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Abstract: In this paper, we consider a class of fractional Schrödinger–Poisson systems (−∆)su +

λV(x)u + ϕu = f (u) + |u|2∗s −2u and (−∆)tϕ = u2 in R3, where s, t ∈ (0, 1) with 2s + 2t > 3, λ > 0
denotes a parameter, V : R3 → R admits a potential well Ω ≜ intV−1(0) and 2∗s ≜ 6

3−2s is the
fractional Sobolev critical exponent. Given some reasonable assumptions as to the potential V and
the nonlinearity f , with the help of a constrained manifold argument, we conclude the existence of
positive ground state solutions for some sufficiently large λ. Upon relaxing the restrictions on V and
f , we utilize the minimax technique to show that the system has a positive mountain-pass type by
introducing some analytic tricks. Moreover, we investigate the asymptotical behavior of the obtained
solutions when λ → +∞.
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1. Introduction
1.1. Overview

In this article, we investigate the existence and concentration of nontrivial solutions
for the following fractional Schrödinger–Poisson system with critical growth{

(−∆)su + λV(x)u + ϕu = f (u) + |u|2∗s −2u, x ∈ R3,
(−∆)tϕ = u2, x ∈ R3,

(1)

where s, t ∈ (0, 1) with 2s + 2t > 3, λ > 0 denotes a parameter, V : R3 → R admits a
potential well Ω ≜ intV−1(0), and 2∗s ≜ 6

3−2s is the fractional Sobolev critical exponent. The
fractional Laplacian (−∆)s is a nonlocal pseudo-differential operator which is defined by

(−∆)su(x) = CsP.V.
∫
R3

u(x)− u(y)
|x − y|3+2s dy = Cs lim

ε→0+

∫
R3\Bε(0)

u(x)− u(y)
|x − y|3+2s dy

where Cs is a normalization constant and P.V. is the Cauchy principal value. For the
potential V, we will first make the following assumptions

(V1) V ∈ C(R3,R) with V ≥ 0 on R3;
(V2) There is a constant c > 0 such that the set Σ ≜

{
x ∈ R3 : V(x) < c

}
has a positive

finite Lebesgue measure;
(V3) Ω = intV−1(0) is nonempty with a smooth boundary with Ω = V−1(0), V−1(0) ≜

{x : V(x) = 0}.
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In celebrated papers, Bartsch and his collaborators initially proposed the above hypotheses
to study the nonlinear Schrödinger equations; see [1,2]. As is generally known, the harmonic
trapping potential

V(x) =
{

ω1|x1|2 + ω2|x2|2 + ω3|x3|2 − ω, if |(√ω1x1,
√

ω2x2,
√

ω3x3)|2 ≥ ω,
0, if |(√ω1x1,

√
ω2x2,

√
ω3x3)|2 ≤ ω,

with ω > 0 satisfying (V1)–(V3), where ωi > 0 is called the anisotropy factor of the trap
in quantum physics and the trapping frequency of the ith-direction in mathematics; see,
e.g., [3–5]. Indeed, the potential λV, instead of V, given assumptions (V1)–(V3) can be read
as a steep potential.

Over the past several decades, considerable attention has been paid to the standing, or
solitary, wave solutions of Schrödinger–Poisson systems of the type i

∂ψ

∂t
= ∆ψ − W(x)ψ + ϕψ + g̃(|ψ|)ψ, in R+ ×R3,

−∆ϕ = |ψ|2, in R3,
(2)

where ψ : R3 ×R → C is the time-dependent wave function, W : R3 → R stands for the
real external potential, ϕ represents an internal potential for a nonlocal self-interaction of
wave function, and nonlinear term g(ψ) ≜ g̃(|ψ|)ψ describes the interaction effect among
particles. By inserting the standing wave ansatz ψ(x, t) = exp(−iωt)u(x) with ω ∈ R and
x ∈ R3 into (2), then u : R3 → R satisfies the Schrödinger–Poisson system{

−∆u + W̄(x)u + ϕu = g(u), in R3,
−∆ϕ = u2, in R3,

(3)

where and in the sequel W̄(x) = W(x) + ω for all x ∈ R3. We refer the interested readers
to [6,7] and the references therein for more about the physical background of (2). There
are many interesting works about the existence of positive solutions, positive ground
states, multiple solutions, sign-changing solutions and semiclassical states to system (3),
see, e.g., [8–15] and references therein.

In [16], Jiang and Zhou first applied the steep potential well to the Schrödinger–Poisson
system and proved the existence of nontrivial solutions and ground state solutions. Subse-
quently, by using the linking theorem [17,18], the authors in [19] considered the existence
and concentration of nontrivial solutions for the following Schrödinger–Poisson system{

−∆u + λV(x)u + K(x)ϕu = |u|p−2u, x ∈ R3,
−∆ϕ = K(x)u2, x ∈ R3,

(4)

under the following conditions:
˜(V) V ∈ C(R3,R) and V is bounded from below;

and (V2)–(V3) with some suitable assumptions on K : R3 → R for 4 ≤ p < 6. It is
worth mentioning that in particular, they investigated the existence and concentration
of nontrivial solutions to (4) by the monotonicity trick due to Jeanjean [20] under the
conditions (V1)–(V3), K ∈ L∞

loc(R
3) ∩ L2(R3) and

¯(V) V is weakly differentiable such that (x,∇V) ∈ Lp1(R3) for some p1 ∈ [ 3
2 , ∞], and

2V(x) + (x,∇V) ≥ 0 for a.e. x ∈ R3,

where (·, ·) is the usual inner product in R3.
¯(K) K is weakly differentiable such that (x,∇K) ∈ Lp2(R3) for some p2 ∈ [2, ∞], and

2(p − 3)
p

K(x) + (x,∇K) ≥ 0 for a.e. x ∈ R3.
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Whereas, the related research on fractional Schrödinger–Poisson systems like (1) are
not as rich as the classic Schrödinger–Poisson system (3). Actually, we shall reach the
system (1) by supposing s = t = 1 and K(x) ≡ 1 for each x ∈ R3 in the system (4). As
a consequence, one of the aims in this paper is to generalize the corresponding results
obtained in [19] to the fractional case, which makes the studies interesting.

When it comes to the fractional-order operators, the following fractional Schrödinger
equation

(−∆)αu + V(x)u = f (x, u), x ∈ RN , (5)

is usually used to study the standing wave solutions ψ(x, t) = u(x)e−iωt for the equation

ih̄
∂ψ

∂t
= h̄2(−∆)αψ + W(x)ψ − f (x, ψ), x ∈ RN ,

where h̄ is the Planck’s constant, W : RN → R is an external potential and f is a suitable
nonlinearity. Because the fractional Schrödinger equation appears in problems involving
nonlinear optics, plasma physics and condensed matter physics, it is one of the main
objects of the fractional quantum mechanic. Equation (5) has been firstly proposed by
Laskin [21,22] as a result of expanding the Feynman path integral from the Brownian-like
to the Lévy-like quantum mechanical paths. In [23], Caffarelli and Silvestre transformed
the nonlocal operator (−∆)α to a Dirichlet–Neumann boundary value problem for a certain
elliptic problem with local differential operators defined on the upper half space. This
technique is a powerful tool to deal with the equations involving fractional operators in the
respects of regularity and variational methods; please see [10,24] and their references for
example. When the conditions (V1)–(V3) are satisfied, Yang and Liu [25] established the
multiplicity and concentration of solutions for the following fractional Schrödinger equation

(−∆)αu + λV(x)u = f (x, u) + g(x)|u|v−2u, x ∈ RN ,

involving a k-order asymptotically linear term f (x, u), where s ∈ (0, 1), 2s < N,
1 ≤ k < 2∗s − 1 = N+2s

N−2s and g ∈ L
v

2−v (RN) with 1 < v < 2. There exist some other
meaningful results in [26,27] and their references on fractional Schrödinger equations.

Recently, Teng [28] contemplated the existence of ground state solutions to the follow-
ing fractional Schrödinger–Poisson system{

(−∆)su + V(x)u + ϕu = |u|p−2u + µ|u|2∗s −2u, x ∈ R3,
(−∆)tϕ = u2, x ∈ R3,

where the potential V : R3 → R+ satisfies some technical assumptions, µ = 1 and
2 < p < 2∗s . Later on, Shen and Yao [29] improved the corresponding results for the case
µ = 0. In the meanwhile, the authors in [30] disposed of the semiclassic ground state for
the following fractional Schrödinger–Poisson system{

ε2s(−∆)su + V(x)u + ϕu = f (u) + |u|2∗s −2u, x ∈ R3,
ε2t(−∆)tϕ = u2, x ∈ R3.

Other meaningful results of the fractional Schrödinger–Poisson system could be found
in [28,30–34] and their references therein.

1.2. Main Results

Motivated by all the works above, particularly by [32], we shall focus on the existence
and concentration results for (1) with steep potential well. Because we are interested in
positive solutions, without loss of generality, we assume that f ∈ C0(R,R) vanishes in
(−∞, 0) and satisfies the following conditions

( f1) f ∈ C0(R,R+) and f (z) = o(z) as z → 0, where R+ = [0,+∞);
( f2) | f (z)| ≤ C0(1 + |z|q−1) for some constants C0 > 0 and 2 < q < 2∗s ;
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( f3) There are some p ∈
(

4s+2t
s+t , 2∗s

)
, µ̂ > 0 and µ0 > 0 such that F(z) ≥ µ̂zp − µ0z2 for all

z ∈ R+;
( f4) There is a γ > 4s+2t

s+t such that z f (z) − γF(z) ≥ 0 for all z ∈ R+, where
F(z) =

∫ z
0 f (s)ds;

( f5) The map z 7→ (s+t) f (z)z−3F(z)

z
4s+2t

s+t
is nondecreasing on z ∈ (0,+∞).

