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Abstract. The semiclassical regime of a nonlinear focusing Schrödinger equation in pres-
ence of non-constant electric and magnetic potentials V, A is studied by taking as initial
datum the ground state solution of an associated autonomous stationary equation. The con-
centration curve of the solutions is a parameterization of the solutions of the second order
ordinary equation ẍ = −∇V (x)− ẋ × B(x), where B = ∇ × A is the magnetic field of a
given magnetic potential A.

1. Introduction

The aim of this paper is the study of the asymptotic behaviour of the solutions of
the semilinear Schrödinger equation with an external magnetic potential A,

{
iε∂tφε = 1

2

(
ε
i ∇ − A(x)

)2
φε + V (x)φε − |φε|2pφε, x ∈ R

N , t > 0,
φε(x, 0) = φ0(x), x ∈ R

N ,
(P)

in the semiclassical regime of ε going to zero, by choosing a suitable class of initial
data φ0 which is related to the (unique) ground state solution r of an associated
elliptic problem. We will show that the evolution φε(t) remains close to r , in a
suitable sense (and with an explicit convergence rate), locally uniformly in time,
in the transition from quantum to classical mechanics, namely as ε vanishes. This
dynamical behaviour is also known as soliton dynamics (for a beautiful survey on
solitons and their stability, see [54]). Here, i is the imaginary unit, ε is a small
positive parameter playing the rôle of Planck’s constant, N ≥ 1, 0 < p < 2/N and
V : R

N → R, A : R
N → R

N are an electric and magnetic potentials respectively.
The magnetic field B is B = ∇ × A in R

3 and can be thought (and identified) in
general dimension as a 2-form H

B of coefficients (∂i A j − ∂ j Ai ). The magnetic
Schrödinger operator which appears in problem (P) formally operates as follows

(ε
i
∇ − A(x)

)2
φ=−ε2�φ − 2ε

i
A(x) · ∇φ+|A(x)|2φ− ε

i
divx A(x)φ, (1.1)
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and it has been intensively studied in works by Avron, Herbst and Simon around
1978 (see [4–6,45,49] and references therein). If A = 0, then equation (P) reduces
to {

iε∂tφε = − ε2

2 �φε + V (x)φε − |φε|2pφε, x ∈ R
N , t > 0,

φε(x, 0) = φ0(x), x ∈ R
N .

(1.2)

For Eqn. 1.2, rigorous results about the soliton dynamics were obtained in various
papers by Bronski, Jerrard [9] and Keraani [38,39] via arguments purely based
on the use of conservation laws satisfied by the equation and by the associated
Hamiltonian system in R

N built upon the potential V , that is the Newton law

ẍ = −∇V (x), ẋ(0) = ξ0, x(0) = x0. (1.3)

For other achievements about the full dynamics of (1.2), see also [30,31] (in the
framework of orbital stability of standing waves) as well as [36,37] (in the frame-
work of non-integrable perturbation of integrable systems). Similar results were
investigated in geometric optics by a different technique (WKB method), namely
writing formally the solution as uε = Uε(x, t)eiθ(x,t)/ε, where Uε = U0 + εU1 +
ε2U2 . . ., where θ and U j are solutions, respectively, of a Hamilton–Jacobi type
equation (known as eikonal equation) and of a system of transport equations.

It is very important to stress that, in the particular case of standing wave solu-
tions of (1.2), namely special solutions of (1.2) of the form

φε(x, t) = uε(x)e
− i
ε
θ t , x ∈ R

N , t ∈ R
+, (θ ∈ R),

where uε : R
N → R, there is an enormous literature regarding the semiclassical

limit for the corresponding elliptic equation

− ε2

2 �uε + V (x)uε = |uε|2puε, x ∈ R
N .

See the recent book by Ambrosetti and Malchiodi [2] and the references therein.
Moreover, there are various works admitting the presence of a magnetic potential
A, and studying the asymptotic profile of the solutions uε : R

N → C to

1
2

(
ε
i ∇ − A(x)

)2
uε + V (x)uε = |uε|2puε, x ∈ R

N ,

as ε goes to zero (see e.g. [3,7,18–21,40,47] and references therein).
In the special case A = V = 0, the orbital stability for problem (1.2) was

proved by Cazenave and Lions [16], and by Weinstein in [58,59]. Then, Soffer
and Weinstein proved in [50] the asymptotic stability of nonlinear ground states
of (1.2).

See also the following seminal contributions (in alphabetical order): Abou
Salem [1], Buslaev and Perelman [10,11], Buslaev and Sulem [12], Fröhlich,
Gustafson, Jonsson, Sigal, Tsai and Yau [25–28], Gustafson and Sigal [32], Hol-
mer and Zworski [33,34], Soffer and Weinstein [51,52], Tsai and Yau [55–57].
See also the references included in these works.

Now, in presence of a magnetic, some natural questions arise: what is the rôle
played by the magnetic field B? if B plays a significant rôle, what is the correct
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Newton equation taking the place of (1.3), which characterizes the concentrating
curve and drives the dynamic in the semiclassical limit?

As known, a charged particle moving in a magnetic field B feels a sideways
force that is proportional to the strength of B as well as to its velocity. This force,
which is always perpendicular to both the velocity of the particle and the magnetic
field that created it (a particle moving in the direction of B does not experience
a force) is known as the Lorentz force. Hence, charged particles move in a circle
(or more generally, helix) around the field lines of B (cyclotron motion). During
the motion, B can do no work on a charged particle (cannot speed it up or slow it
down) although it changes its direction (See Figs. 1 and 2).

As a consequence, with the expectation (which arises from the magnetic-free
case) that in the semiclassical limit the dynamics is governed by the classical New-
tonian law, one is tempted to say that, in presence of an external magnetic field B,
the right counterpart of (1.3) is given by the following Newton equation

ẍ = −∇V (x)− ẋ × B(x), ẋ(0) = ξ0, x(0) = x0, (1.4)

agreeing that × has to be interpreted as a matrix operation (HB ẋ) if we are not in
R

3.
Only after full completion of the present paper the author discovered that a first

result (mass and momentum asymptotics) in this direction was obtained, indepen-
dently, with decay assumptions on B, by Selvitella in [48], showing that, in fact,
the above guess is the correct interpretation, in the transition process from quantum
to classical mechanics.

On the other hand, in this paper, we improve the result of [48], proving a stronger
result, which is precisely the one predicted by the WKB method. Roughly speaking,
under suitable regularity assumptions on V and A, we show that, given the initial
position and velocity x0, ξ0 in R

N , and taking as initial datum for (P)

φ0(x) = r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0], x ∈ R

N , (I )

where r ∈ H1(RN ) is the unique (up to translation) real ground state solution
(bump like) of the associated elliptic problem

− 1

2
�r + r = |r |2pr in R

N , (S)

then there exists a family of shift functions θε : R
+ → [0, 2π) such that

φε(x, t)=r

(
x − x(t)

ε

)
e

i
ε [A(x(t))·(x−x(t))+x ·ẋ(t)+θε(t)]+ωε, x ∈ R

N , t>0,

(1.5)

locally uniformly in time, as ε goes to zero, where we have set ‖ωε‖Hε
= O(ε),

and being ‖φ‖2
Hε

= ε2−N ‖∇φ‖2
L2 + ε−N ‖φ‖2

L2 . In particular, with respect to [48],
the convergence rate is explicit and of the order ε and, as a direct consequence,
the concentration center in the representation formula (1.5) (expressing the soliton
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dynamics as guessed by the WKB method) is exactly x(t) (in [48] formula (1.5) is
not achievable, being the convergence rate undetermined).

The magnetic potential A contributes to the phase of the solution, and x(t) is
the concentration line (which can be considerably influenced by the presence of
B, see the phase portraits in Figs. 1, 2). Initial data (I ) should also be thought as
corresponding to a point particle with position x0 and velocity ξ0.

In the case where ξ0 = 0 and x0 is a critical point of the potential V , as Eqn.
(1.4) admits the trivial solution x(t) = x0 and ξ(t) = 0 for all t ∈ R

+, formula
(1.5) reduces to

φε(x, t) = r

(
x − x0

ε

)
e

i
ε [A(x0)·(x−x0)+θε(t)] + ωε, x ∈ R

N , t > 0,

locally uniformly in time, as ε goes to zero (see Remark 2.5). In turn, the concentra-
tion of φε is static and takes place around the critical points of V , instead occurring
along a smooth curve in R

N . This is consistent with the literature for the standing
wave solutions mentioned above.

Organization of the paper

In Sect. 2, we introduce the functional framework, the tools and the ingredients
needed to write the statement of the main result of the paper, Theorem 2.4. In
Sect. 3, we collect various preparatory results concerning the characterization of
the energy levels of the problem, in the semiclassical regime. In Sect. 4, we state
the main approximation estimates for the solutions. In Sect. 5, we get two integral
identities for the evolution of the mass and momentum densities. In Sect. 6, we
obtain the approximation results for the mass and momentum densities. In Sect. 7,
we obtain an error estimate. In turn, we conclude the proof of the main result of the
paper, Theorem 2.4. Finally, In Sect. 8, we summarize the results obtained.

Main notations

1. The imaginary unit is denoted by i.
2. The complex conjugate of any number z ∈ C is denoted by z̄.
3. The real part of a number z ∈ C is denoted by �z.
4. The imaginary part of a number z ∈ C is denoted by �z.
5. For all z, w ∈ C it holds �(z̄w) = �(zw̄).
6. For all z, w ∈ C it holds �(z̄w) = −�(zw̄).
7. The symbol R

+ means the positive real line [0,∞).
8. The ordinary inner product between two vectors a, b ∈ R

N is denoted by a · b.
9. The standard L2 norm of a function u is denoted by ‖u‖L2 .

