
CORON PROBLEM FOR FRACTIONAL EQUATIONS

SIMONE SECCHI, NAOKI SHIOJI, AND MARCO SQUASSINA

Abstract. We prove that the critical problem for the fractional Laplacian in an annular type domain
admits a positive solution provided that the inner hole is sufficiently small.

1. Introduction

Let N ≥ 3 and Ω be a smooth bounded domain of RN . The classical formulation of Coron problem
goes back to 1984 and says that if there is a point x0 ∈ RN and radii R2 > R1 > 0 such that
(1.1) {R1 ≤ |x− x0| ≤ R2} ⊂ Ω, {|x− x0| ≤ R1} 6⊂ Ω,
then the critical elliptic problem

(1.2)


−∆u = u

N+2
N−2 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

admits a solution provided that R2/R1 is sufficiently large [6]. A few years later Bahri and Coron [1],
in a seminal paper, considerably improved this existence result by showing, via sofisticated topological
arguments based upon homology theory, that (1.2) admits a solution provided that Hm(Ω,Z2) 6= {0}
for some m > 0. Furthermore, in [8, 11, 14] the authors show that existence of a solution is possible
also in some contractible domains. Let N ≥ 2 and s ∈ (0, 1) with N > 2s, and consider the nonlocal
fractional problem

(1.3)


(−∆)su = u

N+2s
N−2s in Ω,

u > 0 in Ω,
u = 0 in RN \ Ω,

involving the fractional Laplacian (−∆)s. Here, for smooth functions ϕ, (−∆)sϕ is defined by

(−∆)sϕ(x) = C(N, s) lim
ε→0

∫
{Bε(x)

ϕ(x)− ϕ(y)
|x− y|N+2s dy, x ∈ RN ,

where

(1.4) C(N, s) =
(∫

RN

1− cos ζ1
|ζ|N+2s dζ

)−1
;

see [10]. Fractional Sobolev spaces are introduced in the middle part of the last century, especially in
the framework of harmonic analysis. More recently, after the paper of Caffarelli and Silvestre [2], a large
amount of papers were written on problems which involve the fractional diffusion (−∆)s, 0 < s < 1.
Due to its nonlocal character, working on bounded domains imposes that an appropriate variational
formulation of the problem is to consider functions on RN with the condition u = 0 in RN \Ω replacing
the boundary condition u = 0 on ∂Ω. We set X0 = {u ∈ Ḣs(RN ) : u = 0 in RN \ Ω} and we consider
the formulation ∫

RN
(−∆)s/2u(−∆)s/2ϕdx =

∫
Ω
u
N+2s
N−2sϕdx for all ϕ ∈ X0.

It has been proved recently [15, Corollary 1.3] that if Ω is a star-shaped domain, then problem (1.3) does
not admit solutions and that for exponents larger that (N + 2s)/(N − 2s) the problem does not admit
any nontrivial solution thus dropping the positivity requirement. It is then natural to think that, as in
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the local case s = 1, by assuming suitable geometrical or topological conditions on Ω one can get the
existence of nontrivial solutions. We note that Capella [3] studies the problem for the particular case
s = 1/2 by using the Caffarelli reduction to transform the problem in a local form and that Servadei
and Valdinoci [16] studies the Brezis-Nirenberg problem with the fractional Laplacian.
The main result of the paper is the following Coron type result in the fractional setting.

Theorem 1.1. If (1.1) holds, then (1.3) admits a weak solution in X0 for R2/R1 sufficiently large.

We roughly recall Coron’s argument [6] for the case s = 1. Although the corresponding Rayleigh quotient
does not attain the infimum value, say S, the global compactness theorem due to Struwe [17] implies
that it satisfies the Palais-Smale condition at each level in (S, 22/NS). He introduced a test function
defined on a small ball which contains the small hole of Ω, and he showed that under assumption (1.1),
the maximum value of the test function is less than 22/NS. If there is no critical point of the Rayleigh
quotient in (S, 22/NS), he showed that the small ball can be retracted into its boundary, which is a
contradiction. For the case s ∈ (0, 1), one of the main difficulties that one has to face is to get a uniform
estimate for the energy of truncations of the family of functions

(1.5) Uε,z(x) =
( ε

ε2 + |x− z|2
)N−2s

2
, z ∈ RN , ε > 0,

which are precisely obtained in Propositions 2.1-2.2. We note that Uε,z satisfies (−∆)su = u(N+2s)/(N−2s)

in RN up to a constant, and Uε,z with the constant factor is called Talenti function for the fractional
Laplacian. The other difficultly for the case s ∈ (0, 1) is global compactness. We give a compactness
result which is sufficient for our arguments.

