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Abstract. We investigate the orbital stability and instability of standing
waves for two classes of Klein-Gordon equations in the semi-classical regime.

1. Introduction and results. The nonlinear Klein-Gordon equation

ε2utt − ε2∆u+mu− |u|p−1u = 0 (t, x) ∈ R× RN , (1)

where ε,m > 0, p > 1 for N = 1, 2 and 1 < p < (N + 2)/(N − 2) for N ≥ 3, arises
in many physical contexts, e.g. in particle physics. It is also a model case for the
mathematical study of nonlinear partial differential equations. We are interested
in the study of the nonlinear Klein Gordon equation in presence of a potential
depending on the space variable. Two different choices are viable. We can simply
add a potential term W (x)u to equation (1). This case has been studied, for the
linear wave equation, for example, by Beals and Strauss in [5]. This approach leads
us to consider the equation

ε2utt − ε2∆u+mu−Wu− |u|p−1u = 0, in RN . (2)

Otherwise, typically when dealing with quantum electrodynamics, the interaction
between u and an external electromagnetic field is described substituting in (1)
the usual time and space derivatives with the so called Weyl derivative, that is
Dt = ∂t + iV (x), Dxj = ∂xj − iAj(x). Here V and (Aj)j are the potentials of the
electric and the magnetic external fields. This approach is classical in the linear
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theory of electromagnetic waves, and can be extended to the nonlinear setting, as
in [14, section 7.5.1]. The nonlinear problem is called in literature Klein-Gordon-
Maxwell nonlinear problem and in the last ten years it gained the attention of
the mathematical community. See for example [6], [13] and the references therein
and [4,12,25,36,39]. We will consider the case of zero magnetic potential, that leads
us to consider the equation

ε2utt + 2iεV ut − ε2∆u+mu− V 2u− |u|p−1u = 0, in RN . (3)

In this paper, we shall state all the results simultaneously for equations (2) and (3)
by studying the problem ε2utt + 2iεV ut − ε2∆u+mu−Wu− |u|p−1u = 0, in RN ,

u(0, x) = u0 ∈ H1(RN ),
ut(0, x) = u1 ∈ L2(RN ),

(4)

where u : R×RN → C, and V,W are real valued potential functions. Equation (4)
yields to (3) for the choice W = V 2 as well as to (2) when V = 0.

We are interested in standing wave solutions of problem (4). Standing waves
are solutions of the form u(t, x) = eiωt/εϕω(x/ε), which solve (4) with initial data
u0(x) = ϕω(x/ε), u1(x) = iω/εϕω(x/ε) where ω ∈ R and ϕω satisfies

−∆ϕω +
(
m− ω2 − 2ωV (εy)−W (εy)

)
ϕω − |ϕω|p−1ϕω = 0, in RN . (5)

We shall study the stability of standing waves of this equation in the semiclassical
regime ε → 0. To ensure existence of solutions to (5) for ε close to 0, we assume
the following. The potentials V and W satisfy

V,W ∈ C2(RN ) ∩W 2,∞(RN ). (6)

For the function

Z(y) := m− ω2 − 2ωV (y)−W (y), y ∈ RN

there exists x0 ∈ RN such that

∇Z(x0) = 0, ∇2Z(x0) is non-degenerate. (7)

Furthermore, we assume that

inf
x∈RN

Z(x) > 0. (8)

Under these hypotheses, it is well-known (see e.g. [2] or [3, Section 8.2]) that
when ε is close to 0 the equation (5) admits a family of positive, exponentially
decaying, solutions ϕω ⊂ H1(RN ) (hiding the dependence upon ε). More precisely,
there exist ξε ∈ RN and ψω ∈ H1(RN ) such that ϕω(·) = ψω(· − ξε) + O(ε2) in
H1(RN ) as ε → 0, where ξε = x0 + o(ε) and ψω is the unique positive and radial
solution of

−∆ψω + Z(x0)ψω = |ψω|p−1ψω, in RN . (9)

The rate of exponential decay is uniform in ε for sufficiently small ε. Indeed, let
λ0 := infx∈RN Z(x). By assumption (8), we have λ0 > 0. Then there exists C0 > 0

depending only on λ0 such that |ϕω(x)| ≤ C0e
−
√
λ0|x|/2 (see e.g. [8, Chapter 3]).

