
This article was downloaded by: [Universita degli Studi di Torino]
On: 26 June 2014, At: 00:48
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applicable Analysis: An International
Journal
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gapa20

Soliton dynamics for fractional
Schrödinger equations
Simone Secchia & Marco Squassinab

a Dipartimento di Matematica e Applicazioni, Università di Milano
Bicocca, Edificio U5, Via Roberto Cozzi 53, 20125 Milano, Italy.
b Dipartimento di Informatica, Università degli Studi di Verona, Cá
Vignal 2, Strada Le Grazie 15, 37134 Verona, Italy.
Published online: 09 Oct 2013.

To cite this article: Simone Secchi & Marco Squassina (2014) Soliton dynamics for fractional
Schrödinger equations, Applicable Analysis: An International Journal, 93:8, 1702-1729, DOI:
10.1080/00036811.2013.844793

To link to this article:  http://dx.doi.org/10.1080/00036811.2013.844793

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

http://www.tandfonline.com/loi/gapa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00036811.2013.844793
http://dx.doi.org/10.1080/00036811.2013.844793
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Applicable Analysis, 2014
Vol. 93, No. 8, 1702–1729, http://dx.doi.org/10.1080/00036811.2013.844793

Soliton dynamics for fractional Schrödinger equations

Simone Secchia∗ and Marco Squassinab

aDipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Edificio U5,
Via Roberto Cozzi 53, 20125 Milano, Italy; bDipartimento di Informatica, Università degli Studi di

Verona, Cá Vignal 2, Strada Le Grazie 15, 37134 Verona, Italy

(Received 30 July 2013; accepted 10 September 2013)

We investigate the soliton dynamics for the fractional nonlinear Schrödinger
equation by a suitable modulational inequality. In the semiclassical limit, the
solution concentrates along a trajectory determined by a Newtonian equation
depending of the fractional diffusion parameter.
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1. Introduction

In the last years, the study of fractional integrodifferential equations applied to physics as
well as other areas has constantly grown. In [1–3], the authors investigate recent
developments in the description of anomalous diffusion via fractional dynamics, and many
fractional partial differential equations are derived asymptotically from Lévy random walk
models, extending Brownian walk models in a natural way. In particular, in [4], a fractional
Schrödinger equation was derived, extending to a Lévy framework a classical result that
path integral over Brownian trajectories leads to the standard Schrödinger equation. We also
refer the readers to [5] and to the references therein for further bibliography on the subject.
Let N ≥ 1, s ∈ (0, 1] and

0 < p <
2s

N
.

Let i be the imaginary unit and let V denote a smooth external time-independent potential.
The goal of this paper is the study of the behaviour of the solution uε : RN → C, ε > 0, to
the Schrödinger equation involving the fractional laplacian (−�)s{

iε ∂uε

∂t = ε2s

2 (−�)suε + V (x)uε − |uε|2puε in (0,∞) × RN ,

uε(0, x) = Q
(

x−x0
ε

)
e

i
ε
〈x,v0〉,

(1.1)

in the semi-classical limit ε → 0, where Q > 0 is the ground state of

1

2
(−�)s Q + Q = Q2p+1, in R

N , (1.2)
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Applicable Analysis 1703

and x0, v0 ∈ RN , are the initial position and velocity for the Newtonian type equation

ẍ = −s−1|ẋ |2−2s∇V (x), x(0) = x0, ẋ(0) = v0. (1.3)

In the limiting case s = 1, rigorous results about the soliton dynamics of Schrödinger
Equation (1.1) were obtained in various papers, among which we mention the contributions
by Bronski and Jerrard [6], Keraani [7] (see also [8–10] where a different technique is used)
via arguments based upon the conservation laws satisfied by Equation (1.1) and by the
Newtonian ODE

ẍ = −∇V (x), x(0) = x0, ẋ(0) = v0, (1.4)

combined with the modulational stability estimates due to Weinstein [11,12]. Roughly
speaking, the soliton dynamics occurs when, choosing an initial datum behaving like
Q((x − x0)/ε) the corresponding solution uε(t) mantains the shape Q((x − x(t))/ε),
up to an estimable error and locally in time, in the semi-classical transition ε → 0. For a
nice survey on solitons and their stability features, see the work by Tao [13]. Concerning
the well-posedness for these type of problems and a study of orbital stability of ground
states, we refer the reader to [14,15] for some results. On the other hand, since the local
uniqueness of solutions is currently unavailable for the pure power nonlinearity, we shall
assume Equation (1.1) be locally well-posed.

To the best of our knowledge, in the fractional case s ∈ (0, 1) neither modulational
inequalities nor a soliton dynamics behaviour have been investigated so far in the literature.
Recently, there have been many contributions concerning the properties of the solutions
to problem (1.2), with a particular emphasis on the their qualitative behaviour such as
uniqueness, regularity, decays and – more important for our goals – the nondegeneracy,
namely the linearized operator associated with (1.2) has an N -dimensional kernel which is
spanned by {∂ Q/∂x j } j=1,...,N .

For these topics and the description of the physical background, we refer the reader
to the works by Lenzmann and Frank [16] in the one-dimensional case and the work by
Lenzmann, Frank and Silvestre in the multi-dimentional setting.[17] See also the study of
standing wave solutions in [18,19], including symmetry and regularity features.

Let E : Hs(RN , C) → R be the energy functional defined by

E(u) := 1

2

∫
|(−�)

s
2 u|2 − 1

p + 1

∫
|u|2p+2

and ‖ · ‖Hs denote the Hs(RN , C)-norm. Then we have the following

Theorem 1.1 Assume that

0 < s < 1, 0 < p <
2s

N
.

There exist positive constants B, C, such that

E(φ) − E(Q) ≥ C inf
x∈RN , ϑ∈[0,2π)

‖φ − eiθ Q(· − x)‖2
Hs ,

for every φ ∈ Hs(RN , C) such that ‖φ‖2 = ‖Q‖2 and E(φ) − E(Q) ≤ B.

This inequality is the fractional counterpart of an inequality which follows as a corollary
of the results by Weinstein on Lyapunov stability for the nonlinear local Schrödinger
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1704 S. Secchi and M. Squassina

equation, see [11,12]. A corresponding inequality for the nonlinear equations with a Hartree
type nonlinearity was obtained in [20] based upon the nondegeneracy of ground states
proved in [21].

Denoting ‖ · ‖2
Hs

ε
= 1

εN−2s ‖(−�)
s
2 · ‖2

2 + 1
εN ‖ · ‖2

2, we prove the following

Theorem 1.2 Assume that V ∈ C2(RN ) and

0 < s < 1, 0 < p <
2s

N
.

Let uε(t) ∈ Hs(RN ; C) denote the unique solution to the Cauchy problem (1.1). Then,
there exists a positive constant C, independent of ε ∈ (0, 1] and s ∈ (0, 1), such that

‖(−�)
s
2 uε(t)‖2 ≤ Cε

N−2s
2 , (1.5)

for every t ≥ 0 and every ε > 0. Moreover, for any ε > 0 sufficiently small and every
s ∈ (0, 1) there exists a time T ε,s > 0 and continuous functions

θε,s : [0, T ε,s] → R, zε,s : R
N → R, E : [0, T ε,s) × (0, 1] × (0, 1) → R,

such that, uniformly on s ∈ (0, 1],
E (0, ε, s) = O(ε2)

and∥∥∥uε(t)−e
i
ε
(〈x,v(t)〉+θε,s (t))Q

( x − zε,s(t)

ε

)∥∥∥2

Hs
ε

≤ CE (t, ε, s)+O(ε2) for all t ∈ [0, T ε,s).

Here, zε,s(t) = x(t) + εẑε,s(t) for some continuous function ẑε,s : RN → R, where x(t) =
xs(t) is the solution to the Cauchy problem (1.3).

Hence, on a suitable time interval, the solution remains close to the initial profile with a
term of order O(ε2). It is expected that this qualitative behaviour be preserved throughout
the motion on finite time intervals and also that zε,s(t) can be replaced by x(t) (solving
problem (1.3)) as in the local case. On the other hand, the proof of this claim seems out of
reach because of the technical complications related to the nonlocal nature of (−�)s (see
also Remark 4.7).

Furthermore, we have the following

Theorem 1.3 Let T > 0 and assume that V = V1 + V2 with V1 ∈ C3(RN ), DαV2 ∈
C2(RN ) for every |α| = 2, V2 is bounded from below and

0 < s < 1, 0 < p <
2s

N
.

Let uε
s (t) ∈ Hs(RN ; C) denote the unique solution to the Cauchy problem (1.1). Then it

satisfies inequality (1.5). Furthermore, there exist a positive constant C and a continuous
function

A : [0, T ] × (0, 1] × (0, 1) → R,

such that
lim

s→1− A (t, ε, s) = 0, for all t ∈ [0, T ] and ε ∈ (0, 1]
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Applicable Analysis 1705

and ∥∥∥uε
s (t) − Q

( x − x(t)

ε

)
ei 〈v(t),x〉

ε

∥∥∥2

Hs
ε

≤ Cε2s + ‖uε
s (t) − uε

1(t)‖2
Hs

ε
+ A (t, ε, s),

for all t ∈ [0, T ],
where x(t) = xs(t) is the solution to (1.3).

