
Annali di Matematica (2016) 195:1917–1959
DOI 10.1007/s10231-015-0542-7

Eigenvalues for double phase variational integrals

Francesca Colasuonno2 · Marco Squassina1

Received: 7 July 2015 / Accepted: 14 October 2015 / Published online: 29 October 2015
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2015

Abstract We study an eigenvalue problem in the framework of double phase variational
integrals, and we introduce a sequence of nonlinear eigenvalues by a minimax procedure. We
establish a continuity result for the nonlinear eigenvalues with respect to the variations of the
phases. Furthermore, we investigate the growth rate of this sequence and get aWeyl-type law
consistent with the classical law for the p-Laplacian operator when the two phases agree.
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1 Introduction

1.1 Overview

While the theory of linear eigenvalue problems is awell-established topic of functional analy-
sis [16], in the last few decades many contributions were devoted to the study of nonlinear
eigenvalue problems. As pointed out by P. Lindqvist in his monograph [44], the work [37] by
E.H. Lieb was probably one of the first containing an interesting result about the minimum
of a nonlinear Rayleigh quotient in several variables. Subsequently, and especially in the first
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years of the nineties, various papers were written by P. Lindqvist on the subject, we recall
here [28,38,40–42] and the comprehensive overview contained in his monograph [44].

1.1.1 p-Laplacian

More precisely, if � ⊂ R
n is a smooth bounded domain and p > 1, for the quasilinear

eigenvalue problem

− div(|∇u|p−2∇u) = λ|u|p−2u, u ∈ W 1,p
0 (�), (1.1)

existence, regularity, qualitative properties, and stability of eigenpairs (u, λ) with respect
to p were investigated. The physical motivations that lead to the study of the eigenvalue
problem (1.1) are mainly within the context of non-Newtonian fluids, dilatant for p > 2 and
pseudoplastic for 1 < p < 2, nonlinear elasticity and glaciology. Of particular relevance
is the investigation of the properties of the first eigenpair (u1

p, λ
1
p), which corresponds to a

solution to the nonlinear minimization problem

λ1p(�) := inf
u∈Mp

‖∇u‖p
p, Mp := {u ∈ W 1,p

0 (�) : ‖u‖p = 1}.

In the one-dimensional case, (u1
p, λ

1
p) is explicitly determined by solving the corresponding

ODE boundary value problem. If � = (a, b), then

λp = (πp/(b − a))p−1, πp := 2(p − 1)1/p
∫ 1

0
(1 − s p)−1/pds,

and

u1
p(x) = (p − 1)−1/p sinp(πp(x − a)/(b − a)),

where sinp is a 2πp-periodic function that generalizes the classical sine function [43]. Of
course an analogous analysis is not possible in the higher-dimensional case. The existence
of a sequence of higher eigenvalues (um

p , λm
p ) can be obtained as a solution to

λm
p (�) := inf

K∈Wm
p

max
u∈K

‖∇u‖p
p,

where

Wm
p := {

K ⊂ Mp: K symmetric (K = −K ) and compact, γ (K ) ≥ m
}
, (1.2)

and γ (K ) denotes the Krasnosel’skiı̆ genus of K . We recall that for every nonempty and
symmetric subset A of a Banach space X , its Krasnosel’skiı̆ genus is defined by

γ (A) := inf
{

k ∈ N: ∃ a continuous odd map f : A → S
k−1
}

, (1.3)

where Sk−1 is the unit sphere inRk , and with the convention that γ (A) := +∞, if no such an
integer k exists. Actually one can define, in a similar fashion, a sequence of higher variational
eigenvalues by replacing the Krasnosel’skiı̆ genus with any other topological index i which
satisfies the properties listed at the end of Sect. 4. It is unknown whether these topological
constructions exhaust the spectrum or not, which is the case for linear eigenvalue problems.
This is, in fact, one of the main open problems in the field since the appearance of these
results. The sequence of eigenvalues (λm

p ) depend continuously, in smooth domains, on the
value of p (cf. [12,21,22,40,42,50]) and, fixed the value of p, they grow in m according to
a suitable Weyl-type law, λm

p ≈ Cm p/n for m large, consistently with the celebrated Weyl
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Eigenvalues for double phase variational integrals 1919

law for the linear case p = 2, see e.g., [29,31]. For a complete investigation of the Stekloff
spectrum for the pseudo p-Laplacian operator

∑
i Di (|Di u|p−2Di u), we refer the reader to

[10].

1.1.2 Fractional p-Laplacian

We wish to point out that, very recently, a nonlocal version of the p-Laplacian, the fractional
p-Laplacian (−�p)

s ,

(−�p)
s u(x) := 2 lim

ε↘0

∫
Rn\Bε(x)

|u(x) − u(y)|p−2 (u(x) − u(y))

|x − y|n+s p
dy, x ∈ R

n . (1.4)

was introduced in [38],where properties of the first eigenvalue are investigated. Subsequently,
Weyl-type laws were studied in [33] (an optimal result, consistent with the local case, is not
available yet, due to the strong nonlocal effects in the analysis) and a complete analysis
about the stability of variational eigenvalues was obtained in [8], with particular reference
to the singular limit s ↗ 1 toward the eigenvalues of the fractional Laplacian (−�)s =
F−1 ◦ Ms ◦ F , where F is the Fourier transform operator and Ms is the multiplication by
|ξ |2 s . A rather complete analysis about the properties of the second eigenvalue was carried
on in [9].

1.1.3 p(x)-Laplacian

Motivated by nonlinear elasticity theory and electrorheological fluids, problems involving
variable exponents p(x)were also investigated, especially in regularity theory (see e.g., [1,2,
23] and the references therein).Quite recently in [28], nonlinear eigenvalueswere investigated
in this framework. If p : � → R

+ is a log-Hölder continuous function and

1 < p− := inf
�

p ≤ p(x) ≤ sup
�

p =: p+ < n for all x ∈ �,

the m-th (variational) eigenvalue λm
p(x) can be obtained as

λm
p(x) := inf

K∈Wm
p(x)

sup
u∈K

‖∇u‖p(x), (1.5)

where ‖ · ‖p(x) is the Luxemburg norm defined by

‖u‖p(x) := inf

{
γ > 0 :

∫
�

∣∣∣∣u(x)

γ

∣∣∣∣
p(x)

dx ≤ 1

}
.

and Wm
p(x) is the set of symmetric, compact subsets of

Mp(x) := {u ∈ W 1,p(x)
0 (�) : ‖u‖p(x) = 1}

such that i(K ) ≥ m, where i denotes the genus or any other topological index satisfying
properties (i1)–(i4) listed in Sect. 4. In [28] existence and properties of the first eigenfunction
were studied. The stability with respect to uniform perturbations of p(x) was recently inves-
tigated in [13] (see also [7]). Finally, the growth rate of the sequence in (1.5) was investigated
in [52], getting a natural replacement for the constant case.
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1.1.4 Double phases

Given two constant exponents q > p > 1, one can think about the case of a variable
exponent p(x) being a smooth approximation of a discontinuous exponent p̄ : � → (1,∞)

with p̄(x) = p if x ∈ �1 and p̄(x) = q if x ∈ �2, where � = �1 ∪ �2. In some sense, this
situation can be interpreted as a double phase behavior in two disjoint sub-domains of �. A
different kind of double phase situation occurs for the energy functional

u �→
∫

�

H(x, |∇u(x)|)dx, H(x, t) := t p + a(x)tq , q > p > 1, a(·) ≥ 0, (1.6)

where the integrand switches two different elliptic behaviors. This defined in (1.6) belongs
to a family of functionals that Zhikov introduced to provide models of strongly anisotropic
materials, see [60,62,63] or [61] and the references therein. Also, (1.6) settle in the context of
the so-called functionals with nonstandard growth conditions, according to awell-established
terminology which was introduced byMarcellini [45,46], see also [17–19,47]. In [61], func-
tionals (1.6) are used in the context of homogenization and elasticity and the function a drives
the geometry of a composite of two different materials with hardening powers p and q .
Significant progresses were recently achieved in the framework of regularity theory for min-
imizers of this class of integrands of the Calculus of Variations, see e.g., [3–5,14,15].

1.2 Main results

The main goal of this paper is to introduce a suitable notion of eigenpair associated with the
energy functional (1.6) consistently with the case p = q and a ≡ 1, to prove the existence
of an unbounded sequence of eigenvalues and, furthermore, get continuity of each of these
eigenvalues with respect to (p, q) and a Weyl-type law consistent with the classical (single
phase) case. Let W 1,H

0 (�) be the Musielak–Orlicz space introduced in Sect. 2 and

MH := {u ∈ W 1,H
0 (�): ‖u‖H = 1},

where � is a bounded domain of Rn . In the sequel, we shall denote this set simply by M.

In the next theorems, we assume that 1 < p < q < n and that the following condition holds

q

p
< 1 + 1

n
, ∂� and a : � → [0,∞) are Lipschitz continuous. (1.7)

The following are the main results of the paper.

Theorem 1.1 (The first eigenpair) The first eigenvalue

λ1H := inf
u∈M ‖∇u‖H

is positive and there exists a positive minimizer u1
H ∈ M ∩ L∞(�) which solves

− div

(
p

∣∣∣∣∇u

λ

∣∣∣∣
p−2 ∇u

λ
+ qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ

)
= λS(u)(p|u|p−2u + qa(x)|u|q−2u),

(1.8)
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Eigenvalues for double phase variational integrals 1921

with λ = λ1H, where

S(u) :=

∫
�

(
p

∣∣∣∣∇u

λ

∣∣∣∣
p

+ qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q)

dx
∫

�

(p|u|p + qa(x)|u|q)dx
. (1.9)

The first eigenvalue λ1H is stable under monotonic perturbations of �. If a ≡ 1, furthermore,
balls uniquely minimize the first eigenvalue among sets with a given n-dimensional Lebesgue
measure. Finally, if a ≡ 1 and, given a polarizer H with 0 ∈ H (resp. 0 ∈ ∂ H), the
domain � coincides with its polarization �H (resp. its reflection �H ), then there exists a
first nonnegative eigenfunction having the symmetry u = u H .

The previous theorem is a consequence of a Poincaré-type inequality, which has been
proved in the general framework of Musielak–Orlicz spaces in [26,32].

It is important to stress that, due to the presence of the term S(u), Eq. (1.8) turns out to
be nonlocal. A similar nonlocal character arises in the case of the p(x)-Laplacian.

It would be interesting to investigate the simplicity of the first eigenvalue as well as
understanding if an arbitrary eigenfunction of fixed sign is automatically a first eigenfunction.
These issues are known to hold in the cases of the p-Laplacian and the fractional p-Laplacian,
but, to the authors’ knowledge, no result seems to be available in inhomogeneous settings
like the p(x)-Laplacian or the double phase operators.

In what follows, i denotes the genus or any topological index satisfying (i1)–(i4) in Sect. 4.

Theorem 1.2 (Nonlinear spectrum). If Wm
H is the set of symmetric compacts K of M with

index i(K ) ≥ m, then the sequence

λm
H := inf

K∈Wm
H
sup
u∈K

‖∇u‖H,

is nondecreasing, divergent, and for every m ≥ 1 there exists um ∈ M solving Eq. (1.8),
with λ = λm

H.

The result provides the construction of a variational spectrum for the double phase integrands
which is consistent with the single phase case p = q , see e.g., [21,22]. The proof relies on
the properties of the topological index i and is based on the fact that the even functional
K |M : u ∈ M �→ ‖∇u‖H satisfies the (PS) condition. As for the p-Laplacian, it is not
known whether the variational spectrum (i.e., the sequence of variational eigenvalues (λm

H))
exhausts the whole spectrum (i.e., the set of all eigenvalues of (1.8), see Definition 3.3) or
not. In Theorem 3.12, we prove that the spectrum is a closed set. While the following two
results concern only the variational spectrum.

Theorem 1.3 (Stability) Let (ph, qh) ↘ (p, q) as h → ∞. Then

lim
h→∞ λm

Hh
= λm

H for every m ≥ 1,

where Hh(x, t) := t ph + a(x)tqh and H(x, t) := t p + a(x)tq .

The result implies, in particular, that each element of the sequence of nonlinear eigenvalues
(λm

Hh
) for the double phase case converges to the corresponding nonlinear eigenvalue for the

p0-Laplacian operator, whenever (ph, qh) ↘ (p0, p0), as h → ∞. The proof of Theorem1.3
uses some recent results of [21] and involves the�-convergence of a class of even functionals
defined in L1(�).
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In what follows, for any E ⊂ N, we shall denote by �E the number of elements of E .
Furthermore, A ⊂ R

n is called quasiconvex if there exists a constant C > 0 such that for all
x, y ∈ A there is an arc joining x to y in A having length at most C |x − y|.

Theorem 1.4 (Weyl law) Let � be quasiconvex and let us set

w := 1 + ‖a‖∞ + |�|, σ := n

(
1

p
− 1

q

)
.

Let λm
H be defined either through the genus γ or through the Z2-cohomological index g.

Then, there exist C1, C2 > 0, depending only on n, p, q, such that

C1|�|(λ/w)n/(1+σ) ≤ �
{
m ∈ N : λm

H < λ
} ≤ C2|�|(wλ)n/(1−σ),

for λ > 0 large. In particular there exist D1, D2 > 0 depending on n, p, q, a and |�| with

D1m(1−σ)/n ≤ λm
H ≤ D2m(1+σ)/n

for every m ≥ 1 large enough.

The result provides a consistent extension of the Weyl-type law for the p-Laplacian. We
point out that, in the limiting case when p = q and a ≡ 1, the Euler-Lagrange Eq. (1.8) [see
also the formulation (3.3)] reduces to the usual quasilinear problem (1.1) involving −�p ,
but the eigenvalues λm

H and λm
p , in light of their definition, do satisfy

λm
H = (λm

p )
1
p for all m ∈ N.

Hence, the estimate for the growth of (λm
H) of Theorem 1.4 for the case p = q (formally

corresponding to σ = 0)

D1m1/n ≤ λm
H ≤ D2m1/n

should be compared with the estimate D1m p/n ≤ λm
p ≤ D2m p/n and, thus, it is consistent

with the results obtained in [29,31]. For the linear case q = p = 2 and a = 1, wemention the
pioneering contribution by Weyl [58], from which these types of estimates inherit the name.
The proof of Theorem 1.4 relies on the properties and on the relations among three different
topological indices (i.e., the genus, the cogenus, and the cohomological index) and is an
adaptation to the double phase setting of an idea developed in [52] for the p(x)-Laplacian
operator.

