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Abstract: We study the Dancer–Fučík spectrum of the fractional p-Laplacian operator. We construct an
unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For p = 2,
we present a very accurate local analysis. We construct the minimal and maximal curves of the spectrum
locally near the points where it intersects the main diagonal of the plane. We give a su�cient condition
for the region between them to be nonempty and show that it is free of the spectrum in the case of a simple
eigenvalue. Finally, we compute the critical groups in various regions separated by these curves.We compute
them precisely in certain regions and prove a shifting theorem that gives a �nite-dimensional reduction in
certain other regions. This allows us to obtain nontrivial solutions of perturbed problems with nonlinearities
crossing a curve of the spectrum via a comparison of the critical groups at zero and in�nity.
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1 Introduction
For p ∈ (1,∞), s ∈ (0, 1) and N > sp, the fractional p-Laplacian (−Δ)sp is the nonlinear nonlocal operator
de�ned on smooth functions by

(−Δ)sp u(x) = 2 lim
ù↘0
∫

ℝN\Bù(x)
|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+sp dy, x ∈ ℝN.

This de�nition is consistent, up to a normalization constant depending onN and s, with the usual de�nition
of the linear fractional Laplacian operator (−Δ)s when p = 2. There is currently a rapidly growing literature
on problems involving these nonlocal operators. In particular, fractional p-eigenvalue problems have been
studied in Lindgren and Lindqvist [29], Iannizzotto and Squassina [25] and Franzina and Palatucci [20],
regularity of fractional p-minimizers in Di Castro, Kuusi and Palatucci [15] and existence via Morse theory
in Iannizzotto, Liu, Perera and Squassina [24]. We refer to Ca�arelli [6] for the motivations that have lead to
their study.

Let Ω be a bounded domain in ℝN with Lipschitz boundary àΩ. The Dancer–Fučík spectrum of the
operator (−Δ)sp inΩ is the set Σs

p(Ω) of all points (a, b) ∈ ℝ2 such that the problem

{
(−Δ)sp u = b(u+)p−1 − a(u−)p−1 inΩ,

u = 0 inℝN \ Ω,
(1.1)

where u± = max{±u, 0} are the positive and negative parts of u, respectively, has a nontrivial weak solution.
Let us recall the weak formulation of (1.1). Let

[u]s,p = ( ∫
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp dx dy)
1/p
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be the Gagliardo seminorm of the measurable function u : ℝN → ℝ and let

Ws,p(ℝN) = {u ∈ Lp(ℝN) : [u]s,p < ∞}

be the fractional Sobolev space endowed with the norm

‖u‖s,p = (|u|pp + [u]ps,p)
1/p,

where | ⋅ |p is the norm in Lp(ℝN). We work in the closed linear subspace

Xs
p(Ω) = {u ∈ Ws,p(ℝN) : u = 0 a.e. inℝN \ Ω}

equivalently renormed by setting ‖ ⋅ ‖ = [ ⋅ ]s,p (see Di Nezza, Palatucci and Valdinoci [16, Theorem 7.1]).
A function u ∈ Xs

p(Ω) is a weak solution of problem (1.1) if

∫
ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp dx dy = ∫

Ω

(b(u+)p−1 − a(u−)p−1)v dx for all v ∈ Xs
p(Ω). (1.2)

This notion of spectrum for linear local elliptic partial di�erential operators has been introduced by
Dancer [10, 11] and Fučík [21], who recognized its signi�cance for the solvability of related semilinear
boundary value problems. In particular, the Dancer–Fučík spectrum of the Laplacian inΩwith the Dirichlet
boundary condition is the set Σ(Ω) of all points (a, b) ∈ ℝ2 such that the problem

{
−Δu = bu+ − au− inΩ,

u = 0 on àΩ,
(1.3)

has anontrivial solution.Denotingbyëk ↗ +∞ theDirichlet eigenvalues of−Δ inΩ, the spectrumΣ(Ω) clearly
contains the sequence of points (ëk, ëk). For N = 1, where Ω is an interval, Fučík [21] showed that Σ(Ω) with
the periodic boundary condition consists of a sequence of hyperbolic-like curves passing through the points
(ëk, ëk), with one or two curves going through each point. For N ≥ 2, the spectrum Σ(Ω) consists locally of
curves emanating from the points (ëk, ëk) (see Gallouët and Kavian [22], Ruf [42], Lazer and McKenna [27],
Lazer [26], Các [5], Magalhães [32], Cuesta and Gossez [9], de Figueiredo and Gossez [14] and Margulies and
Margulies [33]). Schechter [43] showed that in the square (ëk−1, ëk+1) × (ëk−1, ëk+1), the spectrum Σ(Ω) con-
tains two strictly decreasing curves, which may coincide, such that the points in the square that are either
below the lower curve or above the upper curve are not in Σ(Ω), while the points between them may or may
not belong to Σ(Ω) when they do not coincide.

