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1. Introduction and Results
1.1. Overview

Around 2001, Bourgain, Brezis and Mironescu, investigated (cf. [2,[3], 6]) the asymp-
totic behavior of a class on nonlocal functionals on a domain  C R¥, including
those related to the norms of the fractional Sobolev spaces W*P(RY) as s 1.
In the case Q = RY, their later result can be formulated as follows: if p > 1 and
u € WHP(RY), then

u(y)|? _ / »
Sh/rri (1-s //RQN \J;—y\Nﬂ’s ———————dxdy = K, |Vu|Pde, (1.1)
where
1
Ky n= —/ |w - z|Pdo, (1.2)
P JsN-1
being w € SV any fixed vector. Here and in what follows, for a vector z € RY,

|z| denotes its Euclidean norm.
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Given a convex, symmetric subset K C RY containing the origin, let || - [|x be
the norm in RY which admits as unit ball the set K, i.e.

2]l r 2= inf{)\>0 X EK} (1.3)

It is rather natural to wonder what happens to formula (IIl) by replacing in the
singular kernel |x —y| with its anisotropic version ||z —y|| k. In 2014, Ludwig [18, [19]
proved that, for a compactly supported function u € WHP(RY), there holds

(y)I? /
lim (1 // — P drdy = Vul|?. dx. 1.4
s/l RAN ||{I?—yHN+pS Yy = RN || HZPK ( )

Here || - ||z;  is the norm associated with the convex set Z; K which is the polar
L, moment body of K (see (I.€]) and (I7)); such quantities were involved in recent
important applications within convex geometry and probability theory, see e.g.
[14] 15, [I7] and the references therein. Thus, changing the norm in the nonlocal
functional produces anisotropic effects in the singular limit. The norm

V=

can be explicitly written and, in the particular case || - [[x = | - | (Euclidean case),
then K = Bj, the unit ball of RV, and the results are consistent with classical
formulas, since || - [|z:p = ¢/ Kp,n| - |

Ludwig’s proof of formula (L) relies on a reduction argument involving the one-
dimensional version of the Bourgain-Brezis—Mironescu formula in the Euclidean
setting jointly with the Blaschke-Petkantschin geometric integration formula (cf.
[27) Theorem 7.2.7]), namely

/ f (@, y)dady = / / Fln(E.y)|z — o)V dA @)dot (y)dL,
RN JRN AfE(N,1) L

where 1 is the one-dimensional Hausdorff measure on RY | Aff(N, 1) is the affine
Grassmannian of lines in RY and dL denotes the integration with respect to a Haar
measure on Aff(N,1).

Around 2006, motivated by an estimate for the topological degree raising in the
framework of Ginzburg-Landau equations [4], a new alternative characterization
of the Sobolev spaces was introduced (cf. [Bl 20} [21]). As a result, for every u €
WLP(RN) with p > 1, there holds

(SP
lim // ———dxdy = K, ,N/ |[VulPdz, (1.5)
=0 J S juy)—u(@)>ay |7 — y[NFP P Jr

where K, y is the constant appearing in (L2). It is thus natural to wonder if,
replacing |z — y| in the singular kernel with the corresponding anisotropic version
llx — y|| k', produces in the limit the same result as in formula (T4)).

The previous two characterizations were also considered for p = 1. BV functions
are involved in this case, see [2 [ 12, 20]. Other properties related to these char-
acterizations can be found in [R| [ [T, 22H24] 26]. Both the characterizations (for
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the Euclidean norm) were recently extended to the case of magnetic Sobolev and
BV spaces [28]. More general nonlocal functionals have been investigated in

(711

1.2. Anisotropic spaces

In this section, we introduce anisotropic magnetic Sobolev and BV spaces. For this
end, complex numbers and notations are involved. Let p > 1 and consider the
complex space (CV,|-|,) endowed with