10. The standard L∞ norm of a function u is denoted by ‖u‖L∞ .
11. The symbols ∂t and ∂ j mean ∂

∂t and ∂
∂x j

respectively.

12. The symbol � means ∂2

∂x2
1

+ · · · + ∂2

∂x2
N

.
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13. The symbol Cm(RN ), for m ∈ N, denotes the space of functions with contin-
uous derivatives up to the order m. Sometimes Cm(RN ) is endowed with the
norm

‖φ‖Cm =
∑

|α|≤m

‖Dαφ‖L∞ < ∞.

14. The symbol
∫

f stands for the integral of f over R
N with the Lebesgue mea-

sure.
15. The symbol C2∗ denotes the dual space of C2. The norm of a ν in C2∗ is

‖ν‖C2∗ = sup

{∣∣∣∣
∫
φ(x)νdx

∣∣∣∣ : φ ∈ C2(RN ), ‖φ‖C2 ≤ 1

}
.

Clearly, C2∗ contains the space of bounded Radon measures.
16. C denotes a generic positive constant, which may vary inside a chain of inequal-

ities.
17. The first and second ordinary derivatives of t �→ x(t) are denoted by ẋ and ẍ .
18. We use the Landau symbols. In particular O(ε) is a generic function such that

the lim sup of ε−1O(ε) is finite, as ε goes to zero.

2. Statement of the main result

2.1. Functional setup and tools

It is quite natural to consider operator (1.1) on the Hilbert space HA,ε defined by
the closure of C∞

c (R
N ; C) under the scalar product

(u, v)HA,ε = �
∫
(Dεu · Dεv + V (x)uv)dx,

where Dεu = (Dε
1u, . . . , Dε

N u) and Dε
j = i−1ε∂ j − A j (x), with induced norm

‖u‖2
HA,ε

=
∫ ∣∣∣ε

i
∇u − A(x)u

∣∣∣2
dx +

∫
V (x)|u|2dx < ∞.

The dual space of HA,ε is denoted by H ′
A,ε, while the space H2

A,ε is the set of u
such that

‖u‖2
H2

A,ε
= ‖u‖2

L2 + ‖
(ε

i
∇ − A(x)

)2
u‖2

L2 < ∞.

Moreover, to problem (P) it can be naturally associated the functional E : HA,ε→R

[see also formula (2.4)]

E(u) = 1

2

∫ ∣∣∣ε
i
∇u − A(x)u

∣∣∣2
dx +

∫
V (x)|u|2dx − 1

p + 1

∫
|u|2p+2dx .
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Finally, we consider the functional E : H1(RN ; C) → R associated with (S)

E(u) = 1

2

∫
|∇u|2dx − 1

p + 1

∫
|u|2p+2dx .

It is a standard fact that the solution r of (S) is the unique (up to translation) solution
of the following minimization problem

E(r) = min{E(u) : u ∈ H1(RN ), ‖u‖L2 = ‖r‖L2}. (2.1)

We also set

m := ‖r‖2
L2 . (2.2)

Also, r is radially symmetric and decreasing, belongs to C2(RN ) ∩ H2(RN ), and
it decays exponentially together with its derivatives up to the order two, that is

|Dαr(x)| ≤ Ce−σ |x |, x ∈ R
N , (2.3)

for some σ,C > 0 and all 0 ≤ |α| ≤ 2 (see e.g. [8]).

2.2. Well-posedness and conservation laws

We recall that in [15, Sect. 9.1] (see also [23]), in the particular case N = 3 and
when the external magnetic field B = (b1, b2, b3) is constant (thus A is linear
with respect to x), the (global) well-posedness of problem (P) in the (natural)
energy space HA,ε as well as the H2

A,ε-regularity of the flux for H2
A,ε-initial data

was investigated (see Proposition 2.2 below) by Cazenave, Esteban and Lions.
Furthermore, in general dimension N and for a general (smooth) vector potential
A, the (local) well-posedness in the energy space HA,ε has been recently studied in
[42] by Michel. We also wish to cite earlier papers by Nakamura and Shimomura
[43], Nakamura [44] as well as the important paper by Yajima [60]. In particular,
in [43], if B has decay assumptions at infinity, the problem is locally solved in
the weighted space �(2) ⊂ H2(RN ; C) of functions f in L2(RN ; C) such that
‖xαDβ f ‖L2 < ∞ for all α, β with |α|, |β| ≥ 0 and 0 ≤ |α + β| ≤ 2 (notice that,
via the decay (2.3), the initial datum φ0 in (I ) belongs to the space �(2)). Finally,
see also [15, Theorems 4.6.5 and 5.5.1] and an abstract result, Lemma A.1, in the
Appendix of [17], by Cazenave and Weissler.

In order to prove the main result of the paper, we will assume (among other
things) that A is globally bounded (together with its higher order derivatives).
Clearly with this assumption the well-posedness and regularity features for (P) get
easier to study. On the contrary, if A is unbounded, there are genuine regularity
problems and the situation gets more involved [22].

Definition 2.1. We say that a (sufficiently smooth) vector potential A : R
N → R

N

is admissible with respect to problem (P) if the following Proposition 2.2 holds
for A.
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Proposition 2.2. [well-posedness statement] Assume that 0 < p < 2/N. Then,
for every ε > 0 and all φ0 ∈ HA,ε, there exists a unique global solution

φε ∈ C(R+, HA,ε) ∩ C1(R+, H ′
A,ε)

of problem (P) with sup
t∈R+

‖φε(t)‖HA,ε < ∞. Moreover, the mass associated with

φε(t),

Nε(t) = 1

εN

∫
|φε(t)|2dx,

as well as the total energy Eε(t) = ε−N E(φε(t)) associated with (P)

Eε(t) = 1

2εN

∫ ∣∣∣ε
i
∇φε(t)− A(x)φε(t)

∣∣∣2
dx (2.4)

+ 1

εN

∫
V (x)|φε(t)|2dx − 1

(p + 1)εN

∫
|φε(t)|2p+2dx,

are conserved in time, namely

Nε(t) = Nε(0), Eε(t) = Eε(0), for all t ∈ R
+.

Finally if φ0 ∈ H2
A,ε, then φε ∈ C(R+, H2

A,ε) ∩ C1(R+, L2(RN ; C)).

Remark 2.3. From Proposition 2.2, due to the choice of the initial data (I ), the mass
Nε(t) is also independent of ε. Indeed, via the mass conservation and formula (2.2),

Nε(t)=Nε(0)= 1

εN

∫
|φε(x, 0)|2dx = 1

εN

∫ ∣∣∣∣r
(

x−x0

ε

)∣∣∣∣
2

dx=‖r‖2
L2=m,(2.5)

for all ε > 0 and t ∈ R
+.

2.3. The driving Newtonian equation

Given the initial data x0, ξ0 ∈ R
N , we consider

x(t), ξ(t) : R
+ → R

N ,

being the (unique) global (under the regularity assumptions on V and A indicated
below) solution of the first order differential system⎧⎪⎪⎨

⎪⎪⎩

ẋ(t) = ξ(t),
ξ̇ (t) = −∇V (x(t))− ξ(t)× B(x(t)),
x(0) = x0,

ξ(0) = ξ0,

(2.6)

namely the second order ODE (1.4). Notice that, setting

H(t) = 1

2
|ξ(t)|2 + V (x(t)), t ∈ R

+, (2.7)

H is a first integral associated with (2.6), namely

H(t) = H(0), for all t ∈ R
+.

In general dimension N , this follows by the elementary observation that, as H
B(x)

is a skew-symmetric matrix, we have ξ(t) · H
B(x(t))ξ(t) = 0 for all t ∈ R

+.



468 M. Squassina

2.4. The main result

We consider the following assumptions on the external electric and magnetic poten-
tials, V and A.

(V) V ∈ C3(RN ) is positive and ‖V ‖C3 < ∞.
(A) A ∈ C3(RN ; R

N ) with ‖A‖C3 < ∞ and A is admissible (cf. Definition 2.1).

Consider H1(RN ; C) equipped with the scaled norm ‖φ‖Hε
,

‖φ‖2
Hε

= ε2−N ‖∇φ‖2
L2 + ε−N ‖φ‖2

L2 .

The main result of the paper is the following

Theorem 2.4. Let r be the ground state solution of problem (S) and let φε be the
family of solutions to problem (P) with initial data (I ), for some x0, ξ0 ∈ R

N .
Let (x(t), ξ(t)) be the global solution to system (2.6). Then there exist δ > 0
and a locally uniformly bounded family of maps θε : R

+ → [0, 2π) such that, if
‖A‖C2 < δ, then

φε(x, t) = r

(
x − x(t)

ε

)
e

i
ε [A(x(t))·(x−x(t))+x ·ξ(t)+θε(t)] + ωε, (2.8)

locally uniformly in time, where ωε ∈ Hε and ‖ωε‖Hε
= O(ε), as ε → 0. Fur-

thermore, without restrictions on ‖A‖C2 , we have

|φε(x, t)| = r

(
x − x(t)

ε

)
+ ω̂ j

ε (x, t), (2.9)

locally uniformly in time, where ω̂ε ∈ Hε and ‖ω̂ j
ε‖Hε

≤ O(ε), as ε → 0.

Some comments are now in order.

Remark 2.5. If x0 is a critical point of V and ξ0 = 0, then the solution of sys-
tem (2.6) is (x(t), ξ(t)) = (x0, 0) for all t ∈ R

+. Then, the conclusion of the
previous result reads as

φε(x, t) = r

(
x − x0

ε

)
e

i
ε [A(x0)·(x−x0)+θε(t)] + ωε,

locally uniformly in time, where ωε ∈ Hε and ‖ωε‖Hε
= O(ε) as ε → 0. In par-

ticular, this is consistent with the literature of the standing wave solutions of (P)
in presence of a magnetic potential A (see e.g. [3,7,18–21,40] and references
included).