2. Preliminary results

We define
Ḣs(RN ) = {u ∈ L

2N
N−2s (RN ) : ‖u‖ <∞},

where

‖u‖ =
(∫∫

R2N

|u(x)− u(y)|2

|x− y|N+2s dxdy

) 1
2

.

We also define

〈u, v〉 =
∫∫

R2N

(u(x)− u(y))(v(x)− v(y))
|x− y|N+2s dxdy for each u, v ∈ Ḣs(RN ).

Then we know that Ḣs(RN ) is a Hilbert space with the inner product above, it is continuously embedded
into L2N/(N−2s)(RN ) and it holds

(2.1) 〈u, v〉 = 2
C(N, s)

∫
RN

(−∆)s/2u(−∆)s/2v dx for each u, v ∈ Ḣs(RN ),

where C(N, s) is the constant given in (1.4); see [10]. We set
X0 = {u ∈ Ḣs(RN ) : u = 0 in RN \ Ω}.

Since it is a closed subspace of Ḣs(RN ), X0 itself is also a Hilbert space, and we use the same symbols
〈·, ·〉 and ‖ · ‖ for its inner product and norm. We note

‖u‖ =
(∫∫

Q

|u(x)− u(y)|2

|x− y|N+2s dxdy

)1/2

for each u ∈ X0,

where Q = R2N \ ({Ω× {Ω).
Since we have (2.1), for the sake of simplicity, we will find a positive weak solution of

(2.2)
{

(−∆)su = C(N,s)
2 |u|

4s
N−2su in Ω,

u = 0 in RN \ Ω,

which is equivalent to find a weak solution of (1.3). Here, we say u ∈ X0 is a weak solution to (2.2) if
it satisfies ∫∫

Q

(u(x)− u(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy =

∫
Ω
|u|

4s
N−2suϕdx for each ϕ ∈ X0.

Without loss of generality, we may assume (1.1) with x0 = 0 6∈ Ω, R2 is fixed with R2 > 10 and
R1 = δ ∈ (0, 1/20] which will be fixed later. We set Br = {x ∈ RN : |x| ≤ r} for r > 0. Without loss
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of generality, we may also assume Ω ∩ Bδ = ∅ and B5 \ B3δ/2 ⊂ Ω. Let ϕδ : RN → [0, 1] be a smooth
radially symmetric function such that

ϕδ(x) =
{

0 if 0 ≤ |x| ≤ 2δ and |x| ≥ 4,
1 if 4δ ≤ |x| ≤ 3,

|∇ϕδ(x)| ≤ δ−1, for x ∈ B4δ, |∇ϕδ(x)| ≤ 2, for x ∈ {B3.
For δ, ε ∈ (0, 1/20] and z ∈ B1, we set

uδ,ε,z(x) = ϕδ(x)Uε,z(x),
where the Uε,z were defined in (1.5). The next estimates will be crucial for the proof of Theorem 1.1.
Proposition 2.1. There exists C1 > 0 such that

(2.3) ‖uδ,ε,z‖2 ≤ ‖Uε,z‖2 + C1

((
δ

ε

)N−2s
+
(
δ

ε

)N+2−2s
+ εN−2s

)
for each δ, ε ∈ (0, 1/20] and z ∈ B1, and

(2.4) ‖uδ,ε,z‖2 ≤ ‖Uε,z‖2 + C1ε
N−2s(1 + δ−2s)

for each δ, ε ∈ (0, 1/20] and z ∈ B1 \B1/2.
Proof. Let δ, ε ∈ (0, 1/20] and z ∈ B1. We define

D = {(x, y) ∈ (B4 × {B3) ∪ ({B3 ×B4) : |x− y| > 1},
E = {(x, y) ∈ (B4 × {B3) ∪ ({B3 ×B4) : |x− y| ≤ 1},

