω = 0 in (1.2), it is closely related to the singularly perturbed semi-
linear problem

− ε2Δu + V (x)u = k(x, u), x ∈ R
N . (1.5)

Since solutions of Eq. (1.5) are known as semiclassical states which can be
used to describe the transition from quantum to classical mechanics for every
ε > 0 small, a lot of mathematicians pay considerable attentions to this prob-
lem. The authors in [28,29] depended on the Lyapunov–Schmidt reduction to
get single and multiple spike solutions. Whereas, the essential feature of the
Lyapunov–Schmidt reduction method is the uniqueness or non-degeneracy of
ground state solutions of the corresponding limiting equation. To deal with
it, Rabinowitz [31] first proposed the assumption

(V̄ ) lim inf |x|→+∞ V (x) > infx∈RN V (x) > 0

to obtain the existence of solutions of (1.5) for ε > 0 small. In [36], Wang
studied the concentrating phenomenon of solutions. In [8], del Pino–Felmer
showed a localized version of the results in [31,36] by introducing the penal-
ization approach. Regarding the other interesting results on the singularly
perturbed problems, see [2,3,5,9,15,18,33,34] for example.

Therefore, Eq. (1.1) can be regarded as a Kirchhoff type of the gener-
alized quasilinear Schrödinger equation (1.4) because of the appearance of
the nonlocal term

´
R3 g2(u)|∇u|2dx. Indeed, if we choose ε = 1 and g(t) = 1

for all t ∈ R and Q(x)h(u) + K(x)|G(u)|4G(u)g(u) = k(x, u), then Eq. (1.1)
transforms to the following classical Kirchhoff type equation:

−
(

a + b

ˆ
R3

|∇u|2dx

)
Δu + V (x)u = k(x, u), x ∈ R

3, (1.6)

which is called degenerate if a = 0 and non-degenerate otherwise. Equation
(1.6) arises in an interesting physical context. Let V ≡ 0 and replace R

3

with a bounded domain Ω ⊂ R
3 in (1.3), then we get the following Dirichlet

problem of Kirchhoff type:

−
(

a + b

ˆ
Ω

|∇u|2dx

)
Δu = k(x, u)
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which is related to the stationary analog of the equation

ρ
∂2u

∂t2
−
(

P0

h
− E

2L

ˆ L

0

∣∣∣∣∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0 (1.7)

proposed in [19] as an extension of the classical D’Alembert’s wave equation
for free vibrations of elastic strings, where ρ, P0, h, E0 and L are constants.
The Kirchhoff model takes the changes in length of the string produced by
transverse vibrations into account. Due to a pioneer work [21] developing
the abstract functional analysis framework to (1.7), this problem has been
widely contemplated in extensive literatures; see, e.g., [14,16,17,25,27,38,39].
In view of this, it is also reasonable to consider the generalized quasilinear
Schrödinger equation of Kirchhoff type. In particular, it seems that the exis-
tence and concentrating behavior of ground state solutions for Eq. (1.1) have
not been obtained yet. In this article, we shall introduce sone interesting
analyses to fill this blank.

It follows from the standard procedure of studying the existence and
concentrating behavior of solutions for Eq. (1.1), namely by performing εz =
x, one has that:(

a + b

ˆ
R3

g2(u)|∇u|2dx

)[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]+ V (εx)u

= Q(εx)h(u) + K(εx)|G(u)|4G(u)g(u), x ∈ R
3.

(1.8)
Denoting H(u) =

´ u

0
h(t)dt, it is clear to observe that the corresponding

variational functional

Iε(u) =
1
2

ˆ
R3

[
ag2(u)|∇u|2 + V (εx)u2

]
dx +

b

4

(ˆ
R3

g2(u)|∇u|2dx

)2

−
ˆ
R3

Q(εx)H(u)dx − 1
6

ˆ
R3

K(εx)|G(u)|6dx

associated with Eq. (1.8) might be not well defined in H1(R3). To overcome
this difficulty, motivated by [35], we are able to make a change of variable

v = G(u) =
ˆ u

0

g(τ)dτ.

As a consequence, it allows us to rewrite Jε(v) � Iε(G−1(v)) as follows:

Jε(v) =
1
2

ˆ
R3

[
a|∇v|2 + V (εx)|G−1(v)|2]dx +

b

4

(ˆ
R3

|∇v|2dx

)2

−
ˆ
R3

Q(εx)H(G−1(v))dx − 1
6

ˆ
R3

K(εx)|v|6dx. (1.9)

Since g is a nondecreasing positive function, we obtain |G−1(v)| ≤ |v|/g(0).
Moreover, one further shows that Jε is well defined in H1(R3) and Jε ∈ C1 if
Q and h satisfy the assumptions (Q) and (H2), respectively.
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If u is a nontrivial solution of Eq. (1.8), then it satisfies
(

a + b

ˆ
R3

g2(u)|∇u|2dx

)ˆ
R3

[
g2(u)∇u∇ϕ + g(u)g′(u)|∇u|2ϕ]dx

+
ˆ
R3

[
V (εx)u − Q(εx)h(u) − K(εx)|G(u)|4G(u)g(u)

]
ϕdx = 0

(1.10)

for any ϕ ∈ C∞
0 (R3). Let ϕ = ψ/g(u), one finds that (1.10) is equivalent to

J ′
ε(v)(ψ) =

(
a + b

ˆ
R3

|∇v|2dx

)ˆ
R3

∇v∇ψdx

+
ˆ
R3

[
V (εx)

G−1(v)
g(G−1(v))

− Q(εx)
h(G−1(v))
g(G−1(v))

− K(εx)|v|4v
]

ψdx

= 0, ∀ψ ∈ C∞
0 (R3). (1.11)

Therefore, to find the nontrivial solutions of (1.1) which is equivalent to

−
(

ε2a + εb

ˆ
R3

|∇v|2dx

)
Δv+V (x)

G−1(v)
g(G−1(v))

=Q(x)
h(G−1(v))
g(G−1(v))

+K(x)|v|4v,

(1.12)
then we consider (1.8) and it suffices to study the existence of the nontrivial
solutions of the following equation:

−
(

a + b

ˆ
R3

|∇v|2dx

)
Δv+V (εx)

G−1(v)
g(G−1(v))

=Q(εx)
h(G−1(v))
g(G−1(v))

+K(εx)|v|4v.

(1.13)
The reader is invited to observe that the nontrivial critical points of Jε

are the nontrivial solutions of Eq. (1.13). Motivated by all the works described
above, particularly, by the results in [16,17,25,39], we intend to obtain the
existence and concentrating behavior of positive ground state solutions of
problem (1.13).

The main result in the present paper can be stated as follows:

Theorem 1.1. Suppose (g), (V ), (Q), (K), (K1) − (K2), and (H1) − (H4),
then there is a constant ε∗ > 0, such that Eq. (1.1) possesses a positive
ground state solution uε ∈ H1(R3) for all ε ∈ (0, ε∗). Furthermore, we obtain
the following conclusions:

(1) If Lε denotes the set of ground state solutions to Eq. (1.1), then Lε is
compact in H1(R3);

(2) G(uε) possesses a maximum point γε ∈ R
3, such that

lim
ε→0+

V (γε) = V0, lim
ε→0+

Q(γε) = Q0, lim
ε→0+

K(γε) = K0,

and γε → x∗ ∈ Θ ∩ Θ1 ∩ Θ2 as ε → 0+;
(3) If we set ũε(x) = uε(εx + γε), going to a subsequence if necessary, we

have ũε → ũ in H1(R3) as ε → 0+, and ũ is a ground state solution of
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the equation below(
a + b

ˆ
R3

g2(u)|∇u|2dx

)[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]+ V (x∗)u

= Q(x∗)h(u) + K(x∗)|G(u)|4G(u)g(u), x ∈ R
3.

(1.14)
(4) There are two positive constants c̄ and ĉ independent of ε ∈ (0, ε∗), such

that

uε(x) ≤ c̄ exp
(

−ĉ
|x − γε|

ε

)
, ∀x ∈ R

3.

Remark 1.2. Since Θ ∩ Θ1 ∩ Θ2 �= ∅, without loss of generality, we are sup-
posing that 0 ∈ Θ ∩ Θ1 ∩ Θ2, i.e., V (0) = V0, K(0) = K0 and Q(0) = Q0,
where V (0) = V0 will be used in Lemma 3.2. Obviously, V , Q, and K are
bounded below and above by some positive constants, we shall adopt these
properties directly without mentioning them anymore.

Remark 1.3. In contrast to [17,25,39], the novelties of Theorem 1.1 are three-
fold: the restriction on h ∈ C1 can be relaxed to h ∈ C0; a unified approach to
contemplate the singularly perturbed Kirchhoff equation with critical Sobolev
exponent is presented and the extension from classic Kirchhoff equation to
generalized quasilinear Kirchhoff equation is obtained.

In view of Theorem 1.1, it seems natural to wonder whether Eq. (1.1)
always has a ground state solution or not. To this end, we investigate the
following nonexistence result.

Theorem 1.4. Suppose (g) and (H1) − (H4). If in addition
(H̄) the continuous functions V , K, and Q satisfy V (x) ≥ V∞ = V0, K(x) ≤

K∞ and Q(x) ≤ Q∞, respectively, where one of the strictly inequalities
holds on a positive measure subset.

Then, for any ε > 0, Eq. (1.1) has no ground state solution.

Remark 1.5. As far as we are concerned, it seems that those results in The-
orems 1.1 and 1.4 are the first attempts regarding the existence and concen-
trating behavior of positive ground state solutions and nonexistence results
of ground state solutions for Eq. (1.1) when g is no longer a constant.

The proofs of Theorems 1.1 and 1.4 are relied on variational methods.
Compared with the previous works, there are two main difficulties in conclud-
ing the proof of Theorem 1.1:
(1) Because of the appearance of the quasilinear terms in the nonlocal term

of Kirchhoff type

−
(ˆ

R3
g2(u)|∇u|2dx

)
div(g2(u)∇u),

there exist some interesting calculations introduced in this article to
address the issues, see Lemma 4.2 below for example.

(2) Due to the unboundedness of the domain R
3 and the nonlinearity in-

volving the critical growth as well as the the nonlocal term, we are
confronted with the lack of compactness of Jε.
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To conclude this section, we sketch the main ideas to prove Theorems 1.1 and
1.4.

In the proof of Theorem 1.1, in the spirit of [35], the quasilinear prob-
lem (1.1) can be transformed into a semilinear problem (1.12). It is worth
pointing out here that the nonlinearity in our problem is not only more gen-
eral, but also seems more complicated (see Lemma 2.2). Then, a standard
method to the semilinear problems is adopted to study the properties of the
corresponding variational functional. At last, we make full use of the cele-
brated concentration–compactness principle developed by Lions [22,23] to
show that the (PS) condition holds at the mountain-pass energy level after
pulling the energy level down below some critical level by the well-known
Brézis–Nirenberg argument [4]. Therefore, with aid of some delicate calcula-
tions, we are able to reach the proof of Theorem 1.1. In the proof of Theorem
1.4, we mainly obtain Lemma 5.1 to finish the proof by a contradiction argu-
ment.

The outline of this paper is as follows. At first, some preliminary re-
sults are presented for Theorem 1.1 in Sect. 2 and the existence of positive
ground state solution is obtained in Sect. 3. Then, we deduce the concentra-
tion of the ground state solutions in Sect. 4. Finally, Sect. 5 is devoted to the
nonexistence of ground state solution.

Notations. From now on in this paper, otherwise mentioned, we utilize
the following notations:

• C,C1, C2, . . . denote any positive constant, whose value is not relevant
and R

+ � (0,+∞).
• Let (Z, ‖ · ‖Z) be a Banach space with dual space (Z−1, ‖ · ‖Z−1), and

Ψ be functional on Z.
• The (PS) sequence at a level c ∈ R ((PS)c sequence in short) correspond-

ing to Φ means that Φ(xn) → c and Φ′(xn) → 0 in Z−1 as n → ∞, where
(xn) ⊂ Z.