Remark 2.6. In the framework of Theorem 2.4, by the exponential decay of r , it
holds

|φε(x, t)| ≤ Ce−σ |x−x(t)|
ε + |ωε(x, t)|.

For an arbitrarily small δ > 0, the solution φε of (P) is expected to decay expo-
nentially in the set Pδ = {x ∈ R

N : |x − x(t)| ≥ δ > 0, for all t ∈ R
+} faster and

faster as ε → 0, namely φε rapidly vanishes far from the concentration curve x(t).
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Fig. 1. Phase portrait of system (2.10) with ω1 = 1, ω2 = 1.4, ω3 = 1.2, b = 0 (left, no
magnetic field) and b = 5 (right, weak magnetic field)

Remark 2.7. A typical situation in R
3 is when the external magnetic field B =

(b1, b2, b3) is constant. Without loss of generality, up to a rotation, one can assume
that B = (0, 0, b) for some b ∈ R. Hence, the corresponding vector potential is
A(x, y, z) = b

2 (−y, x, 0). In this case, for harmonic external potentials V , namely

V (x1, x2, x3) = 1

2
(ω2

1x2
1 + ω2

2x2
2 + ω2

3x2
3 ), ω j ∈ R,

system (2.6) reduces to
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = ξ1(t),
ẋ2(t) = ξ2(t),
ẋ3(t) = ξ3(t),
ξ̇1(t) = −ω2

1x1(t)− bξ2(t),
ξ̇2(t) = −ω2

2x2(t)+ bξ1(t),
ξ̇3(t) = −ω2

3x3(t).

(2.10)

It is clear that, setting some fixed values of ω j and choosing some initial data,
enlarging the value of the third component b of the magnetic field B (say, from 0 to
60), the original periodic orbit turns into a more and more helicoidal pattern. See
Figs. 1 and 2.

Remark 2.8. By complicating some arguments, assumption (V) could be relaxed.
For instance V can be written as V1 + V2, being ‖V1‖C3 < ∞ and V2 sufficiently
smooth. The idea is to use the cut-off function indicated in (3.5), which is nonzero
in the ball of R

N containing the region where the orbit x(t) is confined (see [39]).

Remark 2.9. As remarked in [39], the soliton dynamics behaviour breaks down
in the critical case p = 2

N . Indeed, in this case, if we choose x0 = ξ0 = 0,
V (x) = 1

2 |x |2 and A = 0, then the modulus of the solution of problem (P) with
initial data φ0(x) = r( x

ε
) is given by |φε(x, t)| = (cos t)−N/2r( x

ε cos t ) for all
x ∈ R

N and t ∈ [0, π2 ) (see also [13]).
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Fig. 2. Phase portrait of system (2.10) with ω1 = 1, ω2 = 1.4, ω3 = 1.2, b = 20 (left) and
b = 60 (right). The effects of the magnetic field increases

3. Preliminary facts

In this section we collect some preliminary result which will allow us to prove the
main result, Theorem 2.4.

3.1. Magnetic momentum

The following vector function is useful to pursue our goals.

Definition 3.1. We define the momentum of the solution φε, depending upon the
vector potential A, as a function pA

ε : R
N × R

+ → R
N , by setting

pA
ε (x, t) := 1

εN
� (
φ̄ε(x, t)(ε∇φε(x, t)− iA(x)φε(x, t)

)
, x ∈ R

N , t ∈ R
+.

First we state the following

Lemma 3.2. Let φε be the solution to problem (P) corresponding to the initial data
(I ). Then there exists a positive constant C such that

∥∥∥ε
i
∇φε(·, t)− A(x)φε(·, t)

∥∥∥2

L2
≤ CεN ,

for all t ∈ R
+ and any ε > 0.

Proof. The total energy Eε(t) is conserved (see Proposition 2.2) and it can be
bounded independently of ε (see Lemma 3.5). Then, since V is positive, defining
ζε(x) := φε(εx), it follows that, for some positive constant C ,

∥∥∥∥1

i
∇ζε(·, t)− A(εx)ζε(·, t)

∥∥∥∥
2

L2
− C‖ζε(·, t)‖2p+2

L2p+2 ≤ C. (3.1)

By combining the diamagnetic inequality (see [23] for a proof)

|∇|ζε|| ≤
∣∣∣∣
(∇

i
− A(εx)

)
ζε

∣∣∣∣ , a.e. in R
N
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with the Gagliardo–Nirenberg inequality, setting ϑ = pN
2p+2 ∈ (0, 1), we obtain

‖ζε(·, t)‖L2p+2 ≤ ‖ζε(·, t)‖1−ϑ
L2 ‖∇|ζε(·, t)|‖ϑL2

≤ ‖ζε(·, t)‖1−ϑ
L2

∥∥∥∥
(∇

i
− A(εx)

)
ζε(·, t)

∥∥∥∥
ϑ

L2
.

By the conservation of mass (see Remark 2.3), we deduce that ‖ζε(·, t)‖2
L2 =

Nε(t) = m, independently of ε. Hence, for all ε > 0, we get

‖ζε(·, t)‖2p+2
L2p+2 ≤ C

∥∥∥∥1

i
∇ζε(·, t)− A(εx)ζε(·, t)

∥∥∥∥
pN

L2
.

Since pN < 2 by assumption, the assertion readily follows from (3.1) and rescal-
ing. ��

We have the following summability property for pA
ε (x, t).

Lemma 3.3. There exists a positive constant C such that

sup
t∈R+

∣∣∣∣
∫

pA
ε (x, t)dx

∣∣∣∣ ≤ C.

Proof. Taking into account the inequality of Lemma 3.2 and the mass conservation
law, by Hölder inequality we get
∣∣∣∣
∫

pA
ε (x, t)dx

∣∣∣∣ ≤
∫

|pA
ε (x, t)|dx ≤ 1

εN

∫
|φ̄ε(x, t)|

∣∣∣ε
i
∇φε(x, t)

− A(x)φε(x, t)| dx

≤ 1

εN/2 ‖φε(·, t)‖L2
1

εN/2

∥∥∥ε
i
∇φε(·, t)− A(x)φε(·, t)

∥∥∥
L2

≤ C,

for all t ∈ R
+. The assertion follows by taking the supremum over positive times.

��

3.2. Energy levels in the semiclassical limit

Let us recall a useful tool (see e.g. [39, Lemma 3.3]), which reveals useful in
managing various estimates that follow.

Lemma 3.4. Assume that g : R
N → R is a function of class C2(RN ), ‖g‖C2 < ∞,

and that r is the ground state solution of (S). Then, as ε goes to zero, it holds
∫

g(εx + y)r2(x)dx =
∫

g(y)r2(x)dx + O(ε2),

for every y ∈ R
N fixed. Moreover, O(ε2) is uniform with respect to a family

F ⊂ C2(RN ) which is uniformly bounded, that is supg∈F ‖g‖C2 < ∞.
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In the next lemma we compute the value of the energy associated with (P)–(I ),
in the semiclassical regime.

Lemma 3.5. Let Eε be the energy associated with the family φε of solutions to
problem (P) with initial data (I ). Then, for every t ∈ R

+, it holds

Eε(t) = E(r)+ mH(t)+ O(ε2),

as ε goes to zero.

Proof. Notice that, for all x ∈ R
N , we get

(ε
i
∇ − A(x)

) (
r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0]

)

= 1

i
e

i
ε
[A(x0)·(x−x0)+x ·ξ0]∇r

(
x − x0

ε

)

+ r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0][A(x0)+ ξ0]

− r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0] A(x).

Hence, it follows that

1

εN

∫ ∣∣∣∣
(ε

i
∇ − A(x)

) (
r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0]

)∣∣∣∣
2

dx

= 1

εN

∫ ∣∣∣∣∇r

(
x − x0

ε

)∣∣∣∣
2

dx

+ 1

εN

∫
r2

(
x − x0

ε

)
|A(x0)+ ξ0|2dx + 1

εN

∫
r2

(
x − x0

ε

)
|A(x)|2dx

− 2

εN

∫
r2

(
x − x0

ε

)
A(x) · (A(x0)+ ξ0)dx

=
∫

|∇r(x)|2 dx + |A(x0)+ ξ0|2m +
∫

r2(x)|A(εx + x0)|2dx

−2
∫

r2(x)A(εx + x0) · (A(x0)+ ξ0)dx .

In view of Lemma 3.4, we have

∫
r2(x)|A(εx + x0)|2dx = |A(x0)|2m + O(ε2),

∫
r2(x)A(εx + x0) · (A(x0)+ ξ0)dx = A(x0) · (A(x0)+ ξ0)m + O(ε2).
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Then,

1

εN

∫ ∣∣∣∣
(ε

i
∇ − A(x)

) (
r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0]

)∣∣∣∣
2

dx

=
∫

|∇r(x)|2 dx + |A(x0)+ ξ0|2m + |A(x0)|2m − 2A(x0) · (A(x0)+ ξ0)m

+O(ε2)

=
∫

|∇r(x)|2 dx + m|ξ0|2 + O(ε2).

