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ABSTRACT
The aim of this note is to survey recent results contained in Nguyen
H-M, Squassina M. [On anisotropic Sobolev spaces. Commun Con-
temp Math, to appear. DOI:10.1142/S0219199718500177]; Nguyen
H-M, Pinamonti A, Squassina M, et al. [New characterizations of
magnetic Sobolev spaces. Adv Nonlinear Anal. 2018;7(2):227–245];
Pinamonti A, Squassina M, Vecchi E. [Magnetic BV functions and
the Bourgain-Brezis-Mironescu formula. Adv Calc Var, to appear.
DOI:10.1515/acv-2017-0019]; Pinamonti A, Squassina M, Vecchi E.
[TheMaz’ya-Shaposhnikova limit in themagnetic setting. JMathAnal
Appl. 2017;449:1152–1159] and Squassina M, Volzone B. [Bourgain-
Brezis-Mironescu formula for magnetic operators. C R Math Acad Sci
Paris. 2016;354:825–831], where the authors extended to the mag-
netic setting several characterizations of Sobolev and BV functions.
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1. Introduction

Let {ρn}n∈N be a sequence of radial mollifiers, i.e. ρn(x) = ρn(|x|), such that

ρn ≥ 0,
∫ ∞

0
ρn(r)rN−1 dx = 1, and

lim
n→∞

∫ ∞

δ

ρn(r)rN−1 dr = 0 for every δ > 0.

Let� be a smooth bounded open subset of RN and let p ≥ 1. In [1], Bourgain, Brézis, and
Mironescu proved that, if u ∈ Lp(�) and

sup
n∈N

∫
�

∫
�

|u(x) − u(y)|p
|x − y|p ρn(|x − y|) dx dy ≤ C,

for some positive constantC, then u ∈ W1,p(�) if p>1 and u ∈ BV(�) if p=1. Moreover,
one has

lim
n→∞

∫
�

∫
�

|u(x) − u(y)|p
|x − y|p ρn(|x − y|) dx dy = pQp,N

∫
�

|∇u|p dx. (1)
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Here

Qp,N := 1
p

∫
SN−1

|ω · σ |p dσ , (2)

where SN−1 ⊂ RN denotes the unit sphere andω stands for an arbitrary unit vector ofRN .
Assertion (1) is established byBourgain, Brézis, andMironescu in [1] foru ∈ W1,p(�)with
p ≥ 1. Assertion (1) with p=1 and u ∈ BV(�) is obtained by Davila [2]. In particular,
we have the following celebrated Bourgain-Brézis-Mironescu (BBM) formula, for every
u ∈ W1,p(�),

lim
s→1−

(1 − s)
∫

�

∫
�

|u(x) − u(y)|p
|x − y|N+sp dx dy = Qp,N

∫
�

|∇u|p dx. (3)

Other properties related to the BBM formula can be found in [3–5]. In the spirit of (3),
Maz’ya and Shaposhnikova proved in [6] that for any p ∈ [1,∞),

lim
s↘0

s
∫

RN

∫
RN

|u(x) − u(y)|p
|x − y|N+ps dx dy = 4πN/2

p�(N/2)
‖u‖pLp(RN)

,

whenever u ∈ Ds,p
0 (RN) for some s ∈ (0, 1). Here � denotes the Gamma function and the

space Ds,p
0 (RN) is the completion of C∞

c (RN) with respect to the Gagliardo semi-norm.
Other characterizations of Sobolev spaces andBV functionswhich are somewhat related

to the one of Bourgain, Brézis, and Mironescu are established in [7,8]. For example, in the
case p=2, the following characterization of H1(�) is given in [7,8]. Set

Iδ(u) :=
∫∫

�×�
{|u(y)−u(x)|>δ}

δ2

|x − y|N+2 dx dy, for u ∈ L1loc(�) and δ > 0.

Then for any u ∈ L2(�), u ∈ H1(�) if and only if sup0<δ<1 Iδ(u) < ∞. Moreover, for
every u ∈ H1(�)

lim
δ↘0

Iδ(u) = Q2,N

∫
�

|∇u|2 dx,

where Q2,N is the same positive constant appearing in (3) for p=2. Other results related
to the nonlocal operator Iδ can be found in [9–13]. The aim of this note is to survey recent
results contained in [14–18], where the authors have extended the aforementioned results
to the magnetic setting. We refer the interested reader to these papers for the proofs and
further details.