1.3 Plan of the paper

In Sect. 2, we give some basic definitions and useful results on Musielak–Orlicz spaces
and in particular on the spaces generated by the N -function H as in (1.6). In Sect. 3, we
derive the Euler-Lagrange equation corresponding to the minimization of the Rayleigh ratio
‖∇u‖H/‖u‖H and we prove Theorem 1.1 concerning the first eigenpair (λ1H, u1

H) and some
useful properties of the spectrum, such as its closedness and the behavior of thefirst eigenvalue
for large exponents p and q . Section 4 contains the definition of the variational eigenvalues of
(1.8) and the proof of Theorem 1.2, while Sect. 5 is devoted to the proof, via �-convergence,
of the stability of the nonlinear spectrum (Theorem 1.3), i.e., the continuity of the eigenvalues
with respect to the variation of the phases p and q from the right. Finally, in Sect. 6 we study
the asymptotic growth of the variational eigenvalues and prove Theorem 1.4.
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2 Preliminary results

2.1 Musielak–Orlicz spaces

We recall here some notions on Musielak–Orlicz spaces, see for reference [48], Section 2 of
[23], and also Section 1 of [27]. Let � ⊂ R

n be a bounded domain.

Definition 2.1 A continuous, convex function ϕ : [0,∞) → [0,∞) is called �-function if
ϕ(0) = 0 and ϕ(t) > 0 for all t > 0.
A function ϕ : � × [0,∞) → [0,∞) is said to be a generalized �-function, denoted by
ϕ ∈ �(�), if ϕ(·, t) is measurable for all t ≥ 0 and ϕ(x, ·) is a �-function for a.a. x ∈ �.
ϕ ∈ �(�) is locally integrable if ϕ(·, t) ∈ L1(�) for all t > 0.
ϕ ∈ �(�) satisfies the (�2)-condition if there exist a positive constant C and a nonnegative
function h ∈ L1(�) such that

ϕ(x, 2t) ≤ Cϕ(x, t) + h(x) for a.a. x ∈ � and all t ∈ [0,∞).

Let ϕ, ψ ∈ �(�). The function ϕ is weaker than ψ , denoted by ϕ � ψ , if there exist two
positive constants C1, C2 and a nonnegative function h ∈ L1(�) such that

ϕ(x, t) ≤ C1ψ(x, C2t) + h(x) for a.a. x ∈ � and all t ∈ [0,∞).

Given ϕ ∈ �(�), the Musielak–Orlicz space Lϕ(�) is given by

Lϕ(�) := {
u : � → R measurable : ∃ γ > 0 s.t. �ϕ(γ u) < ∞}

,

where

�ϕ(u) :=
∫

�

ϕ(x, |u|)dx

is the modular, while

‖u‖ϕ := inf
{
γ > 0: �ϕ(u/γ ) ≤ 1

}
is the norm defined on Lϕ(�).

Proposition 2.2 (cf. [48, Theorem 7.7]) Let ϕ ∈ �(�), then (Lϕ, ‖ · ‖ϕ) is a Banach space.

Proposition 2.3 (cf. [48, Theorem 8.5]) Let ϕ, ψ ∈ �(�), with ϕ � ψ . Then

Lψ(�) ↪→ Lϕ(�).

Proposition 2.4 (unit ball property) Let ϕ ∈ �(�), then the following properties hold.

(i) Ifϕ satisfies (�2), then Lϕ(�) = {u : � → R measurable : �ϕ(u) < ∞}, (cf. Theorem
8.13 of [48]).

(ii) If u ∈ Lϕ(�), then �ϕ(u) < 1 (resp. = 1; > 1) ⇔ ‖u‖ϕ < 1 (resp. = 1; > 1),
(cf. Lemma 2.1.14 of [23]).

Remark 2.5 As a consequence of the homogeneity of the norm and of the unit ball property
(Proposition 2.4-(i i)), we have the following implications:

‖u‖ϕ1 = ‖v‖ϕ2 ⇒
∥∥∥∥ u

‖v‖ϕ2

∥∥∥∥
ϕ1

= 1 ⇒ �ϕ1

(
u

‖v‖ϕ2

)
= 1 = �ϕ2

(
v

‖v‖ϕ2

)
.

(2.1)
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Definition 2.6 For ϕ ∈ �(�), the function ϕ∗ : � × R defined as

ϕ∗(x, s) = sup
t≥0

(st − ϕ(x, t)) for a.a. x ∈ � and all s ∈ [0,∞)

is called conjugate function of ϕ in the sense of Young.

Proposition 2.7 (cf. [23, Lemma 2.6.5]) Let ϕ ∈ �(�), then the following Hölder-type
inequality holds∫

�

|uv|dx ≤ 2‖u‖ϕ‖v‖ϕ∗ , for all u ∈ Lϕ(�) and v ∈ Lϕ∗
(�).

Definition 2.8 ϕ : [0,∞) → [0,∞) is called N -function (N stands for nice) if it is a
�-function satisfying

lim
t→0+

ϕ(t)

t
= 0 and lim

t→∞
ϕ(t)

t
= ∞.

A function ϕ : � × R → [0,∞) is said to be a generalized N -function, and is denoted by
ϕ ∈ N (�), if ϕ(·, t) is measurable for all t ∈ R and ϕ(x, ·) is an N -function for a.a. x ∈ �.

Remark ϕ ∈ N (�) implies ϕ∗ ∈ N (�).

Definition 2.9 Let φ, ψ ∈ N (�). We say that φ increases essentially more slowly than ψ

near infinity, and we write φ � ψ , if for any k > 0

lim
t→∞

φ(x, kt)

ψ(x, t)
= 0 uniformly for a.a. x ∈ �.

For ϕ ∈ �(�), the related Sobolev space W 1,ϕ(�) is the set of all Lϕ(�)-functions u having
|∇u| ∈ Lϕ(�), and is equipped with the norm

‖u‖1,ϕ = ‖u‖ϕ + ‖∇u‖ϕ,

where ‖∇u‖ϕ stands for ‖ |∇u| ‖ϕ . Furthermore, if ϕ ∈ N (�) is locally integrable, we denote

by W 1,ϕ
0 (�) the completion of C∞

0 (�) in W 1,ϕ(�).

Proposition 2.10 (cf. [48, Theorem 10.2], [27, Proposition 1.8]) Let ϕ ∈ N (�) be locally
integrable and such that

inf
x∈�

ϕ(x, 1) > 0. (2.2)

Then the spaces W 1,ϕ(�) and W 1,ϕ
0 (�) are Banach spaces which are reflexive if Lϕ(�) is

reflexive.

2.2 The double phase N-function

The function H : � × [0,∞) → [0,∞) defined as

H(x, t) := t p + a(x)tq for all (x, t) ∈ � × [0,∞),

with 1 < p < q and 0 ≤ a(·) ∈ L1(�), is a locally integrable, generalized N -function
satisfying (2.2) and

H(x, 2t) ≤ 2qH(x, t) for a.a. x ∈ � and all t ∈ [0,∞),

123



Eigenvalues for double phase variational integrals 1925

that is condition (�2). Therefore, in correspondence to H, we define the Musielak–Orlicz
space (LH(�), ‖ · ‖H) as

LH(�) := {u : � → R measurable : �H(u) < ∞} ,

‖u‖H := inf {γ > 0: �H(u/γ ) ≤ 1} ,

where we recall that

�H(u) :=
∫

�

H(x, |u|)dx .

Remark 2.11 In the next lemma, we provide an explicit expression for ‖ · ‖H. To this aim,
for every function u with a(x)|u|q ∈ L1(�) and ‖a1/qu‖q > 0, we set

�p,q(u) :=
(‖a1/qu‖q

‖u‖p

) q
q−p

.

We observe that the convex function

W(t) = t p + tq , t ∈ [0,∞)

is invertible in [0,∞). We have the following result.

Lemma 2.12 Let 1 < p < q. Then, for every u with a(x)|u|q ∈ L1(�) and ‖a1/qu‖q > 0,
there holds

‖u‖H = ‖u‖p �p,q(u)

W−1(�p,q(u)p)
. (2.3)

Proof Let γ > 0 be admissible for the problem defining ‖u‖H, i.e.,

1

γ p

∫
�

|u|p dx + 1

γ q

∫
�

a(x)|u|q dx ≤ 1. (2.4)

We now perform the change of variable

γ = 1

t

(∫
�

|u|p dx

)α (∫
�

a(x)|u|q dx

)−α

, t > 0,

for some α ∈ R that will be chosen later. Then (2.4) becomes

t p
(∫

�

|u|p dx

)1−α p (∫
�

a(x)|u|q dx

)α p

+tq
(∫

�

|u|p dx

)−α q (∫
�

a(x)|u|q dx

)1+α q

≤ 1.

If we choose

α := − 1

q − p
,

the previous inequality becomes

(t p + tq) ‖a1/qu‖− pq
q−p

q ‖u‖
pq

q−p
p ≤ 1.

This can be finally rewritten as

W(t) ≤ �p,q(u)p.
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1926 F. Colasuonno, M. Squassina

This shows that

‖u‖H =

(∫
�

a(x)|u|q dx

) 1
q−p

(∫
�

|u|p dx

) 1
q−p

inf

{
1

t
> 0 : W(t) ≤ �p,q(u)p

}
.

By using that W is strictly monotonically increasing in [0,∞), we get the expression
(2.3). ��
We recall here the following definition.

Definition 2.13 A function ϕ ∈ N (�) is uniformly convex if for every ε > 0 there exists
δ > 0 such that

|t − s| ≤ εmax{t, s} or ϕ

(
x,

t + s

2

)
≤ (1 − δ)

ϕ(x, t) + ϕ(x, s)

2

for all t, s ≥ 0 and a.a. x ∈ �.

We endow the spaces W 1,H(�) and W 1,H
0 (�) with the norm

‖u‖1,H := ‖u‖H + ‖∇u‖H.

Proposition 2.14 The spaces LH(�), W 1,H(�) and W 1,H
0 (�) are uniformly convex, and

so reflexive, Banach spaces.

Proof By Propositions 2.2 and 2.10, LH(�), W 1,H(�), and W 1,H
0 (�) are complete. For the

second part of the thesis, it suffices to prove that LH(�) is reflexive. Since by Propostion 2.2,
LH(�) is a Banach space, if we prove that LH(�) is uniformly convex, the reflexivity follows
by the Milman-Pettis theorem. By Theorems 2.4.11 and 2.4.14 of [23], in order to prove that
LH(�) is uniformly convex, it is enough to show that the N -functionH is uniformly convex.
Let ε > 0 and t, s ≥ 0 be such that |t − s| > εmax{t, s}. By Remark 2.4.16 of [23] there
exist δp(ε), δq(ε) > 0 such that(

t + s

2

)p

≤ (1 − δp(ε))
t p + s p

2
and

(
t + s

2

)q

≤ (1 − δq(ε))
tq + sq

2
,

thus(
t + s

2

)p

+ a(x)

(
t + s

2

)q

≤ (1 − min{δp(ε), δq(ε)}) t p + a(x)tq + s p + a(x)sq

2
.

This concludes the proof. ��
In the following, the notation X ↪→ Y means that the space X is continuously embedded into
the space Y , while X ↪→↪→ Y means that X is compactly embedded into Y .

Proposition 2.15 (Embeddings, I) Put p∗ := np/(n − p) if p < n, p∗ := +∞ otherwise,
and

Lq
a(�) :=

{
u : � → Rmeasurable:

∫
�

a(x)|u|qdx < ∞
}

,

endowed with the norm

‖u‖q,a :=
(∫

�

a(x)|u|qdx

)1/q

.

Then the following embeddings hold:
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(i) LH(�) ↪→ Lr (�) and W 1,H
0 (�) ↪→ W 1,r

0 (�) for all r ∈ [1, p];
(ii) if p �= n, then

W 1,H
0 (�) ↪→ Lr (�) for all r ∈ [1, p∗];

if p = n, then

W 1,H
0 (�) ↪→ Lr (�) for all r ∈ [1,∞);

(iii) if p ≤ n, then

W 1,H
0 (�) ↪→↪→ Lr (�) for all r ∈ [1, p∗);

if p > n, then

W 1,H
0 (�) ↪→↪→ L∞(�);

(iv) LH(�) ↪→ Lq
a(�);

(v) if a ∈ L∞(�), then Lq(�) ↪→ LH(�).

Proof Put Hp(x, t) := t p for all t ≥ 0 and x ∈ �. Clearly, Hp � H, hence by Propo-

sition 2.3, LH(�) ↪→ L p(�) and W 1,H
0 (�) ↪→ W 1,p

0 (�). Therefore, (i) follows by
the boundedness of �. While, (i i) and (i i i) follow by the embedding results on classical
Lebesgue and Sobolev spaces. Now, let u ∈ LH(�), then∫

�

a(x)|u|qdx ≤
∫

�

(|u|p + a(x)|u|q)dx = �H(u).

Therefore, if u �= 0,
∫

�

a(x)

( |u|
‖u‖H

)q

dx ≤ 1,

and so we conclude

‖u‖q,a ≤ ‖u‖H,

which proves (iv). Finally, for all t ≥ 0 and a.a. x ∈ �, if a ∈ L∞(�), we have

H(x, t) ≤ (1 + tq) + a(x)tq ≤ 1 + (1 + ‖a‖∞)tq ,

so (v) follows once again by Proposition 2.3. ��
Although we will not use it explicitly, the next lemma could be useful in some situations.

Lemma 2.16 Let (uh) be a sequence in LH(�) such that uh → u ∈ LH(�). Then, there
exist a subsequence (uh j ) and a function v ∈ LH(�) such that

uh j → u a.e. in �,

|uh j | ≤ v for all j, a.e. in �.

Proof By Proposition 2.15 LH(�) ↪→ L p(�), hence up to a subsequence uh → u a.e. in�.
We prove now the second part of the statement. Since (uh) is a Cauchy sequence in LH(�),
we can find a subsequence (uh j ) for which ‖uh j+1 − uh j ‖H ≤ 2− j . For all m ≥ 1 we define

fm(x) :=
m∑

j=1

|uh j+1(x) − uh j (x)|
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1928 F. Colasuonno, M. Squassina

which satisfies

‖ fm‖H ≤
m∑

j=1

‖uh j+1 − uh j ‖H ≤ 1 for all m ∈ N

and by the unit ball property

�H( fm) ≤ 1 for all m ∈ N.