• If for any (PS)c sequence (xn) in Z, there exists a subsequence (xnk
),

such that xnk
→ x0 in Z for some x0 ∈ Z, then we say that the func-

tional Ψ satisfies the so-called (PS)c condition.
• Lp(R3) (1 ≤ p ≤ +∞) is the usual Lebesgue space with the standard

norm |u|p and |u|Lp(Ω) means |u|p restricts to a subset Ω in R
3;

• D1,2(R3) � {u ∈ L6(R3) : |∇u| ∈ L2(R3)} and the best Sobolev con-
stant

S � {|∇u|22 : u ∈ D1,2(R3) and |u|6 = 1} (1.15)

• “→” and “⇀” denote the strong and weak convergence in the related
function space, respectively;

• For any ρ > 0 and any x ∈ R
3, Bρ(x) � {y ∈ R

3 : |y − x| < ρ}.

2. Variational setting and preliminaries

In this section, we introduce some preliminary results. Throughout the whole
paper, for all fixed a > 0, we consider the Hilbert space H1(R3) endowed with
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the inner product and the norm

(u, v) =
ˆ
R3

[a∇u∇v + V (x)uv] dx and ‖u‖ =
√

(u, u), ∀u, v ∈ H1(R3).

For any ε > 0, let

Eε �
{

u ∈ H1(R3) :
ˆ
R3

V (εx)u2dx < +∞
}

be the Sobolev space equipped with the inner product and norm

(u, v)ε =
ˆ
R3

[a∇u∇v + V (εx)uv] dx and ‖u‖ε =
√

(u, u)ε.

Clearly, by (V ), one knows that ‖·‖ and ‖·‖ε are uniformly equivalent norms
on Eε for each ε > 0. Moreover, Eε is continuously imbedded into Lm(R3)
and compactly imbedded into Lm

loc(R
3) for all 2 ≤ m < 6. Therefore, there

exist constants dm > 0 independent of ε > 0, such that

|u|m ≤ dm‖u‖ε for any 2 ≤ m ≤ 6 and u ∈ Eε. (2.1)

Lemma 2.1. Suppose (g), then the following conclusions hold true:

(1) Both G and G−1 are odd, and for all s ≥ 0, t ≥ 0, there hold

G(t) ≤ g(t)t, s/g(G−1(s)) ≤ G−1(s) ≤ s.

(2) For all s ≥ 0, G−1(s)/s is non-increasing and

lim
s→0

G−1(s)
s

=
1

g(0)
= 1 and lim

s→∞
G−1(s)

s
=
{ 1

g(∞) , if g is bounded,

0, if g is unbounded.

(3) For all s ≥ 0, G−1(s)/
(
s3g(G−1(s))

)
is non-increasing.

(4) For all s ≥ 0,
(
G−1(s)

)2 − G−1(s)s/g(G−1(s)) is increasing.

Proof. Points (1)–(3) are trivial, see [11,35] for example. By Point-(1), for all
s > 0, we have[(

G−1(s)
)2 − G−1(s)s/g(G−1(s))

]′

s

=
G−1(s)

[
g(G−1(s))

]2 − sg(G−1(s)) + sG−1(s)g′(G−1(s))(
g(G−1(s))

)3 ≥ 0.

Hence, Point-(4) concludes. The proof is completed. �

Let us denote

f(x, s) � Q(x)
h(G−1(s))
g(G−1(s))

+ V (x)s − V (x)
G−1(s)

g(G−1(s))
(2.2)

and
F (x, s) � Q(x)H(G−1(s)) +

1
2
V (x)s2 − 1

2
V (x)|G−1(s)|2. (2.3)

Lemma 2.2. Suppose (g), (V ), (Q), (K), and (H1) − (H4), then

(1) f(x, s) ≥ 0 for all x ∈ R
3 and s ≥ 0;

(2) f(x, s) = o(s) and F (x, s) = o(s2) as s → 0+ uniformly in x ∈ R
3;
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(3) f(x, s) = o(s5) and F (x, s) = o(s6) as s → +∞ uniformly in x ∈ R
3;

(4) 1
4f(x, s)s − F (x, s) + 1

4V (x)s2 is increasing on s ≥ 0 for all x ∈ R
3;

(5) [f(x, s) − V (x)s] /s3 is increasing on s ≥ 0 for all x ∈ R
3.

Proof. Points (1)–(3) are obvious; see [11,35] for example.
Since h(t)/(g(t)G3(t)) is increasing on (0,∞), for all 0 < t1 < t2 < +∞,

we have

H(t2) − H(t1) =
ˆ t2

t1

h(σ)
g(σ)G3(σ)

g(σ)G3(σ)dσ ≤ h(t2)G4(t2)
4g(t2)

− h(t1)G4(t1)
4g(t1)

,

which implies that h(t)G(t)/(4g(t))−H(t) is increasing on (0,∞). Therefore,
by Lemma 2.1-(4), we can conclude that

1
4
f(x, s)s − F (x, s) +

1
4
V (x)s2

= Q(x)
[
h(G−1(s))s
4g(G−1(s))

− H(G−1(s))
]

+
1
4
V (x)|G−1(s)|2

+
1
4
V (x)

[
|G−1(s)|2 − G−1(s)s

g(G−1(s))

]
(2.4)

is increasing on s ≥ 0 for all x ∈ R
3, and then, Point-(4) is obtained. Point-(5)

is a direct consequence of Lemma 2.1-(3). The proof is completed. �

By (2.2) and (2.3), we rewrite Eq. (1.13) and its corresponding varia-
tional functional (1.9) as

−
(

a + b

ˆ
R3

|∇v|2dx

)
Δv + V (εx)v = f(εx, v) + K(εx)|v|4v (2.5)

and

Jε(v) =
1
2
‖v‖2

ε +
b

4

(ˆ
R3

|∇v|2dx

)2

−
ˆ
R3

F (εx, v)dx − 1
6

ˆ
R3

K(εx)|v|6dx,

(2.6)
respectively. In the sequel, one calls v a ground state solution of (1.13) if it
is a critical point of Jε and verifies

Jε(v) = inf
w∈Nε

Jε(w),

where Nε �
{
w ∈ Eε\{0} : J ′

ε(w)(w) = 0
}
.

Lemma 2.3. Suppose (g), (V ), (Q), (K), and (H1) − (H4), then
(i) Given a v ∈ Eε\{0}, there is a unique tv > 0, such that tvv ∈ Nε and

Jε(tvv) = max
t≥0

Jε(tv).

(ii) For any v ∈ Nε, there exists a C > 0 and ε independent of v, such that
‖v‖ε ≥ C > 0.

(iii) Let (vn) satisfy J ′
ε(vn)(vn) → 0 and ‖vn‖ε → a0 > 0, then, going to a

subsequence if necessary, there exists a constant tn > 0, such that

J ′
ε(tnvn)(tnvn) = 0 and tn → 1 as n → ∞.

(iv) Let (vn) be a (PS)c sequence of Jε, then, going to a subsequence if nec-
essary, there exists a v ∈ Eε, such that vn ⇀ v and J ′

ε(v) = 0.
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Proof. (i) Taking Lemma 2.2-(5) into account, then the proof is standard
and we omit it here.

(ii) With aid of Lemma 2.2-(2) and (3), for all ε > 0, there is a constant
Cε > 0, such that

|f(x, t)| ≤ ε|t| + Cε|t|p−1, ∀(x, t) ∈ R
3 × R, (2.7)

for some 2 ≤ p ≤ 6. Analogously, one has that

|F (x, t)| ≤ ε|t|2 + Cε|t|p, ∀(x, t) ∈ R
3 × R. (2.8)

Due to the definition of Nε, we choose ε = 1
2d2

2
> 0 to find that

‖v‖2
ε ≤ 1

2
‖v‖2

ε + C1‖v‖p
ε + C2‖v‖6

ε .

Since p > 2, we can obtain the desired result immediately.
(iii) First of all, we claim that there exists a constant ã0 ∈ (0, a0), such that

|∇vn|22 → ã0 > 0. In fact, suppose it by contradiction that |∇vn|22 → 0,
then we are derived from (1.15) thatˆ

R3
f(εx, vn)vndx → 0 and

ˆ
R3

K(εx)|vn|6dx → 0

which together with J ′
ε(vn)(vn) → 0 gives that ‖vn‖ε → 0, a contra-

diction. Therefore, the claim is true. By Point-(i) above, there exists a
constant tn > 0, such that tnvn ∈ Nε, that is,

t2n‖vn‖2
ε + bt4n

(ˆ
R3

|∇vn|2dx

)2

−
ˆ
R3

f(εx, tnvn)tnvndx − t6n

ˆ
R3

K(εx)|vn|6dx = 0.

We claim that (tn) is uniformly bounded. Otherwise, we could assume
tn → +∞. It follows from J ′

ε(vn)(vn) → 0 and J ′
ε(tnvn)(tnvn) = 0 as

well as Lemma 2.2-(5) that:

on(1) =
(

1 − 1
t2n

)
a

ˆ
R3

|∇vn|2dx + (t2n − 1)
ˆ
R3

K(εx)|vn|6dx

+
ˆ
R3

[
f(εx, tnvn) − V (εx)tnvn

(tnvn)3
− f(εx, vn) − V (εx)vn

v3
n

]
v4

ndx

≥
(

1 − 1
t2n

)
a

ˆ
R3

|vn|2dx = aã0 + on(1),

a contradiction. Next, we verify that (tn) is bounded below by some
positive constant. Actually, we adopt (2.7) to see that

t2n‖vn‖2
ε ≤ 1

2
t2n‖vn‖2

ε + C1t
p
n‖vn‖p

ε + C2t
6
n‖vn‖6

ε .

Recalling point-(ii) above, there is a T0 > 0 is independent on ε and n
such that tn ≥ T0. In summary, there is a t0 > 0, such that tn → t0
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along a subsequence. Finally, we shall conclude that t0 ≡ 1. On the one
hand, if 0 < t0 < 1, using Lemma 2.2-(5) again

0 ≥
ˆ
R3

[
f(εx, t0vn) − V (εx)t0vn

(t0vn)3
− f(εx, vn) − V (εx)vn

v3
n

]
v4

ndx

=
(

1
t20

− 1
)

a

ˆ
R3

|vn|2dx + (1 − t20)
ˆ
R3

K(εx)|vn|6dx + on(1)

≥
(

1
t20

− 1
)

a

ˆ
R3

|vn|2dx + on(1) =
(

1
t20

− 1
)

aã0 + on(1),

a contradiction. Similarly, we can derive a contradiction when t0 > 1.
Therefore, we obtain that t0 ≡ 1.

(iv). In view of (2.4), since (vn) is a (PS)c sequence of Jε, it holds that

c + ‖vn‖ε + on(1) ≥ a

4

ˆ
R3

|∇vn|2dx +
1

4

ˆ
R3

V (εx)|G−1(vn)|2dx. (2.9)

In light of the function g is increasing, then we depend on Lemma 2.1-(1)
to deriveˆ
R3

V (εx)v2
ndx =

ˆ
|G−1(vn)|>1

V (εx)v2
ndx +

ˆ
|G−1(vn)|≤1

V (εx)v2
ndx

≤ C

ˆ
R3

v6
ndx + g2(1)

ˆ
|G−1(vn)|≤1

V (εx)
v2

n

g2(G−1(vn))
dx

≤ C

ˆ
R3

v6
ndx + g2(1)

ˆ
R3

V (εx)|G−1(vn)|2dx. (2.10)

Combining (1.15) and (2.9)–(2.10), one sees that (vn) is uniformly
bounded in Eε. Up to a subsequence if necessary, there is a v ∈ Eε,
such that vn ⇀ v in Eε. Moreover, the Fatou’s lemma gives us that

|∇v|22 ≤ lim inf
n→∞ |∇vn|22 � A2.