Our first main result can be stated as follows.

Theorem 1. Let s, t ∈ (0, 1) satisfy 2s + 2t > 3. Suppose that (V1)–(V3) and ( f1)–( f5) as well
as the following conditions hold

(V4) V is weakly differentiable and satisfies the inequality below

(s + t)(γ − 2)V(x) + (x,∇V) ≥ 0;

(V5) The map θ 7→ θ2s[(2s + 2t − 3)V(θx)− (∇V(θx), θx)] is nondecreasing on θ ∈ (0,+∞)

and (2s + 2t − 3)V(x) ≥ 2(∇V, x) ≥ 0 for all x ∈ R3.

If one of the following assumptions on p and µ̂ appearing in ( f3) holds true
(I) : s >

3
4

,
4s

3 − 2s
< p < 2∗s and for all µ̂ > 0;

(II) : s >
3
4

,
4s + 2t

s + t
< p ≤ 4s

3 − 2s
and for all sufficiently large µ̂ > 0;

(III) :
1
2
< s ≤ 3

4
,

4s + 2t
s + t

< p < 2∗s and for all µ̂ > 0,

(6)

then there exists a Λ > 0 such that the system (1) admits at least one positive ground state solution
(namely, it has the minimum energy among the set Mλ defined in (19) below) for all λ > Λ.

Remark 1. There exist many functions f that satisfy the assumptions ( f1)–( f5) above, for example,
f (z) = |z|γ−2z for all z ∈ R+ and f (z) = 0 for all z < 0. Obviously, it would occur that γ < 4
which results in some unpleasant difficulties. As to the potential V, without loss of generality, we
are indeed assuming that it is of class C1 at almost everywhere at the point in R3 and provide an
example as follows

V(x) =

{
0, if |x| ≤ 1,
|x| 2s+2t−3

2 , if |x| > 1.

The reader is invited to infer that the restriction (6) is just used to restore the compactness. Moreover,
we prefer to believe that the example on V above is not sharp, but it reveals that the existence result
in Theorem 1 seems reasonable.

Inspired by the results in [1,19], we obtain the following concentration result:

Theorem 2. Let (uλ, ϕuλ
) ∈ Hs(R3) × Dt,2(R3) be the ground state solution obtained by

Theorem 1, then uλ → u0 in Hs(R3) and ϕuλ
→ ϕu0 in Dt,2(R3) along a subsequence as

λ → +∞, where u0 ∈ Hs
0(Ω) is a ground state solution of (−∆)su + ct

(∫
Ω

u2(y)
|x − y|3−2t dy

)
u = f (u) + |u|2∗s −2u, in Ω,

u = 0, on ∂Ω.
(7)

Here, ct > 0 is a constant given by (15) below.

As pointed out in Remark 1, the assumptions on f and V required in Theorem 1 are
somehow restrictive. It is natural to ask that whether the existence result remains true
when ( f5) and (V5) are absent. Thus, our next main result shows an affirmative answer.
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Theorem 3. Let s, t ∈ (0, 1) satisfy 2s + 2t > 3. Suppose that (V1)–(V4) and ( f1)–( f4) hold. If
one of the assumptions in (6) holds true, then there exists a Λ̂ > 0 such that the system (1) has at
least one positive solution for all λ > Λ̂.

Remark 2. It is worth pointing out here that even if we only consider the case s = t = 1 in
Theorem 3, in contrast to ([19], Theorem 1.3), there are three main contributions:

(1) Firstly, the more general nonlinearity is dealt with and it needs some more careful calculations;
(2) Secondly, the critical term in the nonlinearity is involved and so we have to take some deep and

delicate analysis to restore the compactness;
(3) Last but not the least, we do not assume a weight function K in the front of the Poisson term in

(1). Actually, if we follow the arguments adopted in this quoted paper, the weight function K
with K ∈ L

6
4s+2t−3 (R3) seems indispensable. So, we can relax the constraint assumption in

this direction.

Proceeding as the same way in Theorem 2, we can also derive the asymptotical
behavior of solutions obtained in Theorem 3. More precisely, we shall demonstrate the
following result whose detailed proof is omitted.

Theorem 4. Let (uλ, ϕuλ
) ∈ Hs(R3)× Dt,2(R3) denote the positive solution in Theorem 3, then

uλ → u0 in Hs(R3) and ϕuλ
→ ϕu0 in Dt,2(R3) along a subsequence as λ → +∞, where

u0 ∈ Hs
0(Ω) is a positive solution of (7).

As far as we are concerned, the main results in this article seem new by now. Alterna-
tively, it should be mentioned that this paper could be regarded as a continuation of our
latest work in [35], where the existence and concentrating results of a planar Schrödinger–
Poisson equation with steep potential well were established. Here, there are two essential
differences. On the one hand, due to the different geometry structures of the two variational
functionals, we must take advantage of sone new techniques to restore the compactness.
On the other hand, since we consider the existence of ground state solutions in Theorem 1,
a suitable constraint minimization argument will be used instead of depending on the
mountain-pass theorem in [35]. Finally, when the critical term |u|2∗s −2u in the system (1)
disappears, one may be curious about the case that the potential is strongly indefinite
according to [36]. Of course, we are also working hard in this direction, and it would be
contemplated in our further studies.

The paper is organized as follows. In Section 2, we mainly introduce some preliminary
results. In Sections 3 and 4, we show some crucial lemmas and exhibit the detailed proofs
of Theorems 1, 2 and 3, respectively.

Notations: From now on in this paper, unless otherwise mentioned, we ultilize the
following notations:

• C, C1, C2, · · · denote any positive constant, whose value is not relevant and
R+ ≜ (0,+∞).

• Let (Z, ∥ · ∥Z) be a Banach space with dual space (Z−1, ∥ · ∥Z−1) and Φ be functional
on Z.

• The (PS) sequence at a level c ∈ R ((PS)c sequence in short) corresponding to Φ means
that Φ(xn) → c and Φ′(xn) → 0 in Z−1 as n → ∞, where {xn} ⊂ Z.

• | |p stands for the usual norm of the Lebesgue space Lp(RN) for all p ∈ [1,+∞], and
∥ ∥Hα(RN) denotes the usual norm of the Sobolev space Hα(RN) for α ∈ (0, 1).

• For any ϱ > 0 and every x ∈ R3, Bϱ(x) ≜ {y ∈ R3 : |y − x| < ϱ}.
• on(1) denotes the real sequences with on(1) → 0 as n → +∞.
• “ → ” and “ ⇀ ” stand for the strong and weak convergence in the related function

spaces, respectively;
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2. Preliminary Stuff
2.1. Variational Setting

In this section, according to the explorations about the fractional Sobolev spaces in [37],
we first bring in some necessary variational settings which permit us to treat the problems
variationally. We denote the fractional Sobolev space Wα,p(RN) for any p ∈ [1,+∞) and
α ∈ (0, 1) by

Wα,p(RN) =

{
u ∈ Lp(RN) :

∫
RN

∫
RN

|u(x)− u(y)|p
|x − y|N+αp dxdy < +∞

}
equipped with the natural norm

∥u∥Wα,p(RN) =

( ∫
RN

∫
RN

|u(x)− u(y)|p
|x − y|N+αp dxdy +

∫
RN

|u|pdx
) 1

p

.

In particular, the fractional Sobolev space Wα,2(RN) would be simply relabeled by Hα(RN)
if p = 2. As a matter of fact, the Hilbert space Hα(RN) can also be described by the Fourier
transform, that is,

Hα(RN) =

{
u ∈ L2(RN) :

∫
RN

|ξ|2α|û(ξ)|2 + |û(ξ)|2dξ < +∞
}

,

where û denotes the usual Fourier transform of u. When we take the definition of the
fractional Sobolev space Hα(RN) by the Fourier transform, the inner product and the norm
for Hα(RN) are defined as

(u, v)Hα(RN) =
∫
RN

|ξ|2αû(ξ)v̂(ξ) + û(ξ)v̂(ξ)dξ, ∀u, v ∈ Hα(RN).

and

∥u∥Hα(RN) =

( ∫
RN

|ξ|2α|û(ξ)|2 + |û(ξ)|2dξ

) 1
2

, ∀u, v ∈ Hα(RN).