Hence, on finite time intervals and precisely on the trajectory x(t), the closeness estimate
holds at the weaker rate ε2s and in terms of the distance between the semigroups uε

s and uε
1.

Remark 1.4 A major difficulty in our analysis is the lack of a point-wise calculus for
fractional derivatives. In particular, the fractional laplacian does not obey a point-wise
chain rule, nor a point-wise Leibniz rule for products. Only approximate versions of the
fractional chain rule hold: see for instance [22, Lemma A.10, Lemma A.11, Lemma A.12]
and the references therein. This makes the analysis hard and we can prove the closedness of
uε

s to the orbit Q((x − x(t)/ε) only when s approaches the limit value s = 1. We conjecture
that the norm ‖uε

s (t) − uε
1(t)‖Hs

ε
vanishes in the limit s → 1, but the proof seems out of

reach so far, as a regularity theory for the solutions to the fractional laplacian equation is
still missing.

Remark 1.5 If x(t) solves (1.3), then it is readily seen that the energy t �→ 1
2 |ẋ(t)|2s +

V (x(t)) is a constant of motion. The Cauchy problems (1.3) and (1.4) are different from
a dynamical viewpoint. For instance, (1.3) could fail to have uniqueness of solutions in
the case s ∈ (1/2, 1] since |ξ |2−2s∇V (x), where ξ = ẋ , could fail to be locally Lipschitz
continuous. Also, it could admit heteroclinic connections, while (1.4) does not, as easy
examples in the case N = 1 show. To compare the behaviour of systems (1.3) and (1.4) in the
physically relevant situation of harmonic potentials, let N = 2 and V (x1, x2) := 1

2 x2
1 +2x2

2 .
Then, (1.3), for s ∈ (0, 1] is ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1 = ξ1,

ẋ2 = ξ2,

ξ̇1 = −1

s
(ξ2

1 + ξ2
2 )1−s x1,

ξ̇2 = −4

s
(ξ2

1 + ξ2
2 )1−s x2,

(1.6)

with initial datum x1(0) = 1, x2(0) = a, ξ1(0) = 1 and ξ2(0) = b for some a, b > 0. See
Figures 1–3 for the solutions to (1.6) for the cases s = 1, 1/2, 1/4, respectively and data
a = 1, b = 1/2 (left) and a = 1/2, b = 1 (right). Clearly, the complexity of the solutions
increases as s gets small. For any s < 1, the system admits the stationary solutions of the
form (α, β, 0, 0) for α, β ∈ R, while for s = 1 it only admits the trivial stationary solution
(0, 0, 0, 0).

Remark 1.6 A numerical analysis of the soliton dynamics behaviour according to
Theorem 1.2 is currently under investigation and it will be the subject of a forthcoming
manuscript.
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1706 S. Secchi and M. Squassina

Figure 1. Solutions to (1.6) for s = 1 with a = 1, b = 0.5 and a = 0.5, b = 1.

Figure 2. Solutions to (1.6) for s = 0.5 with a = 1, b = 0.5 and a = 0.5, b = 1.

Figure 3. Solutions to (1.6) for s = 0.25 with a = 1, b = 0.5 and a = 0.5, b = 1.

1.1. Fractional laplacian and notations

For the reader’s convenience, we collect here some information about the fractional laplacian
(−�)s in RN . We define it as the pseudo-differential operator acting on u ∈ S (RN , C) as

(−�)su := F−1(|ξ |2sFu(ξ)
)
,
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Applicable Analysis 1707

where F stands for the usual isometric Fourier transform in L2(RN , C)

F(u)(ξ) = 1

(2π)N/2

∫
e−i〈x,ξ〉u(x) dx .

As shown in [23, Section 3], equivalent definitions are

(−�)su(x) = C(N , s) P.V .

∫
u(x) − u(y)

|x − y|N+2s
dy = C(N , s) lim

ε→0

∫
RN \B(0,ε)

u(x) − u(y)

|x − y|N+2s
dy

= −1

2
C(N , s)

∫
u(x + y) + u(x − y) − 2u(x)

|y|N+2s
dy,

where

C(N , s) =
(∫

1 − cos ζ1

|ζ |N+2s
dζ

)−1

.

Remark 1.7 In some papers, the fractional laplacian is defined without any reference to the
constant C(N , s). This is legitimate when s is kept fixed, but we will see that the behaviour
of C(N , s) as s → 1 will play a crucial rôle in Section 4.

The fractional Sobolev space Hs(RN , C) may be described as the set

Hs(RN , C) =
{

u ∈ L2(RN , C) |
∫ (

1 + 1

2
|ξ |2s

)
|Fu(ξ)|2 dξ < +∞

}
,

endowed by the norm

‖u‖2
Hs = ‖u‖2

2 + 1

2

∫
|ξ |2s |Fu(ξ)|2 dξ = ‖u‖2

2 + 1

2
‖(−�)

s
2 u‖2

2.

An identical (squared) norm is

‖u‖2
2 + C(N , s)

4

∫∫ |u(x) − u(y)|2
|x − y|N+2s

dxdy,

and, see [23, Section 3],

lim
s→0+

C(N , s)

s(1 − s)
, lim

s→1−
C(N , s)

s(1 − s)
∈ (0,+∞).

In the sequel, we will mainly work with the norm ‖u‖2
2 + 1

2‖(−�)
s
2 u‖2

2. From the previous
definitions, it follows that

∥∥√−�u
∥∥

2 = ‖∇u‖2 for any u ∈ S (RN ).

Remark 1.8 By Equations (2.8) and (2.9) in [23] and some elementary interpolation, we
also deduce that the embeddings of H s(RN , C) have constants that can be considered
as independent of s ∈ [δ, 1], δ > 0. This fact will be used several times in the sequel.
Again from [23], we have that (−�)su converges pointwise to −�u as s → 1−, for all
u ∈ C∞

c (RN ). Furthermore, for u ∈ H1(RN , C),

lim
s→1− ‖(−�)

s
2 u‖2 = ‖∇u‖2.
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1708 S. Secchi and M. Squassina

As a consequence, the fractional norms ‖u‖ remain bounded as s approaches 1 and the
Sobolev-Gagliardo-Nirenberg interpolation inequality

‖u‖2p+2 ≤ C‖u‖α
2 ‖(−�)

s
2 u‖1−α

2 , for all u ∈ Hs(RN , C), (1.7)

for a suitable α ∈ (0, 1), holds with a contant C which is independent of the choice of
s ∈ (δ, 1].

Notation

(1) The usual euclidean scalar product of RN will be denoted by 〈x, y〉 = ∑N
j=1 x j y j .

(2) The space C will be endowed with the real inner product defined by

z · w = Re(zw) = zw + zw

2
(1.8)

for every z, w ∈ C.
(3) We will denote by ‖ · ‖p the L p-norm in RN , and by ‖ · ‖Hs the Hs-norm in RN .

These norms come from the inner products

〈u, v〉2 = Re

∫
uv and 〈u, v〉Hs = 1

2
Re

∫
(−�)

s
2 u (−�)

s
2 v + Re

∫
uv,

respectively.
(4) Integrals over the whole space will be denoted by

∫
.

(5) Generic constants will be denoted by the letter C . We shall always assume that C
may vary from line to line but it is independent of s and ε unless explicitly stated.

(6) If L is a linear operator acting on some space, the notation 〈L , u〉 denotes the value
of L evaluated at u. There is no confusion with the euclidean scalar product.

(7) Cm(RN ) is the space of functions which are continuously differentiable up to the
order m. Cm(RN ) stands for the space of u ∈ Cm(RN ) with ‖u‖Cm = ∑

|α|≤m‖Dαu‖L∞ < ∞.

2. Properties of ground states

A standing wave solution of the problem⎧⎨⎩ i
∂φ

∂t
− 1

2
(−�)sφ + |φ|2pφ = 0,

φ(0, x) = φ0(x),

is a function of the form

φ(t, x) = eit u(x),

where u : RN → C solves the elliptic equation

1

2
(−�)su + u = |u|2pu. (2.1)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i T

or
in

o]
 a

t 0
0:

48
 2

6 
Ju

ne
 2

01
4 



Applicable Analysis 1709

Definition 2.1 A solution z : RN → C of (2.1) is called nondegenerate if the set of
solutions u of the linearized equation

1

2
(−�)su + u = (2p + 1)|z|2pu

is the N-dimensional subspace spanned by the partial derivatives of z.

We recall the following facts from [17,24].

Theorem 2.2 Consider Equation (2.1) for 0 < s < 1 and 0 < p < pmax(s), where

pmax(s) =
⎧⎨⎩

2s

N − 2s
if 0 < s < N/2

+∞ otherwise.