In what follows, we will need the following assumption on the dependence in ω
of the family (ϕω).

ω 7→ ϕω ∈ H1(RN ) is C1 uniformly in ε. (10)

Actually, since the family ϕω is build upon (ψω), which is C1 in ω, the statement
(10) could probably be obtained by rewriting the proofs of [2,3] by using parameter
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depending versions of the various results used. Since it is not our main concern in
this paper we leave this issue aside and simply assume (10).

A standing wave of (4) is said to be (orbitally) stable if any solution of (4)
starting close to the standing wave remains close for all time, up to the invariances

of the equation. More precisely, for fixed ε, we say that e
iωt
ε ϕω

(
x
ε

)
is stable if for

all η > 0 there exists δ > 0 such that for all (u0, u1) ∈ H1(RN )× L2(RN ) verifying∥∥∥u0 − ϕω ( ·
ε

)∥∥∥
H1

+
∥∥∥u1 − iω

ε
ϕω

( ·
ε

)∥∥∥
L2
< δ

the solution u(t, x) of (4) with initial data (u0, u1) satisfies

sup
t∈R

inf
θ∈R

(∥∥∥u− eiθϕω ( ·
ε

)∥∥∥
H1

+
∥∥∥ut − ieiθ ω

ε
ϕω

( ·
ε

)∥∥∥
L2

)
< η. (11)

Since the pioneering works [7, 10, 15, 16, 37, 38], the study of orbital stability for
standing waves of dispersive PDE has attracted a lot of attention. Among many
others, one can refer to [18,19,22]; see also the books and surveys [9,21,33,35] and the
references therein. Relatively few works [17, 23, 26] are concerned with stability at
the semi-classical limit for Schrödinger type equations. For Klein-Gordon equations,
after the ground works [30, 31] revisited some years ago in [34], there has been a
recent interest for instability by blow-up [24,27–29].

We study stability within the framework of Grillakis-Shatah-Strauss Theory [15,
16]. We first rewrite (4) in Hamiltonian form

ε
∂U

∂t
= JE′(U), (12)

where U =

(
u
v

)
, J =

(
0 1
−1 0

)
, and the energy E is defined for U ∈ H1(RN ) ×

L2(RN ) by

E(U) =
1

2
‖v − iV u‖2L2 +

ε2

2
‖∇u‖2L2 +

m

2
‖u‖2L2 −

1

2

∫
RN

W |u|2dx− 1

p+ 1
‖u‖p+1

Lp+1 .

It is easy to see that if u solves (4) and v is defined by v := εut + iV u, then

U =

(
u
v

)
solves (12). Due to the Hamiltonian form, the energy E is (at least

formally) a conserved quantity for the flow of (12). The invariance with respect to
phase shift (i.e. if U solves (12), then for any fixed θ ∈ R the function eiθU also
solves (12)) generates another conserved quantity, the charge Q, which is defined
by

Q(U) = =
∫
RN

ūvdx.

In this Hamiltonian formulation, a standing wave u = eiωt/εϕω(x/ε) becomes U =

eiωt/εΦω(x/ε) for Φω =

(
ϕω

i(ω + V )ϕω

)
. Note that Φω(·/ε) is a critical point of the

functional E − ωQ. The energy and the charge for a standing wave are given by

E(ϕω) := E(Φω(·/ε)) = εN
(1

2
‖∇ϕω‖2L2 −

1

2

∫
RN

W (εy)|ϕω|2dy

+
m+ ω2

2
‖ϕω‖2L2 −

1

p+ 1
‖ϕω‖p+1

Lp+1

)
,

(13)