Clearly, fm(x) ≤ fm+1(x) for allm, a.e. in�, and so, by themonotone convergence theorem,
there exists f ∈ L1(�) such that fm → f a.e. in �. By virtue of Lemma 2.3.16-(b) of [23],

�H( f ) = lim
m→∞ �H( fm),

whence f ∈ LH(�). Now, for all m > � ≥ 2 and for a.a. x ∈ �

|uhm (x) − uh�
(x)| ≤ |uhm (x) − uhm−1(x)| + · · · + |uh�+1(x) − uh�

(x)|
= fm−1(x) − f�−1(x). (2.5)

This implies that for a.a. x ∈ �, (uh j (x)) is a Cauchy sequence in R and so it converges to
some ū(x) ∈ R. Furthermore, passing to the limit for m → ∞ in (2.5), we get for all j ≥ 2
and for a.a. x ∈ �

|ū(x) − uh j (x)| ≤ f (x). (2.6)

Thus, by Lemma 2.3.16 (c) of [23], we obtain uh j → ū in LH(�), and so u = ū a.e. in �.
Finally, (2.6) yields

|uh j (x)| ≤ |u(x)| + f (x) for a.a. x ∈ �,

and the proof is concluded by taking v := |u| + f ∈ LH(�). ��
From now on in the paper, unless explicitly stated, we shall assume that

1 < p < q < n.

Definition 2.17 For all x ∈ � denote by H−1(x, ·) : [0,∞) → [0,∞) the inverse function
of H(x, ·) and define H−1∗ : � × [0,∞) → [0,∞) by

H−1∗ (x, s) =
∫ s

0

H−1(x, τ )

τ (n+1)/n
dτ for all (x, s) ∈ � × [0,∞).

The function H∗ : (x, t) ∈ � × [0,∞) �→ s ∈ [0,∞) such that H−1∗ (x, s) = t is called
Sobolev conjugate function of H.

Proposition 2.18 (Embeddings, II) Assume that (1.7) holds. Then the following facts hold.

(i) W 1,H(�) ↪→ LH∗(�).
(ii) If K ∈ N (�), K : � × [0,∞) → [0,∞) is continuous and such that K � H∗, then

W 1,H(�) ↪→↪→ LK(�).

(iii) H � H∗, and consequently

W 1,H(�) ↪→↪→ LH(�).
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(iv) The following Poincaré-type inequality holds

‖u‖H ≤ C‖∇u‖H, for all u ∈ W 1,H
0 (�), (2.7)

for some constant C > 0 independent of u.

Proof We refer to Theorems 1.1 and 1.2 of [26]. It suffices to prove condition (2) of Propo-
sition 3.1 of [26], i.e., that there exist three positive constants δ < 1/n, c0 and t0 such
that ∣∣∣∣∂H(x, t)

∂x j

∣∣∣∣ ≤ c0(H(x, t))1+δ (2.8)

for all j = 1, . . . , n, x ∈ � for which ∇a(x) exists, and t ≥ t0. If we put δ := q/p − 1 and
ca > 0 the Lipschitz constant of a, we get
∣∣∣∣∂H(x, t)

∂x j

∣∣∣∣ ≤ catq ≤ ca(t p + a(x)tq)q/p for a.a. x ∈ �, all t > 0, and j = 1, . . . , n,

that is (2.8) with c0 := ca , δ := q/p − 1 < 1/n and any t0 > 0. ��

Remark 2.19 Poincaré-type inequality (2.7) has been proved also in [32] under the more
general assumption

� is quasiconvex and a ∈ C0,α(�), with
q

p
≤ 1 + α

n
for some α ∈ (0, 1]. (2.9)

We wish to stress that the bound on q/p given in (2.9) was required for the first time in the
papers [3,5] dealingwith regularity of localminimizers for double phase variational integrals.
Furthermore, we observe that, since p∗ > p(1 + 1/n), both (1.7) and (2.9) imply q < p∗.

As a consequence of inequality (2.7), if either assumption (1.7) or assumption (2.9) holds,
we equip the space W 1,H

0 (�) with the equivalent norm

‖∇u‖H.

3 The eigenvalue problem

3.1 Derivation of the Euler-Lagrange equation

Put

K (u) := ‖∇u‖H, k(u) := ‖u‖H for u ∈ W 1,H
0 (�), M :=

{
u ∈ W 1,H

0 (�): k(u)=1
}

.

Let us consider the Rayleigh ratio

K (u)

k(u)
= ‖∇u‖H

‖u‖H (3.1)

and define the first eigenvalue as

λ1H := inf
u∈W 1,H

0 (�)\{0}
‖∇u‖H
‖u‖H = inf

u∈M K (u). (3.2)
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We claim that the following equation

−div

([
p

( |∇u|
K (u)

)p−2

+ qa(x)

( |∇u|
K (u)

)q−2
]

∇u

K (u)

)

= λS(u)

[
p

( |u|
k(u)

)p−2

+ qa(x)

( |u|
k(u)

)q−2
]

u

k(u)
, u ∈ W 1,H

0 (�)\{0}
(3.3)

is the Euler-Lagrange equation corresponding to the minimization of the Rayleigh ratio (3.1).
In (3.3), we have denoted by S(u) the following quantity

S(u) :=

∫
�

[
p

( |∇u|
K (u)

)p

+ qa(x)

( |∇u|
K (u)

)q]
dx

∫
�

[
p

( |u|
k(u)

)p

+ qa(x)

( |u|
k(u)

)q]
dx

. (3.4)

We note that Eq. (3.3) reduces to (1.8) if u ∈ M, since in that case K (u) = λ, k(u) = 1 and
S(u) reads as in (1.9).
In order to prove the claim, we define for all u ∈ W 1,H

0 (�)\{0} and v ∈ W 1,H
0 (�):

〈A(u), v〉 : =

∫
�

[
p

( |u|
k(u)

)p−2

+ qa(x)

( |u|
k(u)

)q−2
]

u

k(u)
v dx

∫
�

[
p

( |u|
k(u)

)p

+ qa(x)

( |u|
k(u)

)q]
dx

,

〈B(u), v〉 : =

∫
�

[
p

( |∇u|
K (u)

)p−2

+ qa(x)

( |∇u|
K (u)

)q−2
]

∇u

K (u)
· ∇v dx

∫
�

[
p

( |∇u|
K (u)

)p

+ qa(x)

( |∇u|
K (u)

)q]
dx

.

Proposition 3.1 k ∈ C1(W 1,H
0 (�)\{0}) with k′(u) = A(u) for all u ∈ W 1,H

0 (�)\{0}.
Proof Reasoning as in Lemma A.1 of [28], we get

lim
ε→0+

k(u + εv) − k(u)

ε
= 〈A(u), v〉.

Put

f (v) :=
∫

�

[
p

( |v|
k(v)

)p

+ qa(x)

( |v|
k(v)

)q]
dx for all v ∈ W 1,H

0 (�)\{0}.

We observe that, being 1 < p < q and by the unit ball property,

f (v) ≥ �H
(

v

k(v)

)
= 1. (3.5)

By Hölder’s inequality and by Proposition 2.15, it results that

|〈A(u), v〉| ≤ p

k(u)p−1

∫
�

|u|p−1|v|dx + q

k(u)q−1

∫
�

a1/q ′ |u|q−1a1/q |v|dx

≤ p

k(u)p−1 ‖u‖p−1
p ‖v‖p + q

k(u)q−1 ‖u‖q−1
q,a ‖v‖q,a

≤
( Sp p

k(u)p−1 ‖u‖p−1
p + Sq,aq

k(u)q−1 ‖u‖q−1
q,a

)
‖v‖1,H,
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where Sp, Sq,a > 0 are the Sobolev constants for the embeddings of W 1,H
0 (�) in L p(�) and

in Lq
a(�), respectively. Therefore, A(u) belongs to the dual space (W 1,H

0 (�))′ of W 1,H
0 (�)

and k is Gâteaux differentiable in u, with k′(u) = A(u) for all u ∈ W 1,H
0 (�)\{0}. It

remains to prove that k′ : W 1,H
0 (�) → (W 1,H

0 (�))′ is continuous, i.e., that given a sequence
(uh) ⊂ W 1,H

0 (�)\{0} such that uh → u �= 0 in W 1,H
0 (�),

sup
v∈W 1,H

0 (�)
‖v‖1,H≤1

|〈k′(uh) − k′(u), v〉| → 0 as h → ∞.

For all v ∈ W 1,H
0 (�) with ‖v‖1,H ≤ 1 we get

|〈k′(uh) − k′(u), v〉|

≤

∣∣∣∣∣∣∣∣∣

∫
�

p

( |uh |
k(uh)

)p−2 uh

k(uh)
v dx

f (uh)
−

∫
�

p

( |u|
k(u)

)p−2 u

k(u)
v dx

f (u)

∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣

∫
�

qa(x)

( |uh |
k(uh)

)q−2 uh

k(uh)
v dx

f (uh)
−

∫
�

qa(x)

( |u|
k(u)

)q−2 u

k(u)
v dx

f (u)

∣∣∣∣∣∣∣∣∣
≤ pI (h)

1 + q I (h)
2 ,

where

I (h)
1 :=

∫
�

|v|
∣∣∣∣∣

1

f (uh)

( |uh |
k(uh)

)p−2 uh

k(uh)
− 1

f (u)

( |u|
k(u)

)p−2 u

k(u)

∣∣∣∣∣ dx

I (h)
2 :=

∫
�

a(x)|v|
∣∣∣∣∣

1

f (uh)

( |uh |
k(uh)

)q−2 uh

k(uh)
− 1

f (u)

( |u|
k(u)

)q−2 u

k(u)

∣∣∣∣∣ dx .

We show that I (h)
2 → 0 as h → ∞, the proof for I (h)

1 is identical, with a(·) replaced by the
constant function 1 and q replaced by p. We get by Hölder’s inequality

I (h)
2 ≤

∫
�

a(x)1/q |v|
f (uh)

a(x)1/q ′
∣∣∣∣∣
( |uh |

k(uh)

)q−2 |uh |
k(uh)

−
( |u|

k(u)

)q−2 |u|
k(u)

∣∣∣∣∣ dx

+
∫

�

a(x)1/q |v|a(x)1/q ′
( |u|

k(u)

)q−1 ∣∣∣∣ 1

f (uh)
− 1

f (u)

∣∣∣∣ dx

≤ ‖v‖q,a

⎛
⎝
∫

�

a(x)

∣∣∣∣∣
( |uh |

k(uh)

)q−2 |uh |
k(uh)

−
( |u|

k(u)

)q−2 |u|
k(u)

∣∣∣∣∣
q ′

dx

⎞
⎠

1/q ′

+ ‖v‖q,a

∣∣∣∣ 1

f (uh)
− 1

f (u)

∣∣∣∣
(∫

�

a(x)

( |u|
k(u)

)q

dx

)1/q ′

≤ Sq,a(I(h) + J (h)),
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where

I(h) :=
⎛
⎝
∫

�

a(x)

∣∣∣∣∣
( |uh |

k(uh)

)q−2 |uh |
k(uh)

−
( |u|

k(u)

)q−2 |u|
k(u)

∣∣∣∣∣
q ′

dx

⎞
⎠

1/q ′

J (h) :=
∣∣∣∣ 1

f (uh)
− 1

f (u)

∣∣∣∣
(∫

�

a(x)

( |u|
k(u)

)q

dx

)1/q ′

.

First, we estimate I(h).We pick a subsequence (uh j ). Since by Proposition 2.15W 1,H
0 (�) ↪→

Lq
a(�), thus uh j → u in Lq

a(�), i.e., a1/quh j → a1/qu in Lq(�). Up to a subsequence,
uh j → u a.e. in � and there exists a function w ∈ Lq(�) such that a1/q |uh j | ≤ w a.e. in �

for all j . Therefore, for j sufficiently large and for ε ∈ (0, k(u)),

a(x)

∣∣∣∣∣∣
( |uh j |

k(uh j )

)q−2
uh j

k(uh j )
−
( |u|

k(u)

)q−2 u

k(u)

∣∣∣∣∣∣
q ′

≤ 2q ′−1a(x)

[( |uh j |
k(uh j )

)q

+
( |u|

k(u)

)q
]

≤ 2q ′−1

[(
w

k(uh j )

)q

+
(

w

k(u)

)q
]

≤ 2q ′−1
[

1

(k(u) − ε)q
+ 1

k(u)q

]
wq ∈ L1(�),

where in the last inequality we used the fact that k(uh j ) → k(u) �= 0. Consequently, by
the dominated convergence theorem, I(h j ) → 0 as j → ∞ and by the arbitrariness of
the subsequence, I(h) → 0 as h → ∞. Now, in order to prove that also J (h) → 0, it is
enough to prove that f (uh) → f (u) as h → ∞. By the facts that W 1,H

0 (�) ↪→ L p(�) and

W 1,H
0 (�) ↪→ Lq

a(�), and by the dominated convergence theorem, we easily get

lim
h→∞

∫
�

( |uh |
k(uh)

)p

dx =
∫

�

( |u|
k(u)

)p

dx

lim
h→∞

∫
�

a(x)

( |uh |
k(uh)

)q

dx =
∫

�

a(x)

( |u|
k(u)

)q

dx .

This proves that f (uh) → f (u) and so J (h) → 0. Therefore, (I (h)
2 ) converges to zero as

h → ∞ and the proof is concluded by the arbitrariness of v. ��
As a consequence of the last proposition, M is a C1 Banach manifold. By using analogous
techniques as in the proof of Proposition 3.1, it is possible to prove the following result.

Proposition 3.2 K ∈ C1(W 1,H
0 (�)\{0}) with K ′(u) = B(u) for all u ∈ W 1,H

0 (�)\{0}.
Reasoning as in Section 3 of [28], we find that a necessary condition for minimality of the
Rayleigh ratio (3.1) is

〈K ′(u), v〉
K (u)

= 〈k′(u), v〉
k(u)

for all u, v ∈ W 1,H
0 (�), u �= 0.