Then the following facts hold.

(i) Existence. There exists a solution Q ∈ H s(RN ) of Equation (2.1) such that Q is
radially symmetric, positive and decreasing in |x |. Moreover, Q is a ground state
solution, namely a minimizer of the functional

J s,p(u) =
(∫ |(−�)s/2u|2) pN

2s
(∫ |u|2) p

2s (2s−N )+1∫ |u|2p+2
.

(ii) Symmetry and monotonicity. If Q ∈ H s(RN ) solves (2.1) with Q ≥ 0 and Q not
identically equal to zero, then there exists x0 ∈ RN such that Q(· − x0) is radially
simmetric, positive and decreasing in |x − x0|.

(iii) Regularity and decay. If Q ∈ H s(RN ) solves (2.1), then Q ∈ H2s+1(RN ).
Moreover we have the decay estimate

|Q(x)| + |x · ∇Q(x)| ≤ C

1 + |x |N+2s

for all x ∈ R and some constant C > 0.
(iv) Nondegeneracy. Suppose Q ∈ H s(RN ) is a solution of (2.1), and consider the

linearized operator at Q

L+ = 1

2
(−�)s + 1 − (2p + 1)Q2p

acting on L2(RN ). If Q = Q(|x |) > 0 is a ground state solution of (2.1), then

ker L+ = span

{
∂ Q

∂x1
, . . . ,

∂ Q

∂xN

}
.

(v) Uniqueness. The ground state for (2.1) is unique (up to translations).
(vi) Stability. For every s0 ∈ (0, 1] and Q = Qs, we have

sup
s∈(s0,1]

‖Qs‖∞ < ∞, sup
s∈(s0,1]

‖Qs‖2 < ∞, sup
s∈(s0,1]

‖(−�)s/2 Qs‖Hs < ∞.

Remark 2.3 In the sequel, we will often write Q instead of Qs , when s is kept fixed.
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1710 S. Secchi and M. Squassina

Let us introduce some notation.

I (u) = 1

2
E(u) + 1

2
‖u‖2

2

Mγ =
{

u ∈ Hs(RN ) | ‖u‖2
2 = γ

}
KE = {

c < 0 | E(u) = 2c,∇Mγ E(u) = 0 for some u ∈ Mγ

}
K̃E = {

u ∈ Mγ | ∇Mγ E(u) = 0, E(u) < 0
}

K I = {
m ∈ R | I (u) = m and I ′(u) = 0 for some u ∈ N }

K̃ I = {
u ∈ N | I ′(u) = 0

}
,

where
N =

{
u ∈ Hs(RN ) | 〈I ′(u), u〉 = 0

}
is the Nehari manifold associated to (2.1). For future reference, we record that, for any
ξ ∈ Hs(RN , C) and any ζ ∈ Hs(RN , C) there results

〈I ′′(ξ)ζ, ζ 〉Hs = ‖ζ‖2
Hs − 2p

∫ (
|ξ |2p−2 (ξ · ζ ) ξ

)
· ζ −

∫
|ξ |2pζ · ζ, (2.2)

where we have used the notation introduced in (1.8).

Definition 2.4 In the sequel, given a function u and λ,μ ∈ R, we will write uμ,λ(x) =
μu(λx).

Lemma 2.5 Given u ∈ Hs(RN ), the following scaling relations hold true:

‖uμ,λ‖2
2 = μ2λ−N ‖u‖2

2,

‖uμ,λ‖2p+2
2p+2 = μ2p+2λ−N ‖u‖2p+2

2p+2,

‖(−�)
s
2 uμ,λ‖2

2 = μ2λ2s−N ‖(−�)
s
2 u‖2

2.

Proof The three identities follow from a direct computation. �

Lemma 2.6 Assume that

0 < s < 1, 0 < p <
2s

N
.

Then, there is a bijective correspondence between the sets K̃E and K̃ I .

Proof Let us pick v ∈ Mγ , such that 〈E ′(v), v〉 = −�γ and E(v) = 2c < 0. Then,
−�γ − 4c = 〈E ′(v)v〉 − 2E(v) = − 2p

p+1‖u‖2p+2
2p+2 < 0, and therefore � > 0. We can define

a map T μ,λ : Mγ → N by T μ,λ(v) = vμ,λ, where μ and λ are defined by the condition

λ = �− 1
2s , μ = �

− 1
2p .

It is easy to check that vμ,λ ∈ K̃ I . Viceversa, if u ∈ K̃ I , then we choose � > 0 such that

�
1
p − N

2s = γ

‖u‖2
2

, λ = �
1
2s , μ = �

1
2p , (2.3)
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Applicable Analysis 1711

so that uμ,λ ∈ Mγ and ∇Mγ E(uμ,λ) = 0. Hence
(
T μ,λ

)−1 = T 1/μ,1/λ concluding the
proof. �

Lemma 2.7 Assume that

0 < s < 1, 0 < p <
2s

N
.

Then there exists a bijective correspondence T : K I → KE defined by the formula

T (m) =
(

N

2s
− 1

p

)(
γ sp

2(p + 1)s − N p

)1+ 2sp
2s−N p

(
1

m

) 2sp
2s−N p

.

Proof Pick m ∈ K I . Then, there is some u ∈ N such that I (u) = m and I ′(u) = 0.
Therefore,

m = I (u) − 1

2p + 2
〈I ′(u), u〉 = 1

2

(
1 − 1

p + 1

)
‖u‖2

Hs > 0.

For c ∈ KE ∩R− we select v ∈ Mγ corresponding to c. In turn, there exists � > 0 such that
1
2 (−�)sv −|v|2pv = −�v. Let us set T μ,λ(v) = vμ,λ with λ = �−1/(2s) and μ = �−1/(2p).
Then, T μ,λ maps Mγ into N and vμ,λ solves 1

2 (−�)svμ,λ + vμ,λ = |vμ,λ|2pvμ,λ. The
Pohǒzaev identity yields

N − 2s

4

∫
|(−�)

s
2 vμ,λ|2 + N

2
‖vμ,λ‖2

2 = N

2p + 2
‖vμ,λ‖2p+2

2p+2.

But vμ,λ ∈ N , namely

‖vμ,λ‖2
2 + 1

2

∫
|(−�)

s
2 vμ,λ|2 =

∫
|vμ,λ|2p+2.

Hence (
N − 2s

4
− N

4p + 4

)
‖(−�)

s
2 vμ,λ‖2

2 +
(

N

2
− N

2p + 2

)
‖vμ,λ‖2

2 = 0,

and (
1

4
− 1

4p + 4

)
‖(−�)

s
2 vμ,λ‖2

2 +
(

1

2
− 1

2p + 2

)
‖vμ,λ‖2

2 = m,

where m = I (vμ,λ). After trivial manipulations, we discover that

‖(−�)
s
2 vμ,λ‖2

2 = 2Nm

s
,

‖vμ,λ‖2
2 = 2ms(p + 1) − Nmp

sp
,

‖vμ,λ‖2p+2
2p+2 = 2m(p + 1)

p
.
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1712 S. Secchi and M. Squassina

Recalling Lemma 2.5, we write the previous identities as:

μ2

λN−2s
‖(−�)

s
2 v‖2

2 = m N

s
,

μ2p+2

λN

1

2p + 2

∫
|v|2p+2 = m

p
,

μ2

λN
‖v‖2

2 = 2m(p + 1)s − m N p

sp
.

But v ∈ Mγ , and hence

γ = ‖v‖2
2 = �

1
p − N

2s
2m(p + 1)s − m N p

sp
,

and

�
2s−N p

2sp = γ sp

2m(p + 1)s − m N p
.

Since λ = �− 1
2s , μ = �

− 1
2p , we find

‖(−�)
s
2 v‖2

2 = λN−2s

μ2

2m N

s
=
(

γ sp

2(p + 1)s − N p

)1+ 2sp
2s−N p 2N

s
m− 2sp

2s−N p .

Similarly,

1

2p + 2
‖v‖2p+2

2p+2 = λN

μ2p+2

m

p
= 1

p

(
γ sp

2(p + 1)s − N p

)1+ 2sp
2s−N p

(
1

m

) 2sp
2s−N p

.

To summarize, if c < 0 is a constrained critical value of E on Mγ and m is the corresponding
critical value of I , then c is given by

c =
(

N

2s
− 1

p

)(
γ sp

2(p + 1)s − N p

)1+ 2sp
2s−N p

(
1

m

) 2sp
2s−N p

.

This concludes the proof. �

We also have the following

Corollary 2.8 Assume that

0 < s < 1, 0 < p <
2s

N
, γ0 := mN

2(p + 1)s − N p

sp
, mN := inf

u∈N
I (u). (2.4)

Then we have

mN = inf
u∈Mγ0

I (u) =: mγ0 .