The Dancer–Fučík spectrum of the p-Laplacian Δp u = div(|∇u|p−2∇u) is the set Σp(Ω) of all (a, b) ∈ ℝ2

such that the problem

{
−Δp u = b(u+)p−1 − a(u−)p−1 inΩ,

u = 0 on àΩ,

has a nontrivial solution. For N = 1, the Dirichlet spectrum ò(−Δp) of −Δp in Ω consists of a sequence of
simple eigenvalues ëk ↗ +∞ and Σp(Ω) has the same general shape as Σ(Ω) (see Drábek [17]). For N ≥ 2,
the �rst eigenvalue ë1 of −Δp is positive, simple and has an associated eigenfunction that is positive in Ω
(see Anane [2] and Lindqvist [30, 31]), so Σp(Ω) contains the two lines ë1 × ℝ and ℝ × ë1. Moreover, ë1 is
isolated in the spectrum, so the second eigenvalue ë2 = inf ò(−Δp) ∩ (ë1,∞) is well-de�ned (see Anane and
Tsouli [3]), and a �rst nontrivial curve in Σp(Ω) passing through (ë2, ë2) and asymptotic to ë1 × ℝ andℝ × ë1

at in�nity was constructed using the mountain pass theorem by Cuesta, de Figueiredo and Gossez [8].
Although a complete description of ò(−Δp) is not yet available, an increasing and unbounded sequence of
eigenvalues can be constructed via a standard minimax scheme based on the Krasnosel’skĭı genus, or via
nonstandard schemes based on the cogenus as in Drábek and Robinson [18] and the cohomological index as
in Perera [35]. Unbounded sequences of decreasing curves in Σp(Ω), analogous to the lower and upper curves
of Schechter [43] in the semilinear case, have been constructed using variousminimax schemes by Cuesta [7],
Micheletti and Pistoia [34], and Perera [36].
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Goyal and Sreenadh [23] recently studied theDancer–Fučík spectrum for a class of linear nonlocal elliptic
operators that includes the fractional Laplacian (−Δ)s. As in Cuesta, de Figueiredo and Gossez [8], they con-
structed a �rst nontrivial curve in the Dancer–Fučík spectrum that passes through (ë2, ë2) and is asymptotic
to ë1 × ℝ andℝ × ë1 at in�nity. Very recently, in [4], the authors proved, among other things, that the second
variational eigenvalue ë2 is larger than ë1 and (ë1, ë2) does not contain any other eigenvalues.

The purpose of this note is to point out that the general theories developed in Perera, Agarwal and
O’Regan [37] and Perera and Schechter [41] apply to the fractional p-Laplacian and Laplacian operators,
respectively, and draw some conclusions about their Dancer–Fučík spectra. We construct an unbounded
sequence of decreasing curves in Σs

p(Ω) using a suitable minimax scheme. For p = 2, we present a very accu-
rate local analysis. We construct the minimal and maximal curves of the spectrum locally near the points
where it intersects the main diagonal of the plane. We give a su�cient condition for the region between them
to be nonempty and show that it is free of the spectrum in the case of a simple eigenvalue. Finally, we compute
the critical groups in various regions separated by these curves.We compute themprecisely in certain regions
and prove a shifting theorem that gives a �nite-dimensional reduction in certain other regions. This allows
us to obtain nontrivial solutions of perturbed problems with nonlinearities crossing a curve of the spectrum
via a comparison of the critical groups at zero and in�nity.