Together with Propositions 3.1 and 3.2, this yields the claim with λ = K (u)/k(u), and
justifies the following definition.
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Definition 3.3 We say that u ∈ W 1,H
0 (�)\{0} is an eigenfunction of (3.3) if

∫
�

(
p

∣∣∣∣ ∇u

K (u)

∣∣∣∣
p−2

+ qa(x)

∣∣∣∣ ∇u

K (u)

∣∣∣∣
q−2

)
∇u

K (u)
· ∇v dx

= λS(u)

∫
�

(
p

∣∣∣∣ u

k(u)

∣∣∣∣
p−2

+ qa(x)

∣∣∣∣ u

k(u)

∣∣∣∣
q−2

)
u

k(u)
v dx

(3.6)

for all v ∈ C∞
0 (�), where S(u) is defined as in (3.4). The real number λ is the corresponding

eigenvalue. The set

� := {λ ∈ R: λ is eigenvalue of (3.3)} ,

is called spectrum.

We remark here that, by a standard density argument, we can take any v ∈ W 1,H
0 (�) as test

function in (3.6). Testing Eq. (3.6) with v = u yields

λ = K (u)

k(u)
, (3.7)

so that if u ∈ M, then λ = ‖∇u‖H and Eq. (1.8) holds.

3.2 L∞-bound of eigenfunctions

Assume that condition (1.7) on p, q, a and � holds. If u ∈ M is a weak solution to the
Euler-Lagrange equation

− div

(
p

∣∣∣∣∇u

λ

∣∣∣∣
p−2 ∇u

λ
+ qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ

)
= λS(u)(p|u|p−2u + qa(x)|u|q−2u),

(3.8)

with λ = ‖∇u‖H > 0 and S(u) is as in formula (1.9), then by following a standard argument
it is possible to prove that there exists a positive constant C(n, p, λ, a) such that

‖u‖L∞(�) ≤ C(n, p, λ, a).

Observe that S(u) ≤ q from formula (1.9) and λ = ‖∇u‖H. For all t ≥ 0 and k > 0, we set
tk := min{t, k}. For all r ≥ 2, k > 0, the mapping t �→ t |t |r−2

k is Lipschitz continuous in R,

hence v = u|u|r−2
k ∈ W 1,H

0 (�) and we have

∇v = (r − 1)|u|r−2
k ∇u, if |u| ≤ k, ∇v = |u|r−2

k ∇u, if |u| ≥ k.

We choose it as a test function, getting (recall that |s|k ≤ |s| for any s and k),

(r − 1)
∫

�

(
p

∣∣∣∣∇u

λ

∣∣∣∣
p

|u|r−2
k + qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q

|u|r−2
k

)
χ{|u|≤k}dx

≤ S(u)

∫
�

(
p |u|p + qa(x) |u|q) |u|r−2

k dx

≤ C ′
∫

�

(|u|p+r−2 + |u|q+r−2)dx (3.9)
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for some positive constant C ′ which depends only on p, q, a. Taking into account that a ≥ 0
and using Fatou’s lemma (by letting k → ∞), it follows that

(r − 1)
∫

�

|∇u|p|u|r−2dx ≤ C
∫

�

(|u|p+r−2 + |u|q+r−2)dx, (3.10)

withC depending on p, q, a and λ. In light of condition (1.7), we know that q < p∗. But then
this is exactly the estimate that is usually obtained to get the Lm-estimate for any m ≥ 1 for
the p-Laplacian problem−�pu = f (u) in� and u = 0 on ∂�, for a subcritical nonlinearity
f : R → R which satisfies the growth condition

| f (s)| ≤ C |s|p−1 + C |s|q−1 for all s ∈ R, 1 < q < p∗.

For the explicit computations following inequality (3.10) and the bootstrap argument yielding
u ∈ Lm(�) for everym ≥ 1, one can argue, e.g., as in [59]. Then, similar bootstrap arguments
allow to prove the L∞- estimate.

3.3 On the first eigenvalue

Throughout this subsection, we shall assume the validity of condition (1.7) and we endow
W 1,H

0 (�) with the LH-norm of the gradient. First of all, we seek ground states, i.e., least
energy solutions, of (3.3). In particular, the ground states of (3.3) are the minimizers of K |M
and the corresponding energy level is the first eigenvalueλ1H.Minimizers u, if they exist, must
satisfy the Euler-Lagrange Eq. (3.6), obtained for minimizers of the quotients ‖∇v‖H/‖v‖H
among nonzero functions. Since u ∈ M, then Eq. (3.6) can be reduced to (1.8) since it turns
out that ‖∇u‖H = λ by formula (3.7). After giving the proof of Theorem 1.1, we shall collect
some properties of the first eigenvalue.
• Proof of Theorem 1.1. By the Poincaré-type inequality (2.7), there existsC > 0 independent
of v for which

‖∇v‖H
‖v‖H ≥ 1

C

for all v ∈ W 1,H
0 (�)\{0}. Thus λ1H > 0. Now, let (vh) ⊂ M be such that

lim
h→∞ ‖∇vh‖H = λ1H.

Clearly, (vh) is bounded in the reflexive Banach space W 1,H
0 (�) and so we can extract a

subsequence (vh j ) weakly converging to u in W 1,H
0 (�). Therefore, by Proposition 2.18-

(i i i), ‖vh j ‖H → ‖u‖H as j → ∞, and so ‖u‖H = 1. Since the norm is weakly lower
semicontinuous,

‖∇u‖H ≤ lim inf
j→∞ ‖∇vh j ‖H = λ1H.

This proves that u is a minimizer of (3.2). Clearly also |u| ≥ 0 is a minimizer, so we may
assume u ≥ 0 a.e. Also, the Euler-Lagrange Eq. (1.8) is satisfied. Taking into account that
S(u) ≥ 0, we get

∫
�

(
p
|∇u|p−2

λp−2 + qa(x)
|∇u|q−2

λq−2

) ∇u

λ
· ∇ϕ dx ≥ 0 for all ϕ ∈ W 1,H

0 (�), ϕ ≥ 0, (3.11)
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namely u is a nonnegative supersolution for the equation

− div

(
p

∣∣∣∣∇u

λ

∣∣∣∣
p−2 ∇u

λ
+ qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ

)
= 0. (3.12)

Considering now radii r2 > r1 > 0, k ≥ 0, a cutoff η with η = 1 on Br1 and η = 0 on Bc
r2

and choosing the bounded test function ϕ := (u/λ − k)−ηq , if h(x, t) := t p−1 + a(x)tq−1,
recalling that p < q it holds

q2
∫

Br2

h

(
x,

|∇u|
λ

)(u

λ
− k

)
−

|∇η|ηq−1 dx ≥ p
∫

Br2

H
(

x,
|∇u|

λ

)
ηqχ{u/λ≤k} dx .

(3.13)

Young’s inequality with exponents (p′, p) yields for some c1(p, q) > 0,

q2
∫

Br2

( |∇u|
λ

)p−1 (u

λ
− k

)
−

|∇η|ηq−1 dx

≤ p

2

∫
Br2

( |∇u|
λ

)p

ηp′(q−1)χ{u/λ≤k} dx + c1(p, q)

∫
Br2

(u

λ
− k

)p

−
|∇η|p dx

≤ p

2

∫
Br2

( |∇u|
λ

)p

ηqχ{u/λ≤k} dx + c1(p, q)

∫
Br2

((u

λ
− k

)
−

‖∇η‖L∞
)p

dx,

where we have used that p′(q − 1) ≥ q , since q > p by assumption. Analogously, using
Young’s inequality with exponents (q ′, q) also yields, for some c2(p, q) > 0,

q2
∫

Br2

a(x)

( |∇u|
λ

)q−1 (u

λ
− k

)
−

|∇η|ηq−1 dx

≤ p

2

∫
Br2

a(x)

( |∇u|
λ

)q

ηqχ{u/λ≤k} dx

+ c2(p, q)

∫
Br2

a(x)

((u

λ
− k

)
−

‖∇η‖L∞
)q

dx .

Whence, by absorbing the first two terms of the right-hand sides into (3.13), we conclude
that ∫

Br1

H
(

x,
|∇u|

λ

)
χ{u/λ≤k} dx ≤ c(p, q)

∫
Br2

H
(

x,
(u

λ
− k

)
−

1

(r2 − r1)

)
dx

for some positive constant c(p, q), since ‖∇η‖L∞ is of order (r2 − r1)−1. It follows that the
function u/λ belongs to the De Giorgi class DG− (cf. Section 6 of [5]). Then, in turn, by a
slight modification of Theorem 3.5 of [5] (in order to allow supersolutions of Eq. (3.12)), u
satisfies the weak Harnack inequality, yielding

inf
Br (x)

u ≥ 1

c

(
−
∫

B2r (x)

uε(y)dy

)1/ε

,

for some constants c ≥ 1 and ε ∈ (0, 1) and for every ball B2r (x) ⊂ �. This immedi-
ately yields u > 0, by a standard argument. The boundedness of eigenfunctions follows
by Sect. 3.2. Finally, the stability and symmetry properties follow by Theorems 3.5, 3.6
and 3.8. ��
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Remark 3.4 If � ⊂ �̃, then for all u ∈ W 1,H
0 (�), the extension by zero

ũ :=
{

u in �,

0 in �̃\�

belongs to W 1,H̃
0 (�̃), where H̃(x, t) := t p + ã(x)tq for all (x, t) ∈ �̃ × [0,∞), and ã

extends by zero a in �̃\�. Indeed, being W 1,H
0 (�) ↪→ W 1,p

0 (�), we can use a classical

result in W 1,p
0 (�) (see e.g., Proposition 9.18 of [11]) to obtain that

∇ũ =
{

∇u in �,

0 in �̃\�.

Since u ∈ W 1,H
0 (�), there exists a sequence (ϕh) ⊂ C∞

0 (�) such that ‖∇ϕh − ∇u‖H → 0
as h → ∞. By Proposition 2.1.11 of [23], norm convergence and modular convergence are
equivalent, thus �H(∇ϕh − ∇u) → 0 as h → ∞. Extending by zero a and each ϕh in �̃\�,
we have (ϕh) ⊂ C∞

0 (�̃), and so

�H(∇ϕh − ∇u) =
∫

�

(|∇ϕh − ∇u|p + a(x)|∇ϕh − ∇u|q)dx

=
∫

�̃

(|∇ϕh − ∇ũ|p + ã(x)|∇ϕh − ∇ũ|q)dx = �̃H̃(∇ϕh − ∇ũ).

Therefore, ‖∇ϕh − ∇ũ‖
LH̃(�̃)

→ 0 as h → ∞ and so ũ ∈ W 1,H̃
0 (�̃).

Theorem 3.5 (Stability in domains) Let (�h) be a strictly increasing sequence of open
subsets of Rn such that

� =
∞⋃

h=1

�h .

Then

lim
h→∞ λ1H(�h) = λ1H,

(we omit the dependence when the domain is �).

Proof Extending the functions u ∈ W 1,H
0 (�h) as zero in �\�h , by Remark 3.4 we get

u ∈ W 1,H
0 (�) and clearly

λ1H(�1) ≥ λ1H(�2) ≥ · · · ≥ λ1H. (3.14)

On the other hand, by density, λ1H = infu∈C∞
0 (�)\{0} ‖∇u‖H/‖u‖H. So, fixed ε > 0, we can

find ϕ ∈ C∞
0 (�) for which

λ1H >
‖∇ϕ‖H
‖ϕ‖H − ε. (3.15)

Since the support of ϕ is compact, it is covered by a finite number of �h’s, hence for h
sufficiently large suppϕ ⊂ �h . Whence,

λ1H(�h) ≤ ‖∇ϕ‖LH(�h)

‖ϕ‖LH(�h)

= ‖∇ϕ‖H
‖ϕ‖H

123



Eigenvalues for double phase variational integrals 1937

and by (3.15)

λ1H > λ1H(�h) − ε for h large.

By the arbitrariness of ε

λ1H ≥ lim
h→∞ λ1H(�h)

which, combined with (3.14), gives the conclusion. ��
Theorem 3.6 (Isoperimetric property) Let a ≡ 1 and �∗ be the ball of Rn such that |�∗| =
|�|. Then, we have

λ1H(�∗) ≤ λ1H. (3.16)

Moreover, if equality holds in (3.16), then � is a ball. In other words, balls uniquely minimize
the first eigenvalue among sets with given n-dimensional Lebesgue measure.

Proof Let us prove (3.16). Let u∗ be the Schwarz symmetrization of a given nonnegative
function u ∈ W 1,H

0 (�), namely the unique radially symmetric and decreasing function with

|{x ∈ �∗ : u∗(x) > t}| = |{x ∈ � : u(x) > t}| for all t > 0.

Since a ≡ 1, by (i) of Proposition 2.15, we have

W 1,H
0 (�) ↪→ W 1,p

0 (�), W 1,H
0 (�) ↪→ W 1,q

0 (�).

Then, in light of the Pólya-Szegö’s inequality, we get u∗ ∈ W 1,p
0 (�∗) ∩ W 1,q

0 (�∗) and

�∗
H(∇u∗) =

∫
�∗

(|∇u∗|p + |∇u∗|q)dx ≤
∫

�

(|∇u|p + |∇u|q)dx = �H(∇u),

so u∗ ∈ W 1,H
0 (�∗). For u ∈ W 1,H

0 (�)\{0},

�∗
H

( ∇u∗

‖∇u‖H
)

= 1

‖∇u‖p
H

∫
�∗

|∇u∗|pdx + 1

‖∇u‖q
H

∫
�∗

|∇u∗|qdx

≤ 1

‖∇u‖p
H

∫
�

|∇u|pdx + 1

‖∇u‖q
H

∫
�

|∇u|qdx = �H
( ∇u

‖∇u‖H
)

= 1

which gives, by the unit ball property,

‖∇u∗‖LH(�∗) ≤ ‖∇u‖H.

On the other hand, since Schwarz symmetrization preserves all L p-norms,

�∗
H(u∗) =

∫
�∗

(|u∗|p + |u∗|q)dx =
∫

�

(|u|p + |u|q)dx = �H(u).

Thus, again the unit ball property gives

‖u∗‖LH(�∗) = ‖u‖H.