Thanks to the Plancherel’s theorem, we have |u|2 = |û|2 and |(−∆)
α
2 u|2 = ||ξ|αû|2. Hence,

∥u∥Hα(RN) =

( ∫
RN

|(−∆)
α
2 u|2 + |u|2dx

) 1
2

, ∀u ∈ Hα(RN). (8)

We can infer from ([37], Proposition 3.4 and Proposition 3.6) that

|(−∆)
α
2 u|2 =

(∫
RN

|ξ|2α|û(ξ)|2dξ

) 1
2
=

(
1

CN(α)

∫
RN

∫
RN

|u(x)− u(y)|2
|x − y|N+2α

dxdy
) 1

2

.

showing that the norm in (8) makes sense for the fractional Sobolev space. Moreover, we
introduce the homogeneous fractional Sobolev space Dα,2(RN) by

Dα,2(RN) =

{
u ∈ L2∗α(RN) : |ξ|αû(ξ) ∈ L2∗α(RN)

}
with 2∗α =

2N
N − 2α

and N ≥ 3,

which is the completion of C∞
0 (RN) under the norm

∥u∥Dα,2(RN) =

(∫
RN

|(−∆)
α
2 u|2dx

) 1
2
=

(∫
RN

|ξ|2α|û(ξ)|2dξ

) 1
2
, ∀u ∈ Dα,2(RN).
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Taking into account the imbedding theorem Hα(RN) ↪→ Lr(RN) for every r ∈ [2, 2∗α),
there exists a constant Cr > 0 such that

∥u∥Hα(RN) ≤ Cr|u|r, ∀u ∈ Hα(RN) and 2 ≤ r < 2∗α. (9)

Also, there exists a best constant Sα > 0 (see, e.g., [38]) such that

Sα = inf
u∈Dα,2(RN)\{0}

∫
RN |(−∆)

α
2 u|2dx( ∫

RN |u|2∗α dx
) 2

2∗α

. (10)

Throughout this paper, for s ∈ (0, 1) and the dimension N = 3, we define the space

E ≜
{

u ∈ Hs(R3) :
∫
R3

V(x)u2dx < +∞
}

.

By using (V1), it is easy to verify that it is a Hilbert space equipped with the inner product
and norm

(u, v)E =
∫
R3
(−∆)

s
2 u(−∆)

s
2 v + V(x)uvdx and ∥u∥E =

( ∫
R3

|(−∆)
s
2 u|2 + V(x)u2dx

) 1
2

for any u, v ∈ E. Particularly, one can deduce that the imbedding E ↪→ Hs(R3) is continu-
ous. Indeed, combining (V2) and (10), one has

∫
R3

u2dx =
∫
R3\Σ

u2dx +
∫

Σ
u2dx ≤ 1

c

∫
R3\Σ

V(x)u2dx + |Σ|
2∗s −2

2∗s

( ∫
Σ
|u|2∗s dx

) 2
2∗s

≤ max
{

1
c

, |Σ|
2∗s −2

2∗s

}
∥u∥2

E,

where |Σ| stands for the Lebesgue measure of a Lebesgue measurable set Σ ⊂ R3. As a
consequence of (9) and (10), there exists a constant dr > 0 such that

|u|r ≤ dr∥u∥E, ∀u ∈ E and 2 ≤ r ≤ 2∗s . (11)

For any λ > 0, define the Hilbert space Eλ ≜ (E, ∥ · ∥Eλ
) with inner product and norm

given by

(u, v)Eλ
=
∫
R3
(−∆)

s
2 u(−∆)

s
2 v + λV(x)uvdx and ∥u∥Eλ

=

( ∫
R3

|(−∆)
s
2 u|2 + λV(x)|u|2dx

) 1
2

for all u, v ∈ E. Obviously, if λ ≥ 1, one sees ∥u∥E ≤ ∥u∥Eλ
for all u ∈ E. Using (V2) again,

∫
Σ
|u|2dx ≤ |Σ|

2∗s −2
2∗s |u|22∗s ≤ |Σ|

2∗s −2
2∗s S−1

s ∥u∥2
Eλ

,∫
R3\Σ

|u|2dx ≤ 1
λc

∫
R3\Σ

λV(x)|u|2dx ≤ 1
λc

∫
R3

λV(x)|u|2dx ≤ 1
λc

∥u∥2
Eλ

.

From which, for any r ∈ [2, 2∗s ], there holds

∫
R3

|u|rdx ≤
( ∫

R3
|u|2dx

) 2∗s −r
2∗s −2

( ∫
R3

|u|2∗s dx
) r−2

2∗s −2

≤
(

max
{

S−1
s |Σ|

2∗s −2
2∗s ,

1
λc

}
∥u∥2

Eλ

) 2∗s −r
2∗s −2

(
S− 2∗s

2
s ∥u∥2∗s

Eλ

) r−2
2∗s −2

.
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Hence, for all r ∈ [2, 2∗s ], we reach

∫
R3

|u|rdx ≤ |Σ|
2∗s −r

2∗s S− r
2

s ∥u∥r
Eλ

whenever λ ≥ c−1|Σ|−
2∗s −2

2∗s Ss. (12)

When the work space Eλ is built, we turn to find the variational structure of system (1).
Following the classic Schrödinger–Poisson system, it can reduce to be a single equation.
Actually, according to the Hölder’s inequality, for every u ∈ Hs(R3) and v ∈ Dt,2(R3),
one has

∫
R3

u2vdx ≤
( ∫

R3
|u|

12
3+2t dx

) 3+2t
6
( ∫

R3
|v|

6
3−2t dx

) 3−2t
6

≤ S− 1
2

t ∥u∥2
Hs(R3)∥v∥Dt,2(R3) ≤ C∥u∥2

Hs(R3)∥v∥Dt,2(R3), (13)

where we have used the continuous imbedding Hs(R3) ↪→ L
12

3+2t (R3) since 4s + 2t > 3 and
t ∈ (0, 1).

Given u ∈ Hs(R3), one can use the Lax–Milgram theorem, and then there exists a
unique ϕt

u ∈ Dt,2(R3) such that∫
R3
(−∆)tϕt

uvdx =
∫
R3
(−∆)

t
2 ϕt

u(−∆)
t
2 vdx =

∫
R3

u2vdx, ∀v ∈ Dt,2(R3), (14)

showing that ϕt
u satisfies the Poisson equation

(−∆)tϕt
u = u2, x ∈ R3.

In view of [37], its integral expression can be characterized by

ϕt
u(x) = ct

∫
R3

u2(y)
|x − y|3−2t dx, x ∈ R3, (15)

which is called the t-Riesz potential, where

ct = π− 3
2 2−2t Γ( 3

2 − 2t)
Γ(t)

.

It follows from (15) that ϕt
u(x) ≥ 0 for all x ∈ R3. Taking v = ϕt

u in (13) and (14), we derive

∥ϕt
u∥Dt,2(R3) ≤ C∥u∥2

Hs(R3). (16)

Substituting (15) into (1), one can rewrite (1) in the following equivalent form

(−∆)su + λV(x)u + ϕt
uu = f (u) + |u|2∗s −2u, x ∈ R3. (17)

The variational functional Iλ : Eλ → R associated with the problem (17) is given by

Iλ(u) =
1
2
∥u∥2

Eλ
+

1
4

∫
R3

ϕt
uu2dx −

∫
R3

F(u)dx − 1
2∗s

∫
R3

|u|2∗s dx. (18)

It would be simply verified that Iλ is well defined in Eλ and belongs to C1(Eλ,R) whose
derivative is given by

I′λ(u)v =
∫
R3
[(−∆)

s
2 u(−∆)

s
2 v + λV(x)uv]dx +

∫
R3

ϕt
uuvdx −

∫
R3
( f (u) + |u|2∗s −2u)vdx

for any u, v ∈ Eλ. It is clear to see that if u is a critical point of Iλ, then the pair (u, ϕt
u) is a

solution of system (1).
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2.2. Basic Lemmas

It is similar to the proof of ([28], Proposition 2.1) that we can derive the following

Lemma 1 (Pohoz̆aev identity). Let u ∈ Eλ be a critical point of the functional Iλ, then the
identity Pλ(u) ≡ 0 holds true, where the functional Pλ : Eλ → R is defined by

Pλ(u) ≜
3 − 2s

2

∫
R3

|(−∆)
s
2 u|2dx +

1
2

∫
R3
[3V(x) + (∇V, x)]|u|2dx +

2t + 3
4

∫
R3

ϕt
uu2dx

− 3
∫
R3

F(u)dx − 3
2∗s

∫
R3

|u|2∗s dx.

Now, let us define the functional N : Eλ → R by

N(u) =
∫
R3

ϕt
uu2dx, ∀u ∈ Eλ.

We gather the results in ([29], Lemmas 9 and 10) to introduce the properties associated with
N below.

Lemma 2. Let s, t ∈ (0, 1) satisfy 4s + 2t > 3, then the following properties are true:

(1) For all u ∈ Eλ and we set uθ(·) ≜ θs+tu(θ·) for θ ∈ R+, then N(uθ) = θ4s+2t−3N(u).
(2) ϕt

u(·+y) = ϕt
u(·+ y) for all y ∈ R3.

(3) If un ⇀ u in Eλ, then N(un)− N(un − u)− N(u) = on(1) in Eλ, N′(un)− N′(un −
u)− N′(u) = on(1) in (Eλ)

−1.

We conclude this section by the following vanishing lemma associated with the frac-
tional Sobolev space.

Lemma 3 (see, e.g., ([39], Lemma)). Assume (un) is a bounded sequence in Hα(R3) with
α ∈ (0, 1). If

lim
n→∞

sup
y∈R3

∫
Bϱ(y)

|un|2dx = 0

for some ϱ > 0, then un → 0 in Lq(R3) for all 2 < p < 2∗α.