2 The Dancer–Fučík spectrum of the fractional p-Laplacian
The general theory developed in Perera, Agarwal and O’Regan [37] applies to problem (1.1). Indeed, the odd
(p − 1)-homogeneous operator As

p ∈ C(Xs
p(Ω), Xs

p(Ω)∗), whereXs
p(Ω)∗ is the dual ofXs

p(Ω), de�ned by

As
p(u) v = ∫

ℝ2N
|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x − y|N+sp dx dy, u, v ∈ Xs
p(Ω),

that is associated with the left-hand side of equation (1.2) satis�es

As
p(u) u = ‖u‖p, |As

p(u) v| ≤ ‖u‖p−1‖v‖ for all u, v ∈ Xs
p(Ω) (2.1)

and is the Fréchet derivative of the C1-functional

Isp(u) =
1
p
∫
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp dx dy, u ∈ Xs
p(Ω).

Moreover, since Xs
p(Ω) is uniformly convex, it follows from (2.1) that As

p is of type (S), i.e., every sequence
(uj) ⊂ Xs

p(Ω) such that
uj ⇀ u, As

p(uj)(uj − u) → 0

has a subsequence that converges strongly to u (see [37, Proposition 1.3]). Hence, the operatorAs
p satis�es the

structural assumptions of [37, Chapter 1].
When a = b = ë, problem (1.1) reduces to the nonlinear eigenvalue problem

{
(−Δ)sp u = ë|u|p−2u inΩ,

u = 0 inℝN \ Ω.
(2.2)

Eigenvalues of this problem coincide with critical values of the functional

Ψ(u) = (∫
Ω

|u|p dx)
−1

on the manifold
M = {u ∈ Xs

p(Ω) : ‖u‖ = 1}.
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The �rst eigenvalue
ë1 = infu∈M

Ψ(u)

is positive, simple, isolated and has an associated eigenfunction that is positive in Ω (see Lindgren and
Lindqvist [29] and Franzina and Palatucci [20]), so Σs

p(Ω) contains the two lines ë1 × ℝ and ℝ × ë1. Let F
denote the class of symmetric subsets ofM, let i(M) denote theℤ2-cohomological index ofM ∈ F (see Fadell
and Rabinowitz [19]) and set

ëk := inf
M∈F
i(M)≥k

sup
u∈M

Ψ(u), k ≥ 2.

Then, ëk ↗ +∞ is a sequence of eigenvalues of problem (2.2) (see [37, Theorem 4.6]), so Σs
p(Ω) contains the

sequence of points (ëk, ëk).
Following [37, Chapter 8], we now construct an unbounded sequence of decreasing curves in Σs

p(Ω).
For t > 0, let

Ψt(u) = (∫
Ω

((u+)p + t(u−)p) dx)
−1

, u ∈ M.

Then, the point (c, ct) ∈ Σs
p(Ω) if and only if c is a critical value ofΨt (see [37, Lemma 8.3]). For each k ≥ 2 such

that ëk > ëk−1, let
CΨëk−1

t = (Ψëk−1
t × [0, 1])/(Ψëk−1

t × {1})

be the cone on the sublevel setΨëk−1
t = {u ∈ M : Ψt(u) ≤ ëk−1}, let Γk denote the class of maps ã ∈ C(CΨëk−1

t ,M)
such that ã|Ψtëk−1 is the identity and set

csk(t) = infã∈Γk supu∈ã(CΨëk−1t )

Ψt(u).

We have the following theorem as a special case of [37, Theorem 8.8].

Theorem 2.1. Let
C
s
k = {(csk(t), c

s
k(t)t) :

ëk−1

ëk
< t <

ëk

ëk−1
}.

Then, Ck is a decreasing continuous curve in Σs
p(Ω) and csk(1) ≥ ëk.

3 The Dancer–Fučík spectrum of the fractional Laplacian
The Dancer–Fučík spectrum of the operator (−Δ)s in Ω is the set Σs(Ω) of all points (a, b) ∈ ℝ2 such that
the problem

{
(−Δ)s u = bu+ − au− inΩ,

u = 0 inℝN \ Ω,
(3.1)

has a nontrivial weak solution. The general theory developed in Perera and Schechter [41] applies to prob-
lem (3.1). Indeed, setXs(Ω) = Xs

2(Ω) and let As be the inverse of the solution operator

S : L2(Ω) → S(L2(Ω)) ⊂ Xs(Ω), f Ü→ u,

of the problem

{
(−Δ)s u = f(x) inΩ,

u = 0 inℝN \ Ω.