It turn, by combining the conservation of energy (see Proposition 2.2) and the
conservation of the function H [see Definition (2.7)], we get

Eε(t) = Eε(0) = Eε

(
r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0]

)

= 1

2εN

∫ ∣∣∣∣
(ε

i
∇ − A(x)

) (
r

(
x − x0

ε

)
e

i
ε
[A(x0)·(x−x0)+x ·ξ0]

)∣∣∣∣
2

dx

+
∫

V (x0 + εx)r2(x)dx − 1

p + 1

∫
|r(x)|2p+2dx

= 1

2

∫
|∇r(x)|2 dx +

∫
V (x0 + εx)r2(x)dx − 1

p + 1

∫
|r(x)|2p+2dx

+1

2
m|ξ0|2 + O(ε2)

= E(r)+
∫

V (x0 + εx)r2(x)dx + 1

2
m|ξ0|2 + O(ε2)

= E(r)+ mV (x0)+ 1

2
m|ξ0|2 + O(ε2)

= E(r)+ mH(0)+ O(ε2)

= E(r)+ mH(t)+ O(ε2),

as ε goes to zero. ��
Lemma 3.6. Let φε be the family of solutions to problem (P) with initial data (I ).
Let us set, for any ε > 0, t ∈ R

+ and x ∈ R
N

ψε(x, t) = e− i
ε
ξ(t)·[εx+x(t)]e−iA(x(t))·x φε(εx + x(t), t) (3.2)

where (x(t), ξ(t)) is the solution of system (2.6). Then

E(ψε(t)) = Eε(t)−
∫

V (x)
|φε(x, t)|2

εN
dx + 1

2
m|ξ(t)+ A(x(t))|2

−(ξ(t)+ A(x(t)) ·
∫

pA
ε (x, t)dx

−(ξ(t)+ A(x(t)) ·
∫

A(x)
|φε(x, t)|2

εN
dx

+1

2

∫
|A(x)|2 |φε(x, t)|2

εN
dx +

∫
A(x) · pA

ε (x, t)dx .
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Proof. By a simple change of variable and Remark 2.3, we have

‖ψε(t)‖2
L2 =‖φε(εx + x(t), t)‖2

L2 = 1

εN
‖φε(t)‖2

L2 =Nε(t)=m, t ∈ R
+.

(3.3)

Hence the mass of ψε(t) is conserved during the evolution. Let

pε(x, t) = 1

εN−1 � (
φ̄ε(x, t)∇φε(x, t)

)
, x ∈ R

N , t ∈ R
+,

be the magnetic-free momentum. A direct computation yields

E(ψε(t)) = 1

2εN−2

∫
|∇φε(t)|2dx + 1

2
m|ξ(t)+ A(x(t))|2

− 1

εN

1

p + 1

∫
|φε(t)|2p+2dx − (ξ(t)+ A(x(t)) ·

∫
pε(x, t)dx

= 1

2εN

∫ ∣∣∣ε
i
∇φε(t)− A(x)φε(t)

∣∣∣2
dx

− 1

2εN

∫
|A(x)|2|φε(t)|2dx + 1

εN−1

∫
A(x) · �(φ̄ε(t)∇φε(t))

+1

2
m|ξ(t)+ A(x(t))|2 − 1

εN

1

p + 2

∫
|φε(t)|2p+2dx − (ξ(t)

+A(x(t)) ·
∫

pε(x, t)dx .

Then, taking into account the definition of Eε(t), we obtain

E(ψε(t)) = Eε(t)−
∫

V (x)
|φε(x, t)|2

εN
dx + 1

2
m|ξ(t)+ A(x(t))|2

−(ξ(t)+ A(x(t)) ·
∫

pε(x, t)dx

− 1

2εN

∫
|A(x)|2|φε(x, t)|2dx +

∫
A(x) · pε(x, t)dx .

Finally, since

pε(x, t) = pA
ε (x, t)+ ε−N A(x)|φε(x, t)|2,

we obtain the desired conclusion. ��
Next we introduce two important functionals in the dual space of C2.

Definition 3.7. Let φε be the family of solutions to problem (P) with initial data (I )
and let pA

ε be the corresponding momentum. For any t ∈ R
+, let us define an ele-

ment�1
ε(·, t) in the dual space of C2(RN ; R

N ) and an element�2
ε(·, t) in the dual

space of C2(RN ; R) by setting

∀ϕ ∈ C2(RN ; R
N ) :

∫
�1
ε(x, t) · ϕ dx =

∫
ϕ · pA

ε (x, t)dx − mϕ(x(t)) · ξ(t),

∀ϕ ∈ C2(RN ; R) :
∫
�2
ε(x, t)ϕ dx =

∫
ϕ

|φε(x, t)|2
εN

dx − mϕ(x(t)),
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and all t ∈ R
+. Here x(t), ξ(t) denote the components of the solution of sys-

tem (2.6).

We recall a property of the functional δy on C2(RN ) (see [39, Lemmas 3.1,
3.2]).

Lemma 3.8. There exist three positive constants K0, K1, K2 such that, for all
y, z ∈ R

N ,

K1|y − z| ≤ ‖δy − δz‖C2∗ ≤ K2|y − z|,

provided that ‖δy − δz‖C2∗ ≤ K0.

For a fixed time T0 > 0 (to be chosen later on), let ρ be a positive constant
defined by

ρ = K1 sup
[0,T0]

|x(t)| + K0 (3.4)

where x(t) is defined in (2.6), the constants K0 and K1 are defined in Lemma 3.8,
and let χ be a C∞(RN ) function such that 0 ≤ χ ≤ 1 and

χ(x) = 1 if |x | < ρ, χ(x) = 0 if |x | > 2ρ. (3.5)

Let us now set, for all t ∈ R
+ and ε > 0,

ω1
ε(t) :=

∫
(ξ(t)+ A(x(t)) ·�1

ε(x, t)dx,

ω2
ε (t) :=

∫
A(x) ·�1

ε(x, t)dx,

ω3
ε(t) :=

∫
|A(x)|2�2

ε(x, t)dx,

ω4
ε (t) :=

∫
(ξ(t)+ A(x(t)) · A(x)�2

ε(x, t)dx,

ω5
ε(t) :=

∫
V (x)�2

ε(x, t)dx,

γε(t) := mx(t)−
∫

xχ(x)
|φε(x, t)|2

εN
dx,

where χ is as in (3.5).
On the functions ω j

ε , we have the following estimate.

Lemma 3.9. There exists a positive constant C = C(V, A) such that

5∑
j=1

|ω j
ε (t)| ≤ C�ε(t), (3.6)
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where the function �ε : R
+ → R

+ is defined as �ε(t) = �̂ε(t)+ ρA
ε (t), where

�̂ε(t) :=
∣∣∣∣
∫
�1
ε(x, t)dx

∣∣∣∣+ sup
‖ϕ‖C3≤1

∣∣∣∣
∫
ϕ�2

ε(x, t)dx

∣∣∣∣+|γε(t)|, t ∈ R
+,

(3.7)

ρA
ε (t) :=

∣∣∣∣
∫

A(x) ·�1
ε(x, t)dx

∣∣∣∣ , t ∈ R
+. (3.8)

Moreover

�ε(0) = O(ε2),

as ε goes to zero.

Proof. Estimate (3.6) is a simple and direct consequence of the definition of ω j
ε (t),

�ε(t), of the uniform boundedness of ξ(t), A(x(t)), namely |ξ(t)|+|A(x(t))| ≤ C
and of the fact that‖V ‖C3<∞ and‖A‖C3<∞. Let us now prove that�ε(0)=O(ε2),
as ε → 0. Recalling that the initial data φ0 is r((x − x0)/ε)ei/ε[A(x0)·(x−x0)+x ·ξ0],
in light of Lemma 3.4, for any ϕ ∈ C2(RN ; R

N ) such that ‖ϕ‖C2 ≤ 1, we infer∫
ϕ(x) ·�1

ε(x, 0)dx =
∫
ϕ(x) · pA

ε (x, 0)dx − mϕ(x0) · ξ0

= 1

εN−1

∫
ϕ(x) · � (

φ̄ε(x, 0)∇φε(x, 0)
)

− 1

εN

∫
ϕ(x) · A(x)|φε(x, 0)|2dx − mϕ(x0) · ξ0

= 1

εN

∫
ϕ(x) · (A(x0)+ ξ0)r

2
(

x − x0

ε

)
dx

− 1

εN

∫
ϕ(x) · A(x)r2

(
x − x0

ε

)
dx − mϕ(x0) · ξ0

=
∫
ϕ(x0 + εx) · (A(x0)+ ξ0)r

2(x)dx

−
∫
ϕ(x0 + εx) · A(x0 + εx)r2(x)dx − mϕ(x0) · ξ0

= mϕ(x0) · (A(x0)+ ξ0)− mϕ(x0) · A(x0)

−mϕ(x0) · ξ0 + O(ε2) = O(ε2),

as ε goes to zero. In a similar fashion, for any ϕ ∈ C3(RN ) with ‖ϕ‖C3 ≤ 1, we
get ∫

ϕ(x)�2
ε(x, 0)dx = 1

εN

∫
ϕ(x)|φε(x, 0)|2dx − mϕ(x0)

=
∫
ϕ(x0 + εx)r2(x)dx − mϕ(x0) = O(ε2).

Finally, asχ(x0)= 1, we have |γε(0)| =
∣∣mx0 − ∫

(x0 + εy)χ(x0 + εy)r2(y)dy
∣∣ ≤

O(ε2), by Lemma 3.4. This concludes the proof of the assertion. ��
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At this stage, we are ready to estimate the energy values E(ψε(t)).
Lemma 3.10. Let ψε be the function defined in formula (3.2). Then there exists a
positive constant C such that

0 ≤ E(ψε(t))− E(r) ≤ C�ε(t)+ O(ε2),

for all t ∈ R
+ and ε > 0.

Proof. By combining the conclusions of Lemma 3.5 and 3.6, we obtain

E(ψε(t))− E(r) = mH(t)−
∫

V (x)
|φε(x, t)|2

εN
dx + 1

2
m|ξ(t)+ A(x(t))|2

−(ξ(t)+ A(x(t))) ·
∫

pA
ε (x, t)dx − (ξ(t)+ A(x(t)) ·

∫
A(x)

|φε(x, t)|2
εN

dx+ 1

2

∫
|A(x)|2 |φε(x, t)|2

εN
dx

+
∫

A(x) · pA
ε (x, t)dx+O(ε2),

for all t ∈ R
+, as ε goes to zero. Notice that

(ξ(t)+ A(x(t)) ·
∫

pA
ε (x, t)dx = m|ξ(t)|2 + m A(x(t)) · ξ(t)+ ω1(t),∫

A(x) · pA
ε (x, t)dx = m A(x(t)) · ξ(t)+ ω2(t),

∫
|A(x)|2 |φε(x, t)|2

εN
dx = m|A(x(t))|2 + ω3(t),

∫
(ξ(t)+ A(x(t)) · A(x)

|φε(x, t)|2
εN

dx =mξ(t) · A(x(t))+ m|A(x(t))|2+ω4(t),

∫
V (x)

|φε(x, t)|2
εN

dx = mV (x(t))+ ω5(t).