Furthermore, any u0 ∈ N with I (u0) = mN satisfies ‖u0‖2
2 = γ0 and E(u0) = inf u∈Mγ0E(u).
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Applicable Analysis 1713

Proof Observe that, taking into account the monotonocity of T , we obtain

mγ0 = inf
u∈Mγ0

1

2
E(u) + γ0

2
= T (mN ) + γ0

2

=
( N

2s
− 1

p

)( γ0sp

2(p + 1)s − N p

)1+ 2sp
2s−N p

( 1

mN

) 2sp
2s−N p + γ0

2
= mN ,

after a few computations and by the value of γ0. This concludes the proof of the first
assertion. Now, given u0 ∈ N with I (u0) = mN , by repeating the argument in the proof of
Lemma 2.7 (namely by combining the energy, the Pohozaev and the Nehari identities) and
by the definition of γ0 we get ‖u0‖2

2 = γ0 (notice that, from (2.3), it holds � = 1 = λ = μ,
i.e. T μ,λ = T 1/μ,1/λ = Id). The last assertion then follows immediately from mN =
mγ0 . �

Corollary 2.9 Let Q > 0 be the unique ground state solution to problem (1.2) and let
s, p and γ0 be as in (2.4). Then, we have

E(Q) = min{E(q) : q ∈ Hs(RN , C), ‖q‖2 = γ0 = ‖Q‖2}, (2.5)

and min{E(q) : q ∈ Hs(RN , C), ‖q‖2 = ‖Q‖2} admits a unique solution.

Proof The assertion follows by Corollary 2.8 and by the uniqueness of ground state
solutions. �

3. Spectral analysis of linearization

In this section, we perform a spectral analysis of the linearized operator at a nondegenerate
ground state Q

L+ = 1

2
(−�)s + 1 − (2p + 1)Q2p

acting on L2(RN , C). Let us introduce the closed subspaces of H s(RN , C)

V =
{

u ∈ Hs(RN , C) | 〈u, Q〉2 = 0
}

V0 =
{

u ∈ Hs(RN , C) | 〈u, Q〉2 =
〈
u, H(Q)

∂ Q

∂x j

〉
2

= 0, j = 1, 2, . . . , N

}
,

where H(Q) = (2p + 1)Q2p.

Lemma 3.1 Assume that

0 < s < 1, 0 < p <
2s

N
and define

α = inf {〈L+(u), u〉 | u ∈ V0, ‖u‖2 = 1} .

Then α > 0.

Proof Firstly, we claim that α ≥ 0. Indeed, ∂ Q/∂x j ∈ V for each j = 1, . . . , N , and

〈L+(∂ Q/∂x j ), ∂ Q/∂x j 〉 = 0.
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1714 S. Secchi and M. Squassina

In addition, since (see Corollary 2.8) Q minimizes E(u) over the constraint M = {u ∈
Hs(RN , C) | ‖u‖2 = ‖Q‖2}, it follows that Q also minimizes 2I (u) = E(u) + ‖u‖2

2 over
the same constraint. In particular, Q is a constrained critical point of I , and a direct com-
putation shows that the second derivative I ′′(Q) is positive semi-definite on V . Therefore,

inf {〈L+(u), u〉 | u ∈ V} = 0. (3.1)

Since

α ≥ inf {〈L+(u), u〉 | u ∈ V} ,

the claim is proved. We assume now, for the sake of contradiction, that α = 0. Pick any
minimizing sequence {un}n for α, so that ‖un‖2 = 1 for every n ∈ N, un ∈ V0 and
〈L+(un), un〉 = o(1) as n → ∞. On the other hand,

〈L+(un), un〉 = 1

2

∫
|(−�)

s
2 un|2 +

∫
|un|2 − (2p + 1)

∫
Q2p|un|2,

and hence∫
RN

|(−�)
s
2 un|2 ≤ C

(
o(1) + (2p + 1)

∫
Q2p|un|2

)
≤ C + C

∫
|un|2 ≤ C.

The sequence {un}n being bounded in Hs(RN , C), we can assume without loss of generality
that un ⇀ u in Hs(RN , C), and u ∈ V0 because V0 is weakly closed.

Notice that the operator {u �→ H(Q)u} is a multiplication operator by the function Q2p

which tends to zero at infinity. Given ρ > 0, let us write

χρ(x) =
{

1 if |x | ≤ ρ

0 if |x | > ρ.

It follows that∫
Q2p|u|2 − ∣∣χρ Q

∣∣2p |u|2 =
∫

RN \B(0,ρ)

Q2p|u|2 ≤ sup
x∈RN \B(0,ρ)

Q(x)2p
∫

|u|2.

Then, the compact embedding of Hs(B(0, ρ)) into L2(B(0, ρ)) yields the compactness
of the multiplication operator H(Q) (see also [25, Theorem 10.20]) and the convergence
〈un, H(Q)un〉2 = 〈u, H(Q)u〉2 + o(1). As a consequence,

0 ≤ 〈L+(u), u〉 ≤ lim inf
n→+∞

(
‖un‖2

Hs − 〈un, H(Q)un〉2

)
= lim

n→+∞〈L+(un), un〉 = 0,

forcing 〈L+(u), u〉 = 0 and 〈L+(un), un〉 = 〈L+(u), u〉 + o(1). By lower semicontinuity,
we get

‖u‖2
Hs ≤ lim inf

n→+∞ ‖un‖2
Hs ≤ lim sup

n→+∞
‖un‖2

Hs = lim
n→+∞〈L+(un), un〉 + 〈un, H(Q)un〉2

= 〈L+(u), u〉 + 〈u, H(Q)u〉2 = ‖u‖2
Hs .

So far we have proved that un → u strongly in Hs(RN , C) and that u is a minimizer for
α. From now on, for ease of notation, we assume that N = 1; the general case is similar,
but we need to replace Q′ with either any partial derivative or with the gradient of Q in
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Applicable Analysis 1715

the following arguments. Hence, the assumption reads as p < 2s. Let λ, μ and γ be the
Lagrange multipliers associated to u, so that, for all v ∈ H s(RN , C),

〈L+u, v〉 = λ〈u, v〉2 + μ〈Q, v〉2 + γ 〈H(Q)Q′, v〉2.

Choosing v = u ∈ V0 immediately yields λ = 0. Instead, choosing v = Q′ and recalling
also that Q ⊥ Q′ in L2(RN , C), we find

0 = 〈L+u, Q′〉 = μ〈Q, Q′〉2 + γ 〈H(Q)Q′, Q′〉2 = γ 〈H(Q)Q′, Q′〉2.

Now,

〈H(Q)Q′, Q′〉2 = (2p + 1)

∫
Q2p|Q′|2 > 0,

and this yields γ = 0. Hence, L+u = μQ. To proceed further, we compute

L+(x Q′) = 1

2
(−�)s(x Q′) + x Q′ − (2p + 1)Q2p(x Q′)

and we use the commutator identity (see [26, Remark 2.2] or [16, Lemma 5.1])

(−�)s(x · ∇u) = 2s(−�)su + x · ∇(−�)su

with u = Q, which implies

(−�)s(x Q′) − x(−�)s Q′ = 2s(−�)s Q.

But 1
2 (−�)s Q′ + Q′ − (2p + 1)Q2p Q′ = 0 and hence

L+(x Q′) = s(−�)s Q. (3.2)

Similarly,

L+
( s

p
Q
)

= 1

2
(−�)s s

p
Q + s

p
Q − (2p + 1)Q2p s

p
Q = s

p

(
−2pQ2p Q

)
= −2s Q2p+1.

(3.3)
Putting together (3.2) and (3.3) we see that

L+
(

x Q′ + s

p
Q
)

= −2s Q.

As a consequence,
L+u = μQ = L+

(
− μ

2s

(
x Q′ + s

p
Q
))

.

But Q is a nondegenerate ground state, namely ker L+ = span{Q′}, and there is ϑ ∈ R

with
u + μ

2s

(
x Q′ + s

p
Q
)

= ϑ Q′.

We claim that ϑ = 0. Indeed,

u = − μ

2s

(
x Q′ + s

p
Q
)

+ ϑ Q′,

and multiplying by (2p + 1)Q2p we get

(2p + 1)Q2pu = − μ

2s
(2p + 1)Q2px Q′ − μ

2p
(2p + 1)Q2p + (2p + 1)ϑ Q2p Q′.
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1716 S. Secchi and M. Squassina

Since u ∈ V0,

〈(2p + 1)Q2pu, Q′〉2 = 〈u, (2p + 1)Q2p Q′〉2 = 0.

Since Q is an even function, Q′ is an odd function, and this implies

〈H(Q)Q, Q′〉2 = (2p + 1)

∫
Q2p+1 Q′ = 0

〈H(Q)Q′, Q′〉2 = (2p + 1)

∫
Q2px(Q′)2 = 0.

On the other hand,

〈H(Q)ϑ Q′, Q′〉2 = (2p + 1)ϑ

∫
Q2p(Q′)2 > 0,

and we conclude that ϑ = 0. Hence,

u = − μ

2s

(
x Q′ + s

p
Q
)

and

0 =
∫

uQ = − μ

2s

∫
x Q Q′ − μ

2p

∫
Q2.