‘Z|p = (|(§R217 .. .,§RZN)|p + |(%217 .. .,%ZN)|p)l/p7

where Ra and Sa denote the real and imaginary parts of a € C. Recall that |z| is
the Buclidean norm of z € RY. Note that |z, = |z| for 2 € RY. Let || - ||k be the
norm as in (L3]). We set

N 1/p
ZrK = ( ;—p / v - x|5da:> , forveCV. (1.6)
K

The set Z; K C CN which is defined as
* o N .
ZyK :={veC": v

I

zsx <1} (1.7)

is called the (complex) polar L,-moment body of K. Denote LP(RY C) the
Lebesgue space of functions u : R — C such that

1/p
|l Loy = (/RN u|£dx) < 0.

For a locally bounded function 4 : RY — RY (magnetic potential), set

1/p
(Wt vy = ( /R ) vu—iA(x)ug;de) .

Let Wj‘ﬁ( (R™) be the space of u € LP(RY, C) such that [U]W},‘}{ @~y < oo with the
norm

1/p
ol ey = (1l + [y amy )

Denote || - [|z:x+ the dual norm of the norm | - [|z:x on RY, namely for v € RY
vl z; = := sup{{v, w)p~y : w € RN, |jw] z:r <1}, with
N
(v, w)py = Zvjwj7 Vo, we RN,
j=1

For a complex function u € L{, (RY), as in [25], we define

|[Dula,x = C1 A, xu+ Coa K u,
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where

Craku = sup{ Rudivp — A - oSudz, ¢ € Ccl (RN,RN) with
RN

nwx>ax*<1inRN}

C2 4, K4 i= SUp {/ Sudivp + A - pRudz, ¢ € C’C1 (RN,RN) with
RN

lp()] Zi K+ < 1in RN}.

We say that u € BV x(RY) if u € LY(RY) and |Du|a,x < oo and in this case we
formally set

\Dulax = /N IV — iA(x)ul| 7: e (1.8)
R

The space BV x(RY) is a Banach space equipped the norm

lulla,x = lJullp1@yy + [Dulax, u€ BV (RY).

1.3. Main results

The goal of this paper is to extend the two characterizations mentioned above to
anisotropic magnetic Sobolev and BV spaces. Our approach is in the spirit of the
works on the Euclidean spaces. In particular, we make no use of the Blaschke-
Petkantschin geometric integration formula as in the work of Ludwig.

Let A: RN — RY be measurable and locally bounded. Set

U (z,y) = AT u(y), 2,y e RV,

Motivated by the study of the interaction of particles in the presence of a magnetic
field, see e.g., [I} [16] and references therein, Ichinose [I6] considered the nonlocal

functional
: z+y
s N Ju(z) — eV ATT Dy (y) 2
H5(R )9u»—>//RZN P ZET dx dy,

for s € (0,1), and established that its gradient is the fractional Laplacian associated
with the magnetic field A via a probabilistic argument. As in the spirit of the
previous results, the quantity W, has been recently involved in the characterization
of magnetic Sobolev and BV functions. In this paper, we establish the following
anisotropic magnetic version of (IH]).

Theorem 1.1. Let p > 1 and let A : RV — RN be Lipschitz. Then, for every
u € Wi (RV),

opP
lim/ / —1 )=, (z.x dxdy:/ Vu—iA(z)u
0 Jan Jen o= g 7 IV @n) =Sl >0) o | ()ul

1850017-4
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If p =1, one can show (see Remark B1)) that, for u € le LR,

z,x dxd
5\0/RN /RN |z — yHN+1 14w, (@), (2,0)|,>01dT dy

> / |Vu —iA(x)ul
RN

Nevertheless, such an inequality does not hold in general for u € BV4(RY) even
in the case where A = 0 and K is the unit ball (see [LIl Pathology 3]). In the case
A =0, one has

u(y)—u(x dx d ZC/
6\0/RN /RN |z — y||1v+1 Liu(y)—u(a)|>sydx dy =

for some positive constant 0 < C' < Ky ;. This inequality is a direct consequence
of the corresponding result in the Euclidean setting in [5].
We next discuss the BBM formula for the anisotropic magnetic setting. Let (py,)

be a sequence of non-negative radial mollifiers such that
oo

lim on(r)rN "1 Pdr =0, forall§ >0 and

n—-+oo 5

1
/ pn(r)rN "ldr = 1.
0

Here is the anisotropic magnetic BBM formula.