It follows that

E(ψε(t))− E(r) = 1

2
m|ξ(t)|2 + mV (x(t))− mV (x(t))− ω5(t)

+1

2
m|ξ(t)+ A(x(t))|2

−m|ξ(t)|2 − m A(x(t)) · ξ(t)− ω1(t)− mξ(t) · A(x(t))

−m|A(x(t))|2 − ω4(t)

+1

2
m|A(x(t))|2 + ω3(t)

2
+ m A(x(t)) · ξ(t)+ ω2(t)

= −ω1(t)+ ω2(t)+ ω3(t)

2
− ω4(t)− ω5(t)+ O(ε2),

which concludes the proof in light of inequality (3.6) of Lemma 3.9. ��
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4. The approximation result

Let us first recall a useful and well-established stability property of ground states.

Proposition 4.1. There exist two positive constants A and C such that, if � ∈
H1(RN ; C) is such that ‖�‖L2 = ‖r‖L2 , where r is the ground state solution
of (S), and

E(�)− E(r) ≤ A,
then

inf
y∈RN , ϑ∈[0,2π)

‖�− eiθr(· + y)‖2
H1 ≤ C (E(�)− E(r)) . (4.1)

Proof. See [58,59]. ��
Next, in view of the previous preparatory work, we can state the representation

result.

Theorem 4.2. Let φε be the family of solutions to problem (P) with initial data
(I ) and let ψε be the function defined in formula (3.2). Then there exist ε0 > 0,
a time T ∗

ε > 0, families of uniformly bounded functions θε : R
+ → [0, 2π),

yε : R
+ → R

N and a positive constant C such that

φε(x, t) = e
i
ε
(ξ(t)·x+θε(t)+A(x(t))·(x−x(t))r

(
x − yε(t)

ε

)
+ ωε(t), (4.2)

where

‖ωε(t)‖Hε
≤ C

√
�ε(t)+ O(ε),

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ).

Proof. Since the function {t �→ �ε(t)} defined in formula (3.6) is continuous,
for any fixed T0 > 0 and ε0, σ0 > 0, we can define the time (recall here that
�(0) = O(ε2) as ε → 0)

T ∗
ε := sup {t ∈ [0, T0] : �ε(s) ≤ σ0, for all s ∈ (0, t)} > 0, (4.3)

for all ε ∈ (0, ε0). Therefore, by choosing the numbers σ0 and ε0 sufficiently small,
by virtue of Lemma 3.10, we conclude that

0 ≤ E(ψε(t))−E(r)≤C�ε(t)+O(ε2)≤A, for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ).

Since ‖ψε(t)‖L2 = ‖r‖L2 , we are in the right position to exploit the stability prop-
erty of ground states (Proposition 4.1). Hence, there exist two families of uniformly
bounded functions θ̂ε : R

+ → [0, 2π) and ŷε : R
+ → R

N such that
∥∥∥e− i

ε
ξ(t)·[εx+x(t)]e−iA(x(t))·x φε(εx + x(t), t)− eiθ̂ε(t)r

(
x + ŷε(t)

)∥∥∥2

H1

≤ C�ε(t)+O(ε2),
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for all ε ∈ (0, ε0) and any t ∈ [0, T ∗
ε ). In turn, by rescaling and setting θε(t) :=

εθ̂ε(t) and yε(t) := x(t)− ε ŷε(t), we get
∥∥∥∥e− i

ε
ξ(t)·x− i

ε
A(x(t))·(x−x(t))φε(x, t)−e

i
ε
θε(t)r

(
x−yε(t)

ε

)∥∥∥∥
2

Hε

≤C�ε(t)+O(ε2),

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ), namely inequality (4.2), concluding the proof.

��

5. Mass and momentum identities

In the following lemma we obtain two important identities satisfied by the equation.
Only after completion of the present paper, that the author discovered the second
identity was independently obtained in [48]. For the sake of self-containedness we
include our proof, which uses the first identity and it is shorter.

Lemma 5.1. Let φε be the solution to problem (P) corresponding to the initial
data (I ). Then we have the identity

1

εN

∂|φε|2
∂t

(x, t) = −divx pA
ε (x, t), x ∈ R

N , t ∈ R
+. (5.1)

Moreover, for all t ∈ R
+, we have the identity

∫
∂pA
ε

∂t
(x, t)dx = −

∫
pA
ε (x, t)× B(x)dx −

∫
∇V (x)

|φε(x, t)|2
εN

dx, (5.2)

where B = ∇ × A is the magnetic field associated with the vector potential A.

Remark 5.2. The momentum identity (5.2), which plays an important rôle in our
asymptotic analysis, can be thought as an extension of the so called Ehrenfest’s
theorem in presence of a magnetic field B.

Remark 5.3. It follows from the momentum identity (5.2) that for the nonlinear
Schrödinger equation with no magnetic field (∇ × A = 0 in R

N ) and with a con-
stant electric potential (∇V = 0 in R

N ) the momentum t �→ ∫
pA
ε (x, t)dx is a

constant of motion.

Remark 5.4. Concerning the addenda in the right-end side of (5.2), in the semiclas-
sical regime, by the upcoming Lemma 6.1, as ε → 0,

∫
pA
ε (x, t)× B(x)dx +

∫
∇V (x)

|φε(x, t)|2
εN

dx

∼ mξ(t)× B(yε(t))+ m∇V (yε(t)).

We will show that yε(t) remains close to x(t), for ε small (cf. Lemma 6.3). Hence,
from the right-hand side of (5.2) the Newton equation (2.6) naturally emerges, rul-
ing the dynamics of a particle subjected to an electric force Fe = −∇V (x(t)) and
to a magnetic force Fb = −v(t)× B(x(t)), being v = ẋ the velocity.
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Proof. By the exponential decay of r(x), ∂i r(x) and ∂2
i j r(x) given by (2.3) and the

fact that ‖A‖C1 < ∞, the initial data (I ) belongs to H2
A,ε. Hence, by the regularity

(see Proposition 2.2), it follows that φε(t) belongs to H1(RN ; C)∩ H2
A,ε for all t >

0. By the standard Calderón–Zygmund inequality ‖∂2
i jφε(t)‖L2 ≤ C‖�φε(t)‖L2

for all t (see e.g. [29, Corollary 9.10]) and since, again, ‖A‖C1 < ∞, for any
i, j = 1, . . . , N we get

ε2‖∂2
i jφε(t)‖L2 ≤ C‖ε2�φε(t)‖L2 ≤ C‖

(ε
i
∇ − A(x)

)2
φε(t)‖L2

+C‖A(x) · ∇φε(t)‖L2

+C‖|A(x)|2φε(t)‖L2 + C‖divx A(x)φε(t)‖L2

≤ C‖φε(t)‖H2
A,ε

+ C‖φε(t)‖H1 < ∞,

for all t > 0. Hence φε(t) ∈ H2(RN ; C), for all t > 0. Set, for j = 1, . . . , N ,

(pA
ε ) j (x, t) = 1

εN
� (
φ̄ε(x, t)(ε∂ jφε(x, t)− iA j (x)φε(x, t)

)
.

To prove identity (5.1) notice that, on one hand, we have

−divx pA
ε (x, t) = −

N∑
j=1

∂ j (p
A
ε ) j (x, t)

= −
N∑

j=1

1

εN
� (
∂ j φ̄ε(x, t)(ε∂ jφε(x, t)− iA j (x)φε(x, t)

)

−
N∑

j=1

1

εN
�

(
φ̄ε(x, t)(ε∂2

j jφε(x, t)− i∂ j A j (x)φε(x, t)

− iA j (x)∂ jφε(x, t)
)

= 2

εN
A(x) · � (∇φ̄ε(x, t)φε(x, t)

)

− 1

εN−1 � (
φ̄ε(x, t)�φε(x, t)

) + 1

εN
divx A(x)|φε(x, t)|2.

On the other hand, it follows

1

εN

∂|φε|2
∂t

(x, t) = 2

εN+1 �
(
φ̄ε(x, t)

[
1

2

(ε
i
∇ − A(x)

)2
φε(x, t)+ V (x)φε(x, t)

− |φε(x, t)|2pφε(x, t)
])

= 1

εN+1 �
(
φ̄ε(x, t)

(ε
i
∇ − A(x)

)2
φε(x, t)

)

=− 1

εN−1 � (
φ̄ε(x, t)�φε(x, t)

)+ 2

εN
A(x) · � (

φε(x, t)∇φ̄ε(x, t)
)

+ 1

εN
divx A(x)|φε(x, t)|2.
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Now, concerning second identity, (5.2), for any j = 1, . . . , N , it holds

∂(pA
ε ) j

∂t
= ε1−N �(∂tφε∂ jφε)+ ε1−N �(φε∂ j (∂tφε))− 1

εN
A j (x)

∂|φε|2
∂t

= ε1−N �(∂tφε∂ jφε)+ ε1−N �(∂ j
(
φε∂tφε

)
)

−ε1−N �(∂ jφε∂tφε)− 1

εN
A j (x)

∂|φε|2
∂t

= 2ε1−N �(∂tφε∂ jφε)+ ε1−N �(∂ j
(
φε∂tφε

)
)− 1

εN
A j (x)

∂|φε|2
∂t

.