2. Magnetic Sobolev and BV spaces

An important role in the study of particles which interact with amagnetic fieldB = ∇ × A,
A : R3 → R3, is played by an extension of the Laplacian, known as magnetic Laplacian
(∇ − iA)2 (see [19,20]). Nonlinear magnetic Schrödinger equations like

−(∇ − iA)2u + u = f (u)

have been extensively studied (see e.g. [19,21–23] and the references therein). The func-
tional framework to work with these equations is the magnetic Sobolev spaces which will
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be now recalled, see [24] for a concise introduction to the topic. For p ≥ 1, let us endow
the vector space CN with the norm

|z|p :=
(|(�z1, . . . ,�zN)|p + |(�z1, . . . ,�zN)|p)1/p ,

where �a, �a denote the real and imaginary parts of a ∈ C respectively, and | · | the
Euclidean norm of RN . We notice that |z|p = |z| whenever z ∈ RN . We warn the reader
that in the non Hilbert case p = 2, this choice for a norm on CN is different from the stan-
dard one. Continuing with the notation, we will denote the imaginary unit by i, and we
denote by Lp(�,C) the Lebesgue space naturally associated to | · |p.

We are ready to introduce

Definition 2.1: Let p ≥ 1 and A : RN → RN be a measurable function. The magnetic
Sobolev spaceW1,p

A (�) is given by

W1,p
A (�) :=

{
u ∈ Lp(�,C) : [u]W1,p

A (�)
< ∞

}
,

where

[u]W1,p
A (�)

:=
(∫

�

|∇u − iA(x)u|pp dx
)1/p

.

The spaceW1,p
A (�) is equipped with the following norm

‖u‖W1,p
A (�)

:=
(
‖u‖pLp(�)

+ [u]p
W1,p

A (�)

)1/p
.

We can also define the spaceW1,p
0,A(�) as the closure of C∞

c (�) inW1,p
A (�). As a nota-

tional remark, as it is customary, when p=2 we will denote the magnetic Sobolev space
W1,2

A (�) by H1
A(�).

A possibility to define a suitable notion of fractional magnetic Sobolev space is to use the
energy space of a non-local operator on RN , see [25,26]. There are at least three possible
notions ofmagnetic fractional Laplacianwhich are in general not equivalent, see the survey
of Ichinose in [26]. The most frequently used operator is (−�)sA, which is defined as the
gradient of the non-local energy functional

u �→
∫∫

R2N

|u(x) − ei(x−y)·A((x+y)/2)u(y)|2
|x − y|N+2s dx dy,

namely

(−�)sAu(x) = c(N, s) lim
ε↘0

∫
Bcε(x)

u(x) − ei(x−y)·A((x+y)/2)u(y)
|x − y|N+2s dy,

where

lim
s↗1

c(N, s)
1 − s

= 4N�(N/2)
2πN/2 .

Recently, the operator (−�)sA has been investigated in several directions. Here is a brief
(and far from being complete) list of references: [27–33]



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 1107

We are ready to introduce the non-local counterpart of the magnetic Sobolev spaces:

Definition 2.2: Let A : RN → RN be a locally bounded measurable function and let� ⊂
RN be an open set. For any s ∈ (0, 1) and p ≥ 1, the magnetic Gagliardo semi-norm is
defined as

[u]Ws,p
A (�)

:=
(∫

�

∫
�

|u(x) − ei(x−y)·A((x+y)/2)u(y)|pp
|x − y|N+ps dx dy

)1/p

.

The fractional magnetic Sobolev spaceWs,p
A (�) is given by

Ws,p
A (�) :=

{
u ∈ Lp(�,C) : [u]Ws,p

A (�)
< ∞

}
,

and it is equipped with the norm

‖u‖Ws,p
A (�)

:=
(

‖u‖pLp(�)
+ [u]p

Ws,p
A (�)

)1/p
.

We stress that for A ≡ 0 and u real-valued, the above definition is consistent with the
usual fractional Sobolev spaceWs,p(�) endowed with the classical norm

‖ · ‖Ws,p(�) =
(

‖u‖pLp(�)
+
∫

�

∫
�

|u(x) − u(y)|pp
|x − y|N+ps dx dy

)1/p

.