3. Existence and Concentration

In this section, we focus on the existence and concentration of ground state solutions
for (1). First of all, to look for a ground state solution, we shall consider the following
minimization problem

mλ ≜ inf
u∈Mλ

Iλ(u), (19)

where Mλ = {u ∈ Eλ\{0} : Gλ(u) = 0} with the functional Gλ : Eλ → R defined by

Gλ(u) =
4s + 2t − 3

2

∫
R3

|(−∆)
s
2 u|2dx +

1
2

∫
R3

λ[(2s + 2t − 3)V(x)− (∇V, x)]u2dx

+
4s + 2t − 3

4

∫
R3

ϕt
uu2dx −

∫
R3
[(s + t) f (u)u − 3F(u)]dx − 2∗s (s + t)− 3

2∗s

∫
R3

|u|2∗s dx.

Recalling the functional Pλ in Lemma 1, one sees that Gλ(u) = (s + t)I′λ(u)u − Pλ(u) for all
u ∈ Eλ. In other words, if u ∈ Eλ is a critical point of Iλ, then we are derived from Lemma 1
that Gλ(u) = 0. As a consequence, the set Mλ is a natural constraint, and we then begin
showing some properties for it and the minimization constant mλ.

Before exhibiting them, we need the following elementary facts:

ξ(θ, x) ≜ V(x)− θ2s+2t−3V(θ−1x)− 1 − θ4s+2t−3

4s + 2t − 3
[(2s + 2t − 3)V(x)− (∇V, x)] ≥ 0 (20)
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for all (θ, x) ∈ (0,+∞)×R3 and

ζ(θ, z) ≜
1 − θ4s+2t−3

4s + 2t − 3
[(s + t) f (z)z − 3F(z)] + θ−3F(θs+tz)− F(z) ≥ 0 (21)

for all (θ, z) ∈ (0,+∞)×R+.
Actually, since V is weakly differentiable by (V4), one uses (V5) to see that

∂

∂θ
ξ(θ, x) = θ4s+2t−4

{
[(2s + 2t − 3)V(x)− (∇V, x)]− (2s + 2t − 3)V(θ−1x)− (∇V(θ−1x), θ−1x)

θ2s

}
{

≤ 0, if θ ∈ (0, 1]
≥ 0, if θ ∈ [1,+∞).

Hence, the function θ 7→ ξ(θ, x) is decreasing on (0, 1) and increasing on (1,+∞) for all
x ∈ R3, which indicates that ξ(θ, x) ≥ min

θ>0
ξ(θ, x) = ξ(1, x) = 0 for all (θ, x)× (0,+∞) ∈

R3. Similarly, we are able to apply ( f5) to derive

∂

∂θ
ζ(θ, z) = θ−4[(s + t) f (θs+tz)θs+tz − 3F(θs+tz)]− θ4s+2t−4[(s + t) f (z)z − 3F(z)]

= θ4s+2t−4z
4s+2t

s+t

[
(s + t) f (θs+tz)θs+tz − 3F(θs+tz)

(θs+tz)
4s+2t

s+t
− (s + t) f (z)z − 3F(z)

z
4s+2t

s+t

]
{

≤ 0, if θ ∈ (0, 1]
≥ 0, if θ ∈ [1,+∞).

It therefore infers that ζ(θ, z) ≥ min
θ>0

ζ(θ, z) = ζ(1, z) = 0 for all (θ, z)× (0,+∞) ∈ R+.

Lemma 4. Let s, t ∈ (0, 1) satisfy 2s + 2t > 3. Assume (V1)–(V3) with (V4)–(V5) and
( f1)–( f3) with ( f5) hold, then for any nonzero u ∈ Eλ, there is a unique θ̄ = θ̄(u) > 0 such
that uθ̄ = θ̄s+tu(θ̄·) ∈ Mλ for suitably large λ > 0, where Iλ(uθ̄) = max

θ>0
Iλ(uθ). In particular,

there holds
mλ = dλ ≜ inf

u∈Eλ\(0)
max
θ>0

Iλ(uθ).

Proof. For any u ∈ Eλ\(0) and θ > 0, we define τ(θ) = Iλ(uθ), where

τ(θ) =
θ4s+2t−3

2

∫
R3

|(−∆)
s
2 u|2dx +

θ2s+2t−3

2

∫
R3

λV(θ−1x)u2dx +
θ4s+2t−3

4

∫
R3

ϕt
uu2dx

− θ−3
∫
R3

F(θs+tu)dx − θ2∗s (s+t)−3

2∗s

∫
R3

|u|2∗s dx.

It is simple to observe that

τ′(θ) = 0 ⇐⇒ θ−1Gλ(uθ) = 0 ⇐⇒ Gλ(uθ) = 0 ⇐⇒ uθ ∈ Mλ.

Since 4s + 2t < 2∗s (s + t) and lim
θ→0+

θ−3F(θs+tz) = 0 for all z ∈ R by ( f3), we can derive

lim
θ→0+

τ(θ) > 0. Without loss of generality, we are assuming that 0 ∈ Ω in (V3) and thus

lim
θ→+∞

∫
R3 λV(θ−1x)u2dx = 0. Adopting 4s + 2t < 2∗s (s + t) and ( f3) again, it holds that

lim
θ→+∞

τ(θ) = −∞. As a consequence, with the above two facts in hands, we take advantage

of 4s + 2t < 2∗s (s + t) and ( f3) to demonstrate that τ(θ) possesses a critical point which
corresponds to its maximum; that is, there exists a constant θ̄ > 0 such that τ′(θ̄) = 0. We
next verify that θ̄ is unique. Arguing it indirectly, we would assume that there exist two
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constants θ1, θ2 > 0 with θ1 ̸= θ2 such that uθi ∈ Mλ for i ∈ {1, 2}. It concludes from some
elementary computations that

Iλ(uθ1)− Iλ(uθ2)−
θ4s+2t−3

1 − θ4s+2t−3
2

(4s + 2t − 3)θ4s+2t−3
1

Gλ(uθ1)

=
θ2s+2t−3

1
2

∫
R3

ξ

(
θ2

θ1
, θ−1

1 x
)

u2dx + θ−3
1

∫
R3

ζ

(
θ2

θ1
, θs+t

1 u
)

dx

+
θ

2∗s (s+t)−3
1

2∗s

1 −
(

θ2
θ1

)4s+2t−3

4s + 2t − 3
[2∗s (s + t)− 3] +

(
θ2

θ1

)2∗s (s+t)−3
− 1

 ∫
R3

|u|2∗s dx

and

Iλ(uθ2)− Iλ(uθ1)−
θ4s+2t−3

2 − θ4s+2t−3
1

(4s + 2t − 3)θ4s+2t−3
2

Gλ(uθ2)

=
θ2s+2t−3

2
2

∫
R3

ξ

(
θ1

θ2
, θ2x

)
u2dx + θ−3

2

∫
R3

ζ

(
θ1

θ2
, θs+t

2 u
)

dx

+
θ

2∗s (s+t)−3
2

2∗s

1 −
(

θ1
θ2

)4s+2t−3

4s + 2t − 3
[2∗s (s + t)− 3] +

(
θ1

θ2

)2∗s (s+t)−3
− 1

 ∫
R3

|u|2∗s dx.

In view of (20) and (21), combining the above two formulas with Gλ(uθi ) = 0 for i ∈ {1, 2},
we arrive at a contradiction if θ1 ̸= θ2. Finally, the result dλ ≤ mλ is a direct consequence of
the inequality

Iλ(u)− Iλ(uθ)−
1 − θ4s+2t−3

4s + 2t − 3
Gλ(u) ≥ 0, ∀u ∈ Eλ and θ > 0, (22)

we immediately finish the proof of this lemma.

The following results can be found in [28].

Lemma 5. Let uε be defined by (28) in the proof of Lemma 6 below, then∫
R3

|(−∆)
s
2 uε|2dx ≤ S

3
2s
s + O(ε3−2s), (23)

and ∫
R3

|uε|2
∗
s dx = S

3
2s
s + O(ε3). (24)

For all q ∈ [2, 2∗s ), there holds

∫
R3

|uε|qdx =


O
(

ε3− 3−2s
2 q
)

, for q > 3
3−2s ,

O
(

ε
3
2 | log ε|

)
, for q = 3

3−2s ,

O
(

ε
3−2s

2 q
)

, for q < 3
3−2s .

(25)

According to Lemma 4, we know that Mλ is a nonempty set for some suitably large
λ > 0. The following lemma ensures that the minimization constant mλ would be well
defined. More precisely, we further show that mλ is uniformly bounded from below and
above by some positive constants which are independent of some suitably large λ > 0.



Fractal Fract. 2024, 8, 581 12 of 24

Lemma 6. Let s, t ∈ (0, 1) satisfy 2s + 2t > 3. Assume that (V1)–(V5) and ( f1)–( f5) hold, there
is a ρ > 0 independent of λ > Λ0 such that

inf
λ>Λ0

mλ ≥ ρ, (26)

where Λ0 ≜ max{1, c−1|Σ|−
2∗s −2

2∗s Ss}. If in addition one of the assumptions in (6) holds true, then

sup
λ>Λ0

mλ <
s
3

S
3
2s
s . (27)

Proof. For all u ∈ Mλ, we are derived from ( f4) and (∇V, x) ≥ 0 for all x ∈ R3 in (V5) that

Iλ(u) = Iλ(u)−
1

(s + t)γ − 3
Gλ(u)

=
(s + t)γ − (4s + 2t)

2
[
(s + t)γ − 3

] |(−∆)
s
2 u|22 +

1
2
[
(s + t)γ − 3

] ∫
R3

λ[(s + t)(γ − 2)V(x) + (∇V, x)]u2dx

+
(s + t)γ − (4s + 2t)

4
[
(s + t)γ − 3

] ∫
R3

ϕt
uu2dx +

s + t
(s + t)γ − 3

∫
R3

[
u f (u)− γF(u)

]
dx +

2∗s − γ

2∗s [(s + t)− 3]
|u|2

∗
s

2∗s

≥ (s + t)γ − (4s + 2t)
2
[
(s + t)γ − 3

] ∥u∥2
Eλ

.