Hence, if we take u = u1
H ≥ 0 a.e., we obtain

λ1H(�∗) ≤ ‖∇(u1
H)∗‖LH(�∗)

‖(u1
H)∗‖LH(�∗)

≤ ‖∇u1
H‖H

‖u1
H‖H

= λ1H,
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which concludes the proof. Assume now that equality holds in inequality (3.16) and consider
a first nonnegative eigenfunction w for λ1H. Then, recalling that ‖w∗‖LH(�∗) = ‖w‖H, we
conclude by the very definition of λ1H that ‖∇w∗‖LH(�∗) = ‖∇w‖H. This, in light of (2.1)
gives

�∗
H

( ∇w∗

‖∇w‖H
)

= �H
( ∇w

‖∇w‖H
)

. (3.17)

Since, separately, we have∫
�∗

|∇w∗|pdx ≤
∫

�

|∇w|pdx,

∫
�∗

|∇w∗|qdx ≤
∫

�

|∇w|qdx,

we deduce from identity (3.17) (in which the denominators agree) that

‖∇w∗‖L p(�∗) = ‖∇w‖L p(�).

This implies (see e.g., [30]) that the superlevels ofw are balls and, thus,� is a ball, completing
the proof. ��
Remark 3.7 Theorem 3.6 represents an extension to the double phase case of the so-called
Faber-Krahn inequality (cf. [30] for the single phase case). It was firstly shown by Faber
and Krahn [24,35,36] that the first eigenvalue of −� on a bounded open set of R2 of given
area attains its minimum value if and only if is a disk, namely the gravest principal tone is
obtained in the case of a circular membrane, as conjectured by Lord Rayleigh in 1877 [55].

A subset H of Rn is called a polarizer if it is a closed affine half-space of Rn , namely the set
of points x which satisfy α · x ≤ β for some α ∈ R

n and β ∈ R with |α| = 1. Given x in
R

n and a polarizer H the reflection of x with respect to the boundary of H is denoted by xH .
The polarization of a function u : Rn → R

+ by a polarizer H is the function u H : Rn → R
+

defined by

u H (x) =
{
max{u(x), u(xH )}, if x ∈ H

min{u(x), u(xH )}, if x ∈ R
n\H.

(3.18)

The polarization C H ⊂ R
n of a set C ⊂ R

n is defined as the unique set which satisfies
χC H = (χC )H , where χ denotes the characteristic function. This operation should not be
confused with CH which denotes the reflection of C with respect to ∂ H . The polarization
u H of a positive function u defined on C ⊂ R

n is the restriction to C H of the polarization
of the extension ũ : Rn → R

+ of u by zero outside C . The polarization of a function which
may change sign is defined by u H := |u|H , for any given polarizer H .

Theorem 3.8 (Partial symmetries) Let a ≡ 1, H ⊂ R
n be a half-space and assume that

� = �H . Then, there exists a nonnegative first eigenfunction u ∈ W 1,H
0 (�) such that

u = u H .

Proof Let u ∈ W 1,H
0 (�) with u ≥ 0 a.e. be given. Then, since u ∈ W 1,p

0 (�) and u ∈
W 1,q

0 (�), by Proposition 2.3 of [57], we have

�H(∇u H ) =
∫

�

(|∇u H |p + |∇u H |q)dx =
∫

�

(|∇u|p + |∇u|q)dx = �H(∇u),

so u H ∈ W 1,H
0 (�) and by the unit ball property

‖∇u H ‖H = ‖∇u‖H.
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Analogously, we have ‖u H ‖H = ‖u‖H.Wewant to apply the symmetric Ekeland variational
principle with constraint (see Section 2.4, p. 334 of [54], see also [53]) by choosing

X := W 1,H
0 (�), S := W 1,H

0 (�,R+), V := L p(�), f (u) := ‖∇u‖H, u ∈ X.

Let (vh) ⊂ M be a nonnegative minimization sequence, namely

lim
h→∞ ‖∇vh‖H = λ1H.

Then, there exists a new minimization sequence (ṽh) ⊂ M such that

‖|ṽh |H − ṽh‖p → 0, as h → ∞. (3.19)

Up to a subsequence (ṽh j ) converges weakly to u in W 1,H
0 (�) and, in light of Proposi-

tion 2.18-(i i i), we obtain ‖ṽh j − u‖H → 0 as j → ∞ (and hence ‖ṽh j − u‖p → 0 as
j → ∞) so that ‖u‖H = 1. This easily implies that u is a minimizer of (3.1). Finally,
observing that (standard contractivity of the polarization in the L p-norm)

‖|ṽh j |H − |u|H ‖p ≤ ‖|ṽh j | − |u|‖p ≤ ‖ṽh j − u‖p → 0, as h → ∞,

which, taking into account (3.19), yields

‖|u|H − u‖p ≤ ‖|ṽh j |H − |u|H ‖p + ‖|ṽh j |H − ṽh j ‖p + ‖ṽh j − u‖p → 0, as h → ∞,

which yields |u|H = u. Hence u ≥ 0 and u H = u, concluding the proof. ��
3.4 Large exponents

The next result concerns the behavior of the first eigenvalue λ1H, when the exponents p and
q of the N -function H are replaced by hp and hq , respectively, and h goes to infinity. The
passage to infinity was first studied in [34] for the p-Laplacian operator and then in [28] for
the p(x)-Laplacian.
Clearly, in order to study the ∞-eigenvalue problem, we do not require any bound from
above on the exponents hq , we only assume that 1 < p < q . Furthermore, throughout this
subsection, we use the rescaled modular

�̃H(u) := 1

|�| + ‖a‖1
∫

�

(|u|p + a(x)|u|q)dx

and we denote by ‖| · ‖|H the corresponding norm. It is easy to see that ‖| · ‖|H is equivalent
to ‖ · ‖H, more precisely, by (2.1.5) of [23] and by the unit ball property,

‖|u‖|H ≤ ‖u‖H ≤ (|�| + ‖a‖1)‖|u‖|H, if |�| + ‖a‖1 ≥ 1,

(|�| + ‖a‖1)‖|u‖|H ≤ ‖u‖H ≤ ‖|u‖|H, if |�| + ‖a‖1 < 1.
(3.20)

We introduce the distance function

δ(x) := dist(x, ∂�) for all x ∈ �.

We recall that δ is Lipschitz continuous and that ∇δ = 1 a.e. in �. We define

λ1∞ := inf
u∈W 1,∞

0 (�)\{0}
‖∇u‖∞
‖u‖∞

(3.21)
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Proceeding as in Section 4 of [28], it is easy to see that the minimum in (3.21) is reached on
the distance function and so

λ1∞ = 1

‖δ‖∞
= 1

R
,

where R is the so-called inradius, i.e., the radius of the largest ball inscribed in �.
For all h ∈ N, put

(hH)(x, t) := thp + a(x)thq for all (x, t) ∈ � × [0,∞).

Lemma 3.9 Let u ∈ L∞(�) then

lim
h→∞ ‖|u‖|hH = ‖u‖∞.

Proof First, we want to show that

lim sup
h→∞

‖|u‖|hH ≤ ‖u‖∞. (3.22)

To this aim, it is enough to consider only those indices h for which ‖|u‖|hH > ‖u‖∞,

1 =
[
�̃hH

(
u

‖|u‖|hH
)] 1

hp =
[∫

�

(∣∣∣∣ u

‖|u‖|hH
∣∣∣∣
hp

+ a(x)

∣∣∣∣ u

‖|u‖|hH
∣∣∣∣
hq
)

1

|�| + ‖a‖1 dx

] 1
hp

≤
[∫

�

( ‖u‖∞
‖|u‖|hH

)hp 1 + a(x)

|�| + ‖a‖1 dx

] 1
hp

= ‖u‖∞
‖|u‖|hH .

This implies (3.22). Now, in order to prove

lim inf
h→∞ ‖|u‖|hH ≥ ‖u‖∞,

we assume that ‖u‖∞ > 0 (the other case is obvious). Then, given ε > 0, we can find a set
Aε ⊂ �, with |Aε| > 0, such that |u(x)| > ‖u‖∞ − ε for all x ∈ Aε. We consider only those
indices h for which ‖|u‖|hH ≥ ‖u‖∞ − ε and we have

1 =
[
�̃hH

(
u

‖|u‖|hH
)] 1

hp ≥
[∫

Aε

(∣∣∣∣ u

‖|u‖|hH
∣∣∣∣
hp

+a(x)

∣∣∣∣ u

‖|u‖|hH
∣∣∣∣
hq
)

1

|�|+‖a‖1 dx

] 1
hp

>

[∫
Aε

(‖u‖∞ − ε

‖|u‖|hH
)hp 1

|�| + ‖a‖1 dx

] 1
hp

=
( |Aε|

|�| + ‖a‖1
) 1

hp ‖u‖∞ − ε

‖|u‖|hH ,

which gives lim infh→∞ ‖|u‖|hH ≥ ‖u‖∞ − ε and by the arbitrariness of ε we conclude. ��

We remark that the same property stated in Lemma 3.9 holds if we endow the space LH(�)

with the standardmodular �H and the corresponding norm ‖·‖H. Furthermore, if we consider
the norm in Lr (�)

‖|u‖|r := ‖u‖r

(|�| + ‖a‖1)1/r
,

the classical result limr→∞ ‖|u‖|r = ‖u‖∞ continues to hold.
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Theorem 3.10 There holds

lim
h→∞ λ̃1hH = λ1∞,

where

λ̃1hH := inf
u∈W 1,H

0 (�)\{0}
‖|∇u‖|H
‖|u‖|H .

Proof By the definition of λ̃1hH, using δ as test function, we have

λ̃1hH ≤ ‖|∇δ‖|hH
‖|δ‖|hH for all h ∈ N.

Thus, passing to the limit superior and taking into account Lemma 3.9, we obtain

lim sup
h→∞

λ̃1hH ≤ ‖∇δ‖∞
‖δ‖∞

= λ1∞. (3.23)

Let (uh) be the sequence of first eigenfunctions corresponding to λ̃1hH, with ‖|uh‖|hH = 1
for all h. Pick any subsequence (uh j ) of (uh). Then, λ̃1h jH = ‖|∇uh j ‖|h jH and, by (3.23), the
sequence (‖|∇uh j ‖|hH) is bounded. Therefore, in correspondence to any r ∈ [1,∞) there
is an integer jr such that h j p ≥ r for all j ≥ jr , and consequently

W
1,h jH
0 (�) ↪→ W 1,r

0 (�) ↪→↪→ Lr (�) for all j ≥ jr .

Hence, (uh j ) is definitely bounded in the reflexive Banach space W 1,r
0 (�) and we can extract

a subsequence, still denoted by (uh j ), for which

∇uh j ⇀ ∇u∞ and uh j → u∞ in Lr (�).

By the arbitrariness of r and the fact that� is bounded, we get u∞ ∈ W 1,∞
0 (�). In particular,

uh j → u∞ also in L∞(�), since, by Proposition 2.15-(i i), uh j ∈ L∞(�) for j large. By
Hölder’s inequality, for all u ∈ Lr (�)

�̃r (u) =
∫

�

|u|r
|�| + ‖a‖1 dx ≤

(∫
�

|u|h j p

|�| + ‖a‖1 dx

) r
h j p
(∫

�

1 + a(x)

|�| + ‖a‖1 dx

) h j p−r
h j p

≤ (�̃h jH(u))
r

h j p ,

whence

‖|u‖|r ≤ ‖|u‖|h jH for all j ≥ jr , (3.24)

by the unit ball property. We know that uh j ∈ L∞(�) for j large, so

�̃h jH

(
uh j

‖uh j ‖∞

)
≤
∫

�

⎛
⎝
∥∥∥∥∥

uh j

‖uh j ‖∞

∥∥∥∥∥
h j p

∞
+ a(x)

∥∥∥∥∥
uh j

‖uh j ‖∞

∥∥∥∥∥
h j q

∞

⎞
⎠ 1

|�| + ‖a‖1 dx = 1.

By the unit ball property, we obtain

1 = ‖|uh j ‖|h jH ≤ ‖uh j ‖∞. (3.25)
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By the weak lower semicontinuity of the W 1,r
0 (�)-norm and by virtue of (3.24) and (3.25),

‖|∇u∞‖|r
‖|u∞‖|r ≤ lim inf

j→∞
‖|∇uh j ‖|r
‖|uh j ‖|r

≤ lim inf
j→∞

‖|∇uh j ‖|h jH
‖|uh j ‖|r

≤ lim inf
j→∞

(
‖|∇uh j ‖|h jH

‖uh j ‖∞
‖|uh j ‖|r

)
= ‖u∞‖∞

‖|u∞‖|r lim inf
j→∞ λ̃1h jH

Hence,

λ1∞ ≤ ‖∇u∞‖∞
‖u∞‖∞

= lim
r→∞

‖|∇u∞‖|r
‖|u∞‖|r ≤ lim

r→∞
‖u∞‖∞
‖|u∞‖|r lim inf

j→∞ λ̃1h jH = lim inf
j→∞ λ̃1h jH,

which, combined with (3.23), gives

λ1∞ = lim
j→∞ λ̃1h jH.

Finally, we conclude the proof by the arbitrariness of the subsequence. ��

Remark 3.11 By (3.20), in terms of the first eigenvalues λ1hH, Theorem 3.10 gives

1

|�| + ‖a‖1 λ1∞ ≤ lim inf
h→∞ λ1hH ≤ lim sup

h→∞
λ1hH ≤ (|�| + ‖a‖1)λ1∞, if |�| + ‖a‖1 ≥ 1,

(|�| + ‖a‖1)λ1∞ ≤ lim inf
h→∞ λ1hH ≤ lim sup

h→∞
λ1hH ≤ 1

|�| + ‖a‖1 λ1∞, if |�| + ‖a‖1 < 1.

3.5 Closedness of the spectrum

Theorem 3.12 (Closedness of�) Assume that (1.7) holds, then the spectrum is a closed set.