D̃ = {(x, y) ∈ (B4δ × (B4 \B4δ)) ∪ ((B4 \B4δ)×B4δ) : |x− y| > δ}
and

Ẽ = (B4δ ×B4δ) ∪ {(x, y) ∈ (B4δ × (B4 \B4δ)) ∪ ((B4 \B4δ)×B4δ) : |x− y| ≤ δ} .
Then we have

R2N = Ẽ ∪ D̃ ∪ E ∪D ∪ ((B3 \B4δ)× (B3 \B4δ)) ∪ ({B4 × {B4).
We remark that this is not a disjoint union. We can easily see that∫

(B3\B4δ)×(B3\B4δ)

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy = 0

and ∫
{B4×{B4

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy ≤ 0.

We shall denote by C generic positive constants, possibly varying from line to line, and which do not
depend on δ, ε ∈ (0, 1/20] and z ∈ B1. For each (x, y) ∈ R2N , we have

(2.5) |uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

= (uδ,ε,z(x) + Uε,z(x)− uδ,ε,z(y)− Uε,z(y))(uδ,ε,z(x)− Uε,z(x) + Uε,z(y)− uδ,ε,z(y))
|x− y|N+2s

≤ 2Uε,z(x)Uε,z(y)
|x− y|N+2s .

From z ∈ B1, we have∫
B4×{B3, |x−y|>1

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy

≤
∫

B4×{B3, |x−y|>1

2Uε,z(x)Uε,z(y)
|x− y|N+2s dxdy ≤ Cε

N−2s
2

∫
B4×{B3, |x−y|>1

(
ε

ε2+|x−z|2

)N−2s
2

|x− y|N+2s dxdy

≤ CεN−2s
∫
|ξ|≤5

dξ

(ε2 + |ξ|2)N−2s
2

∫
|η|>1

dη

|η|N+2s = CεN−2sε2s
∫

|ξ|≤5/ε

dξ

(1 + |ξ|2)N−2s
2
≤ CεN−2s.
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So we can infer ∫
D

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy ≤ CεN−2s.

We note

∇Uε,z(x) = −(N − 2s)
(

ε

ε2 + |x− z|2

)N−2s
2 x− z

ε2 + |x− z|2 ,

and
|x− z|

ε2 + |x− z|2 ≤
1
2ε .

Since |∇ϕδ(x)| ≤ 2 for |x| ≥ 4δ, z ∈ B1 and |tx+ (1− t)y| ≥ 2 for each (x, y) ∈ E and t ∈ [0, 1],

∫
E

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy

≤
∫
E

|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s dxdy =
∫
E

|
∫ 1

0 (∇uδ,ε,z)(tx+ (1− t)y) · (x− y) dt|2

|x− y|N+2s dxdy

≤
∫
E

∫ 1
0 (8|Uε,z(tx+ (1− t)y)|2 + 2|(∇Uε,z)(tx+ (1− t)y)|2) dt

|x− y|N+2s−2 dxdy

≤ CεN−2s
∫
E

dxdy

|x− y|N+2s−2

≤ CεN−2s
∫
|ξ|≤4

dξ

∫
|η|≤1

dη

|η|N+2s−2 = CεN−2s.

From (2.5), we also have

∫
D̃

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy

≤ 2
∫
D̃

Uε,z(x)Uε,z(y)
|x− y|N+2s dxdy ≤ 2

εN−2s

∫
D̃

dxdy

|x− y|N+2s

≤ C

εN−2s

∫
|ξ|≤4δ

dξ

∫
|η|>δ

dη

|η|N+2s ≤ C
(
δ

ε

)N−2s
.

Since |∇ϕδ(x)| ≤ 1/δ for x ∈ B4δ, we have∫
Ẽ

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy

≤
∫
Ẽ

|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s dxdy

=
∫
Ẽ

|
∫ 1

0 (∇uδ,ε,z)(tx+ (1− t)y) · (x− y) dt|2

|x− y|N+2s dxdy

≤
∫
Ẽ

∫ 1
0 ((1/δ)2|Uε,z(tx+ (1− t)y)|2 + |(∇Uε,z)(tx+ (1− t)y)|2) dt

|x− y|N+2s−2 dxdy

≤ C
(

1
δ2εN−2s + 1

εN−2s ·
1
ε2

)∫
Ẽ

dxdy

|x− y|N+2s−2

≤ C
(

1
δ2εN−2s + 1

εN+2−2s

)∫
|ξ|≤4δ

dξ

∫
|η|≤δ

dη

|η|N+2s−2

= C

((
δ

ε

)N−2s
+
(
δ

ε

)N+2−2s
)
.
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By the inequalities above, we obtain (2.3). Let z ∈ B1 \ B1/2. In order to obtain (2.4) we need to
consider the integrals on D̃ and Ẽ. We have∫