Zde{,E.

(1.9)

Theorem 1.2. Let p > 1, let A : RY — RY be Lipschitz, and let {p,}nen
be a sequence of non-negative radial mollifiers satisfying (CH). Then, for u €

Wlp(RN)

. \Iju(x7x)|p

lim // pulle — yllx)de dy
W [ fon Hx P

=p/RN |Vu— iA(z)

Furthermore, if p = 1 and u € BVy k(RY) the formula holds with the agree-

ment (LH).
Remark 1.3. Let (s,) be a positive sequence converging to 0 and set, for n > 1,

_ p(l - Sn)
(1) = Nipen—p

Then (p,) satisfy ([C9). Applying Theorem [[2] one rediscovers the results of
Ludwig.

dx.

r > 0.

Remark 1.4. Theorems[T.1] and [T.2 provide the full solution of a problem arised
by Giuseppe Mingione on September 21th, 2016, at the end of the seminar “Another
triumph for De Giorgi’s Gamma convergence” by Haim Brezis at the conference “A
Mathematical tribute to Ennio De Giorgi’, held in Pisa from 19th to 23th September
2016.
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The above results provide an extension of [2] 1820, 24126, 28] to the

anisotropic case.

2. Proof of Theorem [I.1]
Set, for p > 1,

oP
K / / _ " . dx dy, foruELOC RN
5 oo S T — g I - Ee Tt} toc(B™)-

It is clear that, for u,v € WA’p (RM)and 0 <e < 1,
If(w) < (M=) PIf_5(v) + e PI5(u —v). (2.1)

Applying [24] Theorem 3.1], we have, for p > 1 and u € W (]RN)

IK(u) < Cnpx </ |Vu —iA(x)u |pdx+(||VAHL(X,(RN +1)/ |u§alac>7
RN RN

for some positive constant Cy , x depending only on N, p, and K. By the density
of C}RY) in Wl}l’p(RN), it hence suffices to consider the case u € C}(RY) which
will be assumed from later on.

By a change of variables, we have

/RN /RN |l — yIIN“’ Ljwu ey -vu@al,>syde dy

1
- e teaishor 5 (oo osy dh do da.
/RN /SN—l/O ||U||%+ph1+p {|Vu(z,24+0ho) =V, (x,x)|p,>0} o ar

Using the fact

lim |y (x, 2+ dho) — U, (x, )|
6—0 1)

L = |(Vu —iA(2)u) - a|,h, (2.2)

as in the proof of |24, Lemma 3.3], we obtain

5*>0/]RN /RN ||IE yHN+p {‘\I’ (z,y)=Pu(z,2)|p>d}

1 |(Vu —iA(x
_—// “ lfv+>> % 4o (2.3)
D JrN Jsn-1 llollx™
Since we have

llollx
(N +p) / v ylhdy = N+p/ / v oot Pt do
sv-1.Jo

/ ool (2.4)
= o, .
sv1 ol P

the assertion follows.

1850017-6
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Remark 2.1. In the case u € W}"I(RN), by Fatou’s lemma, as in (Z3)), one has,
with p =1,

1
lim I (u) > o dhdo d
iyl () = /RN /SN / Jolen

—iA(z)u(z))-o|1h>1}

|(Vu —1A(z
/ / S ](V21> 71 4o de.
RN JSN -1 ol
This implies

5\0/]]{1\7 /]RN Hx—y||N+1 {\\Il W (z,x)[1>d} Y /]RN || ( )

3. Proof of Theorem
3.1. Proof of Theorem forp>1

Using [24] Theorem 2.1] without loss of generality, one might assume that u €
CH(RY). Note that

[P ( v, (z,x)[b
n\||T — dx d
//R2N ||x—pr P (” y”K) Y

W (@,z+h o)p
/ / / s UZ e x)‘pPn(HUHKh)hN_ldhdadx-
RN JgN-1 ol h?