We claim that |∇v|22 = A2. If not, we would suppose that |∇v|22 < A2.
Then, for all ψ ∈ C∞

0 (R2)

0 = lim inf
n→∞ J ′

ε(vn)(ψ)

=
ˆ
R3

[a∇v∇ψ + V (εx)vψ] dx + bA2

ˆ
R3

∇v∇ψdx

−
ˆ
RN

[
f(εx, v) + K(εx)|v|4v]ψdx. (2.11)

As a consequence, we conclude that J ′
ε(v)(v) < 0 by taking ψ = v in the

above formula. According to (2.7), we will easily show that J ′
ε(tv)(tv) >

0 for some sufficiently small t > 0. Therefore, there is a t̂ ∈ (0, 1), such
that J ′

ε(t̂v)(t̂v) = 0 which is t̂v ∈ Nε. Therefore, Lemma 2.2-(4) indicates
that

c ≤ Jε(t̂v) = Jε(t̂v) − 1
4
J ′

ε(t̂v)(t̂v)

=
a

4
t̂2
ˆ
R3

|∇v|2dx +
ˆ
R3

[
1
4
f(εx, t̂v)t̂v − F (εx, t̂v) +

1
4
V (εx)(t̂v)2

]
dx
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+
t̂6

12

ˆ
R3

K(εx)|v|6dx

<
a

4

ˆ
R3

|∇v|2dx +
ˆ
R3

[
1
4
f(εx, v)v − F (εx, v) +

1
4
V (εx)v2

]
dx

+
1
12

ˆ
R3

K(εx)|v|6dx

≤ lim inf
n→∞

[
Jε(vn) − 1

4
J ′

ε(vn)(vn)
]

= lim
n→∞ Jε(vn) = c,

which is an absurd. Hence, |∇v|22 = A2 holds true. Inserting to into
(2.11), we have that J ′

ε(v)(ψ) = 0 which yields that J ′
ε(v) = 0, since ψ

is arbitrary. The proof is completed.
�

Lemma 2.4. Suppose (g), (V ), (Q), (K), and (H1) − (H4), then the varia-
tional functional Jε satisfies the mountain-pass geometry around 0 ∈ Eε,
(i) there are constants ρ, � > 0 independent of ε, such that Jε(v) ≥ ρ > 0

when ‖v‖ε = � > 0;
(ii) there exists e ∈ Eε independent of ε with ‖e‖ε > ρ, such that Jε(e) < 0.

Proof. (i). It is essentially similar to the proof of Lemma 2.3-(ii), we omit it
here.

(ii). In view of (H4), for any v ∈ Eε, one easily finds that

Jε(tv)
t4

=
1

2t2
‖v‖2

ε +
b

4

(ˆ
R2

|∇v|2dx

)2

−
ˆ
R2

F (εx, tv)
(tv)4

v4dx

− t2

6

ˆ
R3

K(εx)|v|6dx → −∞
as t → +∞ uniformly in ε > 0. Therefore, we choose e = t0v with a sufficiently
large t0 > 0. The proof is completed. �

With Lemma 2.4 in hands, we are able to apply [37, Theorem 2.10] to
look for a (PS) sequence of Jε at the level

cε � inf
η∈Γ

max
t∈[0,1]

Jε(η(t)) > 0, (2.12)

where the set of paths is defined as

Γ �
{
η ∈ C([0, 1], Eε) : η(0) = 0, Jε(η(1)) < 0

}
.

It is similar to the idea used in [37, Lemma 4.1] that

cε = inf
v∈Nε

Jε(v) = inf
v∈Eε\{0}

max
t≥0

Jε(tv). (2.13)

The following concentration–compactness principle due to Lions [22,23]
shall play a crucial role in verifying the (PS) condition associated with Jε in
this paper.

Lemma 2.5. (see [22,23]) Let (ρn) be a sequence of nonnegative functions
satisfying |ρn|1 = λ and λ > 0 is fixed, then there exists a subsequence, still
denoted by (ρn), satisfying one of the following three possibilities:
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(i) (Vanishing) for any fixed R > 0, there holds

lim
n→∞ sup

y∈RN

ˆ
BR(y)

ρn(x)dx = 0;

(ii) (Compactness) there exists (yn) ⊂ R
N , such that for any ε > 0, there

exists R > 0 satisfying

lim inf
n→∞

ˆ
BR(yn)

ρn(x)dx ≥ λ − ε;

(iii) (Dichotomy) there exist α ∈ (0, λ) and (yn) ⊂ R
N , such that for any

ε > 0, there exists R > 0, for all r1 ≥ R and r2 ≥ R, it holds

lim sup
n→∞

(∣∣∣∣∣α −
ˆ

Br(yn)

ρn(x)dx

∣∣∣∣∣+
∣∣∣∣∣(λ − α) −

ˆ
Bc

r2
(yn)

ρn(x)dx

∣∣∣∣∣
)

< ε.

To study Eq. (1.13) well, we need to introduce the following “limit
problem”:

−
(

a+ b

ˆ
R3

|∇v|2dx

)
Δv +V∞v = f(∞, v)+K∞|v|4v, x ∈ R

3, (2.14)

where

f(∞, s) � Q∞
h(G−1(s))
g(G−1(s))

+ V∞s − V∞
G−1(s)

g(G−1(s))
.

As described above, to find a weak solution to Eq. (2.14), it suffices to seek
for a critical point of the variational functional J∞ : Eε → R given by

J∞(v) =
1
2

ˆ
R3

(
a|∇v|2 + V∞v2

)
dx +

b

4

(ˆ
R3

|∇v|2dx

)2

−
ˆ
R3

F (∞, v)dx − K∞
6

ˆ
R3

|v|6dx,

where and in the sequel F (∞, t) =
´ t

0
f(∞, s)ds. Let us define

m∞ � inf
v∈N∞

J∞(v), (2.15)

where
N∞ �

{
v ∈ H1(R3)\{0} : J ′

∞(v)(v) = 0
}

.

In what follows, we are going to show that the variational functional Jε

satisfies the (PS) condition at some particular level.

Lemma 2.6. Suppose (g), (V ), (Q), (K) and (H1) − (H4), then Jε satisfies
the (PS)cε

condition with cε < min{m∞, c∗}, where

c∗ � abS3

4K0
+

(
b2 S4 + 4K0aS

)3/2

24K2
0

+
b3 S6

24K2
0

,

K0 > 0 and S > 0 are given by (K2) and (1.15), respectively.
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Proof. Let (vn) be a (PS) sequence of Jε at the level cε, that is

Jε(vn) → cε and J ′
ε(vn) → 0. (2.16)

In view of the proof of Lemma 2.3-(iv), we know that {vn} is bounded in Eε.
Setting

ρn(x) � a

4
|∇vn|2 +

[
1
4
f(εx, vn)vn − F (εx, vn) +

1
4
V (εx)v2

n

]
+

1
12

K(εx)|vn|6.

Clearly, (ρn) is bounded in L1(R3) and we can assume, choosing a subse-
quence if necessary,

Φ(vn) =
ˆ
R3

ρn(x)dx → l as n → ∞.

Obviously, we have l = cε > 0 and (ρn) satisfies the assumptions in Lemma
2.5. Next, if Vanishing or Dichotomy does not occur, we can get the compact-
ness of (ρn).

Vanishing does not occur.
Indeed, if (ρn) vanishes, then there exists R > 0, such that

lim
n→∞ sup

y∈R3

ˆ
BR(y)

v2
ndx = 0.

By means of [37, Lemma 1.21], one concludes vn → 0 in Lm(R3) for 2 < m <
6. It follows from (2.7) and (2.8) that:ˆ

R3
F (εx, vn)dx → 0 and

ˆ
R3

f(εx, vn)vndx → 0,

which together with (2.16) indicate that

Jε(vn) =
1
2
‖vn‖2

ε +
b

4

(ˆ
R3

|∇vn|2dx

)2

− 1
6

ˆ
R3

K(εx)|vn|6dx = cε + on(1)

and

J ′
ε(vn)(vn) = ‖vn‖2

ε + b

(ˆ
R3

|∇vn|2dx

)2

−
ˆ
R3

K(εx)|vn|6dx = on(1).

Without loss of generality, we could assume that

lim
n→∞ ‖vn‖2

ε = l1ε and lim
n→∞ b

(ˆ
R3

|∇vn|2dx

)2

= l2ε

form where one has that

cε =
1
3
l1ε +

1
12

l2ε and lim
n→∞

ˆ
R3

K(εx)|vn|6dx = l1ε + l2ε .

It follows from (1.15) that:
ˆ
R3

K(εx)|vn|6dx ≤ K0

ˆ
R3

|vn|6dx ≤ K0S
−3

(ˆ
R3

|∇vn|2dx

)3

≤ K0a
−3S−3‖vn‖6

ε
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and

ˆ
R3

K(εx)|vn|6dx ≤ K0b
− 3

2 S−3

[
b

(ˆ
R3

|∇vn|2dx

)2
] 3

2

which imply that

l1ε ≥ K
− 1

3
0 aS

(
l1ε + l2ε

) 1
3 and l2ε ≥ K

− 1
3

0 bS2
(
l1ε + l2ε

) 2
3 .

Consequently, we have that that

(l1ε + l2ε )
1
3 ≥ bS2 +

√
b2 S4 + 4K0aS

2K
2
3
0

.

Therefore we derive

cε =
1
3
l1ε +

1
12

l2ε ≥ c∗,

a contradiction. Therefore, Vanishing does not occur.
Dichotomy does not occur.

Arguing it indirectly, we could suppose that there exist α ∈ (0, l) and (yn) ⊂
R

3, such that for every εn → 0+, one can choose (Rn) ⊂ R
+ with Rn → +∞

to satisfy

lim sup
n→∞

(∣∣∣∣∣α −
ˆ

BRn (yn)

ρn(x)dx

∣∣∣∣∣+
∣∣∣∣∣(l − α) −

ˆ
Bc

2Rn
(yn)

ρn(x)dx

∣∣∣∣∣
)

< εn.

(2.17)
Let ξ(s) : R

+ → [0, 1] be a cut-off function satisfying ξ(s) ≡ 1 for s ≤ 1,
ξ(s) ≡ 0 for s ≥ 2 and |ξ′(s)| ≤ 2 for any s ∈ R

+. Setting

v1
n(x) � ξ

( |x − yn|
Rn

)
vn(x) and v2

n(x) �
[
1 − ξ

( |x − yn|
Rn

)]
vn(x),

then by (2.17) and the definitions of v1
n and v2

n, we can see that

lim inf
n→∞ Φ(v1

n) ≥ α and lim inf
n→∞ Φ(v2

n) ≥ l − α. (2.18)

Denoting Ωn = B2Rn
(yn)\BRn

(yn), then by (2.17), one has
ˆ

Ωn

ρndx =
ˆ
R3

ρndx −
ˆ

BRn (yn)

ρndx −
ˆ

Bc
2Rn

(yn)

ρndx → 0,

which implies that
ˆ

Ωn

|∇vn|2dx = on(1) and
ˆ

Ωn

|vn|6dx = on(1). (2.19)
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By the definition of ξ, it is simple to verify that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ
R3

|∇vn|2dx =
ˆ
R3

|∇v1
n|2dx +

ˆ
R3

|∇v2
n|2dx + on(1),

ˆ
R3

V (εx)|vn|2dx =
ˆ
R3

V (εx)
∣∣v1

n

∣∣2dx +
ˆ
R3

V (εx)
∣∣v2

n

∣∣2dx + on(1),
ˆ
R3

F (εx, vn)dx =
ˆ
R3

F (εx, v1
n)dx +

ˆ
R3

F (εx, v2
n)dx + on(1),

ˆ
R3

f(εx, vn)vndx =
ˆ
R3

f(εx, v1
n)v1

ndx +
ˆ
R3

f(εx, v2
n)v2

ndx + on(1),
ˆ
R3

K(εx)|vn|6dx =
ˆ
R3

K(εx)
∣∣v1

n

∣∣6dx +
ˆ
R3

K(εx)
∣∣v2

n

∣∣6dx + on(1),

(2.20)
and(ˆ

R3
|∇vn|2dx

)2

≥
(ˆ

R3
|∇v1

n|2dx

)2

+
(ˆ

R3
|∇v2

n|2dx

)2

+ on(1). (2.21)

Hence, we are derived from (2.20) and (2.21) that Φ(vn) ≥ Φ(v1
n) + Φ(v2

n) +
on(1) which together with (2.18) implies that

l = lim
n→∞ Φ(vn) ≥ lim inf

n→∞ Φ(v1
n) + lim inf

n→∞ Φ(v2
n) ≥ α + l − α = l.

Furthermore, we have that

lim
n→∞ Φ(v1

n) = α and lim
n→∞ Φ(v2

n) = l − α. (2.22)

It follows from (2.16) and (2.20)–(2.21) that:

0 = J ′
ε(vn)(vn) + on(1) ≥ J ′

ε(v
1
n)(v1

n) + J ′
ε(v

2
n)(v2

n) + on(1). (2.23)

Now, we distinguish the following two cases.
Case 1. Up to a subsequence if necessary, we assume that either J ′

ε(v
1
n)

(v1
n) ≤ 0 or J ′

ε(v
2
n)(v2

n) ≤ 0. Without loss of generality, we suppose that
J ′

ε(v
1
n)(v1

n) ≤ 0, that is,

‖v1
n‖2

ε + b

(ˆ
R3

|∇v1
n|2dx

)2

−
ˆ
R3

f(εx, v1
n)v1

ndx −
ˆ
R3

K(εx)|v1
n|6dx ≤ 0.

