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Abstract. We investigate the long term behavior for a class of competition–diffusion systems of Lotka–Volterra type for two
competing species in the case of low regularity assumptions on the data. Due to the coupling that we consider the system
cannot be reduced to a single equation yielding uniform estimates with respect to the inter-specific competition rate parameter.
Moreover, in the particular but meaningful case of initial data with disjoint support and Dirichlet boundary data which are
time-independent, we prove that as the competition rate goes to infinity the solution converges, along with suitable sequences,
to a spatially segregated state satisfying some variational inequalities.
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1. Introduction

Let Ω be a bounded, open, connected subset of R
N with smooth boundary and let κ be a positive para-

meter. The aim of this paper is to investigate the asymptotic behavior of a competition–diffusion system
of Lotka–Volterra type for two competing species of population of densities u and v, with Dirichlet
boundary conditions,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − Δu = f (u) − κuv2, in Ω × (0,∞),
vt − Δv = g(v) − κvu2, in Ω × (0,∞),
u(x, t) = ψ(x, t), on ∂Ω × [0,∞),
v(x, t) = ζ(x, t), on ∂Ω × [0,∞),
u(x, 0) = u0(x), in Ω,
v(x, 0) = v0(x), in Ω.

(Pκ)

A relevant problem in population ecology is the understanding of the interactions between differ-
ent species, in particular in the case when the interactions are large and of competitive type. As the
inter-specific parameter κ ruling the mutual interaction of the species gets large, competitive reaction–
diffusion systems are expected to approach a limiting configuration where the populations survive but
exhibit disjoint habitats (cf. [7,8,10,19,22,24]). For population dynamics models which require Dirich-
let boundary conditions we refer to [8,22], while for the more ecologically natural Neumann boundary
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conditions we refer to [10,15] and references therein. As pointed out in [8], the Dirichlet case presents
further difficulties compared with the Neumann case, as the boundary terms which pop up after integra-
tion by parts cannot be estimated independently of κ. The classical stationary Lotka–Volterra model for
two populations

⎧⎪⎪⎨
⎪⎪⎩
−Δu = f (u) − κuv, in Ω,
−Δv = g(v) − κvu, in Ω,
u = ψ, on ∂Ω,
v = ζ, on ∂Ω

(1.1)

has been intensively studied with respect to the spatial segregation limit as κ → ∞. If, for instance,
ψ and ζ belong to W 1,∞(∂Ω), then there exists a sequence of solution (uκ, vκ) to (1.1), bounded in
W 1,∞(Ω), and a limiting positive state (u, v) with uv = 0, satisfying suitable variational inequalities
and such that, up to a subsequence, uκ → u and vκ → v in H1(Ω) with a precise rate of conver-
gence (see [5]). Concerning the parabolic system associated with (1.1), in [8] Crooks, Dancer, Hilhorst,
Mimura and Ninomiya proved (also in the case of possibly different diffusion coefficients) that, for any
T > 0, there exists subsequences uκm and vκm of the solutions converging in L2(Ω × (0, T )) to a
bounded state with disjoint support and solving a limiting free boundary problem. Beside this conver-
gence results on finite time intervals, in [7], in the case of equal diffusion coefficients and stationary
boundary conditions, Crooks, Dancer and Hilhorst recently studied the long term segregation for large
interactions, by reducing the system to a single equation whose solutions admit uniform estimates in κ.
Typically, stabilization is based upon a variational structure yielding an energy functional, bounded and
decreasing along the trajectories (see e.g. [13,27]). Unfortunately, as far as we know, due to the coupling
term −κuv, the parabolic system associated with (1.1) does not admit a natural Lyapunov functional
and a direct analysis is therefore not possible. Now, system (Pκ) can be regarded as a variant of the
standard Lotka–Volterra model, with different inter-specific competition coupling terms. In addition, if
one considers homogeneous boundary data, then (Pκ) admits a natural non-increasing energy functional
Λκ : [0,∞) → R

Λκ(t) =
1
2

∥∥∇u(t)
∥∥2

2 +
1
2

∥∥∇v(t)
∥∥2

2 −
∫

Ω

∫ u(t)

0
f (σ) dσ −

∫
Ω

∫ v(t)

0
g(σ) dσ +

κ

2

∫
Ω

u2(t)v2(t).

As we will see, a non-increasing energy functional can be constructed also for general boundary condi-
tions (see the Proof of Theorem 2.11). We shall tackle the problem with techniques from the theory of
dissipative dynamical systems to show the convergence towards the solutions to the stationary system,
formally written as

⎧⎪⎪⎨
⎪⎪⎩
−Δu = f (u) − κuv2, in Ω,
−Δv = g(v) − κvu2, in Ω,
u = ψ∞, on ∂Ω,
v = ζ∞, on ∂Ω.