It follows from ( f1)–( f2) and (12) that∫
R3
[(s + t) f (u)u − 3F(u)]dx ≤ 2s + 2t − 3

4
∥u∥2

Eλ
+ C1∥u∥q

Eλ
.

From which, combining (2s + 2t − 3)V(x) ≥ 2(∇V, x) ≥ 0 for all x ∈ R3 in (V5) and (10),
we see that

2s + 2t − 3
4

∥u∥2
Eλ

≤ C1∥u∥q
Eλ

+ S
− 2

2∗s
s ∥u∥2∗s

Eλ
, ∀u ∈ Mλ,

yielding that ∥u∥Eλ
≥ C2 for some C2 > 0 independent of λ. So, we arrive at (26).

On the other hand, we begin verifying (27). Without loss of generality, we are assuming
that 0 ∈ Ω. Because Ω is an open subset of R3, it holds that Br0(0) ⊂ Ω for some r0 > 0.
Given a constant r̂0 > 0 which will be determined later, we choose a cutoff function
ψ ∈ C∞

0 (R3) in such a way that ψ(x) ≡ 1 if |x| ≤ r̂0 and ψ(x) ≡ 0 if |x| ≥ 2r̂0. For all ε > 0,
we define

uε(x) = ψ(x)Uε(x), ∀x ∈ R3, (28)

where Uε(x) = ε−
3−2s

2 u∗( x
ε

)
, u∗(x) =

U

(
x/S

1
2s
s

)
∥U∥∗2s

and U(x) = κ

(τ2+|x|2)
3−2s

2
with κ ̸= 0 and

τ > 0. Due to Lemma 4 and (26), there exists a θε > 0 such that

0 < mλ ≤ max
θ>0

Iλ(uθ) = Iλ((uε)θε
).

Next, we shall prove that there exist two constants θ∗, θ∗ > 0 such that θ∗ ≤ θε ≤ θ∗.
First, we claim that θε is bounded from below by a positive constant. Otherwise, there is a
sequence εn → 0 such that θεn → 0. Then, we conclude that (uεn)εn → 0 in Eλ. So, we have

0 < mλ ≤ Iλ((uε)θε
) → Iλ(0) = 0,
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a contradiction. Taking some similar calculations in the proof of Lemma 4, one has
lim

θε→+∞
Iλ((uε)θε

) = −∞ which is absurd, too. Thus, we conclude the claim. Letting

r̂0 = 1
2 θ∗r0, then∫

R3
V(θ−1

ε x)u2
ε dx =

∫
Bθεr0

(0)
V(θ−1

ε x)u2
ε dx +

∫
R3\Bθεr0

(0)
V(θ−1

ε x)u2
ε dx = 0

from where it follows that

Iλ((uε)θε
) =

θ4s+2t−3
ε

2

∫
R3

|(−∆)
s
2 uε|2dx +

θ4s+2t−3
ε

4

∫
R3

ϕt
uε

u2
ε dx

− θ−3
∫
R3

F(θs+tuε)dx − θ2∗s (s+t)−3

2∗s

∫
R3

|uε|2
∗
s dx.

Clearly, the proof of (27) would be complete if Iλ((uε)θε
) < s

3 S
3
2s
s for some suitably small

ε > 0. Let us adopt the useful estimates in Lemma 5 and apply ( f3) to reach

Iλ((uε)θε
) ≤

(
θ4s+2t−3

ε

2
− θ

(s+t)2∗s −3
ε

2∗s

)
S

3
2s
s + O(ε3−2s) + C|uε|22 + C|uε|4 12

3+2t
− Cµ̂|uε|pp

≤ s
3

S
3
3s
s + O(ε3−2s) + C|uε|22 + C|uε|4 12

3+2t
− Cµ̂|uε|pp,

where we have used the following inequality

∫
R3

ϕt
uε

u2
ε dx ≤ C

(∫
R3

|uε|
12

3+2t dx
) 3+2t

3
.

To continue the proof, we divide the following three different cases.
Case 1. 2 < 3

3−2s which is equivalent to s > 3
4 . Then,

Iλ((uε)θε
) ≤ s

3
S

3
3s
s + O(ε3−2s) + C|uε|4 12

3+2t
− Cµ̂|uε|pp.

Case 2. 2 = 3
3−2s which is equivalent to s = 3

4 . Then,

Iλ((uε)θε
) ≤ s

3
S

3
3s
s + O(ε2s| log ε|) + C|uε|4 12

3+2t
− Cµ̂|uε|pp.

Case 3. 2 > 3
3−2s which is equivalent to s < 3

4 . Then,

Iλ((uε)θε
) ≤ s

3
S

3
3s
s + O(ε2s) + C|uε|4 12

3+2t
− Cµ̂|uε|pp.

We note that 3s+t
s+t < 2s

3−2s = 3
3−2s − 1 for any s > 3

4 and 3s+t
s+t ≥ 2s

3−2s = 3
3−2s − 1 for any

s ≤ 3
4 . Thereby,
(a) If s > 3

4 in Case 1. It follows from (25) that

lim
ε→0+

|uε|4 12
3+2t

ε3−2s ≤



lim
ε→0+

O(ε4s+2t−3)

ε3−2s = 0, 12
3+2t >

3
3−2s ,

lim
ε→0+

O(ε4s+2t−3)| log ε| 3+2t
3

ε3−2s = 0, 12
3+2t =

3
3−2s ,

lim
ε→0+

O(ε2(3−2s))

ε3−2s = 0, 12
3+2t <

3
3−2s .
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Moreover, since 4s
3−2s < p < 6

3−2s gives that 2s − 3−2s
2 p < 0, one infers from (25) again that

lim
ε→0+

µ̂|uε|pp
ε3−2s =



lim
ε→0

µ̂
O(ε3− 3−2s

2 p)

ε3−2s = +∞, 4s
3−2s < p < 6

3−2s ,

lim
ε→0+

µ̂
O(ε3− 3−2s

2 p)

ε3−2s , 3
3−2s < p ≤ 4s

3−2s ,

lim
ε→0+

µ̂
O(ε3− 3−2s

2 p)| log ε|
ε3−2s , p = 3

3−2s ,

lim
ε→0+

µ̂
O(ε

3−2s
2 p)

ε3−2s , 4s+2t
s+t < p < 3

3−2s .

Choosing µ̂ = ε−2s, then the above three unknown limits would also be +∞.
(b) If s = 3

4 in Case 2. Since 12
3+2t > 2 − 3

3−2s , there holds

lim
ε→0+

|uε|4 12
3+2t

ε2s| log ε| ≤ lim
ε→0+

O(ε4s+2t−3)

ε2s| log ε| = 0.

By 3
3−2s = 2 < 4s+2t

s+t < p, for any µ̂ > 0, we have that

lim
ε→0+

µ̂|uε|pp
ε2s| log ε| = lim

ε→0
µ̂

O(ε3− 3−2s
2 p)

ε2s| log ε| = +∞,
4s + 2t

s + t
< p <

6
3 − 2s

.

(c) If s < 3
4 in Case 3. Since 3

3−2s ∈
( 3

2 , 2
)
, then 12

3+2t >
3

3−2s and 3
3−2s < 4s+2t

s+t < p <
6

3−2s . Hence,

lim
ε→0+

|uε|4 12
3+2t

ε2s ≤ lim
ε→0+

O(ε4s+2t−3)

ε2s = 0

and for any µ̂ > 0, there holds

lim
ε→0+

µ̂|uε|pp
ε2s = lim

ε→0
µ̂

O(ε3− 3−2s
2 p)

ε2s = +∞,
4s + 2t

s + t
< p <

6
3 − 2s

.

At this stage, we will apply Point (a) to Case 1, from (I) and (II) in (6); Point (b) to Case
2 and Point (c) to Case 3, from (III) in (6); there exists a sufficiently small ε > 0 to arrive at
the desired result. The proof is completed.

As a by-product of Lemma 6, we conclude that mλ is well defined. Before looking for
a minimizer for it, we shall derive the following result which permits us to show that the
weak limit of the minimizing sequence of mλ is nontrivial.

Lemma 7. Let s, t ∈ (0, 1) satisfy 2s + 2t > 3. Assume that (V1)–(V5) and ( f1)–( f5) hold. Let
λ > Λ0 and (un) ⊂ Eλ be a minimizing sequence sequence of mλ, then there exist r ∈

(
2, 3(3−s)

3−2s

)
and σ0 > 0, independent of λ, such that |un|r ≥ σ0, for all n ≥ 1.

Proof. First of all, we can show that (un) is uniformly bounded in n ∈ N for all λ > Λ0,
see, e.g., Lemma 8 below in detail. Let us divide the proof into intermediate steps.

STEP I: Let λ > Λ0 and (un) ⊂ Eλ be a minimizing sequence of mλ, then there exist
r ∈

(
2, 3(3−s)

3−2s

)
and σ = σ(λ) > 0 such that |un|r ≥ σ for all n ≥ 1.