By Lemma 2.3-(i), there exists tn ∈ (0, 1], such that tnv1
n ∈ Nε, and so,

Lemma 2.2-(6) reveals that

cε ≤ Jε(tnv1
n) = Jε(tnv1

n) − 1
4
J ′

ε(tnv1
n)(tnv1

n)

≤ a

4

ˆ
R3

|∇v1
n|2dx +

ˆ
R3

[
1
4
f(εx, v1

n)v1
n − F (εx, v1

n) +
1
4
V (εx)|v1

n|2
]

dx

+
1
12

ˆ
R3

K(εx)|v1
n|6dx

= Φ(v1
n) → α < cε,

a contradiction, where we have used Lemma 2.2-(4).
Case 2. Going to a subsequence if necessary, we assume that both J ′

ε(v
1
n)

(v1
n) > 0 and J ′

ε(v
2
n)(v2

n) > 0. Thereby, taking (2.23) into account, we derive
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J ′
ε(v

1
n)(v1

n) → 0 and J ′
ε(v

2
n)(v2

n) → 0 which together with (2.20)-(2.21) give
us that

Jε(vn) ≥ Jε(v1
n) + Jε(v2

n) + on(1). (2.24)

If (yn) is bounded, there exists R′ > 0, such that |yn| < R′. By the
assumptions (V ), (Q) and (K), for any σ > 0, there exists R0 > 0, such that

V (εx)−V∞ > −σ, |K(εx)−K∞| < σ, |Q(εx)−Q∞| < σ whenever |x| ≥ R0

ε
.

Since Rn → +∞, we can find that BR0/ε(0) ⊂ BRn−R′(0) ⊂ BRn
(yn) for

sufficiently large n, that is, Bc
Rn

(yn) ⊂ Bc
Rn−R′(0) ⊂ Bc

R0/ε(0) for sufficiently
large n, and so, the definition of v2

n indicates thatˆ
R3

[V (εx) − V∞]
∣∣G−1(v2

n)
∣∣2 dx =

ˆ
Bc

Rn
(yn)

[V (εx) − V∞]
∣∣G−1(v2

n)
∣∣2 dx

≥ −σ

ˆ
R3

∣∣G−1(v2
n)
∣∣2 dx.

Since σ > 0 is arbitrary and (v2
n) is bounded in L2(R3), then one hasˆ

R3
[V (εx) − V∞]

∣∣G−1(v2
n)
∣∣2 dx ≥ on(1).

Similarly, we have ˆ
R3

[K(εx) − K∞] |v2
n|6dx = on(1)

and ˆ
R3

[Q(εx) − Q∞] H(G−1(v2
n))dx = on(1) and

ˆ
R3

[Q(εx) − Q∞]
h(G−1(v2

n))v2
n

g(G−1(v2
n)

dx = on(1).

Thus, we are able to deduce that

Jε(v2
n) ≥ J∞(v2

n) + on(1) and on(1) = J ′
ε(v

2
n)(v2

n) ≥ J ′
∞(v2

n)(v2
n) + on(1).

(2.25)
On the one hand, if J ′

∞(v2
n)(v2

n) ≤ 0, then Lemma 2.3-(1) permits us to look
for a t∞n ∈ (0, 1], such that t∞n v2

n ∈ N∞. In this scenario, taking J ′
ε(v

1
n)(v1

n) →
0 and J ′

ε(v
2
n)(v2

n) → 0 into account, we adopt (2.24) and (2.25) to reach

Jε(vn) ≥ Jε(v1
n) + Jε(v2

n) + on(1)

≥ Jε(v2
n) + on(1)

= Jε(v2
n) − 1

4
J ′

ε(v
2
n)(v2

n) + on(1)

≥ J∞(v2
n) − 1

4
J ′

∞(v2
n)(v2

n) + on(1)

≥ J∞(t∞n v2
n) − 1

4
J ′

∞(t∞n v2
n)(t∞n v2

n) + on(1)

= J∞(t∞n v2
n) + on(1) ≥ m∞ + on(1)
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which contradicts with cε < m∞. On the one hand, if J ′
∞(v2

n)(v2
n) > 0, then

we have J ′
∞(v2

n)(v2
n) = on(1) by (2.25). Owing to (2.22), we can suppose

that ‖v2
n‖ → a1 > 0 and ‖v1

n‖ε → a2 > 0. With aid of J ′
ε(v

1
n)(v1

n) = on(1),
due to Lemma 2.3-(iii), there exist two sequences (tn) ⊂ R

+ and (sn) ⊂ R
+

satisfying tn → 1 and sn → 1 as n → ∞, respectively, such that tnv2
n ∈ N∞

and snv1
n ∈ Nε. Hence, by using (2.25) again,

Jε(v2
n) ≥ J∞(v2

n) + on(1) = J∞(tnv2
n) + on(1) ≥ m∞ + on(1)

and

Jε(v1
n) = Jε(snv1

n) + on(1) ≥ cε + on(1).

By (2.24) and the above two formulas, we have that cε ≥ m∞ + cε > m∞, a
contradiction.

If (yn) ⊂ R
3 is unbounded, without loss of generality, we can choose Rn

to satisfy |yn| ≥ 3Rn for sufficiently large n and so B2Rn
(yn) ⊂ Bc

Rn
(0) ⊂

Bc
R0/ε(0). Some similar calculations above provide us that

ˆ
R3

[V (εx) − V∞]
∣∣G−1(v1

n)
∣∣2dx ≥ on(1) and

ˆ
R3

[K(εx) − K∞] |v1
n|6dx = on(1)

and ˆ
R3

[Q(εx) − Q∞] H(G−1(v1
n))dx = on(1) and

ˆ
R3

[Q(εx) − Q∞]
h(G−1(v1

n))v1
n

g(G−1(v1
n)

dx = on(1).

Repeating some very similar calculations in (2.25) for (v1
n), there would be

also a contradiction. In a word, Dichotomy can never occur.
Hence, the sequence (ρn) is compact, that is, there exists (yn) ⊂ R

3,
such that for any ε > 0, there is R > 0 satisfying

ˆ
Bc

R(yn)

ρn(x)dx < ε. (2.26)

We claim that (yn) is bounded. Otherwise, we could follow the idea of showing
(2.25) to get:

Jε(vn) ≥ J∞(vn) + o(1) and on(1) = J ′
ε(vn)(vn) ≥ J ′

∞(vn)(vn) + on(1).

Either J ′
∞(vn)(vn) ≤ 0 or J ′

∞(vn)(vn) > 0, we would arrive at a contradiction.
Thus, (yn) is bounded. Since (vn) is bounded in Eε, passing to a subsequence
if necessary, there exists v ∈ Eε, such that vn ⇀ v in Eε, vn → v in Lr

loc(R
3)

for 1 ≤ r < 6 and vn → v a.e. in R
3. Recalling (2.26) and (yn) is bounded,

we have that vn → v in Lr(R3) for 2 < r < 6.
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With vn → v in Lr(R3) for 2 < r < 6 in hands, we define ṽn = vn − v,
then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖vn‖2
ε = ‖ṽn‖2

ε + ‖v‖2
ε + on(1)ˆ

R3
F (εx, vn)dx =

ˆ
R3

F (εx, v)dx + on(1),
ˆ
R3

f(εx, vn)vndx =
ˆ
R3

f(εx, v)vdx + on(1),
ˆ
R3

K(εx)|vn|6dx =
ˆ
R3

K(εx)|ṽn|6dx +
ˆ
R3

K(εx)|v|6dx + on(1),

(2.27)
In view of Lemma 2.3-(iv), we have

J ′
ε(v) = 0 and Jε(v) ≥ 0. (2.28)

By means of (2.27), we can deduce that

cε − Jε(v) =
1
2
‖ṽn‖2

ε +
b

4

[(ˆ
R3

|∇ṽn|2dx

)2

+ 2
ˆ
R3

|∇ṽn|2dx

ˆ
R3

|∇v|2dx

]

− 1
6

ˆ
R3

K(εx)|ṽn|6dx,

and by on(1) = J ′
ε(vn)(vn) − 〈J ′

ε(v)(v) together with (2.28),

‖ṽn‖2
ε + b

[(ˆ
R3

|∇ṽn|2dx

)2

+ 2
ˆ
R3

|∇ṽn|2dx

ˆ
R3

|∇v|2dx

]

− 1
6

ˆ
R3

K(εx)|ṽn|6dx = on(1).

Up to a subsequence if necessary, we may assume that

lim
n→∞ ‖ṽn‖2

ε = l̃1ε and

lim
n→∞ b

[(ˆ
R3

|∇ṽn|2dx

)2

+ 2
ˆ
R3

|∇ṽn|2dx

ˆ
R3

|∇v|2dx

]
= l̃2ε .

If l̃1ε > 0, we can get a contradiction cε ≥ cε − Jε(v) ≥ c∗ as the proof of
“Vanishing does not occur”. Hence, l̃1ε = 0. The proof is completed. �

To apply Lemma 2.6, according to the Brézis–Nirenberg argument in
[4], we shall pull the mountain-pass energy cε down the particular level. For
this purpose, we introduce a well-known fact that the minimization problem
(1.15) has a solution given by

wδ(x) =
(3δ)

1
4

(δ + |x − x0/δ|) 1
2
,

and
|∇wδ|22 = |wδ|66 = S

3
2 ,

where δ > 0 can be arbitrarily chosen and x0 ∈ R
3 is given by (H1).
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Let ϕ ∈ C∞
0 (R3, [0, 1]) be a radial cut-off function, such that ϕ(x) = 1

for |x| ≤ ρδ and ϕ(x) = 0 for |x| ≥ 2ρδ, where ρδ = δτ with τ ∈ (1/4, 1/2).
Set

ψδ(x) = ϕ(x)wδ(x), (2.29)
then we get the following estimations:

Lemma 2.7. (See e.g. [4]) As δ → 0, ψδ(x) verifies the following estimations:ˆ
R3

|∇ψδ|2dx = S
3
2 + O(δ

1
2 ),

ˆ
R3

|ψδ|6dx = S
3
2 + O(δ

3
2 ),

and ˆ
R3

|ψδ|2dx = O(δ
1
2 ),

ˆ
R3

|ψδ|qdx = O(δ
6−q
4 ) with q ∈ (3, 6).

Lemma 2.8. Suppose (g), (V ), (Q), (K), and (H1)−(H4), then the mountain-
pass value cε < c∗ for all ε > 0, where c∗ is given by Lemma 2.6.

Proof. We claim first that for δ > 0 small enough, there exists a constant
tδ > 0, such that

Jε(tδψδ) = max
t≥0

Jε(tψδ)

and
0 < t0 < tδ < t1 < +∞ for all δ > 0 sufficiently small, (2.30)

where t0 and t1 are constants independent of δ and ε. In fact, since Jε(0) = 0
and lim

t→+∞ Jε(tψδ) = −∞, there exists tδ > 0, such that

Jε(tδψδ) = max
t≥0

Jε(tψδ) and
dJε(tψδ)

dt

∣∣∣∣
t=tδ

= 0.

Thus, we have

t2δ‖ψδ‖2
ε+bt4δ

(ˆ
R3

|∇ψδ|2dx

)2

=
ˆ
R3

f(εx, tδψδ)tδψδdx+t6δ

ˆ
R3

K(εx)|ψδ|6dx

(2.31)
which together with Lemma 2.2-(1) and Lemma 2.7 as well as (K) gives that

a

ˆ
R3

|∇ψδ|2dx + O(δ
1
2 ) + bt2δ

(ˆ
R3

|∇ψδ|2dx

)2

≥ K∞t4δ

ˆ
R3

|ψδ|6dx.

Therefore, we can conclude that

tδ ≤
√

b|∇ψδ|42 +
(
b2|∇ψδ|82 + 4aK∞|∇ψδ|22|ψδ|66

)1/2

2
< t1 < +∞ if δ is sufficiently small.