Remark 2.1: As it is pointed out in [26], in place of the magnetic norm defined via
the simple midpoint prescription (x, y) �→ A((x + y)/2), other prescriptions are viable in
applications such as the averaged one

(x, y) �→
∫ 1

0
A
(
(1 − ϑ)x + ϑy

)
dϑ =: A�(x, y).

If (−�)sA and (−�)sA�
are the fractional operators associated with A((x + y)/2) and

A�(x, y) respectively, it follows that (−�)sA�
is Gauge covariant, which is relevant for

Schrödinger operators, i.e. for all φ ∈ S (Rn)

(−�)s(A+∇φ)�
= eiφ(−�)sA�

e−iφ ,

see e.g. [26, Proposition 2.8].

We present now the notion ofmagnetic bounded variation functions introduced in [16].

Definition 2.3 (A−bounded variation functions): Let � ⊂ RN be an open set and let
A : RN → RN be a locally bounded function. A function u ∈ L1(�,C) is said to be of
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A-bounded variation and we write u ∈ BVA(�), if

|Du|A(�) := C1,A,u(�) + C2,A,u(�) < ∞,

where we set

C1,A,u(�) := sup
{∫

�

�u(x)divϕ(x) − A(x) · ϕ(x)�u(x) dx | ϕ

∈ C∞
c (�,RN), ‖ϕ‖L∞(�) ≤ 1

}
,

C2,A,u(�) := sup
{∫

�

�u(x)divϕ(x) + A(x) · ϕ(x)�u(x) dx | ϕ

∈ C∞
c (�,RN), ‖ϕ‖L∞(�) ≤ 1

}
.

A function u ∈ L1loc(�,C) is said to be of locally A-bounded variation and we write u ∈
BVA,loc(�), if

|Du|A(U) < ∞, for every open set U � �.

We endow the space BVA(�,C) with the following norm:

‖u‖BVA(�) := ‖u‖L1(�) + |Du|A(�).

With this choice, the space (BVA(�), ‖ · ‖BVA(�)) is a real Banach space, see [16,
Lemma 3.8].

As for the magnetic Sobolev spaces, in the case A ≡ 0, the previous definition is consis-
tent with the classical one of BV(�). We summarize now the basic properties of the space
BVA(�) that has been fully proved in [16]. The coming results can be considered as the
natural extension to the magnetic setting of the classical theory, see e.g. [34].

Lemma 2.1 ([16, Lemma 3.2]): Let � ⊂ RN be an open and bounded set, A : RN → RN

locally bounded and u ∈ BVA(�). Let E ⊂ � be a Borel set then

|Du|A(E) := inf{C1,A,u(U) |E ⊂ U, U ⊂ � open}
+ inf{C2,A,u(U) |E ⊂ U, U ⊂ � open}

extends |Du|A(·) to a Radonmeasure in�. For any open set U ⊂ �,C1,A,u(U) andC2,A,u(U)

are defined requiring the test functions to be supported in U and |Du|A(∅) := 0.

Lemma 2.2 ([16, Lemma 3.3]): Let � ⊂ RN be an open set. Let A : RN → RN be locally
bounded. Then

W1,1
loc(�) ⊂ BVA,loc(�).
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Lemma 2.3 ([16, Lemma 3.4]): Let � ⊂ RN be an open set. Let A : RN → RN be locally
bounded. Assume that u ∈ W1,1

A (�). Then u ∈ BVA(�) and it holds

|Du|A(�) =
∫

�

|∇u − iA(x)u|1 dx.

Furthermore, if u ∈ BVA(�) ∩ C∞(�), then u ∈ W1,1
A (�).

Lemma 2.4 ([16, Lemma 3.5]): Let � ⊂ RN be an open and bounded set. Let A : RN →
RN be locally bounded. Then u ∈ BVA(�) if and only if u ∈ BV(�). Moreover, for every
u ∈ BVA(�), there exists a positive constant K = K(A,�) such that

K−1‖u‖BV(�) ≤ ‖u‖BVA(�) ≤ K‖u‖BV(�).