(B4\B4δ)×B4δ, |x−y|>δ

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy

≤
∫

(B4\B4δ)×B4δ, |x−y|>δ

2Uε,z(x)Uε,z(y)
|x− y|N+2s dxdy ≤ Cε

N−2s
2

∫
(B4\B4δ)×B4δ, |x−y|>δ

(
ε

ε2+|x−z|2
)N−2s

2

|x− y|N+2s dxdy

≤ CεN−2s
∫
|ξ|≤5

dξ

(ε2 + |ξ|2)N−2s
2

∫
|η|>δ

dη

|η|N+2s

= CεN−2sδ−2s · ε2s
∫
|ξ|≤5/ε

dξ

(1 + |ξ|2)N−2s
2

= CεN−2sδ−2s.

Hence ∫
D̃

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy ≤ CεN−2sδ−2s.

Since |∇ϕδ(x)| ≤ 1/δ for x ∈ RN , z ∈ B1 \B1/2 and |tx+ (1− t)y| ≤ 5δ ≤ 1/4 for each (x, y) ∈ Ẽ and
t ∈ [0, 1], we have∫

Ẽ

(
|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s − |Uε,z(x)− Uε,z(y)|2

|x− y|N+2s

)
dxdy

≤
∫
Ẽ

|uδ,ε,z(x)− uδ,ε,z(y)|2

|x− y|N+2s dxdy

=
∫
Ẽ

|
∫ 1

0 (∇uδ,ε,z)(tx+ (1− t)y) · (x− y) dt|2

|x− y|N+2s dxdy

≤ 2
∫
Ẽ

∫ 1
0 ((1/δ)2|Uε,z(tx+ (1− t)y)|2 + |(∇Uε,z)(tx+ (1− t)y)|2) dt

|x− y|N+2s−2 dxdy

≤ CεN−2sδ−2
∫
Ẽ

dxdy

|x− y|N+2s−2

≤ CεN−2sδ−2
∫
|ξ|≤4δ

dξ

∫
|η|≤δ

dη

|η|N+2s−2 = C(εδ)N−2s ≤ CεN−2s.

Thus, we obtain the second desired inequality. �

Proposition 2.2. There exists C2 > 0 such that

(2.6)
∫
RN
|uδ,ε,z|

2N
N−2s dx ≥

∫
RN
|Uε,z|

2N
N−2s dx− C2

((δ
ε

)N
+ εN

)
for each δ, ε ∈ (0, 1/20] and z ∈ B1, and

(2.7)
∫
RN
|uδ,ε,z|

2N
N−2s dx ≥

∫
RN
|Uε,z|

2N
N−2s dx− C2ε

N

for each δ, ε ∈ (0, 1/20] and z ∈ B1 \B1/2.

Proof. Let δ, ε ∈ (0, 1/20] and z ∈ B1. We have∫
RN
|Uε,z|

2N
N−2s dx−

∫
RN
|uδ,ε,z|

2N
N−2s dx

≤
∫
|x|≤4δ

(
ε

ε2 + |x− z|2

)N
dx+

∫
|x|≥3

(
ε

ε2 + |x− z|2

)N
dx ≤ C

(
δ

ε

)N
+ CεN ,

which yields (2.6). By a similar calculation, we can obtain (2.7) as well. �

Let I : Ḣs(RN )→ R be given by

I(u) = 1
2 ‖u‖

2 − N − 2s
2N

∫
RN
|u|2N/(N−2s) dx for u ∈ Ḣs(RN ),
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and let I0 : X0 → R be its restriction to X0, i.e.,
I0(u) = I(u) for u ∈ X0.

Next, let us define R : Ḣs(RN ) \ {0} → R by

R(u) = ‖u‖2

N (u) ,

where

(2.8) N (u) =
(∫

RN
|u|

2N
N−2s dx

)N−2s
N

.