Using (Z2), one then can check that, for p > 1 and u € C}(RY),

U, (2, y) — Do 2) 2
lim // P ol — gl ) dy
n—too J J{jz—y|<1} |z — yl%

(Vu — iA(z p 1
/ / i (p> Y g i i /pn(||a||Kh)hN_1dh.
RN JsN-1 llo[% n—+oc Jo

Furthermore, observe that

‘\Iju(x7y) - \Iju(x7x)‘p
I/ 2 oo = yllic)a dy
{lz—y|>1}

2 =yl

< Clult, / W12 (o ch)dh

Therefore, for p > 1 and u € C1(RY), on account of (0, we obtain

i [ PRI Z LR o g a
im x —yl|x)dx dy
L ) P

[(Vu —iA(z)u) - ofp
do dx. 3.1
/RN /SN N ‘O_HN—HD ( )

The conclusion now follows from (24)).

1850017-7
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3.2. Proof of Theorem .2 for p =1

We first present some preliminary results. The first one is the following lemma.

Lemma 3.1. Let u € Wj:lK(RN). Then

Zl*de-

|Du|a,x = / IVu —iA(x)ul
RN

Proof. The proof is quite standard and based on integration by parts after noting
that

IVu —iA(x)ul

z: ik = [|[VRu — A(z)Su|

z: i + || VSu + A(x)Rul

ZI K>

since A(z) € RN for x € RY. The details are left to the reader. m|

Lemma 3.2. Let u € BVA(RY) and (u,) C BVA(RY). Assume that

liril u, =u in LY(RY).

Then

liminf [Dup|a,x > |Dula k.
n—-4o0o :

Proof. One can check that

liminf C1 4 K, > Ci,a,ku and  liminf Cy 4 g v, > Co4 K u-
n—-+o0o n—-+o0o

The conclusion follows. O

For r» > 0, let B, denote the ball centered at the origin and of radius . We have

Lemma 3.3. Let u € BVA(RY) and let (1,,) be a sequence of non-negative molli-
fiers with supp 7, C By, which is normalized by the condition fRN Tm(x)dx = 1.
Set Uy, = Ty * u. Assume that A is Lipschitz. Then

Jim [Duglak = [Dulas.
Proof. The proof is quite standard, see e.g., [I3] and also [25]. Let ¢ € C}(RY)
be such that

lo(@)|zrx+ <1 in RN,

‘We have

Rupdive — A - oSy, dx
RN

= Rudivp,, — A onSude

RN
+ / (A(z) — Alz —p)) - oz — y)rm Wul@)dzdy.  (32)

1850017-8
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Since

[[m ()]

<1

7z i+ < sup[[p(y)
y
we have

Rudive,, — A - pmSudz
RN

< Ch,A,Ku- (3.3)

Since supp 7, C By, one can check that

C VA Loo ||Ul| 1
[ [ @ = e =) ote - pratiyutoydeay| < AEA=lle
RN JRN m
(3.4)
A combination of 32), (B3), and B4 yields
limsup C1, 4,k u,, < C1,4,K u-
m—-+oo
Similarly, we obtain
hmsup C2,A,K,um < CQ,A,K,U
m——400
and the conclusion follows from Lemma [3.2] O

We are ready to give the following proof of theorem.