Then, As is a self-adjoint operator on L2(Ω) and we have

(u, v) = (As/2 u, As/2 v)2 = ∫
ℝ2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dx dy for all u, v ∈ Xs(Ω)

and

‖u‖ = ‖As/2 u‖2 = ( ∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s dx dy)
1/2

for all u ∈ Xs(Ω),
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where ( ⋅ , ⋅ ) and ( ⋅ , ⋅ )2 are the inner products in Xs(Ω) and L2(Ω), respectively. Moreover, its spectrum
ò(As) ⊂ (0,∞) and (As)−1 : L2(Ω) → L2(Ω) is a compact operator since the embeddingXs(Ω) í→ L2(Ω) is com-
pact. Thus, ò(As) consists of isolated eigenvalues ëk, k ≥ 1, of �nitemultiplicities satisfying 0 < ë1 < ë2 < ⋅ ⋅ ⋅ .
The �rst eigenvalue ë1 is simple and has an associated eigenfunction ÿ1 > 0 and ifw ∈ ((ℝÿ1)

⊥ ∩ Xs(Ω)) \ {0},
then

0 = (w, ÿ1) = (As w, ÿ1)2 = (w, As ÿ1)2 = ë1(w, ÿ1)2,

so w± ̸= 0. Hence, the operator As satis�es all the assumptions of [41, Chapter 4].
Now, we describe the minimal and maximal curves of Σs(Ω) in the square

Qk = (ëk−1, ëk+1)
2, k ≥ 2,

constructed in [41]. Weak solutions of problem (3.1) coincide with critical points of the C1-functional

I(u, a, b) =
1
2
∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s dx dy −
1
2
∫
Ω

(b(u+)2 + a(u−)2)dx, u ∈ Xs(Ω).

Denote by Ek the eigenspace of ëk and set

Nk =
k

⨁
j=1

Ej, Mk = N⊥
k ∩ Xs(Ω).

Then,Xs(Ω) = Nk⊕Mk is an orthogonal decompositionwith respect to both ( ⋅ , ⋅ ) and ( ⋅ , ⋅ )2.When (a, b) ∈ Qk,
I(v + y + w), v + y + w ∈ Nk−1 ⊕ Ek ⊕Mk is strictly concave in v and strictly convex in w, i.e., if v1 ̸= v2 ∈ Nk−1,
w ∈ Mk−1, then

I((1 − t)v1 + tv2 + w) > (1 − t)I(v1 + w) + tI(v2 + w) for all t ∈ (0, 1)

and if v ∈ Nk, w1 ̸= w2 ∈ Mk, then

I(v + (1 − t)w1 + tw2) < (1 − t)I(v + w1) + tI(v + w2) for all t ∈ (0, 1)

(see [41, Proposition 4.6.1]).

Proposition 3.1 ([41, Proposition 4.7.1, Corollary 4.7.3, Proposition 4.7.4]). Let (a, b) ∈ Qk.
(i) There is a positive homogeneous map è( ⋅ , a, b) ∈ C(Mk−1, Nk−1) such that v = è(w) is the unique solution of

I(v + w) = sup
v�∈Nk−1 I(v

� + w), w ∈ Mk−1.

Moreover, I�(v + w) ⊥ Nk−1 if and only if v = è(w). Furthermore, the map è is continuous onMk−1 × Qk and
satis�es è(w, ëk, ëk) = 0 for all w ∈ Mk−1.

(ii) There is a positive homogeneous map ó( ⋅ , a, b) ∈ C(Nk,Mk) such that w = ó(v) is the unique solution of

I(v + w) = inf
w�∈Mk I(v + w�), v ∈ Nk.

Moreover, I�(v + w) ⊥ Mk if and only if w = ó(v). Furthermore, the map ó is continuous on Nk × Qk and
satis�es ó(v, ëk, ëk) = 0 for all v ∈ Nk.

For (a, b) ∈ Qk, let
ò(w, a, b) = è(w, a, b) + w, w ∈ Mk−1, Sk(a, b) = ò(Mk−1, a, b),

æ(v, a, b) = v + ó(v, a, b), v ∈ Nk, Sk(a, b) = æ(Nk, a, b).