Suppose, by contradiction, that un → 0 in Lr(R3) for each r ∈
(

2, 3(3−s)
3−2s

)
. Due to

the boundedness of (un) in Eλ, we see that (un) is uniformly bounded in Lq(R3) for all
q ∈ (2, 2∗s ), too. As a consequence, one simply arrives at
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lim
n→∞

∫
R3

ϕt
un u2

ndx = 0, lim
n→∞

∫
R3

f (un)undx = 0 and lim
n→∞

∫
R3

F(un)dx = 0. (29)

Without loss of generality, we could assume that ∥un∥2
Eλ

→ l as n → ∞. Obviously,

we derive l > 0. Otherwise, ∥un∥2
Eλ

→ 0 and hence |un|2
∗
s

2∗s
→ 0 as n → ∞ by (10).

Combining these facts and (29), it holds that mλ = lim
n→∞

Iλ(un) = 0, which is absurd

because of (26). Now, we claim that lim
n→∞

|un|2
∗
s

2∗s
= l. Indeed, according to Gλ(un) = 0, (29)

and 4s+2t−3
2 = 2∗s (s+t)−3

2∗s
with (V5), we obtain the desired result. Using (10) again, then

l ≤ S− 2∗s
2

s l
2∗s
2 which gives that l ≥ S

3
2s
s . So, it follows from (29) that

mλ = lim
n→∞

Iλ(un) =

(
1
2
− 1

2∗s

)
l ≥ s

3
S

3
2s
s

reaching a contradiction with (27).

STEP II: Conclusion.

Let r ∈
(

2, 3(3−s)
3−2s

)
be as in Step I. Suppose by contradiction that the uniform control

from below of Lr(R3)-norm is false. Then, for every k ∈ N, k ̸= 0, there exist λk > Λ0 and a
minimizing sequence (uk,n) of mλk such that

|uk,n|r <
1
k

, definitely.

Then, by a diagonalization argument, for any k ≥ 1, we can find an increasing sequence
(nk) in N and unk ∈ Eλnk

such that

unk ∈ Mλk , Jnk (unk ) = mλnk
+ ok(1), |unk |r = ok(1),

where ok(1) is a positive quantity which goes to zero as k → +∞. Then, we are able to
arrive at the same contradiction in Step I with (27), again. The proof is completed.

Lemma 8. Let s, t ∈ (0, 1) satisfy 2s + 2t > 3. Assume that (V1)–(V5) and ( f1)–( f5) with one
of the assumptions in (6) holding, then there is a Λ > 0 such that mλ can be attained for all λ > Λ.

Proof. Let (un) ⊂ Mλ be a sequence satisfying Iλ(un) → mλ as n → ∞. First of all, we
claim that (un) is uniformly bounded in Eλ with respect to n ∈ N for all λ > Λ0. Indeed,
since (un) ⊂ Mλ gives that Gλ(un) = 0 and so

mλ = Iλ(un) + on(1) = Iλ(un)−
1

(s + t)γ − 3
Gλ(un) + on(1)

=
(s + t)γ − (4s + 2t)

2
[
(s + t)γ − 3

] |(−∆)
s
2 un|22 +

1
2
[
(s + t)γ − 3

] ∫
R3

λ[(s + t)(γ − 2)V(x) + (∇V, x)]u2
ndx

+
(s + t)γ − (4s + 2t)

4
[
(s + t)γ − 3

] ∫
R3

ϕt
un u2

ndx +
s + t

(s + t)γ − 3

∫
R3

[
un f (un)− γF(un)

]
dx + on(1)

+
2∗s − γ

2∗s [(s + t)− 3]

∫
R3

|un|2
∗
s dx + on(1)

≥ (s + t)γ − (4s + 2t)
2
[
(s + t)γ − 3

] |(−∆)
s
2 un|22 +

(s + t)γ − (4s + 2t)
4
[
(s + t)γ − 3

] ∫
R3

ϕt
un u2

ndx + on(1) (30)
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which together with (27) implies that |(−∆)
s
2 un|2 is uniformly bounded in n ∈ N for all

λ > Λ0. By means of the interpolation inequality, for q ∈ (2, 2∗s ), we combine (10) and (12)
to derive

|un|qq ≤ |un|2ν
2 |un|2

∗
s (1−ν)

2∗s
≤ C∥u∥2ν

Eλ
|un|2(1−ν)

2∗s

≤ C∥un∥2ν
Eλ
|(−∆)

s
2 un|1−ν

2 ≤ C∥un∥2ν
Eλ

, (31)

where ν = 2∗s −q
2∗s −2 ∈ (0, 1). Therefore, using ( f1)–( f2), it follows from (31), (10) and (27) that

mλ = Iλ(un) + on(1) ≥
1
4
∥un∥2

Eλ
− C|un|qq − C|(−∆)

s
2 un|2

∗
s

2

≥ 1
4
∥un∥2

Eλ
− C∥un∥2ν

Eλ
− C,

yielding that (un) is uniformly bounded in Eλ with respect to n ∈ N for all λ > Λ0 since
ξ ∈ (0, 1). So, up to a subsequence if necessary, there is a u ∈ Eλ such that un ⇀ u in Eλ,
un → u in Lp

loc(R
3) for all 2 < p < 2∗s and un → u a.e. in R3.

Secondly, we shall find a suitably large Λ > 0 such that u ̸= 0 for all λ > Λ. Owing to
the above discussions, we know that ∥un∥2

Eλ
≤ C∗ for a suitable C∗ > 0, for any n ≥ 1 and

λ > Λ0. Let r > 2 and σ0 > 0 be given as in Lemma 7, recalling (V3), there is a sufficiently
large constant R > 1 such that∫

Bc
R
(0)∩Σ

|un|rdx ≤ σ0

4
, for all λ > Λ0 and for all n ≥ 1. (32)

Since V(x) ≥ c on Σc by (V3), we have∫
Bc

R
(0)∩Σc

|un|2dx ≤ 1
λc

∫
Bc

R
(0)∩Σc

λV(x)|un|2dx ≤ C∗

λc

It easily infers that

∫
Bc

R
(0)∩Σc

|un|rdx ≤
(∫

Bc
R
(0)∩Σc

|un|2dx

) 1
2
(∫

Bc
R
(0)∩Σc

|un|2(r−1)dx

) 1
2

,

and so one can find a Λ > Λ0 such that∫
Bc

R
(0)∩Σc

|un|rdx ≤ σ0

4
, for all λ > Λ and for all n ≥ 1. (33)

Finally, we fix λ > Λ0, if un ⇀ u ≡ 0, we can deduce that∫
BR(0)

|un|rdx ≤ σ0

4
, for all n sufficiently large. (34)

Clearly, (32), (33) and (34) are in contradiction with Lemma 7.
Finally, we conclude that un → u along a subsequence as n → ∞ for all λ > Λ. Define

wn ≜ un − u, then thanks to Lemmas 2-(3) and the Brézis–Lieb lemma,

lim
n→∞

Iλ(wn) = lim
n→∞

[
Iλ(un)− Iλ(u)

]
= mλ − Iλ(u) (35)

and
lim

n→∞
Gλ(wn) = lim

n→∞

[
Gλ(un)− Gλ(u)

]
= −Gλ(u). (36)

We claim that Gλ(u) ≤ 0. Otherwise, it has that lim
n→∞

Gλ(wn) < 0 by (36). Without loss

of generality, we are assuming that Gλ(wn) < 0 for all n ∈ N. From which, one knows
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that wn ̸= 0 and so Lemma 4 permits us to determine a θn > 0 such that Gλ((wn)θn) = 0.
Combining (22) and (35) and (36),

mλ − Iλ(u) +
1

4s + 2t − 3
Gλ(u) = lim

n→∞

[
Iλ(wn)−

1
4s + 2t − 3

Gλ(wn)
]

≥ lim
n→∞

[
Iλ

(
(wn)θn

)
− θ4s+2t−3

n
4s + 2t − 3

Gλ(wn)
]
> lim

n→∞
Iλ((wn)θn) ≥ mλ,

which gives that

Iλ(u)−
1

4s + 2t − 3
Gλ(u) < 0.

It is similar to (30) that we would obtain a contradiction. Hence, we have arrived at
Gλ(u) ≤ 0. Adopting Lemma 4 again, there exists a θ > 0 such that uθ ∈ Mλ. Owing to
(22) and Fatou’s lemma,

mλ = lim
n→∞

Iλ(un) = lim
n→∞

[
Iλ(un)−

1
4s + 2t − 3

Gλ(un)
]
≥ Iλ(u)−

1
4s + 2t − 3

Gλ(u)

≥ Iλ(uθ)−
θ4s+2t−3

4s + 2t − 3
Gλ(u) ≥ Iλ(uθ) ≥ mλ,

which yields that un → u in Eλ. Consequently, Iλ(u) = mλ and Gλ(u) = 0. The proof is
completed.

4. Proof of Main Theorems
4.1. Proof of Theorem 1

Now, we are in a position to show the proof of Theorem 1.
The proof would be complete if u obtained in Lemma 8 satisfies I′λ(u) = 0 in E−1

λ .
Motivated by [40], we argue it indirectly. If I′λ(u) ̸= 0, there exists a φ ∈ C∞

0 (R3) such that
I′λ(u)φ < −1. Let ε > 0 be small enough and satisfy

I′λ(uθ + τφ)φ ≤ −1
2

, for |θ − 1|+ |τ| ≤ ε. (37)

Let χ ∈ C∞
0 (R, [0, 1]) be a cut-off function satisfying χ(θ) ≡ 1 for every |θ − 1| ≤ ε

2 and
χ(θ) ≡ 0 for all |θ − 1| ≥ ε. For any θ > 0, we define

η(θ) ≜
{

uθ , if |θ − 1| ≥ ε,
uθ + εχ(θ)φ, if |θ − 1| < ε.