Taking Lemma 2.2-(2) and (3) into account, for any σ > 0, there exists C > 0,
such thatˆ

R3

f(εx, tδψδ)tδψδ

t2δ |ψδ|66
dx ≤

ˆ
R3

σt6δψ
6
δ + Ct2δψ

2
δ

t2δ |ψδ|66
dx = σt4δ + C

|ψδ|22
|ψδ|66

= σt4δ + C
(
S

3
2 + O(δ

3
2 )
)−1|ψδ|22
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≤ σt4δ + CS− 3
2 O(δ

1
2 ) = σt4δ + oδ(1) as δ → 0,

which together with (2.31) implies that

1 ≤ σt4δ + oδ(1) + K0t
4
δ as δ → 0.

Thus
tδ ≥ (2(σ + K0))

− 1
4 � t0 > 0 if δ is sufficiently small.

Let us define

ξ(t) � a

2
t2
ˆ
R3

|∇ψδ|2dx +
b

4
t4
(ˆ

R3
|∇ψδ|2dx

)2

− K0

6
t6
ˆ
R3

|ψδ|6dx, ∀t > 0,

then by Lemma 2.7 and some elementary computations, we derive

max
t≥0

ξ(t) =
abS3

4K0
+

b3 S6

24K2
0

+
(b2 S4 + 4aK0S)

3
2

24K2
0

+ O(δ
1
2 ).

On the other hand, using (H1), we have thatˆ
R3

[K(x0) − K(εx)] |ψδ|6dx ≤ Cδ
1
2 , if δ is sufficiently small.

Finally, we can take an estimate for Jε(tδψδ) below

Jε(tδψδ) =
a

2
t2δ

ˆ
R3

|∇ψδ|2dx +
b

4
t4δ

(ˆ
R3

|∇ψδ|2dx

)2

− K0

6

ˆ
R3

|ψδ|6dx

+
t2δ
2

ˆ
R3

V (εx)|ψδ|2dx −
ˆ
R3

F (εx, tδψδ)dx

+
1
6

ˆ
R3

[K(x0) − K(εx)] |ψδ|6dx

≤ c∗ + O(δ
1
2 ) + C

ˆ
R3

|ψδ|2dx −
ˆ
R3

H
(
G−1(tδψδ)

)
dx

≤ c∗ + CO(δ
1
2 ) − C

ˆ
R3

|ψδ|p+1dx ≤ c∗ + CO(δ
1
2 ) − CO(δ

5−p
4 ) < c∗

for sufficiently small δ > 0 since p > 3. In view of (2.13), we have cε < c∗.
The proof is completed. �

3. Existence of positive ground state

Although we have showed that cε < c∗ in Lemma 2.8, it seems unavailable
to exploit Lemma 2.6 to find a ground state solution to Eq. (1.1). Simply
speaking, we have to investigate the relation cε < m∞.

First of all, we have the following lemma whose proof can be found
below.

Lemma 3.1. Suppose (g) and (H1) − (H4), then the following equation(
a + b

ˆ
R3

g2(u)|∇u|2dx

)[− div(g2(u)∇u) + g(u)g′(u)|∇u|2]+ Au

= Bh(u) + D|G(u)|4G(u)g(u), x ∈ R
3



   62 Page 22 of 39 L. Shen and M. Squassina

which is equivalent to

−
(

a + b

ˆ
R3

|∇v|2dx

)
Δv + A

G−1(v)
g(G−1(v))

= B
h(G−1(v))
g(G−1(v))

+ D|v|4v, x ∈ R
3

admits at least a positive ground state solution, where A,B,D > 0 are con-
stants.

Proof. Let us define the variational functional JA,B,D : H1(R3) → R by

JA,B,D(v) =
1
2

ˆ
R3

[
a|∇v|2 + A

∣∣G−1(v)
∣∣2]dx +

b

4

(ˆ
R3

|∇v|2dx

)2

− B

ˆ
R3

H(G−1(v))dx − D

6

ˆ
R3

|v|6dx.

Clearly, it is of class C1. First of all, by Lemma 2.4, there exists a (PS)
sequence (wn) of JA,B,D at the level

cA,B,D � inf
η∈ΓA,B,D

max
t∈[0,1]

JA,B,D(η(t)) > 0,

with ΓA,B,D �
{
η ∈ C([0, 1],H1(R3)) : η(0) = 0,JA,B,D(η(1)) < 0

}
. More-

over, it simply has that

cA,B,D = inf
v∈NA,B,D

JA,B,D(v) = inf
v∈H1(R2)\{0}

max
t≥0

JA,B,D(tv),

where NA,B,D = {v ∈ H1(R3)\{0} : J ′
A,B,D(v)(v) = 0}. The similar calcula-

tions in Lemma 2.8 reveal

cA,B,D <
abS3

4
+

(
b2 S4 + 4aS

)3/2

24
+

b3 S6

24
.

Thus, Lemma 2.6 shows that there exists a w, such that wn → w in H1(R3)
along a subsequence, and so, w is a nontrivial solution. As to its positivity,
we postpone it later. The proof is completed. �
Lemma 3.2. Suppose (g), (V ), (Q), (K), and (H1) − (H4), then there exists
a constant ε∗ > 0, such that cε < m∞ for any ε ∈ (0, ε∗).

Proof. Let ω ∈ R be a fixed constant satisfying V0 < ω < V∞ according to
(V ) and set the functional Jω : H1(R3) → R as follows:

Jω(v) =
1
2

ˆ
R3

[
a|∇v|2 + ω

∣∣G−1(v)
∣∣2]dx +

b

4

(ˆ
R3

|∇v|2dx

)2

− Q∞
ˆ
R3

H(G−1(v))dx − K∞
6

ˆ
R3

|v|6dx.

Moreover, we define mω = inf
v∈Nω

Jω(v) with Nω =
{
v ∈ H1(R3)\{0} : J ′

ω(v)(v)

= 0}. We claim that mω < m∞. Actually, by means of Lemma 3.1, there ex-
ists v ∈ H1(R3)\{0}, such that v ∈ N∞ and J∞(v) = m∞. In view of
Lemma 2.3-(i), we shall conclude that m∞ = J∞(v) = maxt≥0 J∞(tv) and
there exists a tω > 0, such that tωv ∈ Nω and Jω(tωv) = maxt≥0 Jω(ttωv) =
maxt≥0 Jω(tv). Thus, it holds that

m∞ ≥ J∞(tωv) = Jω(tωv) +
(V∞ − ω)

2

ˆ
R3

∣∣G−1(tωv)
∣∣2 dx
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> Jω(tωv) ≥ mω,

so the claim concludes.
Due to Lemma 3.1, there exists a vω ∈ H1(R3)\{0}, such that vω ∈ Nω

and Jω(vω) = mω. Let ϕ(x) : R
3 → [0, 1] be a cut-off function to satisfy

ϕ(x) ≡ 1 when |x| ≤ 1, ϕ(x) ≡ 0 when |x| ≥ 2 and |ϕ′(x)| ≤ 2 on R
3. For

every R > 0, we define vω,R(x) � ϕ
(

x
R

)
vω(x). Then, the definition of ϕω,R

and the Lebesgue theorem show that

vω,R → vω in H1(R3) as R → ∞.

Since vω,R ∈ H1(R3)\{0}, then there exists an tω,R > 0, such that tω,Rvω,R ∈
Nω by Lemma 2.3-(i). We claim that there exists an R0 > 0, such that
Jω(tω,R0vω,R0) < m∞. Otherwise, we could suppose that Jω(tω,Rvω,R) ≥ m∞
for all R > 0. By gathering these facts that tω,Rvω,R ∈ Nω, vω ∈ Nω and
vω,R → vω in H1(R3) as R → +∞, we can proceed as Lemma 2.3-(iii) to
deduce that tω,R → 1 as R → +∞. and so

m∞ ≤ lim inf
R→+∞

Jω(tω,Rvω,R) = Jω(vw) = mω < m∞,

a contradiction. Thus, the claim is true. Due to the definition of vω,R0 , one
has suppvω,R0 ⊂ B2R0(0), where suppvω,R0 denotes the support of vω,R0 .
Thereby, for all x ∈ B2R0(0), there exists a constant ε∗ > 0, such that w ≥
V (εx) for all ε ∈ (0, ε∗) using the fact that ω > V0. As a consequence, we
apply tR0vR0 ∈ Nw to reach

m∞ > Jω(tR0vR0) = max
t≥0

Jω(tvR0) ≥ max
t≥0

Jε(tvR0) ≥ inf
v∈Eε

max
t≥0

Jε(tv) = cε

for any ε ∈ (0, ε∗). The proof is completed. �

Proposition 3.3. Suppose (g), (V ), (Q), (K), and (H1)−(H4), then Eq. (1.13)
admits a positive ground state solution for any ε ∈ (0, ε∗), where ε∗ > 0 is
determined by Lemma 3.2.

Proof. According to Lemma 2.4, there is a (PS) sequence (vn) for the func-
tional Jε at the level cε. In view of Lemmas 2.6, 2.8, and 3.2, one sees that
Jε admits a strongly convergent subsequence for all ε ∈ (0, ε∗). Going to a
subsequence if necessary, there is a v ∈ Eε, such that vn → v ∈ Eε, and so,
J ′

ε(v) = 0 and Jε(v) = cε. Combining (2.12) and (2.13), we know that v is a
nontrivial ground state solution to Eq. (1.13). We postpone the positivity of
v below. The proof is completed. �

Due to Proposition 3.3, for any ε ∈ (0, ε∗), there is a positive solution to
Eq. (1.13) whose energy is cε. Now, if we regard the energy cε as a sequence,
what happens about lim

ε→0+
cε? To deal with it, we introduce the following

problem:(
a + b

ˆ
R3

g2(u)|∇u|2dx

)[−div(g2(u)∇u) + g(u)g′(u)|∇u|2]+ V0u

= Q0h(u) + K0|G(u)|4G(u)g(u), x ∈ R
3,
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which is equivalent to

−
(

a + b

ˆ
R3

|∇v|2dx

)
Δv+V0

G−1(v)
g(G−1(v))

= Q0
h(G−1(v))
g(G−1(v))

+K0|v|4v, x ∈ R
3.

The corresponding variational functional J0 : H1(R2) → R is given by

J0(v) =
1
2

ˆ
R3

(
a|∇v|2 + V0v

2
)
dx +

b

4

(ˆ
R3

|∇v|2dx

)2

−
ˆ
R3

F (0, v)dx − K0

6

ˆ
R3

|v|6dx,

where

F (0, s) � Q0H(G−1(s)) +
1
2
V0s

2 − 1
2
V0|G−1(s)|2.

We also set

N0 =
{
v ∈ H1(R3)\{0} : J ′

0(v)(v) = 0
}

and m0 = inf
v∈N0

J0(v).

Lemma 3.4. Suppose (g), (V ), (Q), (K) and (H1)− (H4), then limε→0+ cε =
m0 along a subsequence.

Proof. To prove lim infε→0+ cε ≥ m0, it suffices to show that

cε ≥ m0, ∀ε ∈ (0, ε∗). (3.1)

Otherwise, we could suppose that there exists some ε0 ∈ (0, ε∗), such that
cε0 < m0. It follows from Proposition 3.3 that there exists a positive ground
state vε0 , such that:

max
t≥0

Jε0(tvε0) = Jε0(vε0) = cε0 < m0,

where the variational functional Jε0 : H1(R2) → R is given by

Jε0(v) =
1
2

ˆ
R3

[
a|∇v|2 + V (ε0x)v2

]
dx +

b

4

( ˆ
R3

|∇v|2dx

)2

−
ˆ
R3

F (ε0x, v)dx − 1
6

ˆ
R3

K(ε0x)|v|6dx.