Q(ϕω) := Q(Φω(·/ε)) = εN
(
ω‖ϕω‖2L2 +

∫
RN

V (εy)|ϕω|2
)
. (14)
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To work in the context of the theory developed by Grillakis, Shatah and Strauss
in [15,16], three assumptions have to be satisfied. First, the Cauchy Problem has to
be locally well-posed in H1(RN )×L2(RN ). This follows from standard results when
V ≡ 0 and we shall assume it otherwise. Indeed, when W verifies (6), the local well-
posedness of the Cauchy Problem for (2) follows from a simple adaptation of classical
methods (see e.g. [32]). No well-posedness result is available for the specific case
of (3), see nevertheless [1] for results on a Klein-Gordon equation with a damping
term and [11,20] for the Maxwell-Klein-Gordon equation. Second, the map ω → ϕω
has to be C1, which is granted by assumption (10). Third, the spectrum of the
linearized operator

Hε := E′′(Φω(·/ε))− ωQ′′(Φω(·/ε))
must decompose into a finite number of negative eigenvalues, a nondegenerate kernel
(i.e. containing only the eigenvectors due to the invariances of the equation), and
positive spectrum away from 0. This will be proved in Proposition 2. Under these
three assumptions the stability of the standing waves depends on two informations.

The first one is a slope information given by the sign of the quantity ∂2

∂ω2 d(ω), where
d(ω) = E(ϕω) − ωQ(ϕω). Note that it is easy to verify that d′(ω) = −Q(ϕω) (see
e.g. [15, Eq. (2.20)]). The second information is related to the number of negative
eigenvalues of the linearized operator Hε.

According to the theory developed in [15, 16], a standing wave e
iωt
ε ϕω

(
x
ε

)
is

stable if two conditions are satisfied.

(i) The Slope Condition:
∂

∂ω
Q(ϕω) < 0.

(ii) The Spectral Condition: Hε has exactly one negative eigenvalue.

On the other hand, denote by n(Hε) the number of negative eigenvalues of Hε and

set p(ω) = 0 if
∂

∂ω
Q(ϕω) > 0, p(ω) = 1 if

∂

∂ω
Q(ϕω) < 0. Then the standing wave

is unstable if

(iii) Instability Condition: n(Hε)− p(ω) is odd.

In [16], it was proved that when (iii) is satisfied, then the instability of the standing
waves follows from a linear mechanism, in the sense that the 0 solution of the
linearized equation around the standing wave is unstable. Note that when n(Hε)−
p(ω) is even, the question of stability or instability is still open.

Our main result is the following.

Theorem 1.1. Assume that conditions (6)-(8), (10) hold. Then, there exists ε0 > 0
such that for any 0 < ε < ε0 we have the following facts.

1. If p < 1 + 4/N , then the Slope Condition ∂
∂ωQ(ϕω) < 0 is fulfilled if

Z(x0) < (ω + V (x0))2
( 4

p− 1
−N

)
(non-critical case)

or if Z(x0) = (ω + V (x0))2
(

4
p−1 −N

)
,(

∆Z(x0)−∆V (x0)
(

1 + 2(ω+V (x0))
Z(x0)

))
< 0,

(critical case).

2. If p ≥ 1 + 4/N , then we always have ∂
∂ωQ(ϕω) > 0.

3. We have the equality n(Hε) = n(∇2Z(x0)) + 1, where n(∇2Z(x0)) is the
number of negative eigenvalues of ∇2Z(x0).
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From the theory of [15,16] we infer the following corollary on the stability of the
standing wave in the particular case where x0 is a minimum of Z.

Corollary 1. Assume that (4) is locally well-posed in H1(RN )×L2(RN ), conditions
(6)-(8), (10) hold and that x0 is non-degenerate local minimum of Z. Then there
exists ε0 > 0 such that for any 0 < ε < ε0 the standing waves eiωtϕω are stable if
p < 1 + 4/N and

Z(x0) < (ω + V (x0))2
( 4

p− 1
−N

)
and unstable if

Z(x0) > (ω + V (x0))2
( 4

p− 1
−N

)
or if p ≥ 1 + 4/N .