Obviously, η ∈ C(Eλ) and one can fix ε > 0 sufficiently small such that ∥η(θ)∥Eλ
> 0 for

|θ − 1| < ε. By (37), it is easy to show that

max
θ>0

Iλ(η(θ)) < mλ.

Proceeding as the proof of Lemma 4, we have Gλ(η(1 − ε)) > 0 and Gλ(η(1 + ε)) < 0.
Since Gλ(η(θ)) is continuous, there exists θ0 ∈ (1− ε, 1+ ε) such that Gλ(η(θ0)) = 0, which
is η(θ0) ∈ Mλ. Therefore, mλ ≤ Iλ(η(θ0)) ≤ max

θ>0
Iλ(η(θ)) < mλ, which is a contradiction.

As to the positivity of u, it is standard and we omit it here. The proof is completed.
Next, we will deal with the concentrating behavior of ground state solutions obtained

in Theorem 1. For any u ∈ Hs
0(Ω), we denote by ũ ∈ Hs(R3) its trivial extension, namely

ũ ≜

{
u in Ω,
0 in Ωc = {x : x ∈ R3\Ω}.
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We now define I0|Ω : Hs
0(Ω) → R as

I0|Ω(u) =
1
2

∫
Ω
|(−∆)

s
2 u|2dx +

ct

4

∫
Ω

∫
Ω

u2(x)u2(y)
|x − y|3−2t dxdy −

∫
Ω

f (u)udx − 1
2∗s

∫
Ω
|u|2∗s dx

and consider the minimization problem

m0|Ω ≜ inf
u∈M0|Ω

I0|Ω(u)

where
M0|Ω = {u ∈ Hs

0(Ω)\{0} : G0|Ω(u) = 0}

denotes the corresponding manifold and G0|Ω : Hs
0(Ω) → R is given by

G0|Ω(u) =
4s + 2t − 3

2

∫
Ω
|(−∆)

s
2 u|2dx +

4s + 2t − 3
4

ct

∫
Ω

∫
Ω

u2(x)u2(y)
|x − y|3−2t dxdy

−
∫

Ω
[(s + t) f (u)u − 3F(u)]dx − 2∗s (s + t)− 3

2∗s

∫
Ω
|u|2∗s dx.

We note that up to the above trivial extension, there holds that M0|Ω ⊂ Mλ for all λ > 0.
For each λ > Λ0, we denote by uλ ∈ Eλ a ground state solution of system (1); that is,

I′λ(uλ) = 0 and Iλ(uλ) = mλ. Then, we prove Theorem 2 as follows.

4.2. Proof of Theorem 2

Let λn → +∞ as n → +∞ and (uλn) ⊂ Eλn be a sequence of ground state solutions of
system (1); that is, I′λn

(uλn) = 0 and Iλn(uλn) = mλn . Up to a subsequence if necessary, by
(26) and M0|Ω ⊂ Mλ, for all λ > 0,

0 < ρ ≤ lim
n→∞

Iλn(uλn) ≜ m̃Ω ≤ m0|Ω < +∞. (38)

Clearly, (uλn) is bounded in Hs(R3). Thereby, up to a subsequence if necessary, there
is a u0 ∈ Hs(R3) such that uλn ⇀ u0 in Hs(R3) and uλn → u0 a.e. in R3. By means of
Lemmas 2-(3), we conclude that I0|′Ω(u0) = 0. We claim that u ≡ 0 in Ωc. Otherwise, there
is a compact subset Θu0 ⊂ Ωc with dist(Θu0 , ∂Ωc) > 0 such that u0 ̸= 0 on Θu0 and by
Fatou’s lemma

lim inf
n→∞

∫
R3

u2
ndx ≥

∫
Θu0

u0
2dx > 0. (39)

Moreover, there exists ε0 > 0 such that V(x) ≥ ε0 for any x ∈ Θu0 by the assumptions (V1)
and (V2). Combining ( f4) with γ > 2 and (38) and (39), we reach

cΩ ≥ lim inf
n→∞

{
γ − 2

2γ

∫
R2

λnV(x)u2
ndx − |γ − 4|

4γ

∫
R3

ϕt
uλn

u2
λn

− 2∗s − γ

2∗s γ

∫
R3

|uλn |
2∗s dx

}
≥ (q − 2)ε0

2q

∫
Θu

u0
2dx lim inf

n→∞
λn − Ĉ = +∞,

a contradiction, where Ĉ > 0 is independent of n ∈ N. Therefore, u0 ∈ Hs
0(Ω) by the

fact that ∂Ω is smooth and I0|′Ω(u0) = 0. Similar to the proof of Lemma 8, one knows
u0 ̸= 0. Proceeding as the proof of Lemma 1, it holds that G0|Ω(u0) = 0. In view of (38), by
u0 ∈ Hs

0(Ω), we use Fatou’s lemma to obtain

m0|Ω ≥ m̃Ω = lim inf
n→∞

[
Iλn(uλn)−

1
4s + 2t − 3

Gλn(uλn)

]
≥ I0|Ω(u0)−

1
4s + 2t − 3

G0|Ω(u0) = I0|Ω(u0) ≥ m0|Ω
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yielding that uλn → u0 in Hs(R3) and I0|Ω(u0) = m0|Ω. The proof is finished.

4.3. Proof of Theorem 3

In this section, we are going to contemplate the existence of positive solutions for
system (1) with a wider class of V and f . Without (V5) and ( f5), one could not take
advantage of the minimization constraint manifold method explored in Section 3. Whereas,
because of ( f4), it seems impossible to prove that the (PS) sequence is uniformly bounded.
As a consequence, we shall depend on an indirect approach developed by Jeanjean [20].

Proposition 1 (see ([20], Theorem 1.1 and Lemma 2.3)). Let (X, ∥ · ∥) be a Banach space and
T ⊂ R+ be an interval, consider a family of C1 functionals on X of the form

Φµ(u) = A(u)− µB(u), ∀µ ∈ T,

with B(u) ≥ 0 and either A(u) → +∞ or B(u) → +∞ as ∥u∥ → +∞. Assume that there exists
two points v1, v2 ∈ X such that

cµ = inf
γ∈Γ

sup
θ∈[0,1]

Φµ(γ(θ)) > max{Φµ(v1), Φµ(v1)}, ∀µ ∈ T,

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = v1, γ(1) = v2}.

Then, for almost every µ ∈ T, there is a sequence (un(µ)) ⊂ X such that

(a) (un(µ)) is bounded in X;
(b) Φµ(un(µ)) → cµ and Φ′

µ(un(µ)) → 0;
(c) the map µ → cµ is non-increasing and left continuous.

Letting T = [δ, 1], where δ ∈ (0, 1) is a positive constant. To apply Proposition 1, we
will introduce a family of C1 functionals on X = Eλ with the form

Iλ,µ(u) =
1
2

∫
R3
[|(−∆)

s
2 u|2 + λV(x)|u|2]dx +

1
4

∫
R3

ϕt
uu2dx − µ

∫
R3

G(u)dx, (40)

where and in the sequel G(z) = F(z)+ 1
2∗s
|z|2∗s for all z ∈ R. Define Iλ,µ(u) = A(u)− µB(u),

where

A(u) =
1
2

∫
R3
[|(−∆)

s
2 u|2 + λV(x)|u|2]dx +

1
4

∫
R3

ϕt
uu2dx → +∞ as ∥u∥Eλ

→ +∞,

and
B(u) =

∫
R3

G(u)dx ≥ 0.

Clearly, Iλ,µ is of class C1 functionals with

I′λ,µ(u)v =
∫
R3
[(−∆)

s
2 u(−∆)

s
2 v + λV(x)uv]dx +

∫
R3

ϕt
uuvdx − µ

∫
R3

g(u)vdx

for all u, v ∈ Eλ, where g(z) = f (z) + |z|2∗s −2z for all z ∈ R.
For simplicity, from now on until the end of this section, we shall always suppose the

assumptions in Theorem 3 when there is no misunderstanding.

Lemma 9. The functional Iλ,µ possesses a mountain-pass geometry, that is,

(a) There exists v ∈ Eλ \ {0} independent of µ such that Iλ,µ(v) ≤ 0 for all µ ∈ [δ, 1];



Fractal Fract. 2024, 8, 581 20 of 24

(b) cλ,µ ≜ inf
η∈Γ

sup
θ∈[0,1]

Iλ,µ(γ(η)) > max{Iλ,µ(0), Iλ,µ(v)} for all µ ∈ [δ, 1], where

Γ = {η ∈ C([0, 1], Eλ) : η(0) = 0, η(1) = v}.

Proof. The proof is very similar to the calculations on finding the existence of critical points
in the proof of Lemma 4, so we omit the details.