We also define N0 and R0 by the restrictions of N and R to X0 \ {0}, respectively. That is,
N0(u) = N (u) and R0(u) = R(u) for u ∈ X0 \ {0}.

Lemma 2.3. R0 ∈ C1(X0 \ {0}), and if R′0(v) = 0 with v ∈ X0, then I ′0(λv) = 0 with some λ > 0.

Proof. We can easily see R0 ∈ C1(X0 \ {0}). Let v ∈ X0. Since we have

R′0(v)(ϕ) =
2N0(v)

∫∫
Q

(v(x)−v(y))(ϕ(x)−ϕ(y))
|x−y|N+2s dxdy − 2‖v‖2N0(v)−

2s
N−2s

∫
Ω |v|

4s
N−2s vϕ dx

N0(v)2

for every ϕ ∈ X0, we have R′0(v) = 0 if and only if, for every ϕ ∈ X0,∫∫
Q

(v(x)− v(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy = ‖v‖2∫

Ω |v|
2N
N−2s dx

∫
Ω
|v|

4s
N−2s vϕ dx.

Setting λ by

(2.9) λ
4s

N−2s = ‖v‖2∫
Ω |v|

2N
N−2s dx

,

we have I ′0(λv) = 0. This concludes the proof. �

We define a manifold of codimension one by setting

(2.10) M =
{
u ∈ X0 :

∫
Ω
|u|

2N
N−2s dx = 1

}
.

Lemma 2.4. Let {vn}n ⊂M be a Palais-Smale sequence for R0 at level c. Then

un = λnvn, λn = R0(vn)(N−2s)/(4s)

is a Palais-Smale sequence for I0 at level (s/N)cN/(2s).

Proof. By following the computations of Lemma 2.3, if λn is defined as in (2.9), we have
1
2R′0(vn)(ϕ) =

∫∫
Q

(vn(x)− vn(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy − λ

4s
N−2s
n

∫
Ω
|vn|

4s
N−2s vnϕdx

for every ϕ ∈ X0. Hence, in turn, by multiplying this identity by λn, we conclude that

I ′0(un)(ϕ) =
∫∫

Q

(un(x)− un(y))(ϕ(x)− ϕ(y))
|x− y|N+2s dxdy −

∫
Ω
|un|

4s
N−2sunϕdx

for every ϕ ∈ X0. Recalling (2.8) and (2.9), we have

λn = ‖vn‖
N−2s

2s = R0(vn)
N−2s

4s .

From R0(vn) = c + o(1) and {vn}n ⊂ M , {vn}n is bounded in X0 and so is {λn}n. In particular, it
follows that I ′0(un)→ 0 in X ′0 as n→∞. Moreover, {un}n is bounded in X0 as well, yielding

o(1) = I ′0(un)(un) = ‖un‖2 −
∫

Ω
|un|

2N
N−2s dx.

These facts imply that

lim
n→∞

I0(un) = s

N
lim
n→∞

∫
Ω
|un|

2N
N−2s dx = s

N
lim
n→∞

λ
2N
N−2s
n = s

N

(
lim
n→∞

R0(vn)
N−2s

4s
) 2N
N−2s = s

N
cN/(2s),

concluding the proof. �
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Let us set
S = inf{R(u) : u ∈ Ḣs(RN ) \ {0}}.

By [7], we know that
R(Uε,z) = S for each ε > 0 and z ∈ RN ,

only these functions with any nonzero constant factor attain the infimum,
S = inf{R0(u) : u ∈ X0 \ {0}},

and the infimum is never attained in the latter case. We also have the following result for sign-changing
weak solutions.

Lemma 2.5. Let u ∈ X0 be a sign-changing weak solution to (2.2), then ‖u‖2 ≥ 2SN/(2s). Moreover,
the same conclusion holds for sign-changing critical points of I.

Proof. We have u± ∈ X0 \ {0} and
|u(x)− u(y)|2 = |u+(x)− u+(y)|2 + |u−(x)− u−(y)|2 + 2u+(y)u−(x) + 2u+(x)u−(y)

for every x, y ∈ RN , where u−(x) = −min{u(x), 0}. This, in turn, implies

‖u‖2 = ‖u+‖2 + ‖u−‖2 + 4
∫∫

Q

u+(y)u−(x)
|x− y|N+2s dxdy.