Note that, conversely to what was happening in the case of Schrödinger equations
studied in [23], the values of the potentials V and W at x0 come into play for the
Slope Condition even in the noncritical case. Note also that only the local behavior
of Z around x0 influences the stability or instability.

Notations. Most of the objects we consider will depend both on ε and ω. We
will emphasize the most important parameter by indicating it as a subscript, the
dependence in the other parameter being understood.

2. Proofs. In this section, we prove Theorem 1.1 and Corollary 1. We start by
focusing on the Slope Condition and then we study the Spectral Condition. We
finish by the proof of Corollary 1. For the sake of simplicity in notations and
without loss of generality, in the rest of this section we assume that x0 = 0.

2.1. The Slope Condition. We start with the noncritical case.

2.1.1. Noncritical case. We assume that

Z(0) 6= (ω + V (0))2
( 4

p− 1
−N

)
.

We first rewrite Q(ϕω) by expanding V (εy) and using the exponential decay of ϕω:

Q(ϕω) = εN (ω + V (0)) ‖ϕω‖2L2 +O(εN+1).

Therefore, since

∂

∂ω
Q(ϕω) = εN‖ϕω‖2L2 + εN (ω + V (0))

∂

∂ω
‖ϕω‖2L2 +O(εN+1), (15)

to evaluate the sign of the map ω 7→ ∂
∂ωQ(ϕω) one should compute the quantity

∂

∂ω
‖ϕω‖2L2 = 2

∫
RN

Rωϕω, (16)

where Rω(x) := ∂ϕω
∂ω (x). We remark that differentiation of (5) with respect to ω

easily yields

LεRω = 2(ω + V (εy))ϕω, (17)

where the linearized operator Lε is defined by

Lε := −∆ + Z(εy)− p|ϕω|p−1.
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If we now introduce the rescaling ϕω(x) = λ
1
p−1ϕλ(

√
λx), it follows that ϕλ satisfies

−∆ϕλ + λ−1Z

(
εy√
λ

)
ϕλ − |ϕλ|p−1ϕλ = 0, in RN . (18)

Now, differentiating equation (18) with respect to λ and denoting Tλ = ∂ϕλ
∂λ |λ=1

yields

LεTλ − Z(εy)ϕω −
1

2
εy · ∇Z(εy)ϕω = 0. (19)

Since 0 is a critical point of Z, a Taylor expansion gives

Z(εy) = Z(0) +O(ε2|y|2), (20)

1

2
εy · ∇Z(εy) = O(ε2|y|2). (21)

Then, from (19), as ε→ 0 we have

LεTλ = Z(0)ϕω +O(ε2|y|2ϕω), in RN . (22)

Then, in turn, taking into account identity (17) we get

Z(0)

∫
RN

Rωϕω =

∫
RN

RωLεTλ +O(ε2)

=

∫
RN

LεRωTλ +O(ε2)

=

∫
RN

2(ω + V (εy))ϕωTλ +O(ε2) (23)

= 2(ω + V (0))

∫
RN

ϕωTλ +O(ε)

= (ω + V (0))
∂

∂λ
‖ϕλ‖2L2 |λ=1 +O(ε)

= (ω + V (0))
(N

2
− 2

p− 1

)
‖ϕω‖2L2 +O(ε).

In conclusion, by combining (15), (16) and (22), we have

∂

∂ω
Q(ϕω) = εN

(
1 +

(ω + V (0))2

Z(0)

(
N − 4

p− 1

))
‖ϕω‖2L2 +O(εN+1).

Then, taking into account the fact that Z(0) > 0 and that ϕω converges to ψω in
L2(RN ) as ε→ 0, the sign of ∂

∂ωQ(ϕω) is the sign of

Z(0)− (ω + V (0))2
( 4

p− 1
−N

)
.

2.1.2. Critical case. We assume now that

Z(0) = (ω + V (0))2
( 4

p− 1
−N

)
. (24)

In the critical case, the term of order εN in the expansion of ∂
∂ωQ(ϕω) vanishes and

we need to calculate the expansion at a higher order. We first refine (20)-(21).