Lemma 2.5 ([16, Lemma 3.7]): Let A : RN → RN be locally bounded. Let � ⊂ RN be an
open set and {uk}k∈N ⊂ BVA(�) a sequence converging locally in L1(�) to a function u. Then

lim inf
k→∞

|Duk|A(�) ≥ |Du|A(�).

Lemma 2.6 ([16, Lemma 3.10]): Suppose that A : RN → RN is locally Lipschitz. Let � ⊂
RN be an open and bounded set and let u ∈ BVA(�). Then there exists a sequence {uk}k∈N ⊂
C∞(�,C) such that

lim
k→∞

∫
�

|uk − u|1 dx = 0 and lim
k→∞

|Duk|A(�) = |Du|A(�).

Lemma2.7 ([16, Lemma 3.14]): Assume that� ⊂ RN is a bounded domain with Lipschitz
boundary and that A : RN → RN is locally bounded. Let {uk}k∈N be a bounded sequence in
BVA(�). Then, up to a subsequence, it converges strongly in L1(�) to some function u ∈
BVA(�).

Lemma 2.8 ([16, Lemma 3.12]): Let � ⊂ RN be an open bounded set with Lipschitz
boundary and let A : RN → RN be locally Lipschitz. Then for any open set W ⊃ �, there
exists a linear and continuous extension operator E : BVA(�) → BVA(RN) such that

Eu = 0, for almost every x ∈ R
N \ W, and |DEu|A(∂�) = 0,

for every u ∈ BVA(�).

A few words concerning the proofs of the aforementioned results are now in order.
Roughly speaking, the strategy of the proofs follow the classical ones as in e.g. [34]. From
the technical point of view, once we ask for local boundedness of A we can usually control
the extra-terms coming fromA. In particular, the norm equivalence provided by Lemma 2.4
and the pointwise Diamagnetic inequality, see e.g. [28] allow sometimes to get magnetic
results from the classical ones. We refer to [16, Section 3] for more details.
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3. Magnetic BBM-type formulas

The introduction of the magnetic counterpart of classical Sobolev spaces and BV space
leads to the following natural question: do BBM-type formulas still hold in the magnetic
setting? The aim of this section is to collect some results that provide a positive answer to
the above question.

An useful equality to get BBM-type formulas is∫
SN−1

|v · σ |pp dσ = pQp,N |v|pp, for all v ∈ C
N , p ≥ 1. (4)

This motivates the introduction of the norm | · |p on CN . Indeed, (4) does not hold with
the classical Euclidean norm for p = 2. Given u : RN → C a measurable complex-valued
function, we denote

�u(x, y) := ei(x−y)·A((x+y)/2)u(y), x, y ∈ R
N .

The function �u(·, ·) also depends on A but for notational ease, we ignore it.

Theorem 3.1 (Magnetic Bourgain-Brezis-Mironescu type result): Let p ≥ 1, A : �̄ →
RN be of class C1 and let {ρn}n∈N be a sequence of nonnegative radial mollifiers. Then u ∈
W1,p

A (�) if p>1 and u ∈ BVA(�) if p=1 if and only if u ∈ Lp(�) and

sup
n∈N

∫
�

∫
�

|�u(x, y) − �u(x, x)|pp
|x − y|p ρn(|x − y|) dx dy < +∞. (5)

Moreover,

lim
n→+∞

∫
�

∫
�

|�u(x, y) − �u(x, x)|pp
|x − y|p ρn(|x − y|) dx dy = Q1,N |Du|A(�). (6)

Statement (5) is proved in [18] for p=2, in [16] for p=1 both under the assumption that
A ∈ C2(�̄), in [15] for p>1 andA ∈ C1(�̄), and for p ≥ 1 for amore general (anisotropic)
setting in [14]. The proof of (6) is given in [15] for p>1 and for p ≥ 1 for a more general
setting in [14].1 The proof of Theorem 3.1 is essentially based on the works in the case
withoutmagnetic field, see [1,2,35]. Nevertheless work is required to deal with the presence
of the magnetic field A.