By multiplying equation (2.2) by u± easily yields

‖u+‖2 + 2
∫∫

Q

u+(y)u−(x)
|x− y|N+2s dxdy =

∫
Ω
|u+|

2N
N−2s dx,

‖u−‖2 + 2
∫∫

Q

u+(y)u−(x)
|x− y|N+2s dxdy =

∫
Ω
|u−|

2N
N−2s dx.

Combining these equalities with S‖u±‖2
L2N/(N−2s) ≤ ‖u±‖2, yields

∫
Ω |u

±|2N/(N−2s) ≥ SN/(2s), conclud-
ing the proof. �

Now, we show the following compactness result. In order to show it, we follow the arguments in [18,
Section 8.3], which treat the case s = 1.

Proposition 2.6. Let {un}n ⊂ X0 be a Palais-Smale sequence for I0 at level c with
s

N
SN/(2s) ≤ c < 2s

N
SN/(2s).

If (s/N)SN/(2s) < c < (2s/N)SN/(2s), then {un}n converges strongly to a nontrivial constant-sign weak
solution to problem (2.2) up to a subsequence, and if c = (s/N)SN/(2s), then there exist a nontrivial
constant-sign weak solution v ∈ Ḣs(RN ) to problem

(2.11) (−∆)sv = C(N, s)
2 |v|

4s
N−2s v in RN ,

{xn}n ⊂ Ω and {rn}n ⊂ (0,∞) with rn → 0 such that {un−r(2s−N)/2
n v((·−xn)/rn)}n converges strongly

to 0 in Ḣs(RN ) up to a subsequence.

Proof. First, we note that {un}n is bounded and I0(un) = (s/N)‖un‖2 + o(1). We may assume that
{un}n converges weakly to u in X0. Then u is a possibly trivial solution to (2.2) and

‖u‖2 ≤ lim
n→∞

‖un‖2 = N

s
lim
n→∞

I0(un) < 2SN/(2s).

From Lemma 2.5, u is not sign-changing. By a similar argument as in [18, Lemma 8.10], we have

I ′(un − u)→ 0, I(un − u)→ c− I0(u) and ‖un − u‖2 →
Nc

s
− ‖u‖2.

If ‖un − u‖L2N/(N−2s) → 0, we can infer that ‖un − u‖ → 0, (s/N)SN/(2s) < c < (2s/N)SN/(2s) and u
is a nontrivial constant-sign solution to (2.2). From here, we consider the case ‖un − u‖L2N/(N−2s) 6→ 0.
Taking small δ > 0, we may assume that

∫
RN |un − u|

2N/(N−2s)dx ≥ δ, for each n ∈ N. As in the proof
of [18, 2) and 3) of Theorem 8.13], we can choose appropriate sequences {xn}n ⊂ Ω and {rn}n ⊂ (0,∞)
such that the sequence {vn}n ⊂ Ḣs(RN ) defined by

vn(x) = r(N−2s)/2
n (un − u)(rnx+ xn)
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converges weakly to v ∈ Ḣs(RN ) \ {0}. We have

(2.12) ‖v‖2 ≤ lim
n→∞

‖vn‖2 = lim
n→∞

‖un − u‖2 = Nc

s
− ‖u‖2 < 2SN/(2s) − ‖u‖2.

By the boundedness of Ω and v 6= 0, we may assume rn → 0 and xn → x0 ∈ Ω. We may also assume
that {dist(xn, ∂Ω)/rn}n has a limit value in [0,∞]. Assume that this limit value is finite. Then v is a
solution to the problem

(−∆)sv = C(N, s)
2 |v|

4s
N−2s v

in a half-space. From [9, Theorem 1.1 and Remark 4.2], v is locally bounded (although the boundedness
of a domain is assumed in [9], the proof works for our case). Then, in light of [4, Corollary 3] (see
also [12, Corollary 1.6]), we know that the above problem in any half-space does not admit a nontrivial
constant-sign solution. So v must be sign-changing, but then by a similar proof of Lemma 2.5, we have
‖v‖2 ≥ 2SN/(2s), which contradicts (2.12). So we find that dist(xn, ∂Ω)/rn →∞. Then we can see that
v is a nontrivial solution of (2.11). Using (2.12) again, we find that v is constant-sign and u is trivial.
Setting

wn(x) = un(x)− r(2s−N)/2
n v((x− xn)/rn),

we have
I ′(wn)→ 0, I(wn)→ c− I(v) and ‖wn‖2 →

Nc

s
− SN/(2s) < SN/(2s).