Z(εy) = Z(0) +
ε2

2
∇2Z(0)(y, y) +O(ε3|y|3)

1

2
εy · ∇Z(εy) =

ε2

2
∇2Z(0)(y, y) +O(ε3|y|3).
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Then (19) gives

LεTλ = Z(0)ϕω + ε2∇2Z(0)(y, y)ϕω +O(ε3|y3|)ϕω.
Now, we have

Z(0)

∫
RN

Rωϕω =

∫
RN

RωLεTλ − ε2
∫
RN
∇2Z(0)(y, y)Rωϕω +O(ε3). (25)

From (17), we obtain∫
RN

RωLεTλ =

∫
RN

LεRωTλ =

∫
RN

2(ω + V (εy))ϕωTλ. (26)

Expanding the potential V we get∫
RN

2V (εy)ϕωTλ =

∫
RN

2V (0)ϕωTλ + 2ε

∫
RN

y · ∇V (0)ϕωTλ

+ ε2
∫
RN
∇2V (0)(y, y)ϕωTλ +O(ε3). (27)

Note that since ϕω = ψω(· − ξε) +O(ε2) and ξε = o(ε), we have

2ε

∫
RN

y · ∇V (0)ϕωTλ = 2ε

∫
RN

y · ∇V (0)ψωTλ + o(ε2) = o(ε2) (28)

where the last cancellation comes from the fact that ψω is radial. Coming back to
(26) and as in (23), we have∫

RN
RωLεTλ = (ω + V (0))

(N
2
− 2

p− 1

)
‖ϕω‖2L2

+ ε2
∫
RN
∇2V (0)(y, y)ϕωTλ + o(ε2). (29)

It remains to compute the integrals involving the Hessians in (25) and (29). Since
our problem is invariant by an orthonormal transformation, we can assume with-
out loss of generality that ∇2V (0) = diag(b1, . . . , bN ). Hence ∇2V (0)(y, y) =∑N
j=1 bjy

2
j . Recall also that Tλ can be computed explicitly to have

Tλ = − 1

p− 1
ϕω −

1

2
y · ∇ϕω.

Therefore, ∫
RN

bjy
2
jϕωTλ = − bj

p− 1

∫
RN

y2jϕ
2
ω −

bj
2

N∑
k=1

∫
RN

y2j ykϕω
∂ϕω
∂yk

.

We have after integration by parts

2

N∑
k=1

∫
RN

y2j ykϕω
∂ϕω
∂yk

= −
N∑
k=1

∫
RN

(y2j + 2δjky
2
j )ϕ2

ω = −(N + 2)

∫
RN

y2jϕ
2
ω.

Thus ∫
RN
∇2V (0)(y, y)ϕωTλ =

N∑
j=1

∫
RN

bjy
2
jϕωTλ

=−
(

1

p− 1
− N + 2

4

) N∑
j=1

bj

∫
RN

y2jϕ
2
ω.
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Recall the following expansion in ε for Rω and ϕω.

ϕω = ψω + o(ε), Rω =
∂ψω
∂ω

+ o(ε).

Therefore, since ψω is radial,∫
RN

y2jϕ
2
ω =

∫
RN

y2jψ
2
ω + o(ε) =

1

N
‖|y|ψω‖2L2 + o(ε),

and so∫
RN
∇2V (0)(y, y)ϕωTλ = −

(
1

p− 1
− N + 2

4

)
1

N
‖|y|ψω‖2L2∆V (0) + o(ε). (30)

Similarly, we have∫
RN
∇2Z(0)(y, y)Rωϕω = −

(
1

p− 1
− N + 2

4

)
1

N
‖|y|ψω‖2L2∆Z(0) + o(ε). (31)

Summarizing, using successively (25), (29), (30), (31) and (24) we have obtained∫
RN

Rωϕω = − 1

2(ω + V (0))
‖ϕω‖2L2

+ ε2
(∆Z(0)−∆V (0))

NZ(0)

(
1

p− 1
− N + 2

4

)
‖|y|ψω‖2L2 + o(ε2). (32)

Now, we compute ∂Q(ϕω)
∂ω . First, recall that, coming back to the definition (14) of

Q, we have

ε−N
∂Q(ϕω)

∂ω
= ‖ϕω‖2L2 + 2ω

∫
RN

Rωϕω + 2

∫
RN

V (εy)Rωϕω.