The second term integrates to zero. Moreover, taking into account identity (5.1),
we get

−
∫

1

εN
A j (x)

∂|φε|2
∂t

(x, t)dx =
∫

A j (x)divx pA
ε (x, t)dx

= −
∫

∇ A j (x) · pA
ε (x, t)dx

= −ε1−N
∫ N∑

i=1

∂i A j (x)�
(
φ̄ε(x, t)∂iφε(x, t)

)
dx

+ε−N
∫ N∑

i=1

Ai (x)∂i A j (x)|φε(x, t)|2dx .

Concerning the first term in the formula for ∂t (pA
ε ) j , conjugate the equation, multi-

ply it by 2ε−N ∂ jφε and take the imaginary part. It follows (summation on repeated
i indexes)

2ε1−N �(∂tφε∂ jφε) = −ε2−N �(�φε∂ jφε)+ ε−N |A(x)|2�(φε∂ jφε)

+ε1−N divx A(x)�(φ̄ε∂ jφε)+ 2ε1−N A(x) · �(∇φ̄ε∂ jφε)

+2ε−N V (x)�(φε∂ jφε)− 2ε−N |φε|2p�(φε∂ jφε)

= −ε2−N �(∂i
(
∂iφε∂ jφε

)
)+ ε2−N ∂ j

( |∂iφε|2
2

)

+ε−N |A(x)|2�(φε∂ jφε)+ ε1−N divx A(x)�(φ̄ε∂ jφε)

+2ε1−N A(x) · �(∇φ̄ε∂ jφε)+ ε−N ∂ j

(
V (x)|φε|2

)

−ε−N ∂ j V (x)|φε|2 − ε−N 1

p + 1
∂ j

(
|φε|2p+2

)
.

Notice that the following identity can be easily shown (recall that φε(t) ∈ H2 for
all t), ∫

divx A(x)�(φ̄ε∂ jφε)dx + 2
∫

A(x) · �(∇φ̄ε∂ jφε)dx

=
∫ N∑

i=1

∂ j Ai (x)�
(
φ̄ε∂iφε

)
dx .
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Then, recalling that H
B = (∂ j Ai − ∂i A j )i j and that the flux of φε is in H2, we

infer that

∫
∂(pA

ε ) j

∂t
= −ε−N

∫ N∑
i=1

Ai (x)
(
∂ j Ai (x)− ∂i A j (x)

) |φε|2dx

+ε1−N
∫ N∑

i=1

∂ j Ai (x) · �(φ̄ε∂iφε)dx − ε−N
∫
∂ j V (x)|φε|2dx

−ε1−N
∫ N∑

i=1

∂i A j (x) · � (
φ̄ε∂iφε

)
dx

= −ε−N
∫ N∑

i=1

Ai (x)
(
∂ j Ai (x)− ∂i A j (x)

) |φε|2dx

+ε1−N
∫ N∑

i=1

(∂ j Ai (x)− ∂i A j (x)) · �(φ̄ε∂iφε)dx

−ε−N
∫
∂ j V (x)|φε|2dx

=
∫
(HB pA

ε (x, t)) j dx − ε−N
∫
∂ j V (x)|φε|2dx .

Taking into account the formal identification of the notation −pA
ε (x, t)× B(x)with

the matrix operation H
B pA

ε (x, t), we obtain the assertion. To see this in the three
dimensional case, recalling that

(B1, B2, B3) = ∇ × A = (∂2 A3 − ∂3 A2, ∂3 A1 − ∂1 A3, ∂1 A2 − ∂2 A1),

we obtain the skew-symmetric matrix

H
B(x) =

⎡
⎣ 0 ∂2 A1 − ∂1 A2 ∂3 A1 − ∂1 A3
∂1 A2 − ∂2 A1 0 ∂3 A2 − ∂2 A3
∂1 A3 − ∂3 A1 ∂2 A3 − ∂3 A2 0

⎤
⎦ =

⎡
⎣ 0 −B3 B2

B3 0 −B1
−B2 B1 0

⎤
⎦ .

Then, setting pi
ε = (pA

ε )i , it follows that

H
B(x)pA

ε (x, t) =
⎡
⎣ 0 −B3 B2

B3 0 −B1
−B2 B1 0

⎤
⎦

⎡
⎣p1

ε

p2
ε

p3
ε

⎤
⎦ =

⎡
⎣p3

ε B2 − p2
ε B3

p1
ε B3 − p3

ε B1

p2
ε B1 − p1

ε B2

⎤
⎦ = −pA

ε (x, t)

×B(x).

The proof is now concluded. ��
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6. Mass and momentum estimates

First, we have the following control on the mass and momentum.

Lemma 6.1. Let ε0 > 0, T ∗
ε > 0 and yε(t) be as in Theorem 4.2. Then there exists

a positive constant C such that
∥∥∥∥ |φε(x, t)|2

εN
dx − mδyε(t)

∥∥∥∥
(C2)∗

+
∥∥∥pA(x(t))

ε (x, t)dx − mξ(t)δyε(t)

∥∥∥
(C2)∗

≤ C�ε(t)+ O(ε2),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0).

Proof. For any v ∈ H1(RN ; C), we have |∇|v||2 = |∇v|2 − |�(v̄∇v)|2
|v|2 . Then, if

ψε(x, t) is the function introduced in formula (3.2), by Lemma 3.10 it follows that

0 ≤ E(|ψε|)− E(r)+ 1

2

∫ |�(ψ̄ε∇ψε)|2
|ψε|2 dx ≤ C�ε(t)+ O(ε2),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). Moreover, as ‖|ψε|‖L2 = ‖r‖L2 , by (2.1) we

have
∫ |�(ψ̄ε∇ψε)|2

|ψε|2 dx ≤ C�ε(t)+ O(ε2), (6.1)

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). Now, by the definition of ψε (cf. (3.2)), we

get

|�(ψ̄ε∇ψε)|2
|ψε|2

=
∣∣�(φ̄ε(εx+x(t), t)ε∇φε(εx+x(t), t))−(ξ(t)+ A(x(t))|φε(εx+x(t), t)|2∣∣2

|φε(εx+x(t), t)|2

=
∣∣∣εN pA(x(t))

ε (εx + x(t), t)− ξ(t)|φε(εx + x(t), t)|2
∣∣∣2

|φε(εx + x(t), t)|2

= ε2N

∣∣∣pA(x(t))
ε (εx + x(t), t)

∣∣∣2

|φε(εx + x(t), t)|2 + |ξ(t)|2|φε(εx + x(t), t)|2

− 2εN ξ(t) · pA(x(t))
ε (εx + x(t), t).

Hence, by a change of variable, we reach

∫ |�(ψ̄ε∇ψε)|2
|ψε|2 dx = εN

∫ ∣∣∣pA(x(t))
ε (x, t)

∣∣∣2

|φε(x, t)|2 dx + m|ξ(t)|2 − 2ξ(t) ·
∫

pA(x(t))
ε (x, t)dx . (6.2)



484 M. Squassina

Notice that by simple computations, by combining (6.1) and (6.2), it holds

∫ ∣∣∣∣∣εN/2 pA(x(t))
ε (x, t)

|φε(x, t)| −
∫

pA(x(t))
ε (x, t)dx

m

|φε(x, t)|
εN/2

∣∣∣∣∣
2

+m

∣∣∣∣∣ξ(t)−
∫

pA(x(t))
ε (x, t)dx

m

∣∣∣∣∣
2

(6.3)

≤ C�ε(t)+ O(ε2),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). To prove the assertion, we estimate ρε(t),

where

ρε(t) :=
∣∣∣∣
∫
ψ(x)

|φε(x, t)|2
εN

dx − mψ(yε)

∣∣∣∣
+

∣∣∣∣
∫

pA(x(t))
ε (x, t)ψ(x)− mξ(t)ψ(yε)

∣∣∣∣ (6.4)

for every function ψ of class C2 such that ‖ψ‖C2 ≤ 1. Taking into account that,
by the definition of �ε(t) [cf. formula (3.7)] and ‖A − A(x(t))‖C3 ≤ C , we have
∣∣∣∣
∫

pA(x(t))
ε (x, t)dx − mξ(t)

∣∣∣∣ ≤
∣∣∣∣
∫

pA
ε (x, t)dx − mξ(t)

∣∣∣∣
+

∣∣∣∣
∫
(pA
ε (x, t)− pA(x(t))

ε (x, t))dx

∣∣∣∣
≤ C�ε(t)+

∣∣∣∣
∫
(A(x)− A(x(t)))

|φε(x, t)|2
εN

dx

∣∣∣∣
= C�ε(t)+

∣∣∣∣
∫
(A(x)− A(x(t)))

×
( |φε(x, t)|2

εN
− mδx(t)

)
dx

∣∣∣∣
≤ C�ε(t),

we can conclude that∣∣∣∣
∫

pA(x(t))
ε (x, t)ψ(x)dx − mξ(t)ψ(yε(t))

∣∣∣∣ ≤

≤
∣∣∣∣
∫

pA(x(t))
ε (x, t)[ψ(x)− ψ(yε(t))]dx

∣∣∣∣ + |ψ(yε(t))|

×
∣∣∣∣
∫

pA(x(t))
ε (x, t)dx − mξ(t)

∣∣∣∣
≤

∣∣∣∣
∫

pA(x(t))
ε (x, t)[ψ(x)− ψ(yε(t))]dx

∣∣∣∣ + C�ε(t)

≤ 1

m

∣∣∣∣
∫

pA(x(t))
ε (x, t)dx

∣∣∣∣
∣∣∣∣
∫
ψ(x)|φε(x, t)|2

εN
dx − mψ(yε(t))

∣∣∣∣
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+
∣∣∣∣
∫
ψ(x)

[
pA(x(t))
ε (x, t)− 1

m

(∫
pA(x(t))
ε (x, t)dx

) |φε(x, t)|2
εN

]
dx

∣∣∣∣
+ C�ε(t),

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Since

∫
pA(x(t))
ε (x, t)dx is bounded (see

Lemma 3.3) and
∫ [

pA(x(t))
ε (x, t)− 1

m

(∫
pA(x(t))
ε (x, t)dx

) |φε(x, t)|2
εN

]
dx = 0,

setting ψ̂(x) := ψ(x)− ψ(yε(t)), it holds

ρε(t) ≤
∫

|ψ̂(x)| |φε(x, t)|2
εN

dx + C
∫

|ψ̂(x)| |φε(x, t)|2
εN

dx

+
∫

|ψ̂(x)|
∣∣∣∣pA(x(t))
ε (x, t)− 1

m

(∫
pA(x(t))
ε (x, t)dx

) |φε(x, t)|2
εN

∣∣∣∣ dx

+ C�ε(t).