Proof Let (λh) ⊂ � be a sequence of eigenvalues of (3.3) converging to a certain λ < ∞.
Let us denote by (uh) the sequence of the corresponding eigenfunctions such that ‖uh‖H = 1
for all h. Then, we have

∫
�

[
p

( |∇uh |
λh

)p−2

+ qa(x)

( |∇uh |
λh

)q−2
]

∇uh

λh
· ∇v dx

= λh S(uh)

∫
�

(
p|uh |p−2 + qa(x)|uh |q−2) uhvdx for all v ∈ W 1,H

0 (�) and h ∈ N,

(3.26)

and, by normalization, λh = ‖∇uh‖H. Therefore, (uh) is bounded in the reflexive Banach
space W 1,H

0 (�) and it admits a subsequence (uh j ) such that uh j ⇀ u in W 1,H
0 (�) as

j → ∞. Thus, by Proposition 2.18-(i i i), uh j → u in LH(�) strongly as j → ∞, yielding
‖u‖H = 1 (which, in particular, provides u �= 0). We claim that u is an eigenfunction with
corresponding eigenvalue λ, i.e., that the following distributional identity is satisfied for all
v ∈ C∞

0 (�),

∫
�

[
p

( |∇u|
λ

)p−2

+ qa(x)

( |∇u|
λ

)q−2
]

∇u

λ
· ∇vdx

= λS(u)

∫
�

(
p|u|p−2 + qa(x)|u|q−2) uvdx .
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In order to prove that, we shall pass to the limit in (3.26). First, being LH(�) ↪→ L p(�), by
the dominated convergence theorem,∫

�

|uh j |p−2uh j v dx →
∫

�

|u|p−2uv dx for all v ∈ C∞
0 (�) (3.27)

up to a subsequence. Moreover, being LH(�) ↪→ Lq
a(�), a1/quh j → a1/qu in Lq(�) and

so, up to a subsequence, there existsω ∈ Lq(�) such that |a1/quh j | ≤ ω for all j . Therefore,

a|uh j |q−1|v| = a(q−1)/q |uh j |q−1a1/q |v| ≤ ωq−1a1/q |v| ∈ L1(�) for all j,

and so, the dominated convergence theorem implies∫
�

a(x)|uh j |q−2uh j vdx →
∫

�

a(x)|u|q−2uvdx for all v ∈ C∞
0 (�). (3.28)

Therefore, by (3.27)–(3.28), there exists a subsequence, still denoted by (uh j ), for which the
following limit holds for all v ∈ C∞

0 (�),

lim
j→∞

∫
�

(
p|uh j |p−2 + qa(x)|uh j |q−2) uh j vdx =

∫
�

(
p|u|p−2 + qa(x)|u|q−2) uvdx .

(3.29)

Now, by (3.26) with v = uh j

λh j

− u

λ
, we get

∫
�

⎡
⎣
⎛
⎝p

∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
p−2

+ qa(x)

∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
q−2

⎞
⎠ ∇uh j

λh j

−
(

p

∣∣∣∣∇u

λ

∣∣∣∣
p−2

+ qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2

)
∇u

λ

]
· ∇
(

uh j

λh j

− u

λ

)
dx

= λh j S(uh j )

∫
�

(p|uh j |p−2 + qa(x)|uh j |q−2)uh j

(
uh j

λh j

− u

λ

)
dx

−
∫

�

(
p

∣∣∣∣∇u

λ

∣∣∣∣
p−2

+ qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2

)
∇u

λ
· ∇
(

uh j

λh j

− u

λ

)
dx .

(3.30)

Passing to the limit under integral sign (we can reason as for (3.27) and (3.28)), and observing
that S(uh j ) ≤ q for all j ,

lim
j→∞ λh j S(uh j )

∫
�

(p|uh j |p−2 + qa(x)|uh j |q−2)uh j

(
uh j

λh j

− u

λ

)
dx = 0.

Furthermore, since
∇uh j

λh j

⇀
∇u

λ
in [LH(�)]n and being LH(�) ↪→ L p(�), we have

lim
j→∞

∫
�

∣∣∣∣∇u

λ

∣∣∣∣
p−2 ∇u

λ
· ∇
(

uh j

λh j

− ∇u

λ

)
dx = 0.

Analogously, LH(�) ↪→ Lq
a(�) and for the dual spaces the reverse embedding holds. It is

easy to see that the functional
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F : f ∈ [Lq
a(�)]n �→

∫
�

a(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ
· f dx

belongs to ([Lq
a(�)]n)′ ⊂ ([LH(�)]n)′. Since in particular

∇uh j

λh j

⇀
∇u

λ
in [Lq

a(�)]n , we

get

lim
j→∞

∫
�

a(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ
· ∇
(

uh j

λh j

− ∇u

λ

)
dx = 0.

Then, by (3.30),

lim
j→∞

∫
�

⎡
⎣
⎛
⎝p

∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
p−2

+ qa(x)

∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
q−2

⎞
⎠ ∇uh j

λh j

−
(

p

∣∣∣∣∇u

λ

∣∣∣∣
p−2

+ qa(x)

∣∣∣∣∇u

λ

∣∣∣∣
q−2

)
∇u

λ

]
· ∇
(

uh j

λh j

− u

λ

)
dx = 0,

and consequently

lim
j→∞

∫
�

p

⎛
⎝
∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
p−2 ∇uh j

λh j

−
∣∣∣∣∇u

λ

∣∣∣∣
p−2 ∇u

λ

⎞
⎠ · ∇

(
uh j

λh j

− u

λ

)
dx = 0,

lim
j→∞

∫
�

qa(x)

⎛
⎝
∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
q−2 ∇uh j

λh j

−
∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ

⎞
⎠ · ∇

(
uh j

λh j

− u

λ

)
dx = 0,

(3.31)

since, by convexity, the integrands are nonnegative. Now, we estimate the term

Rq :=
∫

�

qa(x)

⎛
⎝
∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
q−2 ∇uh j

λh j

−
∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ

⎞
⎠ · ∇

(
uh j

λh j

− u

λ

)
dx .

We recall that the following inequalities hold for all s, t ∈ R
n (cf. inequalities (I) and (VII)

of Section 10 of [39]),

|s − t |q ≤ 2q−2(|s|q−2s − |t |q−2t) · (s − t), if q ≥ 2, (3.32)

|s − t |q ≤ (q − 1)−
q
2
[
(|s|q−2s − |t |q−2t) · (s − t)

] q
2 (|s|2 + |t |2) 2−q

2
q
2 , if 1 < q < 2.

(3.33)

Therefore, if q ≥ 2, by (3.32),

∫
�

qa(x)

∣∣∣∣∣∇
(

uh j

λh j

− u

λ

)∣∣∣∣∣
q

dx ≤ 2q−2Rq . (3.34)

If 1 < q < 2, Hölder’s inequality gives

∫
�

⎡
⎣qa(x)

⎛
⎝
∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
q−2 ∇uh j

λh j

−
∣∣∣∣∇u

λ

∣∣∣∣
q−2 ∇u

λ

⎞
⎠ · ∇

(
uh j

λh j

− u

λ

)⎤
⎦

q
2
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·
⎡
⎣(qa(x))

2
q

⎛
⎝
∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
2

+
∣∣∣∣∇u

λ

∣∣∣∣
2
⎞
⎠
⎤
⎦

(2−q)q
4

dx

≤ R
q
2
q

⎡
⎢⎣
∫

�

qa(x)

⎛
⎝
∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
2

+
∣∣∣∣∇u

λ

∣∣∣∣
2
⎞
⎠

q
2

dx

⎤
⎥⎦

2−q
2

≤ R
q
2
q

[∫
�

qa(x)

(∣∣∣∣∣
∇uh j

λh j

∣∣∣∣∣
q

+
∣∣∣∣∇u

λ

∣∣∣∣
q
)
dx

] 2−q
2

≤ MR
q
2
q ,

where M < ∞ bounds from above the term in square brackets for all j , being (|∇uh |/λh)

bounded in LH(�) and so in Lq
a(�). By (3.33), this implies that

∫
�

qa(x)

∣∣∣∣∣∇
(

uh j

λh j

− u

λ

)∣∣∣∣∣
q

dx ≤ M

(q − 1)
q
2
R

q
2
q . (3.35)

Analogous estimates as (3.34) and (3.35) hold for the term in p, therefore, by (3.31), this
implies that

lim
j→∞ �H

(∇uh j

λh j

− ∇u

λ

)
≤ lim

j→∞

∫
�

(
p

∣∣∣∣∣
∇uh j

λh j

− ∇u

λ

∣∣∣∣∣
p

+qa(x)

∣∣∣∣∣
∇uh j

λh j

− ∇u

λ

∣∣∣∣∣
q)

dx =0.

By Lemma 2.1.11 of [23], the norm convergence and the modular convergence are equivalent
in the space LH(�), so we obtain

∇uh j

λh j

→ ∇u

λ
, in [LH(�)]n,

and we can pass to the limit in the left-hand side of (3.26) under the integral sign (as it was
already done for (3.29)) to obtain

lim
j→∞

∫
�

⎡
⎣p

( |∇uh j |
λh j

)p−2

+ qa(x)

( |∇uh j |
λh j

)q−2
⎤
⎦ ∇uh j

λh j

· ∇v dx

=
∫

�

[
p

( |∇u|
λ

)p−2

+ qa(x)

( |∇u|
λ

)q−2
]

∇u

λ
· ∇v dx for all v ∈ C∞

0 (�).

(3.36)

Since uh j → u in LH(�) and
∇uh j

λh j

→ ∇u

λ
in [LH(�)]n , by dominated convergence we

also get

lim
j→∞ S(uh j ) = lim

j→∞

∫
�

[
p

( |∇uh j |
λh j

)p

+ qa(x)

( |∇uh j |
λh j

)q]
dx

∫
�

[
p|uh j |p + qa(x)|uh j |q

]
dx

= S(u).

Together with (3.29) and (3.36), this proves claim, concluding the proof. ��
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4 Variational eigenvalues

Throughout this section, we assume that (1.7) holds and, unless explicitly stated, we consider
W 1,H

0 (�) equipped with the LH-norm of the gradient.

Lemma 4.1 Let u ∈ LH(�)\{0}. For all v ∈ LH(�) the following inequality holds

|〈k′(u), v〉| ≤ q‖v‖H.

Proof For v = 0 the thesis is obvious, hence we suppose v �= 0 and have by virtue of (3.5)
and by Young’s inequality

|〈k′(u), v〉| ≤ ‖v‖H
∫

�

[
p

( |u|
k(u)

)p−1

+ qa(x)

( |u|
k(u)

)q−1
]

|v|
k(v)

dx

= ‖v‖H
[∫

�

p(p−1)/p
( |u|

k(u)

)p−1

p1/p |v|
k(v)

dx

+
∫

�

(qa(x))(q−1)/q
( |u|

k(u)

)q−1

(qa(x))1/q |v|
k(v)

dx

]

≤ ‖v‖H
[(

1 − 1

p

)∫
�

p

( |u|
k(u)

)p

dx +
∫

�

( |v|
k(v)

)p

dx

+
(
1 − 1

q

)∫
�

qa(x)

( |u|
k(u)

)q

dx +
∫

�

a(x)

( |v|
k(v)

)q

dx

]

≤ ‖v‖H
{
(q − 1)�H

(
u

k(u)

)
+ �H

(
v

k(v)

)}
= q‖v‖H.

This concludes the proof. ��
Theorem 4.2 K̃ := K

∣∣M satisfies the (PS) condition, i.e., every sequence (uh) ⊂ M such

that K̃ (uh) → c for some c ∈ R and K̃ ′(uh) → 0 in (W 1,H
0 (�))′ admits a convergent

subsequence.

Proof By hypotheses there exist c ∈ R and a sequence (ch) ⊂ R such that

K (uh) → c and K ′(uh) − chk′(uh) → 0 in (W 1,H
0 (�))′. (4.1)

It is easy to see that 〈K ′(uh), uh〉 = K (uh) and 〈k′(uh), uh〉 = k(uh) = 1, so (4.1) implies
that ch → c. Since (uh) is bounded in W 1,H

0 (�), up to a subsequence, uh ⇀ u in W 1,H
0 (�)

and uh → u in LH(�). Thus, by Lemma 4.1,

|〈k′(uh), uh − u〉| ≤ q‖uh − u‖H → 0,

and so the second limit in (4.1) implies

〈K ′(uh), uh − u〉 → 0 (4.2)

as h → ∞. Now, by the convexity of the C1 functional K , we obtain for all h

‖∇uh‖H ≤ ‖∇u‖H + 〈K ′(uh), uh − u〉.
Hence, (4.2) and the weak lower semicontinuity of the norm give

lim sup
h→∞

‖∇uh‖H ≤ ‖∇u‖H ≤ lim inf
h→∞ ‖∇uh‖H,
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whence

‖∇uh‖H → ‖∇u‖H as h → ∞.

Clearly, also ‖uh‖H → ‖u‖H. Therefore, being (W 1,H
0 (�), ‖ · ‖1,H) uniformly convex by

Proposition 2.14, we get uh → u in W 1,H
0 (�) and conclude the proof. ��

The previous result allows us to define a sequence of eigenvalues of (3.3) by a minimax
procedure.

Definition 4.3 For m ∈ N, we define the m-th variational eigenvalue λm
H of (3.3) as

λm
H := inf

K∈Wm
H
sup
u∈K

‖∇u‖H, (4.3)

where Wm
H is the set of compact subsets K of M := {u ∈ W 1,H

0 (�): ‖u‖H = 1} that are
symmetric (i.e., K = −K ) and have topological index i(K ) ≥ m.

The topological index i can be chosen as the Krasnosel’skiı̆ genus or the Z2-cohomological
index of Fadell and Rabinowitz, and the results below hold with any index i satisfying the
following properties:

(i1) if X is a topological vector space and K ⊆ X\{0} is compact, symmetric, and nonempty,
i(K ) is an integer greater or equal than 1;

(i2) if X is a topological vector space and K ⊆ X\{0} is compact, symmetric, and nonempty,
then there exists an open subset U of X\{0} such that K ⊆ U and i(K̂ ) ≤ i(K ) for any
compact, symmetric, and nonempty K̂ ⊆ U ;

(i3) if X, Y are two topological vector spaces, K ⊆ X\{0} is compact, symmetric, and
nonempty and π : K → Y\{0} is continuous and odd, we have i(π(K )) ≥ i(K ) ;

(i4) if (X, ‖ · ‖) is a normed space with 1 ≤ dimX < ∞, then

i({u ∈ X : ‖u‖ = 1}) = dimX.