As in (27), (28), and (30) we can expand in ε and get

2

∫
RN

V (εy)Rωϕω = 2V (0)

∫
RN

Rωϕω

− ε2
(

1

p− 1
− N + 2

4

)
1

N
‖|y|ψω‖2L2∆V (0) + o(ε2).

Therefore,

ε−N
∂Q(ϕω)

∂ω
= ‖ϕω‖2L2 + 2(ω + V (0))

∫
RN

Rωϕω

− ε2
(

1

p− 1
− N + 2

4

)
1

N
‖|y|ψω‖2L2∆V (0) + o(ε2).

Using (32), we finally get

ε−N
∂Q(ϕω)

∂ω
= ε2

(
1

p− 1
− N + 2

4

)
1

N
‖|y|ψω‖2L2×

×
(

∆Z(0)−∆V (0)

(
1 +

2(ω + V (0))

Z(0)

))
+ o(ε2).
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2.2. The spectral condition. We first give some preliminary considerations on
the scalar operator

Lε := −∆ + Z(εy)− p|ϕω|p−1.

The analysis of the spectrum of the operator Lε was essential in the case of Schrödin-
ger equations [17,23] to determine the spectral stability condition. It turns out that
it will play also an important role in the analysis for the Klein-Gordon equation.

We define the operator L0 := −∆ + Z(0) − pψp−1ω (recall that ψω solves (9)).
It is well known (see e.g. [3]) that the spectrum of L0 consists of one negative

eigenvalue, a N -dimensional kernel (generated by ∂ψω
∂yj

for j = 1, . . . , N) and the

rest of the spectrum is bounded away from 0. When ε is close to 0, the spectrum of
Lε will be close to the spectrum of L0. In particular, the 0 eigenvalue, of multiplicity
N , will transform into N possibly different eigenvalues close to 0 but shifted either
to the positive or to the negative side of the real axis, depending on the sign of the
eigenvalues of the Hessian of Z at 0. More precisely, the following proposition was
proved in [23] (see [17] for a detailed justification).

Proposition 1. The spectrum of Lε consists of positive spectrum away from 0 and
a set of N + 1 simple eigenvalues {λ0, λ1, . . . , λN} such that

λ0 < λ1 ≤ · · · ≤ λN .

As ε → 0, we have λ0 < 0 and the following asymptotic expansion holds for the
other eigenvalues:

λj = cjε
2 + o(ε2), j = 1, ..., N,

where cj = 1
2

‖ψω‖2L2

‖ ∂ψω∂xj
‖2
L2

aj and {a1, . . . , aN} are the eigenvalues of the Hessian matrix

∇2Z(0).

In the following proposition, we establish the spectral decomposition for Hε and
we relate the number of negative eigenvalues of Hε with the number of negative
eigenvalues of Lε.

Proposition 2. The spectrum of Hε consists into positive essential spectrum away
from 0, a finite number of eigenvalues and a nondegenerate kernel, i.e.

ker(Hε) = span

{(
iϕω(·/ε)

−(ω + V )ϕω(·/ε)

)}
.

In addition, the number n(Hε) of negative eigenvalues of Hε is identical to the
number of negative eigenvalues n(Lε) of the operator Lε.

Therefore, (3) in Theorem 1.1 is a direct consequence of Propositions 1 and 2.
In particular, the spectral condition for stability will be satisfied if and only if 0 is
a non-degenerate local minimum of Z.

Proof of Proposition 2. Explicitly, Hε = E′′(ϕω)− ωQ′′(ϕω) is given by−ε
2∆ +m−W (x) + V (x)2 − p|ϕω(x/ε)|p−1<(·)

−i|ϕω(x/ε)|p−1=(·)
i(ω + V (x))

−i(ω + V (x)) 1

 .