Repeating the arguments explored in Lemma 6, there is a constant ρ̂ > 0 such that

ρ̂ ≤ inf
λ>Λ0

cλ,µ ≤ sup
λ>Λ0

cλ,µ <
s

3µ
3−2s

2s
S

3
2s
s , ∀µ ∈ [δ, 1]. (41)

Lemma 10. Let (un) be a bounded (PS) sequence of the functional Iλ,µ at the level c > 0, then

for each M̂ ∈
(

c,
s

3µ
3−2s

2s
S

3
2s
s

)
, there exists a Λ̂ = Λ(M̂) > 0 such that (un) contains a strongly

convergent subsequence in Eλ for all λ > Λ̂.

Proof. Since (un) is bounded in Eλ, then there exists a u ∈ Eλ such that un ⇀ u in Eλ,
un → u in Lp

loc(R
3) with p ∈ [1, 2∗s ) and un → u a.e. in R3. To show the proof clearly, we

shall split it into several steps:
Step 1: I′λ,µ(u) = 0 and Iλ,µ(u) ≥ 0.

To show I′λ(u) = 0, since C∞
0 (R3) is dense in Eλ, then it suffices to exhibit that I′λ,µ(u)φ = 0

for every φ ∈ C∞
0 (R3). Thanks to Lemma 2-(3), it is a direct conclusion. Because u is a

critical point of Iλ,µ, according to Lemma 1, there holds Pλ,µ(u) ≡ 0, where

Pλ,µ(u) ≜
3 − 2s

2

∫
R3

|(−∆)
s
2 u|2dx +

1
2

∫
R3
[3V(x) + (∇V, x)]|u|2dx +

2t + 3
4

∫
R3

ϕt
uu2dx

− 3µ
∫
R3

F(u)dx − µ

2∗s

∫
R3

|u|2∗s dx.

Moreover, one easily sees that I′λ,µ(u)u = 0 and so

Iλ,µ(u) = Iλ,µ(u)−
1

(s + t)γ − 3
[
(s + t)I′λ,µ(u)u − Pλ.µ(u)

]
≥ 0

proving the Step 1.
Step 2: Define vn ≜ un − u, then there exists a Λ̂ = Λ(M̂) > 0 such that vn → 0 in

Lq(R3) for all q ∈ (2, 2∗s ) along a subsequence as n → ∞ when λ > Λ̂.
Actually, since (vn) is uniformly bounded in n ∈ N for all λ > Λ0, then we have one

of the following two possibilities for some r > 0:
(i) lim

n→∞
sup
y∈R3

∫
Br(y)

|vn|2dx > 0,

(ii) lim
n→∞

sup
y∈R3

∫
Br(y)

|vn|2dx = 0.

As a consequence, the conclusion would be clear if we could demonstrate that the case (i)
cannot occur for sufficiently large λ > 0. Now, we suppose, by contradiction, that (i) was
true. Proceeding as the very similar way in Lemma 8, there is a constant δ̂ > 0 independent
of λ > Λ0 such that

lim
n→∞

sup
y∈R3

∫
Br(y)

|vn|2dx ≥ δ̂

for some r > 0. Since (un) is uniformly bounded in Eλ, without loss of generality, we can
assume that lim

n→∞
∥un∥2

Eλ
≤ Θ for some Θ ∈ (0,+∞). Clearly, there holds lim

n→∞
∥vn∥2

Eλ
≤ 4Θ.
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Recalling vn → 0 in Lq
loc(R

3) with q ∈ (2, 2∗s ) and |AR| → 0 as R → +∞ by (V2), where
AR ≜ {x ∈ R3\BR(0) : V(x) < c}, we can determine a sufficiently large but fixed R > 0
to satisfy

lim sup
n→∞

∫
BR(0)

|vn|2dx <
δ̂

4
(42)

and

|AR| <
(

δ̂Ss

16Θ

) q
q−2

|Σ|−
2(2∗s −q)
2∗s (q−2) . (43)

Combining (12) and (43), one sees that

lim sup
n→∞

∫
AR

|vn|2dx ≤ lim sup
n→∞

(∫
AR

|vn|qdx
) 2

q
|AR|

q−2
q ≤ 4Θ|Σ|

2(2∗s −q)
2∗s q S−1

s |AR|
q−2

q <
δ̂

4
. (44)

Let us choose Λ̂ = max
{

1, Λ0, 16Θ
δ̂c

}
, then for all λ > Λ̂, we reach

lim sup
n→∞

∫
BR

|vn|2dx ≤ lim sup
n→∞

1
λc

∫
BR

λV(x)|vn|2dx ≤ 4Θ
λc

<
δ̂

4
, (45)

where BR ≜ {x ∈ R3\BR(0) : V(x) ≥ c}. We gather (42), (43) and (45) to derive

δ̂ ≤ lim
n→∞

sup
y∈R3

∫
Br(y)

|vn|2dx ≤ lim sup
n→∞

∫
R3

|vn|2dx

= lim sup
n→∞

(∫
R3\BR(0)

|vn|2dx +
∫

BR(0)
|vn|2dx

)
≤ 3δ̂

4

which is impossible. The proof of this step is completed.
Step 3: Passing to a subsequence if necessary, un → u in Eλ as n → ∞.

Since vn ≜ un − u, by Lemma 2-(3) and the Brézis–Lieb lemma, one has

Iλ,µ(vn) = Iλ,µ(un)− Iλ,µ(u) + on(1) and I′λ,µ(vn) = I′λ,µ(un) + on(1). (46)

According to Step 2, we take advantage of (14) and ( f1)–( f2) to deduce that

lim
n→∞

∫
R3

ϕt
vn v2

ndx = 0 and lim
n→∞

∫
R3

f (vn)vndx = 0

jointly with Lemma 2-(3) and the Brézis–Lieb lemma indicate that

on(1) = I′λ(un)(un − u)− I′λ(u)(un − u) = ∥vn∥2
Eλ

− µ|vn|2
∗
s

2∗s
.

Let us suppose that ∥vn∥2
Eλ

→ l and µ|vn|2
∗
s

2∗s
→ l along some subsequences and so

c ≥ c − Iλ(u) = lim
n→∞

Iλ(vn) =

(
1
2
− 1

2∗s

)
l, (47)

where we have used Step 1 and (46). In view of (10), it holds that

(µ−1l)
2

2∗s ≤ S−1
s l. (48)

If l ̸= 0, that is, l > 0, then l ≥ µ− 3−2s
2s S

3
2s
s by (48). As a consequence, with the help of (47),

we arrive at c ≥ s

3µ
3−2s

2s
S

3
2s
s , a contradiction. Therefore, l = 0 which is the desired result. The

proof is completed.
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Let us recall Proposition 1 and Lemmas 9 and 10; there are two sequences (µn) ⊂ [δ, 1]
and (un) ⊂ Eλ\{0} such that

I′λ,µn
(un) = 0, Iλ,µn(un) = cλ,µn and µn → 1−. (49)

With (49) in hand, we are able to derive the proof of Theorem 3.

Proof of Theorem 3. First of all, since I′λ,µn
(un) = 0, we are derived from a similar argu-

ment in Lemma 1 that Pλ,µn(un) ≡ 0, where

Pλ,µn (u) ≜
3 − 2s

2

∫
R3

|(−∆)
s
2 un|2dx +

1
2

∫
R3
[3V(x) + (∇V, x)]|un|2dx +

2t + 3
4

∫
R3

ϕt
un

u2
ndx

− 3µn

∫
R3

F(un)dx − µn

2∗s

∫
R3

|u|2∗s dx.

Proceeding as the proof of Lemma 8, one sees that (un) is uniformly bounded in Eλ for all
λ > Λ0.

Then, we claim that (un) is a (PS)cλ,1 sequence of the functional Iλ = Iλ,1. Actually,
taking into account µn → 1− and Proposition 1-(c),

lim
n→∞

Iλ,1(un) =

(
lim

n→∞
Iλ,µn(un) + (µn − 1)

∫
R3

G(un)dx
)
= lim

n→∞
cλ,µn = cλ,1,

where we have used the fact that (G(un)) is uniformly bounded in L1(R3). Similarly,

lim
n→∞

|I′λ,1(un)ψ|
∥ψ∥Eλ

= lim
n→∞

∣∣I′λ,µn
(un)ψ + (µn − 1)

∫
R3 g(un)ψdx

∣∣
∥ψ∥Eλ

≤ lim
n→∞

|µn − 1|
∣∣ ∫

R3 g(un)ψdx
∣∣

∥ψ∥Eλ

= 0, ∀ψ ∈ Eλ.

As a consequence, one has that (un) is a (PS)cλ,1 sequence of the functional Iλ = Iλ,1.
Finally, combining the above two steps and (41), we can apply Lemma 10 to finish

the proof.

5. Conclusions

In this paper, we have considered the existence and concentrating behavior of positive
solutions for the following fractional Schrödinger–Poisson system with critical growth{

(−∆)su + λV(x)u + ϕu = f (u) + |u|2∗s −2u, x ∈ R3,
(−∆)tϕ = u2, x ∈ R3,

where s, t ∈ (0, 1) with 2s + 2t > 3, λ > 0 denotes a parameter, V : R3 → R admits a
potential well Ω ≜ intV−1(0) and 2∗s ≜ 6

3−2s is the fractional Sobolev critical exponent.
Combining the constrained manifold argument and minimax techniques, we introduce
some new analytic tricks to prove that the system possesses a positive ground state solution
and a mountain-pass type solution, respectively. Actually, what we want to mention here
is that the restrictions on V and f play some crucial roles in the existence of solutions.
Furthermore, we believe that the studies in this paper would prompt related research on
fractional Schrödinger–Poisson systems.
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