We remark that the new definition of λ1H is consistent with (3.2), by virtue of property (i1)
and the fact that K is an even functional.
• Proof of Theorem 1.2. By virtue of Theorem 4.2, we can apply Theorem 5.11 of [56] (see
also Propositions 3.52 and 3.53 of [51]) to prove that the values defined in (4.3) are actually
eigenvalues of (3.3) in the sense of Definition 3.3. Furthermore, since Wm+1

H ⊆ Wm
H for all

m, (λm
H) defines a nondecreasing sequence. Finally, λm

H ↗ ∞ as m → ∞, being i(M) = ∞
by (i4) and (i2). ��

5 Stability of variational eigenvalues

In this section, we assume again the validity of condition (1.7) and endow W 1,H
0 (�) with

the LH(�)-norm of the gradient.
For any couple of real numbers (p, q) such that 1 < p < q < n, we define the corresponding
N -function H(x, t) := t p + a(x)tq for all (x, t) ∈ � × [0,∞) and the related functionals
EH : L1(�) → [0,∞] as

EH(u) :=
{

‖∇u‖H if u ∈ W 1,H
0 (�),

+∞ otherwise
(5.1)
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and gH : L1(�) → [0,∞) as

gH(u) :=
{

‖u‖H if u ∈ LH(�),

0 otherwise.

Proposition 5.1 The following properties hold:

(i) gH is even and positively homogeneous of degree 1;
(ii) for every b ∈ R the restriction of gH to {u ∈ L1(�): EH(u) ≤ b} is continuous.

For the proof of Proposition 5.1, we refer the reader to Proposition 2.3 of [13], where a similar
result is given in the case of functionals defined in variable exponent spaces.

Definition 5.2 ((ph, qh)) ⊂ R
2 is an admissible nonincreasing sequence converging to

(p, q), and we shall write (ph, qh) ↘ (p, q), if q1 < n, ph < qh for all h ∈ N, ph ↘ p and
qh ↘ q as h → ∞.

Lemma 5.3 Let ((ph, qh)) be an admissible nonincreasing sequence converging to (p, q).
Then, for all w ∈ C1

0(�),

lim
h→∞ ‖∇w‖Hh = ‖∇w‖H,

where Hh is the N-function corresponding to the exponents ph and qh for all h.

Proof First, by Fatou’s lemma we get that

�H(∇w) =
∫

�

(|∇w|p + a(x)|∇w|q)dx ≤ lim inf
h→∞

∫
�

(|∇w|ph + a(x)|∇w|qh )dx

= lim inf
h→∞ �Hh (∇w). (5.2)

Now, let α := lim infh→∞ ‖∇w‖Hh < ∞ (in the case α = ∞ this part of the proof is
obvious) and take γ > α. There exists a subsequence ((ph j , qh j )) for which ‖∇w‖Hh j

≤ γ

for all j , and so by the unit ball property and by (5.2)

�H
(∇w

γ

)
≤ lim inf

j→∞ �Hh j

(∇w

γ

)
≤ 1

and so ‖∇w‖H ≤ γ . By the arbitrariness of γ we get

‖∇w‖H ≤ lim inf
h→∞ ‖∇w‖Hh .

It remains to prove that

‖∇w‖H ≥ lim sup
h→∞

‖∇w‖Hh . (5.3)

If ‖∇w‖H = 0 the conclusion follows immediately. Let us assume that ‖∇w‖H > 0 and
take any γ ∈ (0, 1). By the boundedness of � we get∣∣∣∣ γ∇w

‖∇w‖H
∣∣∣∣

ph

+ a(x)

∣∣∣∣ γ∇w

‖∇w‖H
∣∣∣∣
qh

≤ (1 + a(x))

(
1 +

∣∣∣∣ γ∇w

‖∇w‖H
∣∣∣∣
n)

∈ L1(�).

Hence, by the dominated convergence theorem and by (2.1.5) of [23]

lim
h→∞ �Hh

(
γ∇w

‖∇w‖H
)

=
∫

�

(∣∣∣∣ γ∇w

‖∇w‖H
∣∣∣∣

p

+ a(x)

∣∣∣∣ γ∇w

‖∇w‖H
∣∣∣∣
q)

dx = �H
(

γ∇w

‖∇w‖H
)

≤ γ �H
( ∇w

‖∇w‖H
)

= γ < 1
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Therefore, for h sufficiently large �Hh (γ∇w/‖∇w‖H) < 1 and by the unit ball property
∥∥∥∥ γ∇w

‖∇w‖H
∥∥∥∥Hh

< 1

that is ‖∇w‖Hh < ‖∇w‖H/γ . Whence,

lim sup
h→∞

‖∇w‖Hh ≤ ‖∇w‖H
γ

for all γ ∈ (0, 1),

which implies (5.3). ��
Lemma 5.4 Put H̃(x, t) := t p̃ + a(x)t q̃ for all (x, t) ∈ � × [0,∞). If p ≤ p̃ and q ≤ q̃,

with 1 < p̃ < q̃ < n, then LH̃(�) ↪→ LH(�), with constant embedding less than or equal
to |�| + ‖a‖1 + 1. If furthermore p̃ < 2p and q̃ < 2q, the embedding constant is less than
or equal to

CH̃,H :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̃ − p

p
(|�| + ‖a‖1) +

(
p̃ − p

p

) p− p̃
p

if
q̃

q
≤ p̃

p
,

q̃ − q

q
(|�| + ‖a‖1) +

(
q̃ − q

q

) q−q̃
q

otherwise.

(5.4)

In particular, if (ph, qh) ↘ (p, q), then CHh ,H → 1 as h → ∞, where Hh(x, t) :=
t ph + a(x)tqh .

Proof In what follows we shall use Young’s inequality in this form,

ab ≤ εa p′ + Cεbp for all a, b ≥ 0, p > 1, ε > 0, (5.5)

with p′ = p/(p − 1) and Cε = ε−(p−1). By (5.5), for all (x, t) ∈ � × [0,∞) and ε > 0

t p ≤ ε + 1

ε( p̃−p)/p
t p̃

a(x)tq ≤ εa(x) + a(x)

ε(q̃−q)/q
t q̃ .

Thus,

H(x, t) ≤ ε(1 + a(x)) + 1

min{ε( p̃−p)/p, ε(q̃−q)/q} H̃(x, t)

and in turn for all u ∈ LH̃(�)

�H(u) ≤ ε(|�| + ‖a‖1) + 1

min{ε( p̃−p)/p, ε(q̃−q)/q}�H̃(u). (5.6)

First we put ε := 1 and we get for u �= 0, by (5.6) and by the unit ball property,

�H
(

u

‖u‖H̃

)
≤ |�| + ‖a‖1 + 1,

and consequently, by (2.1.5) of [23],

�H
(

u

(|�| + ‖a‖1 + 1)‖u‖H̃

)
≤ 1

|�| + ‖a‖1 + 1
�H

(
u

‖u‖H̃

)
≤ 1,
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which again by the unit ball property gives

‖u‖H ≤ (|�| + ‖a‖1 + 1)‖u‖H̃ for all u ∈ LH̃(�).

For the second part of the statement, if q̃/q ≤ p̃/p, we fix ε := ( p̃ − p)/p ∈ (0, 1) and we
get

min

{
ε

p̃−p
p , ε

q̃−q
q

}
=
(

p̃ − p

p

) p̃−p
p

,

otherwise we fix ε := q̃−q
q ∈ (0, 1) and we get

min

{
ε

p̃−p
p , ε

q̃−q
q

}
=
(

q̃ − q

q

) q̃−q
q

.

Now, by the unit ball property and by (5.6),

�H
(

u

‖u‖H̃

)
≤ CH̃,H for all u ∈ LH̃(�)\{0}.

Therefore, being p̃ < 2p and q̃ < 2q , CH̃,H > 1 and so

�H

(
u

CH̃,H‖u‖H̃

)
≤ 1

CH̃,H
�H

(
u

‖u‖H̃

)
≤ 1.

The unit ball property then gives,

‖u‖H ≤ CH̃,H‖u‖H̃ for all u ∈ LH̃(�),

that is the thesis. ��
We now recall from [20] the notion of �-convergence that will be useful in the sequel.

Definition 5.5 Let X be ametrizable topological space and let ( fh)be a sequence of functions
from X to R. The �-lower limit and the �-upper limit of the sequence ( fh) are the functions
from X to R defined by(

� − lim inf
h→∞ fh

)
(u) = sup

U∈N (u)

[
lim inf
h→∞

(
inf{ fh(v) : v ∈ U })

]
,

(
� − lim sup

h→∞
fh

)
(u) = sup

U∈N (u)

[
lim sup

h→∞
(
inf{ fh(v) : v ∈ U })

]
,

whereN (u) denotes the family of all open neighborhoods of u in X . If there exists a function
f : X → R such that

� − lim inf
h→∞ fh = � − lim sup

h→∞
fh = f,

then we write � − lim
h→∞ fh = f and we say that ( fh) �-converges to its �-limit f .

Theorem 5.6 If (ph, qh) ↘ (p, q), then

EH(u) =
(

� − lim
h→∞ EHh

)
(u) for all u ∈ L1(�).
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Proof Let u ∈ L1(�). First we prove that

EH(u) ≥
(

� − lim sup
h→∞

EHh

)
(u). (5.7)

If EH(u) = ∞, (5.7) is immediate. Then, we suppose EH(u) < ∞ and take b ∈ R, b >

EH(u). Let δ > 0 and w ∈ C1
0 (�) be such that ‖u − w‖1 < δ, with ‖∇w‖H < b. By

Lemma 5.3 we get ‖∇w‖Hh → ‖∇w‖H and so

b > EH(w) = lim
h→∞ ‖∇w‖Hh = lim

h→∞ EHh (w)

and in turn

b > lim sup
h→∞

(inf{EHh (v): ‖v − u‖1 < δ}).

By the arbitrariness of b, we conclude the proof of (5.7). Now, we want to prove that

EH(u) ≤
(

� − lim inf
h→∞ EHh

)
(u). (5.8)

Suppose that
(
� − lim infh→∞ EHh

)
(u) < ∞ (otherwise the conclusion is obvious) and take

b ∈ R, b >
(
� − lim infh→∞ EHh

)
(u). By Proposition 8.1-(b) of [20] there is a sequence

(uh) ⊂ L1(�) such that uh → u in L1(�) and(
� − lim inf

h→∞ EHh

)
(u) = lim inf

h→∞ EHh (uh).

Therefore, there exists a subsequence ((ph j , qh j )) such that EHh j
(uh j ) < b for all j . Let

(v j ) ⊂ C1
0 (�) be such that

‖v j − uh j ‖1 <
1

j
, EHh j

(v j ) < b for all j ∈ N.

Then, v j → u in L1(�) and by Lemma 5.4, for j sufficiently large,

b > ‖∇v j‖Hh j
≥ ‖∇v j‖H

CHh j ,H
. (5.9)

Furthermore,

‖∇v j‖H < b(|�| + ‖a‖1 + 1),

thus (v j ) is bounded in the reflexiveBanach spaceW 1,H
0 (�), and so there exists a subsequence

(v jm ) such that v jm ⇀ u in W 1,H
0 (�). By (5.9), by the weak lower semicontinuity of the

norm, and by the fact that CHh jm
,H → 1,

b ≥ lim inf
m→∞

‖∇v jm ‖H
CHh jm

,H
≥ ‖∇u‖H = EH(u).

Thus, (5.8) follows by the arbitrariness of b. ��
Lemma 5.7 Let (ph, qh) ↘ (p, q), and (uh) ⊂ W 1,H

0 (�) be a sequence such that

sup
h∈N

‖∇uh‖H < ∞.
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Then, there exist a subsequence (uh j ) and a function u ∈ W 1,H
0 (�) such that

lim
j→∞ �Hh j

(uh j ) = �H(u).

Proof By hypotheses (uh) is bounded in the reflexive Banach space W 1,H
0 (�), thus there

exists a subsequence (uh j ) weakly convergent to u ∈ W 1,H
0 (�). By Proposition 2.15-(i i i),

W 1,H
0 (�) ↪→↪→ L p∗−ε(�) for ε > 0 sufficiently small. Hence, uh j → u in L p∗−ε(�) and,

up to a subsequence,

uh j → u a.e. in �,

|uh j | ≤ v for all j ∈ N, a.e. in �

for some v ∈ L p∗−ε(�). Now, for j sufficiently large, if we take ε < (p∗ − q)/2, we get

ph j < qh j ≤ q + ε < p∗ − ε,

and consequently

|uh j |ph j + a(x)|uh j |qh j ≤ 1 + |v|p∗−ε + ‖a‖∞(1 + |v|p∗−ε) ∈ L1(�).

Finally, by the dominated convergence theorem, we obtain

lim
j→∞

∫
�

(|uh j |ph j + a(x)|uh j |qh j
)
dx =

∫
�

(|u|p + a(x)|u|q) dx .

��
Theorem 5.8 Let (ph, qh) ↘ (p, q). Then, for every subsequence ((ph j , qh j )) and for every
sequence (u j ) ⊂ L1(�) verifying

sup
j∈N

EHh j
(u j ) < ∞

there exists a subsequence (u jm ) such that, as m → ∞
u jm → u in L1(�),

gHh jm
(u jm ) → gH(u).

Proof Put b := sup j∈N EHh j
(u j ) and for all j we get by Lemma 5.4

‖∇u j‖H ≤ (|�| + ‖a‖1 + 1)b < ∞,

that is (u j ) is bounded in the reflexive Banach space W 1,H
0 (�). Thus, there exists a subse-

quence (u jm ) such that u jm ⇀ u in W 1,H
0 (�), u jm → u in L1(�) by Lemma 2.15-(i i i), and

u jm → u a.e. in �.
For the second part of the statement, we have to prove that ‖u jm ‖Hh jm

→ ‖u‖H up to a
subsequence. In correspondence of

γ > lim inf
m

‖u jm ‖Hh jm
,

we can find a subsequence, still denoted by ((ph jm
, qh jm

)), for which ‖u jm ‖Hh jm
< γ for all

m. Therefore, �Hh jm
(u jm /γ ) < 1 and by Fatou’s lemma

∫
�

(∣∣∣∣ u

γ

∣∣∣∣
p

+ a(x)

∣∣∣∣ u

γ

∣∣∣∣
q)

dx ≤ lim inf
m→∞

∫
�

(∣∣∣∣u jm

γ

∣∣∣∣
ph jm + a(x)

∣∣∣∣u jm

γ

∣∣∣∣
qh jm

)
dx ≤ 1.
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By the unit ball property ‖u‖H ≤ γ and by the arbitrariness of γ , we conclude that

‖u‖H ≤ lim inf
m

‖u jm ‖Hh jm
.