If ‖wn‖L2N/(N−2s) 6→ 0, repeating the argument above, we can obtain a contradiction. Hence, we have
‖wn‖ → 0 and c = (s/N)SN/(2s). Therefore, we have shown our assertion. �

We define Y0,Z0 : X0 \ {0} → X0 by

Y0(u) = ∇N0(u)
‖∇N0(u)‖ , Z0(u) = ∇R0(u)− 〈∇R0(u),Y0(u)〉Y0(u) for each u ∈ X0 \ {0}.

Here, ∇N0(u) and ∇R0(u) are the elements of X0 respectively obtained from N ′
0 (u) and R′0(u) by the

Riesz representation theorem. We note that
(2.13) 〈Z0(u),∇N0(u)〉 = 0 and 〈Z0(u),∇R0(u)〉 = ‖Z0(u)‖2 for each u ∈M .
The next proposition essentially says that R0|M satisfies the Palais-Smale condition at any level in
(S, 22s/NS). In the last section, we give a negative gradient flow of R0|M ; see (3.2).

Proposition 2.7. Let {vn}n ⊂ M which satisfies Z0(vn) → 0 in X0 and R0(vn) → c ∈ (S, 22s/NS).
Then {vn}n has a convergent subsequence.

Proof. For each u ∈M , we have

(2.14)
‖Z0(u)‖2 = ‖∇R0(u)− 〈∇R0(u),Y0(u)〉Y0(u)‖2 = ‖∇R0(u)‖2 − 〈∇R0(u),Y0(u)〉2

≥ ‖∇R0(u)‖2 〈Y0(u), u〉2

‖u‖2
= 2‖∇R0(u)‖2

‖u‖2‖∇N0(u)‖2 .

From our assumptions, we can infer that ∇R0(vn) → 0. By virtue of Lemma 2.4, the sequence un =
λnvn, where λn is defined as in (2.9), is a Palais-Smale sequence for I0 at level (s/N)cN/(2s). According
to Proposition 2.6, there exists a subsequence of {un}n which converges strongly in X0. Since we have
λn → c(N−2s)/(4s) from Lemma 2.4, we can see that our assertion holds. �

For the reader’s convenience, we give the following lemma.

Lemma 2.8. Let η > 0 and u ∈ M with R0(u) ≤ S + η. Then there exists v ∈ M such that
‖u− v‖ ≤ √η, R0(v) ≤ R0(u) and ‖R′0(v)‖ ≤ √η(1 + 1/

√
S).

Proof. By Ekeland’s variational principle, we can find v ∈M such that ‖u− v‖ ≤ √η, R0(v) ≤ R0(u)
and R0(w) ≥ R0(v) − √η‖w − v‖ for each w ∈ M . Fix z ∈ X0 with ‖z‖ = 1. For each s ∈ R with
v + sz 6= 0, there exists unique t(s) > 0 satisfying t(s)(v + sz) ∈M . Then we can easily see

t′(0) = −
∫

Ω
|v|

4s
N−2s vz dx.

From
R0(v + sz)−R0(v) = R0(t(s)(v + sz))−R0(v) ≥ −√η‖t(s)(v + sz)− t(s)v + t(s)v − v‖,
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we obtain
|R′0(v)(z)| ≤ √η‖z + t′(0)v‖ ≤ √η(1 + 1/

√
S),

which yields ‖R′0(v)‖ ≤ √η(1 + 1/
√
S). �

3. Proof of Theorem 1.1 concluded

In the following proof, we will repeatedly use the fact that R(σu) = R(u) for every σ > 0 and every
u ∈ Ḣs(RN ) \ {0}. We write, for u ∈ Ḣs(RN ) \ {0},

Π(u) = u

‖u‖L2N/(N−2s)
.