4. Amagnetic version of the result byMaz’ya and Shaposhnikova

The aimof this section is to describe the generalization proved in [17] of [6] to themagnetic
case. For a locally bounded A, let the space of complex valued functions Ds,p

A,0(R
N ,C) be

the completion of C∞
c (RN ,C) with respect to the norm

‖u‖Ds,p
A,0

=
(∫

RN

∫
RN

|�u(x, y) − �u(x, x)|p
|x − y|N+ps dx dy

)1/p
.
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Theorem 4.1 (MagneticMaz’ya-Shaposhnikova type result): Let N ≥ 1 and p ∈ [1,∞).
Then for every

u ∈
⋃

0<s<1
Ds,p
A,0(R

N ,C),

there holds

lim
s↘0

s
∫

RN

∫
RN

|�u(x, x) − �u(x, y)|p
|x − y|N+ps dx dy = 4πN/2

p�(N/2)
‖u‖pLp(RN)

.

In one direction the proof is based on the Diamagnetic inequality to reduce the prob-
lem to the non-magnetic case. For the converse inequality, the magnetic effects has to be
controlled, and this can be done because the magnetic effect becomes negligible as s → 0.

Remark 4.1: We point out that when A ≡ 0 then Theorem 4.1 boils down to the result
proved in [6]. It also remains valid for the operator A� and its proof carries on by trivial
modifications of our arguments.

5. Amagnetic version of the results by Bourgain and Nguyen

In this section, we present some results in [15]. Set

Jδ(u) :=
∫∫

{|�u(x,y)−�u(x,x)|>δ}
δ2

|x − y|N+2 dx dy, for u ∈ L1loc(R
N), δ > 0.

We prove

Theorem5.1: Let A : RN → RN be Lipschitz. Then u ∈ H1
A(RN) if and only if u ∈ L2(RN)

and

sup
0<δ<1

Jδ(u) < +∞.

Moreover, we have, for u ∈ H1
A(RN),

lim
δ↘0

Jδ(u) = QN

∫
RN

|∇u − iA(x)u|2 dx

and

sup
δ>0

Jδ(u) ≤ CN

(∫
RN

|∇u − iA(x)u|2 dx + (‖∇A‖2L∞(RN)
+ 1

) ∫
RN

|u|2 dx
)
.

This provides a new characterization of the H1
A norm in terms of nonlocal function-

als extending to the magnetic setting further results in the spirit of Bourgain, Brézis and
Mironescu [1,36] (see also [2,37]).
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6. Almost everywhere and L1 convergence

In this section we collect other results obtained in [15] in the spirit of the works [4,38]. We
are there interested in othermodes of convergence of functionals related to those appearing
in Theorems 3.1 and 5.1. We only recall some results for the case p=2. For u ∈ L1loc(R

N),
set

Dn(u, x) :=
∫

RN

|�u(x, y) − �u(x, x)|2
|x − y|2 ρn(|x − y|) dy, for x ∈ R

N .

Concerning Theorem 3.1, we have

Proposition 6.1 ([15, Proposition 4.1]): Let A : RN → RN be Lipschitz, u ∈ H1
A(RN),

and let (ρn) be a sequence of radial mollifiers such that

sup
t>1

sup
n

t−2ρn(t) < +∞.

We have

lim
n→+∞Dn(u, x) = 2QN |∇u(x) − iA(x)u(x)|2, for a.e. x ∈ R

N ,

and

lim
n→+∞Dn(u, ·) = 2QN |∇u(·) − iA(·)u(·)|2, in L1(RN).

Concerning Theorem 5.1, we set, for u ∈ L1loc(R
N) and x ∈ RN ,

Jδ(u, x) :=
∫

{|�u(x,y)−�u(x,x)|>δ}
δ2

|x − y|N+2 dy.

We have

Proposition 6.2 ([15, Proposition 4.2]): Let A : RN → RN be Lipschitz and let u ∈
H1
A(RN). Then

lim
δ↘0

Jδ(u, x) = QN |∇u(x) − iA(x)u(x)|2, for a.e. x ∈ R
N (7)

and

lim
δ↘0

Jδ(u, ·) = QN |∇u(·) − iA(·)u(·)|2, in L1(RN). (8)

In both cases, we prove the results on smooth functions relying on delicate estimates of
maximal-type functions with their roots in [4]. We can then conclude arguing by density.
We refer to [15] for detailed proofs of both results.

Note

1. Some of these works only deal with the whole space setting, nevertheless, one can extend them
for a smooth bounded domains as stated.
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