For notational convenience we change variables and replace x/ε by y. We denote

V (εy) and W (εy) by Vε and Wε. Then Hε becomes Hε = εN H̃ε, where H̃ε is the
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operator(
−∆ +m−Wε + V 2

ε − p|ϕω|p−1<(·)− i|ϕω|p−1=(·) i(ω + Vε)
−i(ω + Vε) 1

)
. (33)

Therefore, to find the spectrum of Hε it is enough to find the spectrum of H̃ε. Due
to exponential localization of ϕω, this operator is a compact perturbation of

L :=

(
−∆ +m−Wε + V 2

ε i(ω + Vε)
−i(ω + Vε) 1

)
,

and therefore by Weyl’s Theorem they share the same essential spectrum. For

U =

(
u
v

)
we have

〈LU,U〉 = ‖∇u‖2L2 +m‖u‖2L2−
∫
RN

(Wε−V 2
ε )|u|2dx+2<

∫
RN

i(ω+Vε)vūdx+‖v‖2L2 ,

which can easily be factorized into

〈LU,U〉 = ‖∇u‖2L2 + (m− ω2)‖u‖2L2 −
∫
RN

(Wε + 2ωVε)|u|2dx

+ ‖v − i(ω + Vε)u‖2L2 ,

= ‖∇u‖2L2 +

∫
RN

Z(εy)|u|2dx+ ‖v − i(ω + Vε)u‖2L2 ,

≥ ‖∇u‖2L2 + λ0‖u‖2L2 + ‖v − i(ω + Vε)u‖2L2 , (34)

where the last inequality follows from the assumption λ0 = infx∈RN Z(x) > 0. We
claim that there exists δ > 0 such that

〈LU,U〉 ≥ δ‖U‖2H1×L2 . (35)

Indeed, assume by contradiction that there exists (Un) =

(
un
vn

)
⊂ H1(RN ) ×

L2(RN ) such that ‖Un‖2H1×L2 = 1 and 〈LUn, Un〉 → 0 as n → +∞. From (34)

this implies that un → 0 in H1(RN ) and ‖vn − i(ω + V )un‖L2 → 0. Therefore

‖Un‖2H1×L2 → 0, which is a contradiction and proves (35). From (35), we infer that
the spectrum of L is contained into [δ,+∞). In particular, this implies that the

essential spectrum of H̃ε is contained into [δ,+∞). Let us now treat the eigenvalues

of H̃ε. Recall the definition of Lε and also define another operator Rε by

Lε := −∆ + Z(εy)− p|ϕω|p−1,
Rε := −∆ + Z(εy)− |ϕω|p−1.

Then a similar factorization as in (34) gives for U =

(
u
v

)
∈ H1(RN )× L2(RN )〈

H̃εU,U
〉

= 〈Lε<(u),<(u)〉+ 〈Rε=(u),=(u)〉 + ‖v − i(ω + V )u‖2L2 (36)

First we remark that due to the boundedness of ϕω, there exists C > 0 such that
for any U ∈ H1(RN )× L2(RN ) we have〈

H̃εU,U
〉
≥ −C‖U‖2H1×L2

Therefore, in (−∞, δ/2), the spectrum of H̃ε consists of a finite number of eigen-

values. We claim that the eigenvalues of H̃ε will be distributed on one side or the
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other of the real axis in the same fashion as the eigenvalues of (Lε, Rε). Indeed, the

number of negative eigenvalues of H̃ε is given by

max
{
d ∈ N;

〈
H̃εU,U

〉
< 0

for all U ∈M ⊂ H1(RN )× L2(RN ), U 6= 0, dim(M) = d
}
,

which, in view of (36), is exactly the same number as

max
{
d ∈ N; 〈Lε<(u),<(u)〉+ 〈Rε=(u),=(u)〉 < 0

for all u ∈M ⊂ H1(RN ), u 6= 0, dim(M) = d
}
,

Since Rεϕω = 0 and ϕω > 0, Rε has a first simple eigenvalue at 0 with eigenvector
ϕω, and the rest of its spectrum is positive. Therefore Rε has no negative eigenvalue,
and we can conclude that

n(H̃ε) = n(Lε).