Arguing as Lemma 2.3-(i), there exists tε0 > 0, such that tε0vε0 ∈ N0 and
J0(tε0vε0) = maxt≥0 J0(tvε0) which together with the definition of m0 indi-
cates that m0 ≤ maxt≥0 J0(tvε0). Since V (ε0x) ≥ V0, K(ε0x) ≤ K0 and
Q(ε0x) ≤ Q0, then it holds that

m0 ≤ max
t≥0

J0(tvε0) ≤ max
t≥0

Jε0(tvε0) = cε0 < m0,

a contradiction. Hence, we see that (3.1) holds true.
In view of Lemma 3.1, there exists v0 ∈ N0, such that J0(v0) = m0. Let

ϕ(x) : R3 → [0, 1] be a cut-off function satisfying ϕ(x) ≡ 1 when |x| ≤ 1,
ϕ(x) ≡ 0 when |x| ≥ 2 and |ϕ′(x)| ≤ 2 on R

3. For any R > 0, we set
vR(x) � ϕ(x/R)v0(x). By the definition of ϕ(x) and the Lebesgue theorem,
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one has vR → v0 in H1(R3) as R → ∞. For all ε, R > 0, arguing as Lemma
2.3-(i), there exists tε,R > 0, such that tε,RvR ∈ Nε and

Jε(tε,RvR) = max
t≥0

Jε(ttε,RvR) = max
t≥0

Jε(tvR). (3.2)

Thus, by suppvR ⊂ B2R(0), it follows from tε,RvR ∈ Nε and Lemma (2.2)-(1)
that:

1
t4ε,R

ˆ
B2R(0)

[
|∇vR|2 +

(
max

x∈B2R(0)
V (x)

)
v2

R

]
dx

≥ 1
t4ε,R

ˆ
R3

|∇vR|2 + V (εx)v2
Rdx

=
ˆ
R3

K(εx)|vR|6dx +
1

t6ε,R

ˆ
R3

f(εx, tε,RvR)tε,RvRdx

≥
ˆ
R3

K∞|vR|6dx,

which indicates that there exists a T̄R < +∞ independent of ε, such that
tε,R ≤ T̄R < +∞. Proceeding as Lemma 2.3-(ii), one shall search for T̄ ′

R >
0 independent of ε, such that tε,R ≥ T̄ ′

R > 0. Consequently, passing to a
subsequence if necessary, we have limε→0+ tε,R = tR ∈ (0,+∞) which implies
that

Jε(tε,RvR) =
t2ε,R

2

ˆ
B2R(0)

[
a|∇vR|2 + V (εx)v2

R

]
dx +

b

4
t4ε,R

(ˆ
B2R(0)

|∇vR|2dx

)2

−
ˆ

B2R(0)

F (εx, tε,RvR)dx − t6ε,R

6

ˆ
B2R(0)

K(εx)|vR|6dx

→ t2R
2

ˆ
B2R(0)

[
a|∇vR|2dx + V0u

2
R

]
dx +

b

4
t4R

(ˆ
B2R(0)

|∇vR|2dx

)2

−
ˆ

B2R(0)

F (0, tRvR)dx − t6R
6

ˆ
B2R(0)

K0|vR|5dx

=J0(tRvR) as ε → 0+. (3.3)

Adopting tε,RvR ∈ Nε, it is similar to (3.3) that

t2R

ˆ
R3

a|∇vR|2 + V0v
2
Rdx + bt4R

(ˆ
R3

|∇vR|2dx

)2

=
ˆ
R3

f(0, tRvR)tRvRdx + t6R

ˆ
R3

K0|vR|5dx,

which implies that tRvR ∈ N0, and hence, J0(tRvR) = maxt≥0 J0(ttRvR) =
maxt≥0 J0(tvR). We gather v0 ∈ N0, tRvR ∈ N0 and vR → v0 in H1(R3) as
R → ∞ to conclude that tR → 1 as R → ∞ along a subsequence, where the
arguments in Lemma 2.3-(iii) are used. Then, it holds that

‖tRvR − v0‖ ≤ |tR − 1| · ‖vR‖ + ‖vR − v0‖ → 0 as R → ∞. (3.4)
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It follows from the definition of cε and (3.2) that:

cε = inf
v∈Eε\{0}

max
t≥0

Jε(tv) ≤ max
t≥0

Jε(tvR) = Jε(tε,RvR).

which together with (3.3) indicates that

lim sup
ε→0+

cε ≤ J0(tRvR). (3.5)

By (3.4) and (3.5), letting R → ∞, then lim supε→0+ cε ≤ J0(v0) = m0. The
proof is completed. �

4. Concentration of ground states

In this section, we dispose of the concentrating behavior of ground state
solutions to Eq. (1.1). As a consequence of Proposition 3.3, there exists a ε∗ >
0, such that for each ε ∈ (0, ε∗), Eq. (1.13) possesses a positive ground state
solution v̄ε(x) = vε(εx) ∈ H1(R3) satisfying Jε(v̄ε) = cε > 0 and J ′

ε(v̄ε) =
0, where vε is a ground state solution to Eq. (1.12). Before we study the
concentrating behavior of vε, it is simple to find that any minimizing sequence
of m0 = infv∈N0 J0(v) is bounded in H1(R3) and we have the following key
lemma.

Lemma 4.1. Suppose (g) and (H1)−(H4). If (vn) ⊂ N0 satisfies J0(vn) → m0

and vn ⇀ v0 �= 0 in H1(R3) as n → ∞, then vn → v0 in H1(R3). In
particular, J ′

0(v0) = 0 in H1(R3) and J0(v0) = m0.

Proof. Owing to the Ekeland’s variational principle [13], there is a sequence
(wn) ⊂ N0, such that

J0(wn) → c0,
(
(J0)|N0

)′(wn) → 0, ‖wn − vn‖ → 0 as n → ∞.

We claim that J ′
0(wn) → 0 in (H1(R3))−1 as n → ∞. Otherwise, there exist

a constant σ > 0 and a subsequence still denoted by itself, such that

‖J ′
0(wn)‖ > σ, ∀n ∈ N. (4.1)

Given a ϕ ∈ H1(R3), one sees |[J ′
0(wn) − J ′

0(w)] (ϕ)| ≤ C0‖wn − w‖‖ϕ‖.
Taking the supremum over ‖ϕ‖ ≤ 1, then it yields that ‖J ′

0(wn) − J ′
0(w)‖ ≤

C0‖wn−w‖ for any w ∈ H1(R3). Therefore, for any δ1 > 0, we have ‖J ′
0(wn)−

J ′
0(w)‖ < δ1 if ‖wn − w‖ ≤ min{1, δ1/C0} � 3δ. Therefore, by (4.1),

‖J ′
0(w)‖ > ‖J ′

0(wn)‖ − δ1 > σ − δ1 if ‖wn − w‖ ≤ 3δ.

Choosing δ1 = σ/2, we derive ‖J ′
0(w)‖ > σ/2 for each w ∈ B3δ(wn). Let

ε = min{m0
2 , σδ

16 } > 0 and S = Bδ(wn), then [37, Lemma 2.3] enjoys a
deformation η ∈ C

(
[0, 1] × H1(R3),H1(R3)

)
, such that

(i) η(t, u) = u if t = 0, or u /∈ J−1
0 ([m0 − 2ε,m0 + 2ε]) ∩ S2δ;

(ii) η
(
1, Jm0+ε

0 ∩ Bδ(wn)
) ⊂ Jm0−ε

0 ;
(iii) J0(η(1, u)) ≤ J0(u), ∀u ∈ H1(R3);
(iv) η(1, u) is a homeomorphism of H1(R3).
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For a sufficiently large L > 0, we set γ(t) = η(1, tLwn

)
and then by (iii),

J0(γ(1)) = J0(η(1, Lwn) ≤ J0(Lwn) → −∞ as L → +∞,

which indicates that γ(t) ∈ Γ0 �
{
γ ∈ C([0, 1],H1(R3)) : J0(0) = 0, J0(γ(1))

< 0
}
. Thereby, we take advantage of (ii) to deduce that

c0 � inf
γ∈Γ0

max
t∈[0,1]

J0(γ(t)) ≤ max
t∈[0,1]

J0(η(1, Ltwn) = max
t>0

J0(η(1, twn)) < m0−ε.

(4.2)
However, arguing as (2.13), we have c0 = m0, it contradicts with (4.2). There-
fore, we have showed that J ′

0(wn) → 0 in (H1(R2))−1 and then J ′
0(nn) → 0

in (H1(R2))−1. Now, we are capable of using Lemma 2.3-(iv) to have that
J ′

0(v0) = 0 in H1(R3). Since v0 �= 0, one sees

m0 ≤ J0(v0) − 1
4
J ′

0(v0)(v0) ≤ lim inf
n→∞

[
J0(vn) − 1

4
J ′

0(vn)(vn)〉
]

= lim
n→∞ J0(vn) = m0,

which yields that vn → v0 in H1(R3) and then J0(v0) = m0. The proof is
completed. �

Recalling the definition of v̄ε, that is, Jε(v̄ε) = cε and J ′
ε(v̄ε) = 0, one

deduces that (v̄ε) is a special (PS)cε
sequence of the variational functional Jε.

With aid of Lemma 2.8, we proceed as the same ideas of “Vanishing does not
occur” in Lemma 2.6 to conclude that for all ε ∈ (0, ε∗), there exist a family
(yε) ⊂ R

3 and r, � > 0, such thatˆ
Br(yε)

|v̄ε|2dx ≥ � > 0. (4.3)

Lemma 4.2. Suppose (g), (V ), (Q), (K), and (H1)−(H4), then (εyε) in (4.3)
is uniformly bounded in R

3. Furthermore if we take x∗ as the limit of the
sequence of (εnyεn

), then one has x∗ ∈ Θ ∩ Θ1 ∩ Θ2, where (εnyεn
) is a

subsequence of (εyε).

Proof. Arguing it by contradiction, we suppose that εn → 0 and |εnyεn
| →

+∞ as n → ∞. We take yn � yεn
and v̄n � v̄εn

for simplicity and set
wn(·) � v̄n(· + yn) ≥ 0, then

−
(

a + b

ˆ
R3

|∇wn|2dx

)
Δwn + V (εnx + εnyn)wn

= f(εnx + εnyn, wn) + K(εnx + εnyn)|wn|4wn in R
3,

(4.4)

and we are derived (4.3) thatˆ
Br(0)

w2
ndx ≥ � > 0. (4.5)

Obviously, ‖wn‖ = ‖vn‖, then (wn) is bounded in H1(R3) and wn ⇀ w0 in
H1(R3) in the sense of a subsequence. Moreover, w0 ≥ 0 and we see w0 �= 0
from (4.5).
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For every n ∈ N, there exists tn > 0, such that tnwn ∈ N0 which
together with wn �= 0 implies that J0(tnwn) ≥ m0, and then, lim infn→∞
J0(tnwn) ≥ m0. On the other hand, using Lemma 3.4

J0(tnwn) ≤ t2n
2

ˆ
R3

[
a|wn|2 + V (εnx + εnyn)w2

n

]
dx +

b

4

(ˆ
R3

|∇wn|2dx

)2

−
ˆ
R3

F (εnx + εnyn, wn)dx − 1
6

ˆ
R3

K(εnx + εnyn)|wn|6dx

= Jεn
(tnv̄n) ≤ max

t≥0
Jεn

(tv̄n) = Jεn
(v̄n) = cεn

= m0 + on(1),

which implies that lim supn→∞ J0(tnwn) ≤ m0 and then limn→∞ J0(tnwn) =
m0. Simply, one can conclude that (tn) is bounded, passing to a subsequence
if necessary, we are able to assume that limn→∞ tn = t0 ≥ 0. If t0 = 0,
since {wn} is bounded, then |tnwn‖ = tn‖wn‖ → 0 which is tnwn → 0 in
H1(R2) and so 0 = limn→∞ J0(tnwn) = m0 > 0, a contradiction. There-
fore, limn→∞ tn = t0 > 0. By the uniqueness of the weak limit, we derive
tnwn ⇀ t0w0 �= 0 in H1(R3). In summary, we have concluded that tnwn ∈ N0,
limn→∞ J0(tnwn) = m0 and tnwn ⇀ t0w0 �= 0, and then, by Lemma 4.1, one
sees tnwn → t0w0 �= 0 in H1(R3), which implies that t0w0 ∈ N0. Using
Fatou’s lemma and Lemma 3.4, it holds that

m0 ≤ J0(t0w0) < J∞(t0w0) = J∞(t0w0) − 1

4
J ′
0(t0w0)(t0w0)

=
a

4

ˆ
R3

|∇(t0w0)|2dx +

ˆ
R3

(
V∞
2

− V0

4

) ∣∣G−1(t0w0)
∣∣2 dx

+

ˆ
R3

[
Q0

4

h(G−1(t0w0))t0w0

g(G−1(t0w0))
− Q∞H(G−1(t0w0))

]
dx

+

ˆ
R3

(
K0

4
− K∞

6

)
|t0w0|6dx

= lim inf
n→∞

{
a

4

ˆ
R3

|∇(tnwn)|2dx +

ˆ
R3

(
V (εnx + εnyn)

2
− V0

4

)∣∣G−1(tnwn)
∣∣2dx

+

ˆ
R3

[
Q0

4

h(G−1(tnwn))tnwn

g(G−1(tnwn))
− Q(εnx + εnyn)H(G−1(tnwnn))