Proof of Theorem for p = 1. Let (7,,,) be a sequence of non-negative molli-
fiers with supp 7,, C By, which is normalized by the condition [ 7 () dz = 1.
Set ty, = u * Tp,. As in the proof of [24, Lemma 2.4], we have

\Pum x y qjum T, T
//RZN | ( )|1pn(HJ3—y||K)da:dy

Iz —yllx

U (z,y) — Uy(z, x
//RzN e Mlﬂn(llx—yHK)da:dy

|z —yllx

e / / / 217 (2)pn (12 — yll 1 )u(y)d de dy.
RN JRN JRN
We have

. . Um, x qj €L, T
lim lim //RQN X)) o )|1Pn(HJC —yllk)dz dy

m—+00 n—-+oo |z —yllx
g Lemme B / Vu — iA(2)
RN

> lim IV, —iA(x)

m——+oo RN

and, since supp 7, C By /pm,

/RN /RN /RN 2|7m (2) pu (|7 — yl| 0 )u(y)dz do dy <

1850017-9
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It follows that

-V,
liminf// (x’x)‘lpn(nx—yHK)dxdy
R2N

n—+o0 Hw —yllx

ZIde'

z/ 1V — iA(2)ul
RN

We also have, by Fatou’s lemma7

., T,x
// | Yul@ D1 e~ yllxe)de dy
o nx—mm

Vo (5,y) — Wu (2,
< liminf // @) = Vun @D 0 dedy. (3.5)
WL ] fon EE

We next derive an upper bound for the RHS of H). Let v € lelK (RM)NC>=(RY).
We have
— U, (x,x
// Dl (o — yl)de dy
R2N HJJ —yllx

/ / / |, (2,2 + ho) — (x,x)\lp
RN JsN-1 kol ke "

x (h|o||x)hN ~tdh do da. (3.6)

Using the fact
OV (2,Y) _ i(a—y)a (zv) x+vy 1 T4y
By =° Voly) — 14 A( . >+2(y 2)-vA (5

« ATy ACE)

v(y),

and applying the mean value theorem, we obtain

U, (x,y) — Uy(x,x
//Rm| 2 ( )|1pn(H$—y||K)da:dy

lz —yllx

/RN/SNl// (Vo —idv) - o1 (2 + tho)

WhN Yo (b0 k) dt dh do dx

+C/ / //|vx+th |||v||A||LOOh pn(hHUHK)dtdhdadx
RN JSN-—1

+C/RN/RN [o(@)] + [o(y )I)H ” Pl =yl k) dx dy. (3.7)

{lz—y|>1}

1850017-10
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One can check that

1 1
// //‘(V”—iA”)'U\l(chU) : AN py(hllo||k )dt dh do da
RV Jsv-1Jo Jo lollx

(Vv —iA(z)v) - o)y / N-1,
dodz | h 3.8
/RN /SN | |0,||N+1 ( )
an
/ / / / lv(x + tho) |”VAHL°°h Yon(hllo|| x )dt dh do da
ry Jov-1 lollx
< Cx||VA| Lo / WY po (), (3.9)
0

where A = max{||o||x : 0 € S¥71}. A combination of [B.6)-(B.9) yields
U, (z,y) — Uy(z,
I LDyl dy
R2N

Iz =yl x

g/ hN‘lpn(h)dh/ Vo — iA(z)0]
0 RN

A 0o
+ Ok (VA 1= + D)llo]| 2 (/0 thn(h)dh+/1 hN—Z‘pn(h)dh). (3.10)

Using Lemma B3] we derive from (BH) and (BI0) that
U, (z,y) — Uylx, x
I DDyl dy
R2N

Iz —yllx

z: kdT

A de

< / WY (h) / IVu—iAGu

A %)
+ Cx||[VA poo ||| 11 (/ thn(h)thr/ hN—Z‘pn(h)dh),
0 1

which yields, by (LY),

. —Uyu(z,z
hmsup// ( >|1pn(Hw—y||K)dxdy
n—-oo R2N ”x - yHK
< / Vv —iA(z)v| z; kda.
RN
The proof is complete. O
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