It is readily seen that μ �= 0. Moreover, an integration by parts shows that∫
x Q Q′ = −1

2

∫
Q2

and thus ( 1

2p
− 1

4s

) ∫
Q2 = 0.

Since p < 2s, we deduce Q = 0, which is clearly impossible. The proof is complete. �

Remark 3.2 Actually the previous proof yields a positive constant α0 such that

〈L+(v), v〉 ≥ α0‖v‖2
2 for every v ∈ V0.

Hence, V0 becomes a complete normed space with respect to the norm v �→ √〈L+v, v〉.
Now the Closed Graph Theorem tells us that, for a suitable α > 0,

〈L+(v), v〉 ≥ α‖v‖2
Hs for every v ∈ V0. (3.4)

Lemma 3.3 Suppose φ ∈ L2(RN , C) satisfies ‖φ‖2 = ‖Q‖2. Then

〈Q,Re(φ − Q)〉2 = −1

2

(
‖Re(φ − Q)‖2

2 + ‖Im(φ − Q)‖2
2

)
= −1

2
‖φ − Q‖2

2. (3.5)

Proof It follows from a direct computation and the fact that Q is real valued. �

Proposition 3.4 Assume

0 < s < 1, 1 < p <
2s

N
.
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Applicable Analysis 1717

Let us take φ as in (3.5), such that〈
Re(φ − Q), H(Q)

∂ Q

∂x j

〉
2

= 0 for j = 1, 2, . . . , N . (3.6)

Then

〈L+(Re(φ − Q)),Re(φ − Q)〉 ≥ C‖Re(φ − Q)‖2
Hs − C1‖φ − Q‖4

Hs − C2‖φ − Q‖3
Hs

(3.7)
for suitable constants C, C1, C2 > 0.

Proof It is not restrictive to fix ‖Q‖2 = 1. We decompose U = Re(φ − Q) as U =
U‖ + U⊥, where U‖ = 〈U, Q〉2 Q. By formula (3.5), we get

‖(−�)
s
2 U‖2

2 ≤ 2‖(−�)
s
2 U‖‖2

2 + 2‖(−�)
s
2 U⊥‖2

2

= 1

2
‖φ − U‖4

2‖(−�)
s
2 Q‖2

2 + 2‖(−�)
s
2 U⊥‖2

2,

so that

‖(−�)
s
2 U⊥‖2

2 ≥ 1

2
‖(−�)

s
2 U‖2

2 − 1

4
‖φ − Q‖4

2‖(−�)
s
2 Q‖2

2. (3.8)

The symmetry of L+ implies

〈L+U, U 〉 = 〈L+U‖, U‖〉 + 2〈L+U⊥, U‖〉 + 〈L+U⊥, U⊥〉. (3.9)

But 〈U‖, H(Q)∂ Q/∂x j 〉2 = 0, hence also 〈U⊥, H(Q)∂ Q/∂x j 〉2 = 0 by (3.6). As a
consequence, U⊥ ∈ V0. We deduce from (3.4), (3.5) and (3.8) that

〈L+U⊥, U⊥〉 ≥ C
(
‖U‖2

Hs − ‖φ − Q‖4
2

)
(3.10)

Again, from (3.5), we get

〈L+U⊥, U‖〉 = 〈Q, U 〉2〈L+U⊥, Q〉 = −1

2
‖φ − Q‖2

2〈U⊥, L+Q〉

= p

2
‖φ − Q‖2

2

(
Re

∫
(−�)s/2U (−�)s/2 Q − 〈U, Q〉2‖(−�)s/2 Q‖2

2

)
≥ − p

2
‖φ − Q‖2

2‖(−�)s/2(φ − Q)‖2‖(−�)s/2 Q‖2 ≥ −C‖φ − Q‖3
Hs .

(3.11)

Finally, we get

〈L+U‖, U‖〉 = 〈U, Q〉2
2〈L+Q, Q〉 = 1

4
‖φ − Q‖4

2〈L+Q, Q〉 = − p

2
‖Q‖2

Hs ‖φ − Q‖4
2.

(3.12)
Putting together (3.9)–(3.12), we complete the proof. �

Let us denote by L− the imaginary part of the linearized operator at Q, namely

L− = 1

2
(−�)s + 1 − Q2p.
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1718 S. Secchi and M. Squassina

Proposition 3.5 There results

inf
v �=0

〈v,Q〉Hs =0

〈L−v, v〉
‖v‖2

Hs

> 0.

Proof It suffices to prove that

inf
v �=0

〈v,Q〉Hs =0

〈L−v, v〉
‖v‖2

2

> 0. (3.13)

First of all, let us recall that lim|x |→+∞ Q(x) = 0. Since, as claimed in [16, Section 3.2],

σess

(
1

2
(−�)s + 1

)
= [1,+∞)

and since the multiplication operator by Q2p is compact, we deduce that

σess (L−) = [1,+∞)

It now follows that L− has a discrete spectrum over (−∞, 1) which consists of eigenvalues
of finite multiplicity. Of course Q ∈ ker L−, so that 0 is an eigenvalue of L− and Q is
an associated eigenfunction. But Q never changes sign, and we deduce from the proof of
Lemma 8.2 in [17] that 0 is the smallest eigenvalue of L−. In particular, L− is a nonnegative
operator. Once it is proved [17] that the heat semigroup Hs(t) = exp{−t (−�)s} is positivity
preserving, namely its kernel is a positive function, standard arguments (see [27, Section
10.5] or [25, Theorems 10.32 and 10.33]) show now that this eigenvalue is simple. Therefore,
ker L− = span Q. Let us set

ω = inf {〈L−v, v〉 | ‖v‖2 = 1, 〈v, Q〉Hs = 0} ,

and assume for the sake of contradiction that ω = 0. If {vn}n is a minimizing sequence for
ω, it follows from the regularity properties of Q that {vn}n is bounded in Hs(R, C), and
we can assume without loss of generality that this sequence converges weakly to some v;
as a consequence, 〈v, Q〉Hs = 0. Again, the compactness of the multiplication operator by
Q2p entails

0 ≤ 〈L−v, v〉 ≤ lim inf
n→+∞

(
‖vn‖2

Hs −
∫

Q2pv2
n

)
= lim

n→+∞〈L−vn, vn〉 = 0,

and thus 〈L−v, v〉 = 0. But then

‖v‖2
Hs ≤ lim inf

n→+∞ ‖vn‖2
Hs ≤ lim sup

n→+∞
‖vn‖2

Hs = lim
n→+∞

(
〈L−vn, vn〉 +

∫
Q2pv2

n

)
= 〈L−v, v〉 +

∫
Q2pv2 ≤ ‖v‖2

Hs .

We have proved that vn → v strongly, and that v solves the minimization problem for ω.
Therefore, λ and μ being two Lagrange multipliers, we have that

〈L−v, η〉 = λ〈v, η〉2 + μ〈Q, η〉Hs ,

for every η ∈ Hs(R, C). Choosing η = v yields λ = 0; choosing η = Q and recalling
that L−Q = 0 yields 0 = 〈v, L−Q〉 = 〈L−v, Q〉 = μ‖Q‖2

Hs . Hence μ = 0, and we
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Applicable Analysis 1719

conclude that L−v = 0. Since we know that ker L− = span Q, for some θ ∈ R we must
have v = θ Q. But then 0 = θ‖Q‖2

Hs , a contradiction. This shows that ω > 0, namely the
validity of (3.13). �

Lemma 3.6 Fix φ ∈ Hs(RN , C) such that ‖φ‖2 = ‖Q‖2 and

inf
x∈RN

ϑ∈[0,2π)

‖φ − eiϑ Q(· − x)‖Hs ≤ ‖Q‖Hs . (3.14)

Then
inf

x∈RN

ϑ∈[0,2π)

‖φ − eiϑ Q(· − x)‖2
Hs , (3.15)

is achieved at some x0 ∈ RN and ϑ0 ∈ [0, 2π). Moreover, writing φ(·+ x0)e−iϑ0 = Q +W
where W = U + iV , we have the relations, for j = 1, 2, . . . , N:〈

U, H(Q)
∂ Q

∂x j

〉
2

= 0 and 〈V, Q〉Hs = 0. (3.16)

Proof The variable ϑ ∈ [0, 2π) is clearly harmless, since eiϑ describes the compact circle
S1 ⊂ C. We can therefore assume that ϑ = 0. Consider the auxiliary function n : RN → R

defined by setting n(x) = ‖φ − Q(· − x)‖2
Hs . Plainly, n is a continuous function, and

n(x) = 2‖Q‖2
2 + ‖(−�)

s
2 Q‖2

2 + ‖(−�)
s
2 φ‖2

2

− 2Re

∫
RN

φ(y)Q(y − x) dy − Re

∫
(−�)

s
2 φ(y)(−�)

s
2 Q(y) dy

because ‖φ‖2 = ‖Q‖2. Since both Q(·−x) and (−�)
s
2 Q(·−x) decay to zero as |x | → +∞

(thanks to Theorem 2.2 and using the equation satisfied by Q), we deduce that they also
converge weakly to zero as |x | → +∞. It easily follows that

lim|x |→+∞ n(x) = 2‖Q‖2
2 + ‖(−�)

s
2 Q‖2

2 + ‖(−�)
s
2 φ‖2

2 > ‖Q‖2
Hs .