]
dx

+

ˆ
R3

(
K0

4
− K(εnx + εnyn)

6

)
|tnwn|6dx

}

= lim inf
n→∞

[
Jεn(tnv̄n) − 1

4
J ′
0(tnwn)(tnwn)

]
= lim inf

n→∞
Jεn(tnv̄n)

≤ lim inf
n→∞

max
t≥0

Jεn(tv̄n) = lim inf
n→∞

Jεn(v̄n) = lim inf
n→∞

cεn = m0, (4.6)

a contradiction. Therefore, (εyε) is bounded in R
3. Passing to a subsequence

if necessary, we shall suppose that εnyεn
→ x∗ in R

3 as n → ∞. We define
the variational functional Jx∗ : H1(R2) → R as follows:

Jx∗(v) =
1
2

ˆ
R3

[
a|∇v|2 + V (x∗)v2

]
dx +

b

4

(ˆ
R3

|∇v|2dx

)2

−
ˆ
R3

F (x∗, v)dx − K(x∗)
6

ˆ
R3

|v|6dx.
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If x∗ /∈ Θ∩Θ1 ∩Θ2, without loss of generality, we can assume x∗ /∈ Θ. By the
definitions of Θ and V0, we conclude V (x∗) > V0. Replacing J∞ with Jx∗ in
(4.6) and proceeding the similar arguments as above, one has a contradiction.
Therefore, x∗ ∈ Θ. Similarly, we can obtain x∗ ∈ Θ1 and x∗ ∈ Θ2. Hence,
x∗ ∈ Θ ∩ Θ1 ∩ Θ2. The proof is completed. �
Lemma 4.3. Suppose (g), (V ), (Q), (K), and (H1) − (H4). Let ε ∈ (0, ε∗) be
fixed, decreasing ε∗ if necessary, then v̄ε possesses a maximum zε satisfying

lim
ε→0+

V (εzε) = V (x∗), lim
ε→0+

K(εzε) = K(x∗), lim
ε→0+

Q(εzε) = Q(x∗). (4.7)

Moreover, there exist positive constants c̄ and ĉ independent of ε, such that

v̄ε(x) ≤ c̄ exp (−ĉ|x − zε|) , (4.8)

for all ε ∈ (0, ε∗) and x ∈ R
3.

Proof. First, we analyze some properties of wε. Since wε(·) = v̄ε(· + yε),
according to the proof of Lemma 4.2, we have showed that tεwε → t0w0 �= 0
in H1(R3) and tε → t0 with t0 > 0. Thus, it has that

t0‖wε−w0‖ = ‖t0wε−tεwε+tεwε−t0w0‖ ≤ |tε−t0|·‖wε‖+‖tεwε−t0w0‖ → 0,

which indicates that wε → w0 in H1(R3) as ε → 0+. Combining (4.4) and
εyε → x∗, we shall observe that w0 is a ground state solution of the equation
below

−
(

a + b

ˆ
R3

|∇v|2dx

)
Δv + V (x∗)v = f(x∗, v) + K(x∗)|v|4v in R

3. (4.9)

We postpone the detailed proofs in Lemma A.2 in the Appendix to give that
|w0|∞, |wε|∞ ≤ C for some C > 0 independent of ε ∈ (0, ε∗), wε ∈ C1,χ

loc (R3)
for some χ ∈ (0, 1) as well as as well as

|wε|∞ ≥ τ and lim
|x|→+∞

wε(x) = 0 uniformly in ε ∈ (0, ε∗).

where τ > 0 is independent of ε ∈ (0, ε∗).
Second, we verify that there exist c̄′, ĉ′ > 0 independent of ε, such that

wε(x) ≤ c̄′ exp(−ĉ′|x|) for all ε ∈ (0, ε∗) and x ∈ R
3, see Lemma A.3 in the

Appendix in detail.
Finally, let kε be a maximum of wε, we have that |wε(kε)|∞ ≥ τ . Since

lim
|x|→∞

wε(x) = 0 uniformly in ε, there exists an R > 0 independent of ε, such

that |kε| ≤ R. Recalling wε(·) = v̄ε(·+yε), then yε +kε acts as a maximum of
of v̄ε. Define zε = yε+kε, according to Lemma 4.2 and |kε| ≤ R, we are derived
that εzε → x∗ as ε → 0+ and hence (4.7) holds true by the continuities of V ,
Q and K. Moreover, since wε(x) ≤ c̄ exp(−ĉ|x|) for all x ∈ R

3 and |kε| ≤ R,
there holds

v̄ε(x) = wε(x − yε) ≤ c̄′ exp(−ĉ′|x − yε|)
= c̄′ exp(−ĉ′|x − zε + kε|) ≤ c̄ exp(−ĉ|x − zε|)

for all ε ∈ (0, ε∗) and x ∈ R
3. The proof is completed. �

At this stage, we are in a position to exhibit the proof of Theorem 1.1
in detail.
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Proof of Theorem 1.1. It follows from Proposition 3.3 that there exists some
positive constant ε∗, such that Eq. (1.13) admits at least a positive ground
state solution v̄ε(x) = vε(εx) for every ε ∈ (0, ε∗), and hence, vε is positive
ground state solution to Eq. (1.12) for any ε ∈ (0, ε∗), where the positivity
can be found in Lemma A.1 in the Appendix. Next, we shall show the proof
one by one:

(1) For any bounded sequence (un) ⊂ Lε, denoting vn = G(un), then
Jε(vn) = cε and J ′

ε(vn)(vn) = 0. Going to a subsequence if necessary, there
exists v ∈ Eε, such that vn ⇀ v in Eε and J ′

ε(v) = 0 by Lemma 2.3-(iv).
Similar to (4.3), it holds thatˆ

Br(yn)

v2
ndx ≥ � > 0.

Arguing as the same arguments in Lemma 2.6, one can verify that (yn) is
bounded in Z

N . Hence, we have v �= 0 and so v ∈ Nε which together with
the Fatou’s lemma implies that

cε ≤ Jε(v) = Jε(v) − 1
4
J ′

ε(v)(v) ≤ lim inf
n→∞

[
Jε(vn) − 1

4
J ′

ε(vn)(vn)
]

= lim
n→∞ Jε(vn) = cε.

Thus, we deduce that vn → v in Eε, and so, vn → v in H1(R3). In view of
Lemma 2.1-(1), one sees that un → u in H1(R3), so Lε is compact.

(2) In view of Lemma 4.3 and wε(x) = v̄ε(x+yε), we have deduced that
v̄ε possesses a maximum point zε = yε + kε. The reader is invited to recall
that vε(·) = v̄ε

( ·
ε

)
, then vε(·) = G(uε(·)) admits a global maximum point

γε = εzε. Due to (4.7), the proof of this case is done.
(3) By the above facts, we know that

ṽε(x) = vε(εx+γε) = vε(εx+ εzε) = v̄ε(x+zε) = v̄ε(x+yε +kε) = wε(x+kε).

In view of the proof of Lemma 4.3, we have that wε → w0 in H1(R3) as ε → 0+

and w0 is a positive ground state solution of Eq. (4.9). Since |kε| ≤ R, then
ṽε → ṽ in H1(R3) as ε → 0+ with ṽ = w0. By Lemma 2.1-(1), G−1(ṽε) →
G−1(ṽ) in H1(R3) as ε → 0+ which is ũε → ũ in H1(R3) as ε → 0+. Clearly,
ũ is a positive ground state solution of Eq. (1.14).

(4) Using (4.8) with γε = εzε, we have

vε(x) = v̄ε

(x

ε

)
≤ c̄ exp

(
−ĉ

∣∣∣x
ε

− zε

∣∣∣) = c̄ exp
(

−ĉ
|x − γε|

ε

)

for all x ∈ R
3 and ε ∈ (0, ε∗).

Recalling uε = G−1(vε) ≤ vε by Lemma 2.1-(1), the proof is com-
pleted. �

5. Nonexistence of ground states

In this section, the nonexistence of ground state solutions to Eq. (1.1) will be
investigated. As what we have done before, to this aim, we shall dispose of
the nonexistence of ground state solutions to Eq. (1.12). Explaining it more
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clearly, we are going to demonstrate that the ground state energy cε cannot
be attained for all ε > 0. For simplicity, the notations of this section shall
remain unchanged from those in the previous sections.

Let us start with the following lemma.

Lemma 5.1. Suppose (g), (H1) − (H4) and (H̄), then cε = m∞ for all ε > 0.

Proof. According to the definition of cε, for all σ > 0, there exists a vσ ∈
Nε, such that cε ≤ Jε(vσ) < cε + σ. In view of Lemma 2.3-(ii), one shall
conclude that Jε(vσ) = maxt≥0 Jε(tvσ). Moreover, a similar argument in
Lemma 2.3-(ii) guarantees a tσ > 0, such that tσvσ ∈ N∞ and J∞(tσvσ) =
maxt≥0 J∞(tvσ). With these discussions, it follows from (H̄) that:

m∞ ≤ J∞(tσvσ) = max
t≥0

J∞(tvσ) ≤ max
t≥0

Jε(tvσ) = Jε(vσ) < cε + σ

yielding that m∞ ≤ cε by tending σ → 0+. In the following, we are going to
verify that cε ≤ m∞.

By Lemma 3.1, Eq. (2.14) possesses a ground state solution v∞ ∈ N∞,
such that J∞(v∞) = m∞. Let (xn) ⊂ R

3 satisfy |xn| → ∞ as n → ∞ and set
vn(x) � v∞(x−xn). Owing to the assumptions that lim inf |x|→∞ V (x) = V∞,
lim|x|→∞ Q(x) = Q∞ and lim|x|→∞ K(x) = K∞, we are derived from the
Lebesgue theorem that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

lim
n→∞

ˆ
R3

[V (εx + εxn) − V∞]|G−1(v∞)|2dx = 0,

lim
n→∞

ˆ
R3

[Q(εx + εxn) − Q∞]
h(G−1(v∞))
g(G−1(v∞))

v∞dx = 0,

lim
n→∞

ˆ
R3

[K(εx + εxn) − K∞]|v∞|6dx = 0.

(5.1)

Therefore, it holds that J ′
ε(vn)(vn) = on(1). By exploiting Lemma 2.3-(iii),

there exists a tn > 0, such that tnvn ∈ Nε and limn→∞ tn = 1. Proceeding
as (5.1), one has that⎧⎪⎨

⎪⎩
lim

n→∞

ˆ
R3

[V (εx + εxn) − V∞]|G−1(tnv∞)|2dx = 0,

lim
n→∞

ˆ
R3

[Q(εx + εxn) − Q∞]H(G−1(tnv∞))dx = 0,

from where it follows that:

cε ≤ Jε(tnvn)

= J∞(tnv∞) +
1
2

ˆ
R3

[
V (εx + εxn) − V∞

]|G−1(tnv∞)|2dx

−
ˆ
R3

[
Q(εx + εxn) − Q∞

]
H(G−1(tnv∞))dx

− t6n
6

ˆ
R3

[
K(εx + εxn) − K∞

]|v∞|6dx → J∞(v∞) = m∞,

showing that cε ≤ m∞. The proof is completed. �
With the help of Lemma 5.1, we are ready to present the proof of The-

orem 1.4.
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Proof of Theorem 1.4. Suppose it by a contradiction, we would assume that
there exist ε0 > 0 and v0 ∈ H1(R3), such that Jε0(v0) = cε0 and J ′

ε0(v0) = 0
as well as Jε0(v0) = maxt≥0 Jε0(tv0). Proceeding as Lemma 2.3-(ii), there
exists a constant t0 > 0, such that t0v0 ∈ N∞. In view of Lemma 5.1, that is,
m∞ = cε0 , one has

m∞ ≤ J∞(t0v0) ≤ Jε0(t0v0) ≤ max
t≥0

Jε0(tv0)

= Jε0(v0) = cε0 = m∞,

which indicates that J∞(t0v0) = Jε0(t0v0). Alternatively, we can apply (H̄)
to get

J∞(t0v0) = Jε0(t0v0) +
t20
2

ˆ
R3

[V∞ − V (ε0x)]
∣∣G−1(v0)

∣∣2 dx

+
ˆ
R3

[Q(ε0x) − Q∞] H(G−1(t0v0))dx

+
t60
6

ˆ
R3

[K(ε0x) − K∞] |v0|6dx

< Jε0(t0v0) = J∞(t0v0),

a contradiction. The proof is completed. �
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Appendix A. Some technical lemmas

In this section, we mainly show some results whose detailed proofs have been
left above.