Consider now the kernel of H̃ε. We readily see from (33) that U =

(
u
v

)
belongs to

the kernel if and only if v = i(ω + V )u and u belongs to the kernel of

−∆ +m− ω2 −W − 2ωV − p|ϕω|p−1<(·)− i|ϕω|p−1=(·),

in other words (<(u),=(u)) belongs to the kernel of (Lε, Rε).We already know that
ker(Rε) = span{ϕω}. From Proposition 1 and the nondegeneracy (7) of ∇2Z(0) we

infer that Lε has no kernel for ε small. Therefore, the kernel of H̃ε is given by

ker(H̃ε) = span

{(
iϕω

−(ω + Vε)ϕω

)}
.

Coming back to the original variable x = εy implies the desired result on the kernel
of Hε.

Proof of Corollary 1. The definition of stability given by the theory of [15,16] is the
following. The standing wave U = eiωt/εΦω(x/ε) is stable if for any η > 0 there

exists δ > 0 such that for all U0 =

(
u0
v0

)
verifying

∥∥∥U0 − Φω

( ·
ε

)∥∥∥
H1×L2

< δ

the solution U of (12) with initial data U0 satisfies

sup
t∈R

inf
θ∈R

∥∥∥U(t)− eiθΦω
( ·
ε

)∥∥∥
H1×L2

< η.

More explicitly, we have∥∥∥U − eiθΦω ( ·
ε

)∥∥∥2
H1×L2

=
∥∥∥u− eiθϕω ( ·

ε

)∥∥∥2
H1

+
∥∥∥εut + iV u− ieiθ(ω + V )ϕω

( ·
ε

)∥∥∥2
L2
.



2400 MARCO GHIMENTI, STEFAN LE COZ AND MARCO SQUASSINA

This definition is not exactly the same as the one we use (stated in (11)), but our
stability is implied by this definition. Indeed, we have from the triangle inequality∥∥∥ut − ieiθ ω

ε
ϕω

( ·
ε

)∥∥∥
L2
≤ ε−1

∥∥∥εut − ieiθωϕω ( ·
ε

)∥∥∥
L2
≤

ε−1
∥∥∥εut + iV u− ieiθ(ω + V )ϕω

( ·
ε

)∥∥∥
L2

+ ε−1
∥∥∥V (u− eiθϕω ( ·

ε

))∥∥∥
L2
≤

Cε−1
(∥∥∥ut − ieiθ ω

ε
ϕω

( ·
ε

)∥∥∥
L2

+
∥∥∥u− eiθϕω ( ·

ε

)∥∥∥
L2

)
,

where the last inequality follows from the boundedness in L∞(RN ) of V . With
similar arguments, it is rather easy to check that instability in the sense of [15, 16]
also implies instability in our sense (11). Hence, the corollary simply follows from
Theorem 1.1 and a direct application of the theory developed by Grillakis, Shatah,
and Strauss in [15,16].
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Poincaré Anal. Non Linéaire, 24 (2007), 539–548.

[25] E. Long and D. Stuart, Effective dynamics for solitons in the nonlinear Klein-Gordon-
Maxwell system and the Lorentz force law , Rev. Math. Phys., 21 (2009), 459–510.

[26] Y.-G. Oh, Stability of semiclassical bound states of nonlinear Schrödinger equations with
potentials, Comm. Math. Phys., 121 (1989), 11–33.

[27] M. Ohta and G. Todorova, Strong instability of standing waves for nonlinear Klein-Gordon

equations, Discrete Contin. Dyn. Syst., 12 (2005), 315–322.
[28] , Instability of standing waves for nonlinear Klein-Gordon equation and related sys-

tem, in “Nonlinear Dispersive Equations” 26 of GAKUTO Internat. Ser. Math. Sci. Appl.,
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