On the other hand, assumption (3.14) entails that, for every δ > 0, there exists a point
xδ ∈ R with n(xδ) ≤ ‖Q‖2

Hs + δ. As a consequence, the function n attains its infimum on
some ball B(0, R), for a suitable R > 0, and the proof is complete. Finally, we compute
the Euler-Lagrange equations associated to the variational problem (3.15) by differentiating
with respect to θ and to x j :〈

φ − eiϑ0 Q(· − x0),−ieiϑ0 Q(· − x0)
〉

Hs
= 0 (3.17)〈

φ − eiϑ0 Q(· − x0),−eiϑ0
∂ Q

∂x j
(· − x0)

〉
Hs

= 0. (3.18)

Equation (3.17) yields

Re

∫ (
φ − eiϑ0 Q(· − x0)

)
−ieiϑ0 Q(· − x0)

+ 1

2
Re

∫
(−�)

s
2

(
φ − eiϑ0 Q(· − x0)

)
(−�)

s
s
(−ieiϑ0 Q(· − x0)

) = 0,
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1720 S. Secchi and M. Squassina

namely∫
Q(· − x0)Im

(
φe−iϑ0

)
+ 1

2

∫
(−�)

s
2 Q(· − x0)Im

(
(−�)

s
2

(
e−iϑ0φ

))
= 0

or 〈Q, V 〉Hs = 0. Similarly, Equation (3.18) yields

Re

∫ (
φ − eiϑ0 Q(· − x0)

)
−eiϑ0

∂ Q

∂x j
(· − x0)

+ 1

2
Re

∫
(−�)

s
2

(
φ − eiϑ0 Q(· − x0)

)
(−�)

s
2

(
−eiϑ0

∂ Q

∂x j
(· − x0)

)
= 0,

or∫
U

∂ Q

∂x j
+
∫

Q
∂ Q

∂x j
+ 1

2

∫
(−�)

s
2 U (−�)

s
2
∂ Q

∂x j
+ 1

2

∫
(−�)

s
2 Q (−�)

s
2
∂ Q

∂x j
= 0.

Since ∫
Q

∂ Q

∂x j
= 0 =

∫
(−�)

s
2 Q (−�)

s
2
∂ Q

∂x j
,

and using the fact that

1

2
(−�)s ∂ Q

∂x j
+ ∂ Q

∂x j
= H(Q)

∂ Q

∂x j
,

we finally deduce
〈
U, H(Q)

∂ Q
∂x j

〉
2

= 0. �

Lemma 3.7 If p ∈ (0, 1), there exists a constant C > 0 such that∣∣∣|z|p−1z − |w|p−1w

∣∣∣ ≤ C |z − p|p, for every z, w ∈ C.

Proof Let z, w ∈ C be given and let ϑ ∈ [0, 2π) be the angle between them. Without loss
of generality, we may assume that t = |z|/|w| > 1. Since we have∣∣|z|p−1z − |w|p−1w

∣∣
|z − w|p

≤ sup
t∈[1,∞)
ϑ∈[0,2π)

(t2p + 1 − 2t p cos ϑ)1/2(
t2 + 1 − 2t cos ϑ

)p/2
< +∞,

the assertion follows. �

Proposition 3.8 Let �(u) = ∫ |u|2p+2. Then � is of class C2 on Hs(RN , C) for
0 < p < 2s

N .

Proof Since � ′′ is a symmetric bilinear form on the real Hilbert space H s(RN , C), its
norm as a bilinear form equals the norm of its associated quadratic form, see for example
[28, Lemma 2.1, p.173]; therefore we prove that

lim
v→u

sup
h �=0

� ′′(u)(h, h) − � ′′(v)(h, h)

‖h‖2
Hs

= 0.
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Applicable Analysis 1721

From (2.2) we know that � ′′(u) splits into two terms (we drop some multiplicative
constants),

� ′′
1 (u)(h, h) :=

∫
|u|2phh and � ′′

2 (u)(h, h) :=
∫

|u|2p−2(Re(uh))2, h ∈ Hs(RN , C),

which we shall treat separately. Let {un}n ⊂ Hs(RN , C) be such that un → u strongly as
n → ∞. Then, in the case 2p ≤ 1, by the Hölderianity of the map s �→ s2p we obtain that

|� ′′
1 (un)(h, h) − � ′′

1 (u)(h, h)| ≤ C
∫

‖un|2p − |u|2p‖h|2 ≤ C
∫

|un − u|2p|h|2.

By applying the Hölder inequality with admissible exponents (q, r), respectively,

q := N

p(N − 2s)
> 1, r := N

2ps + (1 − p)N
∈
(

1,
N

N − 2s

)
,

it follows for every h ∈ Hs(RN , C) with ‖h‖Hs ≤ 1

|� ′′
1 (un)(h, h) − � ′′

1 (u)(h, h)| ≤ C‖un − u‖2p
2N

N−2s
‖h‖2

2r ≤ C‖un − u‖2p
2N

N−2s
,

since ‖h‖2r ≤ C‖h‖Hs ≤ C , concluding the proof for � ′′
1 . The opposite case 2p > 1 can

be treated similarly. Let us now come to the treatment of � ′′
2 . We notice that, for p < 1, we

get ∣∣∣|un|2p−2(Re(unh))2 − |u|2p−2(Re(uh))2
∣∣∣

≤ 2|h| max
{|un|p, |u|p} ∣∣∣|un|p−1Re(unh) − |u|p−1Re(uh)

∣∣∣
≤ C max

{|un|p, |u|p} |un − u|p|h|2,
where we used Lemma 3.7. Now we can proceed as before and conclude the proof. �

3.1. Proof of Theorem 1.1

We consider the action I (φ) = 1
2E (φ) + 1

2‖φ‖2
2 and we control the norm of w in terms of

the difference I (φ) − I (Q). Using the scale invariance of I , recalling that 〈I ′(Q), w〉 =
0, the orthogonality conditions (3.16), Propositions 3.5 and 3.5, and taking into account
Proposition 3.8, by virtue of Taylor formula, we have

I (φ) − I (Q) = I (Q + w) − I (Q) = 〈I ′(Q), w〉 + 1

2
〈I ′′(Q)w,w〉 + o(‖w‖2

Hs )

= 1

2
〈L+u, u〉 + 1

2
〈L−v, v〉 + o(‖w‖2

Hs )

≥ C‖u‖2
Hs + C‖v‖2

Hs + o(‖w‖2
Hs ) = C‖w‖2

Hs + o(‖w‖2
Hs ).

To complete the proof of Theorem 1.1, we observe that for every ε > 0 there exists δ > 0,
such that if φ ∈ Hs(RN , C), ‖φ‖2 = ‖Q‖2 and E(φ) − E(Q) < δ, then

inf
x∈RN , ϑ∈[0,2π)

‖φ − eiϑ Q(· − x)‖Hs < ε.
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1722 S. Secchi and M. Squassina

Then, choosing E(φ) − E(Q) small enough, Theorem 1.1 follows. By the uniqueness of
solutions to min{E(q) : q ∈ H s(RN , C), ‖q‖2 = ‖Q‖2} (see Corollary 2.9) the above
implication follows by Lions’ concentration compactness principle as in [29]. �

4. Dynamics of the ground state

We first recall the following (cf. [24, Lemma 2.4]).

Lemma 4.1 Let s, σ̄ ∈ (0, 1] and δ > 2|σ̄ − s|. Then, for any ϕ ∈ H 2(σ̄+δ)(RN ),∥∥∥(−�)σ̄ ϕ − (−�)sϕ

∥∥∥
2

≤ C(σ̄ , δ)|σ̄ − s| ‖ϕ‖H2(σ̄+δ) ,

for a suitable C(σ̄ , δ) > 0 of the form C(σ̄ , δ) = C1
σ̄

+ C2
δ

with C1, C2 independent of σ̄ , δ.

Let now uε be a solution of the Cauchy problem (1.1). The energy is defined as

Eε(t) = 1

2εN−2s

∫
|(−�)

s
2 uε(t, x)|2 + 1

εN

∫
V (x)|uε(t, x)|2

− 1

(p + 1)εN

∫
|uε(t, x)|2p+2,

and Eε(t) = Eε(0) for every t ≥ 0. Moreover, the mass conservation reads as

1

εN

∫
|uε(t, x)|2 = ‖Q‖2

2 =: m, t ≥ 0, ε > 0.

Let us set

Js := −C(N , s)
∫∫

Q (x) (Q (x) − Q (x − z))(1 − cos〈z, v0〉)
|z|N+2s

dxdz,

and define

H(t) := 1

2
m|v(t)|2s + mV (x(t)), t ≥ 0.