Then, Sk and Sk are topological manifolds modeled on Mk−1 and Nk, respectively. Thus, Sk is in�nite-dimen-
sional, while Sk is dk-dimensional, where dk = dimNk. For B ⊂ Xs(Ω), set B̃ = {u ∈ B : ‖u‖ = 1}. We say that B
is a radial set if B = {tu : u ∈ B̃, t ≥ 0}. Since è and ó are positive homogeneous, so are ò and æ and hence Sk
and Sk are radial manifolds.
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Let
K(a, b) = {u ∈ Xs(Ω) : I�(u, a, b) = 0}

be the set of critical points of I( ⋅ , a, b). Since I� is positive homogeneous, it follows that K is a radial set.
As I(u) = (I�(u), u)/2, we have

I(u) = 0 for all u ∈ K. (3.2)

SinceXs(Ω) = Nk−1 ⊕ Ek ⊕Mk, Proposition 3.1 implies

K = {u ∈ Sk ∩ Sk : I�(u) ⊥ Ek}. (3.3)

Together with (3.2), it also implies
K ⊂ {u ∈ Sk ∩ Sk : I(u) = 0}. (3.4)

Set
nk−1(a, b) = inf

w∈M̃k−1 supv∈Nk−1 I(v + w, a, b), mk(a, b) = sup
v∈Ñk infw∈Mk I(v + w, a, b).

Since I(u, a, b) is nonincreasing in a for �xed u and b and in b for �xed u and a, it follows that nk−1(a, b)
andmk(a, b) are nonincreasing in a for �xed b and in b for �xed a. By Proposition 3.1,

nk−1(a, b) = inf
w∈M̃k−1 I(ò(w, a, b), a, b), mk(a, b) = sup

v∈Ñk I(æ(v, a, b), a, b).
Proposition 3.2 ([41, Proposition 4.7.5, Lemma 4.7.6, Proposition 4.7.7]). Let (a, b), (a�, b�) ∈ Qk.
(i) Assume that nk−1(a, b) = 0. Then,

I(u, a, b) ≥ 0 for all u ∈ Sk(a, b), K(a, b) = {u ∈ Sk(a, b) : I(u, a, b) = 0}

and (a, b) ∈ Σs(Ω).
(a) If a� ≤ a, b� ≤ b and (a�, b�) ̸= (a, b), then nk−1(a

�, b�) > 0,

I(u, a�, b�) > 0 for all u ∈ Sk(a
�, b�) \ {0}

and (a�, b�) ∉ Σs(Ω).
(b) If a� ≥ a, b� ≥ b and (a�, b�) ̸= (a, b), then nk−1(a

�, b�) < 0 and there is some u ∈ Sk(a
�, b�) \ {0} such that

I(u, a�, b�) < 0.

Furthermore, nk−1 is continuous on Qk and nk−1(ëk, ëk) = 0.
(ii) Assume thatmk(a, b) = 0. Then,

I(u, a, b) ≤ 0 for all u ∈ Sk(a, b), K(a, b) = {u ∈ Sk(a, b) : I(u, a, b) = 0}

and (a, b) ∈ Σs(Ω).
(a) If a� ≥ a, b� ≥ b and (a�, b�) ̸= (a, b), thenmk(a

�, b�) < 0,

I(u, a�, b�) < 0 for all u ∈ Sk(a�, b�) \ {0}

and (a�, b�) ∉ Σs(Ω).
(b) If a� ≤ a, b� ≤ b and (a�, b�) ̸= (a, b), thenmk(a

�, b�) > 0 and there is some u ∈ Sk(a�, b�) \ {0} such that

I(u, a�, b�) > 0.

Furthermore,mk is continuous on Qk andmk(ëk, ëk) = 0.

For a ∈ (ëk−1, ëk+1), set

ík−1(a) = sup{b ∈ (ëk−1, ëk+1) : nk−1(a, b) ≥ 0}, ìk(a) = inf{b ∈ (ëk−1, ëk+1) : mk(a, b) ≤ 0}.

Then,
b = ík−1(a) ⇐⇒ nk−1(a, b) = 0, b = ìk(a) ⇐⇒ mk(a, b) = 0

(see [41, Lemma 4.7.8]).
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Theorem 3.3 ([41, Theorem 4.7.9]). Let (a, b) ∈ Qk.
(i) The function ík−1 is continuous, strictly decreasing and satis�es

(a) ík−1(ëk) = ëk,
(b) b = ík−1(a) â⇒ (a, b) ∈ Σs(Ω),
(c) b < ík−1(a) â⇒ (a, b) ∉ Σs(Ω).