From Young inequality and estimate (6.3), it follows

ρε(t) ≤
∫ [

C |ψ̂(x)| + 1

2
|ψ̂(x)|2

] |φε(x, t)|2
εN

dx (6.5)

+1

2

∫ ∣∣∣∣∣εN/2 pA(x(t))
ε (x, t)

|φε(x, t)| − 1

m

(∫
pA(x(t))
ε (x, t)dx

) |φε(x, t)|
εN/2

∣∣∣∣∣
2

+C�ε(t)

≤
∫ [

C |ψ̂(x)| + 1

2
|ψ̂(x)|2

] |φε(x, t)|2
εN

dx + C�ε(t)+ O(ε2).

Via inequality a2 ≤ 2b2+2(a−b)2 with a = ε−N/2|φε(x, t)| and b = ε−N/2r((x−
yε(t))/ε),

ρε(t) ≤ C

εN

∫ [
|ψ̂(x)| + |ψ̂(x)|2

]
r2

(
x − yε(t)

ε

)
dx + C

εN

∫
||φε(x, t)|

− r

(
x − yε(t)

ε

)∣∣∣∣
2

dx

+C�ε(t)+ O(ε2) ≤ �ε(t)+ O(ε2),

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ), by Lemma 3.4 (as ψ̂(yε(t)) = 0) and Theo-

rem 4.2. ��
Next, we need to show that the distance between the points yε(t) found out in

the proof of Theorem 4.2 and the trajectory x(t) is controlled by �ε(t), as ε goes
to zero.

Remark 6.2. We stress that in the proof of the next Lemma we will choose the value
of T0 that was introduced in formula (4.3) inside the definition of T ∗

ε .
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Lemma 6.3. Let yε(t) be as in Theorem 4.2. There exist positive constants ε0, σ0
and T0, namely the values introduced in (4.3) in the definition of T ∗

ε such that, for
some positive constant C,

|x(t)− yε(t)| ≤ C�ε(t)+ O(ε2),

for all t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0).

Proof. We first show that there exists a time T0 such that |yε(t)| < ρ, for every
t ∈ [0, T ∗

ε ) with T ∗
ε ≤ T0, where ρ is the positive constant introduced in for-

mula (3.4). Let us first prove that ‖δyε(t2) − δyε(t1)‖C2∗ < ρ for all t1, t2 ∈ [0, T ∗
ε ).

Let ϕ ∈ C2(RN ) be such that ‖ϕ‖C2 ≤ 1. Hence, taking into account Lemma 3.3
and identity (5.1), we get∫ ( |φε(x, t2)|2

εN
− |φε(x, t1)|2

εN

)
ϕ(x)dx =

∫ ∫ t2

t1

1

εN

∂|φε|2
∂t

(x, t)ϕ(x)dtdx

=
∫ ∫ t2

t1
−ϕ(x)divx pA

ε (x, t)dtdx =
∫ t2

t1

∫
∇ϕ(x) · pA

ε (x, t)dxdt

≤ ‖∇ϕ‖L∞
∫ t2

t1
dt

∫
|pA
ε (x, t)|dx ≤ C‖ϕ‖C2 |t2 − t1| ≤ C |t2 − t1|.

Hence, for all t1, t2 ∈ [0, T ∗
ε ), it holds∥∥∥∥ |φε(x, t2)|2

εN
dx − |φε(x, t1)|2

εN
dx

∥∥∥∥
C2∗

≤ C |t2 − t1|.

In view of Lemma 6.1, the following inequality holds,

m‖δyε(t2) − δyε(t1)‖C2∗ ≤ CT0 + C�ε(t)+ O(ε2) ≤ C(T0 + σ0)+ O(ε2).

Here we choose the value of T0 and then of σ0, ε0 so small that

C(T0 + σ0)+ O(ε2) < min{mK0,mK0 K1},
being K0 and K1 the constants introduced in Lemma 3.8. Hence, |yε(t2)− yε(t1)| <
K0 for all t1, t2 ∈ [0, T ∗

ε ), and since yε(0) = x0, we obtain the desired assertion.
We can now conclude the proof of this Lemma. The properties of the function χ
imply

|x(t)− yε(t)| ≤ 1

m
|γε(t)| + 1

m

∣∣∣∣
∫

xχ(x)
|φε(x, t)|2

εN
dx − myε(t)

∣∣∣∣ .
In light of the first step of the proof, we have χ(yε(t)) = 1 for all t ∈ [0, T ∗

ε ) and
ε ∈ (0, ε0), so that exploiting again Lemma 6.1, we conclude that

|x(t)− yε(t)| ≤ C�ε(t)+ C‖xχ‖C2

∥∥∥∥ |φε(x, t)|2
εN

dx − mδyε(t)

∥∥∥∥
C2∗

≤ C�ε(t)

+O(ε2),

which yields the assertion. ��
Finally, we get a strengthened version of Lemma 6.1.
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Lemma 6.4. Let ε0 > 0 and T ∗
ε > 0 be as in Theorem 4.2. Then there exists a

positive constant C such that∥∥∥∥ |φε(x, t)|2
εN

dx−mδx(t)

∥∥∥∥
C2∗

+
∥∥∥pA

ε (x, t)dx−mξ(t)δx(t)

∥∥∥
C2∗ ≤C�ε(t)+O(ε2),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). In particular, if ‖A‖C2 is sufficiently small,

we have ∥∥∥∥ |φε(x, t)|2
εN

dx−mδx(t)

∥∥∥∥
C2∗

+
∥∥∥pA

ε (x, t)dx−mξ(t)δx(t)

∥∥∥
C2∗ ≤ C�̂ε(t)+ O(ε2), (6.6)

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0).

Proof. Notice that, taking into account Lemma 6.1, 3.8 and 6.3, we get∥∥∥∥ |φε(x, t)|2
εN

dx − mδx(t)

∥∥∥∥
C2∗

≤
∥∥∥∥ |φε(x, t)|2

εN
dx − mδyε(t)

∥∥∥∥
C2∗

+m
∥∥δyε(t) − δx(t)

∥∥
C2∗ ≤ C�ε(t)+ O(ε2),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). In turn, we also get∥∥∥pA

ε (x, t)dx − mξ(t)δx(t)

∥∥∥
C2∗ ≤

∥∥∥pA
ε (x, t)dx − pA(x(t))

ε (x, t)dx
∥∥∥

C2∗

+
∥∥∥pA(x(t))

ε (x, t)dx − mξ(t)δyε(t)

∥∥∥
C2∗ + ∥∥mξ(t)δyε(t) − mξ(t)δx(t)

∥∥
C2∗

≤ sup
‖ϕ‖C2 ≤1

∣∣∣∣
∫

[A(x)− A(x(t))]ϕ(x) |φε(x, t)|2
εN

dx

∣∣∣∣ + C�ε(t)+ O(ε2)

= sup
‖ϕ‖C2 ≤1

∣∣∣∣
∫

[A(x)− A(x(t))]ϕ(x)
[ |φε(x, t)|2

εN
dx − mδx(t)

]
dx

∣∣∣∣ + C�ε(t)

+O(ε2)

≤ sup
‖ϕ‖C2≤1

‖(A(x)− A(x(t)))ϕ(x)‖C2

∥∥∥∥ |φε(x, t)|2
εN

dx − mδx(t)

∥∥∥∥
C2∗

+ C�ε(t)

+O(ε2)

≤ C

∥∥∥∥ |φε(x, t)|2
εN

dx − mδx(t)

∥∥∥∥
C2∗

+ C�ε(t)+ O(ε2) ≤ C�ε(t)+ O(ε2),

for every t ∈ [0, T ∗
ε ) and ε ∈ (0, ε0). This concludes the proof of the first assertion.

Taking into account the definitions of �ε(t) and ρA
ε (t), inequality (6.6) is just a

simple consequence. ��

7. Proof of the main result concluded

In this section we will conclude the proof of the main result.
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7.1. The error estimate

We now show that the quantity�ε(t), introduced in (3.7), can be made small at the
order O(ε2), uniformly on finite time intervals, as ε → 0.

Lemma 7.1. There exists a positive constant C = C(T0) such that �̂ε(t) ≤
C(T0)ε

2, for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). If in addition we assume that

‖A‖C2 < δ for some δ > 0 small, then there exists a positive constant C = C(T0)

such that �ε(t) ≤ C(T0)ε
2, for all ε ∈ (0, ε0) and t ∈ [0, T ∗

ε ).