From Propositions 2.1 and 2.2, we can find C3 > 0 with

R(Π(uδ,ε,z)) ≤
‖U1,0‖2 + C1ε

N−2s(∫
RN |U1,0|

2N
N−2s dx− C2εN

)N−2s
N

≤ R(U1,0) + C3ε
N−2s

for each ε ∈ (0, 1/20], δ ∈ (0, ε2] and z ∈ B1. Hence, we can find ε̄ ∈ (0, 1/20] such that

R(Π(uε̄2,ε̄,z)) ≤ $22s/NS for each z ∈ B1,

where 2− 2s
N < $ < 1. Now, we fix δ = ε̄2 and we define a kind of barycenter mapping

β(u) =
∫
RN

1BK (x)x|u(x)|
2N
N−2s dx for each u ∈ Ḣs(RN ) with ‖u‖L2N/(N−2s) = 1,

where K = sup{|x| : x ∈ Ω}+ 1 and 1BK is the characteristic function for BK . We also define

c̄ = inf {R0(u) : u ∈M , β(u) = 0} .

Then, c̄ > S. If not, there is a sequence {vn}n ⊂ M such that β(vn) = 0 and R0(vn) → S. From
Lemma 2.8, we have R′0(vn) → 0. Then by Proposition 2.6, taking a subsequence if necessary, there
exist {λn}n ⊂ (0, 1) and {zn}n ⊂ Ω such that λn → 0, zn → z ∈ Ω and

either ‖vn −Π(Uλn,zn)‖ = o(1) or ‖vn + Π(Uλn,zn)‖ = o(1) as n→∞.

From β(vn) = 0 and β(vn)→ z, we obtain 0 ∈ Ω, which is a contradiction. Now, from Propositions 2.1
and 2.2, we can find a map f : B1 →M which satisfies

R0(f(z)) ≤ $22s/NS for each z ∈ B1,

R0(f(z)) ≤ S + c̄

2 < c̄ for each z ∈ ∂B1

and

(3.1) |β(f(z))− z| ≤ 1
2 for each z ∈ ∂B1.

Such f can be obtained by setting f(z) = uε̄2,hε(|z|),z with sufficiently small ε > 0, where

hε(t) =
{
ε̄ for 0 ≤ t ≤ 1/2,
2(1− t)ε̄+ (2t− 1)ε for 1/2 ≤ t ≤ 1,

and we can show (3.1) by a similar argument above which shows c̄ > S. Then, for each t ∈ [0, 1] and
z ∈ ∂B1, we have |(1− t)z+ tβ(f(z))| ≥ |z|− t|β(f(z))−z| ≥ 1/2. So by using Brouwer’s degree theory,
we have deg(β ◦ f, Int(B1), 0) = 1. Defining

c = inf
g∈G

max
x∈B1

R0(g(x)), G = {g ∈ C(B1,M ) : g = f on ∂B1 and deg(β ◦ g, Int(B1), 0) = 1},

we have
S < c̄ ≤ c ≤ $22s/NS.

Now, we will show there is u ∈M such that ∇R0(u) = 0 and R0(u) = c. Assume not. By Proposition
2.7, we can choose a positive constant η > 0 such that (S+c)/2 < c−2η, c+2η < $22s/NS and Z0(u) 6= 0
for each u ∈M with |R0(u)− c| ≤ 3η. We also choose a locally Lipschitz function α : M → [0, 1] such
that

α(u) =
{

1 for each u ∈M with |R0(u)− c| ≤ η,
0 for each u ∈M with |R0(u)− c| ≥ 2η.
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Then we can define γ : [0, 1]×M →M by

(3.2) γ(0, u) = u and d

dt
γ(t, u) = − 2ηα(γ(t, u))

‖Z0(γ(t, u))‖2 Z0(γ(t, u));

see (2.13) and (2.14). Let g ∈ G such that maxz∈B1 R0(g(z)) < c + η. Then we can easily see
γ(t, g(z)) = g(z) for each (t, z) ∈ [0, 1]× ∂B1, which yields deg(β(γ(1, g(·))), Int(B1), 0) = 1. Moreover,
we can find R0(γ(1, g(z))) ≤ c − η for each z ∈ B1, which contradicts the definition of c. From
Proposition 2.6, we can find that this contradiction proves the existence of a nonnegative weak solution
to (2.2). By [13, Theorem 2.5], the obtained solution is positive in Ω. �
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