(ii) The function ìk is continuous, strictly decreasing and satis�es
(a) ìk(ëk) = ëk,
(b) b = ìk(a) â⇒ (a, b) ∈ Σs(Ω),
(c) b > ìk(a) â⇒ (a, b) ∉ Σs(Ω).

(iii) ík−1(a) ≤ ìk(a).

Thus,
Ck : b = ík−1(a), Ck : b = ìk(a)

are strictly decreasing curves in Qk that belong to Σs(Ω). They both pass through the point (ëk, ëk) and may
coincide. The region

Ik = {(a, b) ∈ Qk : b < ík−1(a)}

below the lower curve Ck and the region

Ik = {(a, b) ∈ Qk : b > ìk(a)}

above the upper curve Ck are free of Σs(Ω). They are the minimal and maximal curves of Σs(Ω) in Qk in this
sense. Points in the region

IIk = {(a, b) ∈ Qk : ík−1(a) < b < ìk(a)}

between Ck and Ck, when it is nonempty, may or may not belong to Σs(Ω).
For (a, b) ∈ Qk, let

Nk(a, b) = Sk(a, b) ∩ Sk(a, b).

Since Sk and Sk are radial sets, so is Nk. The next two propositions show that Nk is a topological manifold
modeled on Ek and hence

dimNk = dk − dk−1.

We will call it the null manifold of I.

Proposition 3.4 ([41, Proposition 4.8.1, Lemma 4.8.3, Proposition 4.8.4]). Let (a, b) ∈ Qk.
(i) There is a positive homogeneous map ç( ⋅ , a, b) ∈ C(Ek, Nk−1) such that v = ç(y) is the unique solution of

I(æ(v + y)) = sup
v�∈Nk−1 I(æ(v

� + y)), y ∈ Ek.

Moreover, I�(æ(v + y)) ⊥ Nk−1 if and only if v = ç(y). Furthermore, the map ç is continuous on Ek × Qk and
satis�es ç(y, ëk, ëk) = 0 for all y ∈ Ek.

(ii) There is a positive homogeneous map î( ⋅ , a, b) ∈ C(Ek,Mk) such that w = î(y) is the unique solution of

I(ò(y + w)) = inf
w�∈Mk I(ò(y + w�)), y ∈ Ek.

Moreover, I�(ò(y + w)) ⊥ Mk if and only if w = î(y). Furthermore, the map î is continuous on Ek × Qk and
satis�es î(y, ëk, ëk) = 0 for all y ∈ Ek.

(iii) For all y ∈ Ek,
æ(ç(y) + y) = ò(y + î(y)),

i.e., ç(y) = è(y + î(y)) and î(y) = ó(ç(y) + y).

Let
ÿ(y) = æ(ç(y) + y) = ò(y + î(y)), y ∈ Ek.
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Proposition 3.5 ([41, Proposition 4.8.5]). Let (a, b) ∈ Qk.
(i) ÿ( ⋅ , a, b) ∈ C(Ek, X

s(Ω)) is a positive homogeneous map such that

I(ÿ(y)) = inf
w∈Mk supv∈Nk−1 I(v + y + w) = sup

v∈Nk−1 infw∈Mk I(v + y + w), y ∈ Ek,

and I�(ÿ(y)) ∈ Ek for all y ∈ Ek.
(ii) If (a�, b�) ∈ Qk with a� ≥ a and b� ≥ b, then

I(ÿ(y, a�, b�), a�, b�) ≤ I(ÿ(y, a, b), a, b) for all y ∈ Ek.

(iii) ÿ is continuous on Ek × Qk.
(iv) ÿ(y, ëk, ëk) = y for all y ∈ Ek.
(v) Nk(a, b) = {ÿ(y, a, b) : y ∈ Ek}.
(vi) Nk(ëk, ëk) = Ek.

By (3.3) and (3.4),
K = {u ∈ Nk : I�(u) ⊥ Ek} ⊂ {u ∈ Nk : I(u) = 0}. (3.5)

The following theorem shows that the curves Ck and Ck are closely related to ̃I = I|Nk .
Theorem 3.6 ([41, Theorem 4.8.6]). Let (a, b) ∈ Qk.
(i) If b < ík−1(a), then

̃I(u, a, b) > 0 for all u ∈ Nk(a, b) \ {0}.