It remains to prove that ‖u‖H ≥ lim supm ‖u jm ‖Hh jm
. Now, in correspondence of γ <

lim supm ‖u jm ‖Hh jm
, we can find a subsequence, still denoted by ((ph jm

, qh jm
)), for which

‖u jm ‖Hh jm
> γ

and consequently �Hh jm
(u jm /γ ) > 1 for all m. By Lemma 5.7, up to a subsequence

∫
�

(∣∣∣∣ u

γ

∣∣∣∣
p

+ a(x)

∣∣∣∣ u

γ

∣∣∣∣
q)

dx = lim
m→∞

∫
�

(∣∣∣∣u jm

γ

∣∣∣∣
ph jm + a(x)

∣∣∣∣u jm

γ

∣∣∣∣
qh jm

)
dx ≥ 1.

We conclude the proof by using the unit ball property and the arbitrariness of γ as before. ��
We are now ready to prove Theorem 1.3.
• Proof of Theorem 1.3. By Proposition 5.1 and by the definition of EH, the functionals EH,
EHh , gH and gHh for all h ∈ N satisfy the structural assumptions required in Section 4 of
[28]. Furthermore, Theorems 5.6 and 5.8 prove that all hypotheses of Corollary 4.4 of [28]
are verified and consequently

lim
h→∞ inf

K∈Lm
Hh

sup
u∈K

EHh = inf
K∈Lm

H
sup
u∈K

EH,

where

Lm
H := {K ⊂ L1(�) ∩ {‖u‖H = 1}: K compact, K = −K , i(K ) ≥ m} for all m ∈ N

(here i is defined with respect to the L1(�)-topology), and the sets Lm
Hh

are defined analo-
gously for all h ∈ N. Finally, by virtue of Proposition 5.1 (b), we can apply Corollary 3.3 of
[28] to get that the minimax values with respect to the L1(�)-topology are the same as those
with respect to the W 1,H

0 (�)-topology and conclude the proof. ��

6 A Weyl-type law

Throughout this section, we assume that condition (1.7) is verified and that� is quasiconvex.

Lemma 6.1 For all u ∈ W 1,q(�)\{0} we have

1

w
· ‖∇u‖p

‖u‖q
≤ ‖∇u‖H

‖u‖H ≤ w
‖∇u‖q

‖u‖p
,

where w := 1 + ‖a‖∞ + |�|.
Proof For all u ∈ LH(�)∫

�

|u|pdx ≤
∫

�

(|u|p + a(x)|u|q)dx = �H(u).

Hence, �H(u/‖u‖p) ≥ 1 for u �= 0, and by the unit ball property ‖u‖H ≥ ‖u‖p . On the
other hand, for all u ∈ Lq(�)

�H(u) =
∫

�

(|u|p + a(x)|u|q)dx ≤
∫

�

[1 + (1 + ‖a‖∞)|u|q ]dx = |�| + (1 + ‖a‖∞)‖u‖q
q
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and so, if u �= 0,

�H
(

u

‖u‖q

)
≤ 1 + ‖a‖∞ + |�|,

whence, by the unit ball property and being 1 + ‖a‖∞ + |�| ≥ 1,

‖u‖H ≤ (1 + ‖a‖∞ + |�|)‖u‖q .

Hence, for all u ∈ Lq(�)

‖u‖p ≤ ‖u‖H ≤ (1 + ‖a‖∞ + |�|)‖u‖q ,

which gives the thesis. ��
Lemma 6.2 Let 0 < δ < 1, consider the homothety � → δ�, x �→ δx =: y, and write
u(x) = v(y). Then, for all u ∈ W 1,q(�)\{0}

‖∇v‖q

‖v‖p
= δ−σ−1 ‖∇u‖q

‖u‖p
,

‖∇v‖p

‖v‖q
= δσ−1 ‖∇u‖p

‖u‖q
,

where σ := n

(
1

p
− 1

q

)
.

The proof of the previous lemma follows by straightforward calculations. Furthermore, we
notice that σ ∈ (0, 1), being p < q < p∗.
We introduce now the auxiliary problem in W 1,H(�)

−div

([
p

( |∇u|
L(u)

)p−2

+ qa(x)

( |∇u|
L(u)

)q−2
]

∇u

L(u)

)

= λT (u)

[
p

( |u|
�(u)

)p−2

+ qa(x)

( |u|
�(u)

)q−2
]

u

�(u)
,

where L(u) := ‖∇u‖H, �(u) := ‖u‖H, and

T (u) :=

∫
�

[
p

( |∇u|
L(u)

)p

+ qa(x)

( |∇u|
L(u)

)q]
dx

∫
�

[
p

( |u|
�(u)

)p

+ qa(x)

( |u|
�(u)

)q]
dx

.

The eigenvalues and eigenfunctions of this problem on

N := {u ∈ W 1,H(�): �(u) = 1}
are critical values and critical points of L̃ := L|N . Furthermore, we set for every λ, μ ∈ R

K̃ λ := {u ∈ M: K̃ (u) < λ}, L̃μ := {u ∈ N : L̃(u) < μ},
K̂ (u) := ‖∇u‖q for u ∈ M̂ := {W 1,q

0 (�): ‖u‖p = 1},
L̂(u) := ‖∇u‖p for u ∈ N̂ := {u ∈ W 1,q(�): ‖u‖q = 1},
K̂ λ := {u ∈ M̂: K̂ (u) < λ} and L̂μ := {u ∈ N̂ : L̂(u) < μ}.

For all λ ∈ (λm
H, λm+1

H ], i(K̃ λ) = m, (see Proposition 3.53 of [51] and [29]). Therefore,

i(K̃ λ) = �{m : λm
H < λ} for all λ ∈ R. (6.1)
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We recall here the definitions of two topological invariants of symmetric sets which will be
useful in the next proofs.

Definition 6.3 For every nonempty and symmetric subset A of aBanach space X , its cogenus
is defined by

γ (A) = inf
{

k ∈ N : ∃ a continuous odd map f : Sk−1 → A
}

, (6.2)

with the convention that γ (A) := +∞, if no such an integer k exists.

Definition 6.4 (cf. [25]) For every closed symmetric subset A of a Banach space X , we
define the quotient space A := A/Z2 with each u and −u identified. Let F : A → RP∞
be the classifying map of A toward the infinite-dimensional projective space, which induces
a homomorphism of the Alexander-Spanier cohomology rings f ∗ : H∗(RP∞) → H∗(A).
One can identify H∗(RP∞)with the polynomial ring Z2[ω] on a single generator ω. Finally,
we define the cohomological index of A

g(A) :=
{
sup{k ∈ N: f ∗(ωm−1) �= 0}, if A �= ∅,

0, if A = ∅.

In what follows the topological index i used in definition (4.3) will be denoted by γ , when it
stands for the Krasnosel’skiı̆ genus, and by g, when it stands for the Z2-cohomological index
of Fadell and Rabinowitz.
By the monotonicity—property (i2)—and the supervariance—property (i3)—of the coho-
mological index, and by the fact that g(Sk−1) = k, for any symmetric subset A of a Banach
space X , with finite genus, cogenus and cohomological index, it results

γ (A) ≤ g(A) ≤ γ (A). (6.3)

Proposition 6.5 C∞(�) is dense in W 1,H(�).

Proof ByProposition 4.1 of [32], there exists a suitable extension H̃ ofH to all ofRn×[0,∞).
For u ∈ W 1,H(�), let ũ ∈ W 1,H̃(Rn) denote an extension of u such that

‖ũ‖
W 1,H̃(Rn)

≤ c‖u‖W 1,H(�).

By Theorem 5.5 of [32], C∞
0 (Rn) is dense in W 1,H̃(Rn), so we can find (ũh) ⊂ C∞

0 (Rn)

such that ũh → ũ in W 1,H̃(Rn). Therefore, put uh := ũh
∣∣
�
for all h and have

‖u − uh‖W 1,H(�) ≤ ‖ũ − ũh‖
W 1,H̃(Rn)

→ 0 as h → ∞.

This proves that uh are the required approximating functions. ��
For an alternative proof of the previous result see also Theorem 2.6 of [6].

Lemma 6.6 For all λ ∈ R

γ (K̂ λ/w) ≤ γ (K̃ λ), γ (L̃λ) ≤ γ (L̂wλ).

Proof By Lemma 6.1, the maps

K̂ λ/w → K̃ λ, u �→ u

‖u‖H and L̃λ ∩ W 1,q(�) → L̂wλ, u �→ u

‖u‖q
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are well defined, odd, and continuous. Moreover, by Proposition 6.5 and by the fact that
W 1,q(�) ↪→ W 1,H

0 (�) (cf. Proposition 2.15-(v)), W 1,q(�) is dense in W 1,H(�) and so the
inclusion L̃λ ∩ W 1,q(�) ⊂ L̃λ is a homotopy equivalence by virtue of Theorem 17 of [49].
The conclusion follows by the definition of γ and γ . ��
Lemma 6.7 If �1 and �2 are disjoint subdomains of � such that �1 ∪ �2 = �, then

γ (K̂ λ
�1

) + γ (K̂ λ
�2

) ≤ γ (K̂ λ), γ (L̂λ) ≤ γ (L̂λ′
�1

) + γ (L̂λ′
�2

) for all λ < λ′,

where the subscripts indicate the corresponding domains and we drop the subscript when
the domain is �.

The proof of the previous lemma can be obtained reasoning as in the proof of Lemma 3.2 of
[52], by simply replacing p+ with q , p− with p and p(x) with H(x, t), hence we omit it.
We can now prove the last result of the paper. The proof relies on the argument produced for
Theorem 1.1 of [52], we report it here for the sake of completeness.
• Proof of Theorem 1.4. The proof is split in two steps, first we prove the statement for
n-dimensional cubes and then we approximate the domain � by unions of cubes.
Step 1. Let Q be the unit cube in R

n , fix λ0 > max{inf K̂ Q, inf L̂ Q}, and set
r := γ (K̂ λ0

Q ), s := γ (L̂λ0
Q ).

Then, take λ ∈ (λ0, λ
′) and any two cubes Qaλ and Qbλ′ of sides aλ := (λ0/λ)1/(1+σ) < 1

and bλ′ := (λ0/λ
′)1/(1−σ) < 1, respectively. By lemma 6.2, it is easy to check that the

functions

K̂ λ0
Q → K̂ λ

Qaλ
, u �→ v

‖v‖p
and L̂λ0

Q → L̂λ′
Qb

λ′ , u �→ v

‖v‖q

are odd homeomorphisms, and so, by property (i3) of the topological index, we obtain

γ (K̂ λ
Qaλ

) = r, γ (L̂λ′
Qb

λ′ ) = s.

Therefore, by Lemma 6.7, if we denote by Qa a cube of side a > 0,

r

[
a

aλ

]n

≤ γ (K̂ λ
Qa

), γ (L̂λ
Qa

) ≤ s

([
a

bλ′

]
+ 1

)n

,

Whence, for λ′ and λ large

C1anλn/(1+σ) ≤ γ (K̂ λ
Qa

), γ (L̂λ
Qa

) ≤ C2an(λ′)n/(1−σ), (6.4)

with C1 := r/λn/(1+σ)
0 and C2 := s/λn/(1−σ)

0 depending only on n, p and q .
Step 2. Let ε > 0 and let �ε, �ε be finite unions of cubes with pairwise disjoint interiors
such that

�ε :=
Mε⋃
j=1

Q j ⊂ � ⊂ �ε :=
Mε⋃
j=1

Q′
j

and |�ε\�ε| < ε. Then, by (6.4), Lemma 6.7 and the monotonicity of γ

C1|�ε|λn/(1+σ) ≤
Mε∑
j=1

γ (K̂ λ
Q j

) ≤ γ (K̂ λ
�ε

) ≤ γ (K̂ λ),

γ (L̂λ) ≤ γ (L̂λ
�ε ) ≤

Mε∑
j=1

γ (L̂λ′
Q′

j
) ≤ C2|�ε|(λ′)n/(1−σ).
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By Tietze theorem, we can extend continuously a(·) to all of Rn and obtain a nonnegative
function having the same L∞-norm as a(·). Thus, by the arbitrariness of ε > 0 and of λ′ > λ,
we get

C1|�|λn/(1+σ) ≤ γ (K̂ λ) ≤ γ (K̃ wλ) ≤ g(K̃ wλ)

≤ g(L̃wλ) ≤ γ (L̃wλ) ≤ γ (L̂w2λ) ≤ C2|�|(w2λ)n/(1−σ),

wherewe have used Lemma 6.6, inequalities (6.3), the fact that K̃ λ ⊂ L̃λ, and themonotonic-
ity of g. Finally, the conclusion follows by (6.1). ��
Acknowledgments The authors warmly thankGiuseppeMingione for various suggestions about the problem
and its related literature. Paolo Baroni is also acknowledged for some hints on the application of the Harnack
inequality of [5] in the proof of Theorem 1.1. The statement and the proof of Lemma 2.12 are attributed to
Lorenzo Brasco. Part of this work was written during a visit of Francesca Colasuonno at the Department of
Computer Science of theUniversity ofVerona. The hosting institution is gratefully acknowledged. The research
was partially supported by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
(INdAM).

References

1. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with nonstandard growth. Arch.
Ration. Mech. Anal. 156, 121–140 (2001)

2. Acerbi, E., Mingione, G.: Regularity results for a class of quasiconvex functionals with nonstandard
growth. Ann. Scuola Norm. Sup. Pisa. 30, 311–339 (2001)

3. Baroni, P., Colombo, M., Mingione, G.: Non-autonomous Functionals, Borderline Cases and Related
Function Classes. St. Petersburg Math. J. (2015, to appear)

4. Baroni, P., Kuusi, T., Mingione, G.: Borderline gradient continuity of minima. J. Fixed Point Theory
Appl. 15, 537–575 (2014)

5. Baroni, P., Colombo, M., Mingione, G.: Harnack inequalities for double phase functionals. Nonlinear
Anal. Theory Methods Appl. 121, 206–222 (2015)

6. Benkirane,A., Val,M.: Some approximation properties inMusielak–Orlicz–Sobolev spaces. Thai J.Math.
10, 371–381 (2012)
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