Lemma A.1. Suppose (g), (V ), (Q), (K), and (H1)−(H4). If v0 ∈ H1(R2) is
a nontrivial solution of Eq. (1.13) for all ε > 0, the v0(x) > 0 for all x ∈ R

3.

Proof. Proceeding as the very similar arguments used in Lemma 3.1, we are
able to deduce that v0 can be obtained by looking for critical point of the
variational functional Jε : H1(R2) → R given by
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Jε(v) =
1
2

ˆ
R3

[
a|∇v|2 + V (εx)

∣∣G−1(v)
∣∣2]dx +

b

4

(ˆ
R3

|∇v|2dx

)2

−
ˆ
R3

Q(εx)H(G−1(v))dx − 1
6

ˆ
R3

K(εx)|v+|6dx,

where v+ = max{v, 0}. Let us define v−
0 = min{v0, 0}, then J ′

ε (v)(v−
0 ) = 0

implies thatˆ
R2

[
a|∇v−

0 |2+V (εx)
G−1(v−

0 )
g(G−1(v−

0 ))
v−
0

]
dx+b

(ˆ
R3

|∇v|2dx

)(ˆ
R3

|∇v−
0 |2dx

)

= 0,

where we have used the fact that h vanishes in (−∞, 0]. Recalling (V ) and
Lemma 2.1-(1), it holds thatˆ

R2

(
a|∇v−

0 |2 + V0|v−
0 |2) dx = 0

yielding that v−
0 ≡ 0, and hence, v0 = v+

0 is a nonnegative solution of Eq.
(1.13). Consequently, the strong maximum principle and the fact v0 �= 0 imply
that v0 > 0 in R

3. The proof is completed. �

Lemma A.2. Suppose (g), (V ), (Q), (K), and (H1)− (H4). Let wε be defined
as Lemma 4.2 for all ε ∈ (0, ε∗), then there is a constant C > 0 independent
of ε ∈ (0, ε∗) such that |wε|∞ ≤ C. Moreover, we have that wε ∈ C1,χ

loc (R3) for
some χ ∈ (0, 1) as well as

|wε|∞ ≥ τ and lim
|x|→+∞

wε(x) = 0 uniformly in ε ∈ (0, ε∗),

where τ > 0 is independent of ε ∈ (0, ε∗).

Proof. For every R > 0 and 0 < r � R
2 , we choose a cut-off function η ∈

C∞
0 (R3, [0, 1]), such that η(x) = 1 if |x| � R, and η(x) = 0 if |x| � R − r as

well as |∇η| � 2
r . Given ε ∈ (0, ε∗) and L > 1, define

wε,L(x) =
{

wε(x), wε(x) � L,
L, wε(x) � L,

and
ϕε,L = η2(wε,L)2(ϑ−1)wε and ψε,L = ηwε(wε,L)ϑ−1

with ϑ ≥ 1 to be determined later. Some simple calculations show that

|∇ψε,L|2 ≤ C1ϑ
2
(
η2(wε,L)2(ϑ−1)|∇wε|2 + |∇η|2(wε,L)2(ϑ−1)|wε|2

)
. (A.1)

andˆ
R3

∇wε∇ϕε,Ldx =
ˆ
R3

η2(wε,L)2(ϑ−1)|∇wε|2dx

+ 2
ˆ
RN

η(wε,L)2(ϑ−1)wε∇wε∇ηdx.

+ 2(ϑ − 1)
ˆ
R3

(wε,L)2ϑ−3η2wε∇wε∇wε,Ldx. (A.2)
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In view of (2.7) with ε = V0 > 0 and p = q̃ ∈ (2, 6) which is determined later,
there holds

f(εx + εyε, wε)wε ≤ V0|wε|2 + Cq̃|wε|q̃. (A.3)

Denoting Aε � a + b

ˆ
R3

|∇wε|2dx ≥ a, then we are derived from (4.4) that

− Δwε =
f(εx + εyε, wε) − V (εx + εyε)wε

Aε
+

K(εx + εyε)|wε|4wε

Aε
in R

3.

(A.4)
Taking ϕε,L as a test function in (A.4), we apply (A.2) and (A.3) to obtainˆ

R3
η2(wε,L)2(ϑ−1)|∇wε|2dx ≤ 2

ˆ
R3

η(wε,L)2(ϑ−1)wε|∇wε||∇η|dx

+
Cq̃

a

ˆ
R2

η2(wε,L)2(ϑ−1)|wε|q̃dx +
K0

a

ˆ
R3

η2(wε,L)2(ϑ−1)|wε|6dx,

from where it follows the Young’s inequality that:ˆ
R3

η2(wε,L)2(ϑ−1)|∇wε|2dx ≤ 4
ˆ
R3

(wε,L)2(ϑ−1)|wε|2|∇η|2dx

+
2Cq̃

a

ˆ
R3

η2(wε,L)2(ϑ−1)|wε|q̃dx +
2K0

a

ˆ
R3

η2(wε,L)2(ϑ−1)|wε|6dx.

(A.5)
We gather (1.15), (A.1), and (A.5) to conclude that
(ˆ

R3
|ψε,L|6dx

) 1
3 ≤ C1S−1ϑ2

ˆ
R3

(
η2(wε,L)2(ϑ−1)|∇wε|2 + |∇η|2(wε,L)2(ϑ−1)|wε|2

)
dx

≤ C2ϑ2

( ˆ
R3

(wε,L)2(ϑ−1)|wε|2|∇η|2dx +

ˆ
R3

η2(wε,L)2(ϑ−1)|wε|q̃dx

+

ˆ
R3

η2(wε,L)2(ϑ−1)|wε|6dx

)

≤ C2ϑ2

( ˆ
R−r≤|x|≤R

|wε|2ϑdx +

ˆ
|x|≥R−r

(wε)
2(ϑ−1)|wε|q̃dx

+ L2(ϑ−1)

ˆ
|x|≥R−r

|wε|6dx

)
.

In what follows, we shall fix t = 3
√

r > 3
2 , ϑ = 3(t−1)

t > 1 and q̃ = 2(1+t)
t . As

a consequence
(ˆ

R3
|ψε,L|6dx

) 1
3

≤ C2ϑ
2

{(ˆ
R−r≤|x|≤R

|wε|6dx

) t−1
t
(ˆ

R−r≤|x|≤R

dx

) 1
t

+

(ˆ
|x|≥R−r

|wε|6dx

) t−1
t
(ˆ

|x|≥R−r

|wε|2dx

) 1
t

+ L2(ϑ−1)

ˆ
|x|≥R−r

|wε|6dx

}

≤ C2,rϑ
2

⎡
⎣
(ˆ

|x|≥R−r

|wε|6dx

) t−1
t

+ L2(ϑ−1)

ˆ
|x|≥R−r

|wε|6dx

⎤
⎦ ,

(A.6)
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where we have used the fact that |wε|22 is uniformly bounded associated with
ε ∈ (0, ε∗).

Since ψε,L = ηwε(wε,L)ϑ−1, we are derived from (A.6) that

(ˆ
|x|≥R

|wε,L|6ϑdx

) 1
3

≤
(ˆ

|x|≥R

η6|wε|6|wε,L|6(ϑ−1)dx

) 1
3

≤
(ˆ

R3
|ψε,L|6dx

) 1
3

≤ C2,rϑ
2

⎡
⎣
(ˆ

|x|≥R−r

|wε|6dx

) t−1
t

+ L2(ϑ−1)

ˆ
|x|≥R−r

|wε|6dx

⎤
⎦ . (A.7)

Recalling the proof of Lemma 4.3, we have showed that wε → w0 in H1(R3).
Therefore, for the given L > 1, we can increase R sufficiently large to satisfyˆ

|x|≥R−r

|wε|6dx ≤ 1
L2ϑ

. (A.8)

Combining (A.7) with ϑ = 3(t−1)
t > 1 and (A.8), by tending L → +∞, we

find that
(ˆ

|x|≥R

|wε|ϑ2 sdx

) 1
ϑ2 s

≤ C
1
2ϑ
2,rϑ

1
ϑ

(ˆ
|x|≥R−r

|wε|ϑsdx

) 1
ϑs

,

where s = 2t
t−1 . Therefore, proceeding this iteration procedure m times and

multiplying these m + 1 formulas,

|wε|Lϑm+1s(|x|�R) � C
∑m

i=1 ϑ−i

2,r ϑ
∑m

i=1 iϑ−i |wε|L6(|x|�R−r),

and so

|wε|L∞(|x|�R) � C
∑m

i=1 ϑ−i

2,r ϑ
∑m

i=1 iϑ−i |wε|L6(|x|�R−r). (A.9)

Adopting again wε → w0 in H1(R3), one observes that wε(x) → 0 as |x| → ∞
uniformly in ε → 0+ if we let R → ∞ in (A.9). Analogously, there exists a
τ > 0, such that |wε|∞ ≥ τ . Otherwise, we could suppose that |wε|∞ → 0 as
ε → 0+ in some sense of a subsequence, and so, w0 = 0, which contradicts
with w0 �= 0 concluded in the proof of Lemma 4.2. Finally, we take some very
similar calculations exhibited above to prove that |wε|∞ ≤ C for some C > 0
independent of ε ∈ (0, ε∗). In addition, we are able to follow [12] to conclude
that wε ∈ C1,χ

loc (R3) for some χ ∈ (0, 1). The proof is completed. �

Lemma A.3. Suppose (g), (V ), (Q), (K), and (H1)− (H4). Let wε be defined
as Lemma 4.2 for all ε ∈ (0, ε∗), then there exist c̄′, ĉ′ > 0 independent of ε,
such that

wε(x) ≤ c̄′ exp(−ĉ′|x|)
for all ε ∈ (0, ε∗) and x ∈ R

3.
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Proof. Without loss of generality, we could assume that there is a constant
C > 0 independent of ε ∈ (0, ε∗), such that ‖wε‖2 ≤ C. According to (2.7)
and (K), we apply lim

|x|→+∞
wε(x) = 0 uniformly in ε ∈ (0, ε∗) to reach

lim
|x|→∞

∣∣∣∣f(εx + εyε, wε) + K(εx + εyε)|wε|4wε

wε

∣∣∣∣ = 0 uniformly in ε ∈ (0, ε∗).

Therefore, there is an R > 0 which is independent of ε ∈ (0, ε∗), such that

f(εx+εyε, wε)+K(εx+εyε)|wε|4wε ≤ a2V0

2(a2 + bC)
wε, ∀ε ∈ (0, ε∗) and |x| ≥ R.

(A.10)

In view of (A.4), since a ≤ Aε ≤ a2 + bC
a

for all ε ∈ (0, ε∗), it follows from

(A.10) and (V0) that:

−Δwε +
aV0

2(a2 + bC)
wε ≤ 0, ∀ε ∈ (0, ε∗) and |x| ≥ R.

Let ψ(x) = c̄′ exp(−ĉ′|x|) with c̄′, ĉ′ > 0, such that (ĉ′)2 <
aV0

2(a2 + bC)
and

wε(x) ≤ c̄′ exp(−ĉ′R) for all |x| = R. Some simple calculations provide us
that

−Δψ +
aV0

2(a2 + bC)
ψ = ψ

[
aV0

2(a2 + bC)
− (ĉ′)2 +

2ĉ′

|x|
]

> 0, for all |x| ≥ R.

We define Σ = {|x| ≥ R} ∩ {wε > ψ} and choose φ = max{wε − ψ, 0} ∈
H1

0 (R3\BR(0)) as a test function in

−Δ(wε − ψ) +
aV0

2(a2 + bC)
(wε − ψ) ≤ 0, for all |x| ≥ R

to conclude that

0 ≥
ˆ

Σ

(
|∇wε − ∇ψ|2 +

aV0

2(a2 + bC)
|wε − ψ|2

)
dx ≥ 0.

Therefore, the set Σ ≡ ∅. From which, we know that wε ≤ ψ(x) for all |x| ≥ R
and

wε ≤ ψ(x) = c̄′ exp(−ĉ′|x|) for all |x| ≥ R.

Exploiting Lemma A.2 again, |wε|∞ ≤ C, and so, the above inequality holds
true for the whole space R

3 by increasing c̄′ to be large if necessary. The
proof is completed. �
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