(ii) If b = ík−1(a), then

̃I(u, a, b) ≥ 0 for all u ∈ Nk(a, b), K(a, b) = {u ∈ Nk(a, b) : ̃I(u, a, b) = 0}.

(iii) If ík−1(a) < b < ìk(a), then there are ui ∈ Nk(a, b) \ {0}, i = 1, 2, such that

̃I(u1, a, b) < 0 < ̃I(u2, a, b).

(iv) If b = ìk(a), then

̃I(u, a, b) ≤ 0 for all u ∈ Nk(a, b), K(a, b) = {u ∈ Nk(a, b) : ̃I(u, a, b) = 0}.

(v) If b > ìk(a), then
̃I(u, a, b) < 0 for all u ∈ Nk(a, b) \ {0}.

By (3.5), solutions of (3.1) are inNk. The setK(a, b) of solutions is all ofNk(a, b) exactly when (a, b) ∈ Qk is on
both Ck and Ck (see [41, Theorem 4.8.7]). When ëk is a simple eigenvalue,Nk is 1-dimensional and hence this
implies that (a, b) is on exactly one of those curves if and only if

K(a, b) = {tÿ(y0, a, b) : t ≥ 0}

for some y0 ∈ Ek \ {0} (see [41, Corollary 4.8.8]).
The following theorem gives a su�cient condition for the region IIk to be nonempty.

Theorem 3.7 ([41, Theorem 4.9.1]). If there is a function y ∈ Ek such that |y+|2 ̸= |y−|2, then there is a neighbor-
hoodN ⊂ Qk of (ëk, ëk) such that every point (a, b) ∈ N \ {(ëk, ëk)} with a + b = 2ëk is in IIk.

For the local problem (1.3), this result is due to Li, Li andLiu [28].Whenëk is a simple eigenvalue, the region IIk
is free of Σs(Ω) (see [41, Theorem 4.10.1]). For problem (1.3), this is due to Gallouët and Kavian [22].

When (a, b) ∉ Σs(Ω), 0 is the only critical point of I and its critical groups are given by

Cq(I, 0) = Hq(I
0, I0 \ {0}), q ≥ 0,

where I0 = {u ∈ Xs(Ω) : I(u) ≤ 0} and H denotes singular homology. We take the coe�cient group to be the
�eldℤ2. The following theorem gives our main results on the critical groups.
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Theorem 3.8 ([41, Theorem 4.11.2]). Let (a, b) ∈ Qk \ Σ
s(Ω).

(i) If (a, b) ∈ Ik, then
Cq(I, 0) ≈ äqdk−1ℤ2.

(ii) If (a, b) ∈ Ik, then
Cq(I, 0) ≈ äqdkℤ2.

(iii) If (a, b) ∈ IIk, then
Cq(I, 0) = 0, q ≤ dk−1 or q ≥ dk

and
Cq(I, 0) ≈ H̃q−dk−1−1({u ∈ Nk : I(u) < 0}), dk−1 < q < dk,

where H̃ denotes the reduced homology groups. In particular, Cq(I, 0) = 0 for all q when ëk is simple.

For the local problem (1.3), this result is due to Dancer [12, 13] and Perera and Schechter [38–40]. It can be
used, for example, to obtain nontrivial solutions of perturbed problemswith nonlinearities that cross a curve
of the Dancer–Fučík spectrum, via a comparison of the critical groups at zero and in�nity. Consider the
problem

{
(−Δ)s u = f(x, u) inΩ,

u = 0 inℝN \ Ω,
(3.6)

where f is a Carathéodory function onΩ × ℝ.

Theorem 3.9 ([41, Theorem 5.6.1]). If

f(x, t) =
{
{
{

b0t
+ − a0t

− + o(t) as t → 0,

bt+ − at− + o(t) as |t| → ∞,

uniformly a.e. in Ω for some (a0, b0) and (a, b) in Qk \ Σ
s(Ω) that are on opposite sides of Ck or Ck, then

problem (3.6) has a nontrivial weak solution.

For problem (1.3), this was proved in Perera and Schechter [39]. It generalizes a well-known result of Amann
and Zehnder [1] on the existence of nontrivial solutions for problems crossing an eigenvalue.
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