Proof. Taking into account Lemma 6.4, via identity (5.2) of Lemma 5.1, we obtain

∣∣∣∣
∫

d

dt
�1
ε(x, t)dx

∣∣∣∣ =
∣∣∣∣
∫
∂pA
ε

∂t
(x, t)dx − mξ̇ (t)

∣∣∣∣
=

∣∣∣∣
∫

pA
ε (x, t)× B(x)dx +

∫
∇V (x)

|φε(x, t)|2
εN

dx

− m∇V (x(t))− mξ(t)× B(x(t))

∣∣∣∣
=

∣∣∣∣
∫

pA
ε (x, t)× B(x)dx +

∫
∇V (x)

|φε(x, t)|2
εN

dx

−
∫

m∇V (x)δx(t)dx − m
∫
ξ(t)× B(x)δx(t)dx

∣∣∣∣
≤

∣∣∣∣
∫ (

pA
ε (x, t)− mξ(t)δx(t)

)
× B(x)dx

∣∣∣∣
+

∣∣∣∣
∫

∇V (x)

( |φε(x, t)|2
εN

− mδx(t)

)
dx

∣∣∣∣
≤ ‖A‖C3

∥∥∥pA
ε (x, t)dx − mξ(t)δx(t)

∥∥∥
C2∗

+ ‖V ‖C3

∥∥∥∥ |φε(x, t)|2
εN

dx − mδx(t)

∥∥∥∥
C2∗

≤ C�̂ε(t)+ O(ε2),

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Hence, recalling Lemma 3.9, it follows that

∣∣∣∣
∫
�1
ε(x, t)dx

∣∣∣∣ ≤
∣∣∣∣
∫
�1
ε(x, 0)dx

∣∣∣∣ +
∫ t

0

∣∣∣∣
∫

d

dt
�1
ε(x, τ )dx

∣∣∣∣ dτ

≤ O(ε2)+ C
∫ t

0
�̂ε(τ )dτ. (7.1)
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Let now ϕ ∈ C3(RN ) with ‖ϕ‖C3(RN ) ≤ 1. Then identity (5.1) and Lemma 6.4
yield

∣∣∣∣
∫

d

dt
�2
ε(x, t)ϕ(x)dx

∣∣∣∣ =
∣∣∣∣
∫
ϕ
∂

∂t

|φε(x, t)|2
εN

dx − m∇ϕ(x(t)) · ξ(t)
∣∣∣∣

=
∣∣∣∣−

∫
ϕ(x) divx pA

ε (x, t)dx − m∇ϕ(x(t)) · ξ(t)
∣∣∣∣

=
∣∣∣∣
∫

∇ϕ(x) · pA
ε (x, t)dx −

∫
m∇ϕ(x) · ξ(t)δx(t)dx

∣∣∣∣
=

∣∣∣∣
∫

∇ϕ(x) ·
(

pA
ε (x, t)− mξ(t)δx(t)

)
dx

∣∣∣∣
≤ ‖ϕ‖C3

∥∥∥pA
ε (x, t)dx − mξ(t)δx(t)

∥∥∥
C2∗ ≤ C�̂ε(t)+ O(ε2),

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Hence, by Lemma 3.9, it follows that

sup
‖ϕ‖C3≤1

∣∣∣∣
∫
�2
ε(x, t)ϕ(x)dx

∣∣∣∣ ≤ sup
‖ϕ‖C3≤1

∣∣∣∣
∫
�2
ε(x, 0)ϕ(x)dx

∣∣∣∣ (7.2)

+ sup
‖ϕ‖C3≤1

∫ t

0

∣∣∣∣
∫

d

dt
�2
ε(x, τ )ϕ(x)dx

∣∣∣∣ dτ

≤ O(ε2)+ C
∫ t

0
�̂ε(τ )dτ,

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Finally, again via identity (5.1) and Lemma 6.4,

|γ̇ε(t)| =
∣∣∣∣mξ(t)+

∫
xχ(x)divx pA

ε (x, t)dx

∣∣∣∣
=

∣∣∣∣mξ(t)−
∫

∇(xχ(x)) · pA
ε (x, t)dx

∣∣∣∣
=

∣∣∣∣
∫

∇(xχ(x))mξ(t)δx(t) −
∫

∇(xχ(x)) · pA
ε (x, t)dx

∣∣∣∣
≤ ‖∇(xχ(x))‖C2

∥∥∥pA
ε (x, t)dx − mξ(t)δx(t)

∥∥∥
C2∗ ≤ C�̂ε(t)+ O(ε2),

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). This, recalling Lemma 3.9, yields

|γε(t)| ≤ O(ε2)+ C

t∫
0

�̂ε(τ )dτ, (7.3)

for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). By collecting inequalities (7.1), (7.2) and (7.3),

we get

�̂ε(t) ≤ O(ε2)+ C

t∫
0

�̂ε(τ )dτ
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for all ε ∈ (0, ε0) and t ∈ [0, T ∗
ε ). Then, by Gronwall Lemma, we have �̂ε(t) ≤

C(T0)ε
2, for all ε ∈ (0, ε0) and t ∈ [0, T ∗

ε ). Finally, recalling the definitions of
�ε(t) and ρA

ε (t) and exploiting again Lemma 6.4 concludes the proof. ��
We are now ready to conclude the proof of Theorem 2.4.
Let δ > 0 be as in Lemma 7.1. Let us prove the first part of Theorem 2.4.
We recall that the value of T0 > 0 was fixed in the proof of Lemma 6.3 and it

just depends on the data of the problem, such as V, A,m, N . Moreover, by virtue
of Lemma 7.1 and by the definition of T ∗

ε (see the proof of Theorem 4.2), it follows
that T ∗

ε = T0 for all ε ∈ (0, ε0), up to further reducing the value of ε0. Hence
�ε(t) ≤ C(T0)ε

2 for all ε ∈ (0, ε0) and t ∈ [0, T0]. Now, by Theorem 4.2 there
exist two families of functions θε : R

+ → [0, 2π) and yε : R
+ → R

N such that

∥∥∥∥φε(·, t)− e
i
ε
(ξ(t)·x+θε(t)+A(x(t))·(x−x(t))r

(
x − yε(t)

ε

)∥∥∥∥
2

Hε

= O(ε2),

for all t ∈ [0, T0]. On the other hand, by combining Lemma 6.3 with Lemma 7.1, it
follows that |x(t)− yε(t)| ≤ Cε2, for all t ∈ [0, T0] and ε ∈ (0, ε0). Then, taking
into account the exponential decay of ∇r , we obtain

∥∥∥∥r

(
x − yε(t)

ε

)
− r

(
x − x(t)

ε

)∥∥∥∥
2

Hε

≤ C
|x(t)− yε(t)|2

ε2 = O(ε2),

for all t ∈ [0, T0] and ε ∈ (0, ε0). Therefore, Theorem 2.4 holds true on the time
interval [0, T0]. Let us take x(T0) and ξ(T0) as new initial data in system (2.6) and
the function

φnew
0 (x) := r

(
x − x(T0)

ε

)
e

i
ε
[A(x(T0))·(x−x(T0))+x ·ξ(T0)],

as a new initial data for problem (P). Whence, by the previous step of the proof,
the approximation result holds on the interval [T0, 2T0], and hence on an arbitrary
finite time interval [0, T ], for T > 0.

In order to prove the second part of the statement of Theorem 2.4 one can follow
the argument of [48] (essentially relying on [9]). Based upon the identity

∣∣∣∣∇vi − Av

∣∣∣∣
2

= |pA(v)|2
|v|2 + |∇|v||2, pA(v) := � (v̄(∇v − iAv)) ,

the energy functional Eε rewrites as

Eε(t) = Epot
ε (t)+ Eb

ε (t)+ Ek
ε (t),

where we have set

Epot
ε (t) := 1

εN

∫
V (x)|φε(x, t)|2dx, Ek

ε (t) := εN

2

∫ |pA
ε (x, t)|2

|φε(x, t)|2 dx,

Eb
ε (t) := 1

2εN

∫
|∇|φε|(x, t)|2dx − 1

p + 1

1

εN

∫
|φε(x, t)|2p+2dx .
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Then, following the steps of the proof of [48, Lemma 3.5] (on the basis of the
quantitative estimate of the expansion of Eε up to a error of O(ε2), cf. Lemma 3.5),
we get

0 ≤ Eb
ε (|φε|)− Eb

ε (r) ≤ C�̂ε(t)+ O(ε2), (7.4)

0 ≤ Ek
ε (t)− 1

2

∣∣∫ pA
ε (x, t)

∣∣2

m
≤ C�̂ε(t)+ O(ε2).

In turn, the second inequality easily yields

∫ ∣∣∣∣∣εN/2 pA
ε (x, t)

|φε(x, t)| −
(∫

pA
ε (x, t)

)
m

|φε(x, t)|
εN/2

∣∣∣∣∣
2

dx ≤ C�̂ε(t)+ O(ε2). (7.5)

Once inequalities (7.4)–(7.5) holds true, the assertion can be proved by arguing as
before. In fact, inequality (7.4) yields

‖|φε| − r

( · − yε(t)

ε

)
‖2

Hε
≤ C�̂ε(t)+ O(ε2),

for some yε(t) ∈ R
N . Instead, inequality (7.5) allows to prove inequality (6.6) of

Lemma 6.4.

8. Conclusions

We have analyzed the soliton dynamics features of subcritical (with respect to global
well-posedness) nonlinear Schrödinger equations in the semiclassical regime under
the effects of an external electromagnetic field, showing that the solutions concen-
trate along a smooth curve x(t) : R

+ → R
N which is a parameterization of a solu-

tion of the classical Newton equation involving a conservative electric force Fe =
−∇V (x(t)) as well as the contribution of the Lorenz force Fb = −ẋ(t)× B(x(t)),
being B = ∇ × A the magnetic field. The main results improves the results of [48],
a recent contribution that the author discovered after completion of the paper. The
technique is based upon the use of quantum (mass and energy for the PDE (P)) and
classical ((2.7) for the ODE (1.4)) conservation laws, on the lines of an argument
introduced in Bronski and Jerrard in 2000 in [9] making no use of a lineariza-
tion procedure for the equation. On the other hand, the presence of the magnetic
field introduces new difficulties that have to be handled. Finally, we wish to stress
that our results are consistent with the current literature regarding the analysis of
particular classes solutions, such as the standing waves.
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