Then, we have the following

Lemma 4.2 For t ∈ [0,∞) and ε > 0 we have

Eε(t) = E(Q) + H(t) + O(ε2) + 1

2
Js .

Moreover, Js = O(1 − s).

Proof Assuming x0 = 0 for simplicity, we observe that

1

εN−2s

∫∫ ∣∣Q ( x
ε

)
e

i
ε
〈x,v0〉 − Q

( y
ε

)
e

i
ε
〈y,v0〉∣∣2

|x − y|N+2s
dxdy

=
∫∫ ∣∣Q (x) ei〈x,v0〉 − Q (y) ei〈y,v0〉∣∣2

|x − y|N+2s
dxdy.
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Applicable Analysis 1723

Recalling the identity [23, formula (3.12)]∫
1 − cos〈z, v0〉

|z|N+2s
dz = |v0|2s

C(N , s)
, (4.1)

we obtain, on account of [23, Proposition 3.4], the following conclusion∫∫ ∣∣Q (x) ei〈x,v0〉 − Q (y) ei〈y,v0〉∣∣2
|x − y|N+2s

dxdy

=
∫∫ ∣∣Q (x) ei〈x,v0〉 − Q(x)ei〈y,v0〉 + Q(x)ei〈y,v0〉 − Q (y) ei〈y,v0〉∣∣2

|x − y|N+2s
dxdy

=
∫∫ |Q(x) − Q(y)|2

|x − y|N+2s
dx dy +

∫∫ |Q(x)|2 ∣∣ei〈x,v0〉 − ei〈y,v0〉∣∣2
|x − y|N+2s

dxdy + 2

C(N , s)
Js

= 2

C(N , s)
‖(−�)

s
2 Q‖2

2 + 2
∫∫ |Q(x)|2 (1 − cos〈x − y, v0〉)

|x − y|N+2s
dxdy + 2

C(N , s)
Js

= 2

C(N , s)
‖(−�)

s
2 Q‖2

2 + 2
∫∫ |Q(x)|2 (1 − cos〈z, v0〉)

|z|N+2s
dxdz + 2

C(N , s)
Js

= 2

C(N , s)
‖(−�)

s
2 Q‖2

2 + 2
∫

|Q(x)|2 |v0|2s

C(N , s)
+ 2

C(N , s)
Js

= 2

C(N , s)

(‖(−�)
s
2 Q‖2

2 + |v0|2s‖Q‖2
2 + Js

)
.

Therefore,

‖(−�)
s
2
(
Q (·) ei〈·,v0〉)‖2

2 = ‖(−�)
s
2 Q‖2

2 + |v0|2s‖Q‖2
2 + Js . (4.2)

We know from a direct elementary computation (since ‖(−�)1/2ϕ‖2 = ‖∇ϕ‖2) that∥∥(−�)1/2(Q (·) ei〈·,v0〉)∥∥2
2 = ‖(−�)1/2 Q‖2

2 + |v0|2‖Q‖2
2. (4.3)

From Lemma 4.1, we learn that

‖(−�)
s
2
(
Q (·) ei〈·,v0〉)‖2

2 = ∥∥(−�)1/2(Q (·) ei〈·,v0〉)∥∥2
2 + O((1 − s)2),

‖(−�)
s
2 Q‖2

2 = ‖(−�)1/2 Q‖2
2 + O((1 − s)2),

Taking into account that |v0|2s − |v0|2 = O(1 − s), it follows by comparing (4.2) and (4.3)
that Js = O(1 − s). Hence, by energy conservation, we conclude that

Eε(t) = Eε(0) = 1

2
‖(−�)

s
2 Q‖2

2 + 1

2
|v0|2s‖Q‖2

2 +
∫

V (εx)|Q(x)|2

− 1

p + 1

∫
|Q|2p+2 + 1

2
Js

= E(Q) + 1

2
m|v0|2s + mV (0) − mV (0) +

∫
V (εx)|Q(x)|2 + 1

2
Js

= E(Q) + H(t) +
∫

V (εx)|Q(x)|2 dx − mV (0) + 1

2
Js .

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i T

or
in

o]
 a

t 0
0:

48
 2

6 
Ju

ne
 2

01
4 



1724 S. Secchi and M. Squassina

It is readily checked that H is conserved along the trajectory x(t), in light of Equation (1.3).
Since the Hessian ∇2V is bounded and, by the radial symmetry of Q,∫

〈x,∇V (0)〉|Q(x)|2 = 0,

we conclude that
∫

V (εx)|Q(x)|2 − mV (0) = O(ε2). This ends the proof. �

Remark 4.3 Unlike the local case s = 1, in the cases s ∈ (0, 1) we cannot expect a precise
conclusion as Eε(t) = E(r) + H(t) + O(ε2). Indeed, the fractional Laplacian does not
obey a Leibniz rule for differentiating products.

For the fractional norms of uε, we have the following

Lemma 4.4 There exists a constant C > 0 such that

‖(−�)
s
2 uε(t)‖2 ≤ Cε

N−2s
2 ,

for every t ≥ 0 and every ε > 0.

Proof Since V is bounded from below and Eε(t) is uniformly bounded with respect to
t ≥ 0, ε > 0 and s ∈ (0, 1] by Lemma 4.2, we deduce that, for all t ≥ 0,

‖(−�)
s
2 uε(t)‖2

2 ≤ CεN−2s + Cε−2s
∫

|uε(t)|2p+2

≤ C
(
εN−2s + ε−2s‖uε(t)‖2p+2− N p

s
2 ‖(−�)

s
2 uε(t)‖

N p
s

2

)
. (4.4)

Here we have used the Sobolev-Gagliardo-Nirenberg inequality (1.7) with exponent

α := 2s(p + 1) − N p

2s(p + 1)
∈ (0, 1).

Recalling that ‖uε(t)‖2 = √
mεN/2 by the conservation of the mass, we can write (4.4) as

‖(−�)
s
2 uε(t)‖2

2 ≤ C
(
εN−2s + ε−2sε

N
2

(
2p+2− N p

s

)
‖(−�)

s
2 uε(t)‖

N p
s

2

)
. (4.5)

Now, setting for simplicity N = N (ε) = ‖(−�)
s
2 uε(t)‖2 > 0, (4.5) becomes

N 2 ≤ C

(
εN−2s + ε−2sε

N
2

(
2p+2− N p

s

)
N

N p
s

)
.

We claim that N ≤ Cε
N−2s

2 . Indeed, we rescale N = ε
N−2s

2 Z and deduce that

Z 2 ≤ C(1 + Z
N p
s ).

Since N p < 2s by assumption, we are lead to Z ≤ C and the proof is complete. �

Define now

�ε(t, x) := exp
(

− i

ε
〈εx + x(t), v(t)〉

)
uε(εx + x(t)), x ∈ R

N , t ≥ 0,
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Applicable Analysis 1725

where (x(t), v(t)) is the solution to problem (1.3). Notice that the exponential function is a
globally Lipschitz continuous complex valued function with modulus equal to one. Then,
by a variant of [23, Lemma 5.3], it follows that �ε(t, ·) ∈ Hs(RN , C) for any t ≥ 0 and
ε > 0.

We have the following

Lemma 4.5 Let

M(t, ε, s)

:= C(N , s)
∫∫

Re

[
uε(t, εx + x(t))

[
uε(t, εx + x(t)) − uε(t, εy + x(t))

]
× e−i〈x−y,v(t)〉 − 1

|x − y|N+2s

]
dxdy.

Then we have

E(�ε(t)) = 1

2
m|v(t)|2s + M(t, ε, s)

2
− 1

εN

∫
V (x)|uε(t, x)|2 + Eε(t),

for every t ≥ 0 and every ε > 0.

Proof Proceeding as in the proof of Lemma 4.2, we compute∫
|(−�)

s
2 �ε(t)|2 = C(N , s)

2

∫∫ |�ε(t, x) − �ε(t, y)|2
|x − y|N+2s

dxdy

= I1(t, ε, s) + I2(t, ε, s) + M(t, ε, s),

where we have set

I1(t, ε, s) := C(N , s)

2

∫∫ |uε(t, εx + x(t)) − uε(t, εy + x(t))|2
|x − y|N+2s

dxdy

I2(t, ε, s) := C(N , s)

2

∫∫ ∣∣uε(t, εx + x(t))
∣∣2 ∣∣e i

ε
〈εx+x(t),v(t)〉 − e

i
ε
〈εy+x(t),v(t)〉∣∣2

|x − y|N+2s
dxdy.

By changing variables, and recalling again (4.1), it readily follows that

I1(t, ε, s) = ε2s−N ‖(−�)
s
2 uε(t)‖2

2,

I2(t, ε, s) = ε−N |v(t)|2s
∥∥uε(t)

∥∥2
2 = m|v(t)|2s

M(t, ε, s) = C(N , s)ε2s−N
∫∫

Re

[
uε(t, x)

[
uε(t, x) − uε(t, y)

]e− i
ε
〈x−y,v(t)〉 − 1

|x − y|N+2s

]
dxdy.

It follows that

E(�ε(t)) = 1

2

∫
|(−�)

s
2 �ε(t)|2 − 1

p + 1

∫
|�ε(t)|2p+2

= 1

2

1

εN−2s

∥∥∥(−�)
s
2 uε(t)

∥∥∥2

2
+ 1

2
m|v(t)|2s − 1

(p + 1)εN
‖uε(t, x)‖2p+2

2p+2 + M(t, ε, s)

2

= 1

2
m|v(t)|2s + M(t, ε, s)

2
− 1

εN

∫
V (x)|uε(t, x)|2 + Eε(t),

concluding the proof. �
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1726 S. Secchi and M. Squassina

Finally, we have the following

Corollary 4.6 There holds

E(�ε(t)) − E(Q) = E (t, ε, s) + O(ε2),

where E (t, ε, s) = E1(t, ε, s) + E2(t, ε, s) and

E1(t, ε, s) := m|v(t)|2s + M(t, ε, s) + Js

2
,

E2(t, ε, s) := mV (x(t)) − 1

εN

∫
V (x)|uε(t, x)|2,

for every t ≥ 0 and every ε > 0. Furthermore E (0, ε, s) = O(ε2).

Proof By combining Lemma 4.5 with Lemma 4.2, we find

E(�ε(t)) = 1

2
m|v(t)|2s + 1

2
M(t, ε, s) − 1

εN

∫
V (x)|uε(t, x)|2 + Eε(t)

= 1

2
m|v(t)|2s + 1

2
M(t, ε, s) − 1

εN

∫
V (x)|uε(t, x)|2

+ E(Q) + 1

2
m|v(t)|2s + mV (x(t)) + O(ε2) + 1

2
Js

= m|v(t)|2s + M(t, ε, s) + Js

2
+ E(Q) + mV (x(t))

− 1

εN

∫
V (x)|uε(t, x)|2 + O(ε2)

= E1(t, ε, s) + E2(t, ε, s) + O(ε2).

Now, since we have uε(0, εx + x(0)) = Q(x)e
i
ε
〈εx+x0,v0〉, we obtain

E1(0, ε, s) = m|v0|2s + M(0, ε, s)

2

− C(N , s)

2

∫∫
Q (x) (Q (x) − Q (x − z))(1 − cos〈z, v0〉)

|z|N+2s
dx dz

= m|v0|2s + C(N , s)

2
Re

∫∫
Q(x)

[
Q(x) − Q(y)ei〈x−y,v0〉

]e−i〈x−y,v0〉 − 1

|x − y|N+2s
dxdy

− C(N , s)

2

∫∫
Q (x) (Q (x) − Q (x − z))(1 − cos〈z, v0〉)

|z|N+2s
dx dz

= m|v0|2s − C(N , s)
∫

Q2(x)

∫
1 − cos〈z, v0〉

|z|N+2s
dxdz = 0.

That E2(0, ε, s) = O(ε2) is immediately seen. �

Remark 4.7 From Corollary 4.6, it seems evident that the quantity

ε2s−N
∫∫

Re
[
uε(t, x)[(uε(t, x) − uε(t, x − z))](e− i

ε
〈z,v(t)〉 − 1)

]
|z|N+2s

dxdz

−
∫∫

Q (x) (Q (x) − Q (x − z))(1 − cos〈z, v0〉)
|z|N+2s

dxdz,
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multiplied by C(N , s)/2, represents a nonlocal counterpart of the total momentum in the
local case, precisely (compare E1 and E2 with the right-hand side of [7, formula 3.5])

−〈
ẋ(t),

∫
pε

local(t, x)
〉
, pε

local(t, x) := 1

εN−1
Im(ūε(t, x)∇uε(t, x)),

x ∈ R
N , t ∈ [0,∞).

As known, pε
local satisfies the following identities, for t ≥ 0 and x ∈ RN ,

∂

∂t

|uε(t, x)|2
ε3

= − div(pε
local(t, x)),

∂

∂t

∫
pε

local(t, x) dx = − 1

εN

∫
∇V (x)|uε(t, x)|2 dx .

In the fractional case, a counterpart of these identities seems hard to obtain.

4.1. Proof of Theorem 1.2

By Corollary 4.6 and by the characterization of the ground states as minima on the sphere
of L2, we have 0 ≤ E(�ε(t))−E(Q) = E (t, ε, s)+O(ε2), where E satisfies E (0, ε, s) =
O(ε2). By Theorem 1.1 we know that there exists constants B, C > 0 such that for φ ∈
H1(R3, C) with ‖φ‖2 = ‖Q‖2, we have

E(φ) − E(Q) ≥ C inf
x∈R3, θ∈[0,2π)

‖φ − eiθ Q(· − x)‖2
Hs

provided that E(φ) − E(Q) ≤ B. Then, introducing

T ε,s := sup
{

t ∈ [0, T0] | E (τ, ε, s) ≤ B for allτ ∈ [0, t]
}

and, since E (0, ε, s) = O(ε2), it follows that T ε,s > 0 for any ε > 0 sufficiently small
and every s ∈ (0, 1) there exist families of continuous functions θε,s : R → [0, 2π) and
zε,s : RN → R which satisfy the assertion. �

4.2. Proof of Theorem 1.3

For s ∈ (0, 1], consider the solution uε
s (t, ·) ∈ Hs(RN , C) to the Cauchy problem (1.1)

Then, taking [23, Proposition 2.2 and Lemma 5.3] into account, there exists a positive
constant C such that∥∥∥uε

s (t) − Qs

( x − xs(t)

ε

)
ei 〈vs (t),x〉

ε

∥∥∥2

Hs
ε

≤ C
4∑

i=1

Ai (t; ε, s),

where we have set

A1(t; ε, s) := ‖uε
s (t) − uε

1(t)‖2
Hs

ε
,

A2(t; ε, s) := 1

ε2(1−s)

∥∥∥uε
1(t) − Q1

( x − x1(t)

ε

)
ei

〈v1(t),x〉
ε

∥∥∥2

H1
ε

,

A3(t; ε, s) :=
∥∥∥Q1

( x − xs(t)

ε

)
ei 〈vs (t),x〉

ε − Q1

( x − x1(t)

ε

)
ei

〈v1(t),x〉
ε

∥∥∥2

Hs
ε

,
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1728 S. Secchi and M. Squassina

A4(t; ε, s) :=
∥∥∥Qs

( x − xs(t)

ε

)
− Q1

( x − xs(t)

ε

)∥∥∥2

Hs
ε

,

over finite time intervals [0, T ], for T > 0. Then, we have the following

Proposition 4.8 There results

(a) A2(t; ε, s) ≤ Cε2s for every ε ∈ (0, 1], s ∈ (0, 1), t ≥ 0 and some C > 0;
(b) lim

s→1− A3(t; ε, s) = 0 for every ε ∈ (0, 1] and t ≥ 0;

(c) lim
s→1− A4(t; ε, s) = 0 for every ε ∈ (0, 1] and t ≥ 0.

Proof The proof of (a) follows immediately from [7, Theorem 1.1]. The proof of (b) is a
consequence of the fact that xs(t) → x1(t) and vs(t) → v1(t) when s → 1, since

A3(t, ε, s) ≤ C
∥∥∥Q1

( · − xs(t)

ε

)
− Q1

( · − x1(t)

ε

)∥∥∥2

Hs
ε

+
∥∥∥Q1

( · − x1(t)

ε

)[
ei 〈vs (t),x〉

ε − ei
〈v1(t),x〉

ε
]∥∥∥2

Hs
ε

= C
∥∥Q1(·) − Q1

(
· + xs(t) − x1(t)

ε

)∥∥2
Hs + ∥∥Q1(·)�s(·, t)

∥∥2
Hs

≤ C
∥∥Q1(·) − Q1

(
· + xs(t) − x1(t)

ε

)∥∥2
H1 + C

∥∥Q1(·)�s(·, t)
∥∥2

H1 ,

where we have set

�s(x, t) := ei〈vs (t),x+ε−1x1(t)〉 − ei〈v1(t),(x+ε−1x1(t)〉, t ≥ 0, x ∈ R
N .

The first term goes to zero as s → 1−, for any ε ∈ (0, 1] and t ≥ 0 (see e.g. [7, p.185]).
Since |�s(x, t)| ≤ 2 and |∇�s(x, t)| ≤ ‖vs‖L∞(0,T ) + ‖v1‖L∞(0,T ), the second term goes
to zero by dominated convergence. The proof of (c) is a direct application of [24, Lemma
2.6], since

A4(t, ε, s) =
∥∥∥Qs

( x − xs(t)

ε

)
− Q1

( x − xs(t)

ε

)∥∥∥2

Hs
ε

= ‖Qs − Q1‖2
Hs ,

concluding the proof. �

Based upon the previous conclusions, the proof of Theorem 1.3 is complete.
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