(Sκ)

A question which naturally arises is whether the solutions stabilize towards a segregated state along
some tj → ∞ and κj → ∞, for instance in the natural case when the initial data have disjoint support
and the boundary data are stationary in time (see problem (1.2) in the next section). Some numerical
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computations in a square domain in R
2 have been performed in [8] (see Sections 1 and 4) for the Lotka–

Volterra model under these assumptions on the initial and boundary conditions (see also [17], where an
algorithm for parallel computing was implemented in order to efficiently track the interfaces). In [26] we
arranged a complete set of numerical experiments both for (1.2) (i.e. system (Pκ) with time-independent
boundary data) and the corresponding model with the standard Lotka–Volterra coupling. Although on
one hand working with (Pκ) gives some advantages in the study of the long term dynamics for κ fixed
as it directly admits a Lyapunov functional, on the other hand the asymptotic analysis for the solutions
of (Sκ) is far more complicated than the study of (1.1) (subtracting the equations of (1.1) one reduces to
the single equation Δu = κu(u−Φ) where Φ is an harmonic function, while this is not the case working
with (Sκ)). For instance, the global boundedness in κ of the solutions in H1 will be derived from the
corresponding boundedness for the solution flow of the parabolic system uniformly with respect to κ.
To show the boundedness directly on the elliptic systems seems out of reach. In addition, the blow up
analysis based on Lipschitz rescalings performed in [5] does not seem to work.

Concerning some physical motivations to consider coupling terms between the equations which are
different from the standard one uv, we refer the reader, e.g., to Section 3.3 of classical Murray’s book
[21] (looking at formula (3.14) at p. 87, our system corresponds to the choice F (N , P ) = 1 −N − κP 2

and G(N , P ) = 1 − P − κN 2 with respect to the book’s notations). It is also useful to think about
systems of two Schrödinger [1] or Gross–Pitaevskii [9] equations modelling particle interaction (and
populations can also be thought as discrete collections of interacting particles), intensively investigated
in recent time (nonlinear optics, Bose–Einstein binary condensates, etc.), which present all the coupling
of (Pκ), yielding a variational structure. We refer the reader to [20] for the case κ < 0, with physical
motivations e.g. from [11], and to [23] for the case where κ > 0, with physical motivations e.g. from [4].
Both [20,23] deal with the semi-classical regime analysis.

1.1. The main result

The main result of the paper concerns with the long-term behaviour in large-competition regime for
the system with time-independent boundary data, that is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − Δu = f (u) − κuv2, in Ω × (0,∞),
vt − Δv = g(v) − κvu2, in Ω × (0,∞),
u(x, t) = ψ(x), on ∂Ω × [0,∞),
v(x, t) = ζ(x), on ∂Ω × [0,∞),
u(x, 0) = u0(x), in Ω,
v(x, 0) = v0(x), in Ω.

(1.2)

Concerning the functions f , g : R → R, let:

f , g ∈ C1([0,∞)
)
, f (s) = g(s) = 0, for all s � 0,

(1.3)
f (s) < 0, g(s) < 0, for all s > 1,

and we set

F (t) =
∫ t

0
f (σ) dσ, G(t) =

∫ t

0
g(σ) dσ.
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The initial and boundary data are required to satisfy:

u0, v0 ∈ H1(Ω), 0 � u0(x) � 1, 0 � v0(x) � 1, a.e. in Ω, (1.4)

ψ, ζ ∈ H1/2(∂Ω), ψ = u0|∂Ω , ζ = v0|∂Ω , (1.5)

0 � ψ(x) � 1, 0 � ζ(x) � 1, on ∂Ω. (1.6)

Under these assumptions, as well as those of Section 2, for all κ > 0, system (Pκ) admits a unique global
solution uκ, vκ ∈ C0([0,∞), H1(Ω))∩C1((0,∞), L2(Ω)). For the local existence, we refer the reader to
a paper by Hoshino–Yamada [16] (see e.g. Theorems 1 and 2, having in mind to choose θ = α = γ = 1

2
in Theorem 1(i) and γ = 0 in Theorem 2(ii), with respect to the notations therein). For smoothing
effects we also wish to refer to the classical book of Henry [14]. The global existence result can be
deduced by the comparison principle for parabolic equations (see, for example, the book of Smoller
[25]). For ut − Δu = f (u) − κuv2, vt − Δv = g(v) − κvu2 with positive initial data, one can show
0 � u(t) � U (t) and 0 � v(t) � V (t), where U , V are solutions of Ut − ΔU = f (U ), Vt − ΔV = g(V )
with the same initial and boundary conditions. Since U and V exist globally in time due to assumptions
(1.3), (1.4) and (2.2) (a priori uniform-in-time L∞-estimates for the solutions hold, see Lemma 2.3), one
also recovers the global existence result (for the sake of completeness, we also mention Theorem 3 in
Hoshino–Yamada [16] for small initial data and part (iv) of Proposition 7.3.2 in [18] for smooth initial
data). In the following we set H = H1(Ω) × H1(Ω), endowed with the standard Dirichlet norm, and

H0 =
{

(u, v) ∈ H: uv = 0 a.e. in Ω
}
.

The following theorem is the main result of the paper, regarding system (1.2).

Theorem 1.1. Assume (1.3)–(1.6) and (u0, v0) ∈ H0. Let (uκ, vκ) be the solution to system (1.2). Then
there exist two diverging sequences (κm), (tm) ⊂ R

+ and (u∞, v∞) ∈ H0 such that(
uκm(tm), vκm(tm)

)
→ (u∞, v∞) in the Lp × Lp norm, for any p ∈ [2,∞),

as m → ∞, where

u∞, v∞ � 0, −Δu∞ � f (u∞), −Δv∞ � g(v∞), u∞|∂Ω = ψ, v∞|∂Ω = ζ.

Moreover, in the one-dimensional case, we have∥∥(
uκm(tm), vκm(tm)

)
− (u∞, v∞)

∥∥
L∞×L∞ → 0, as m → ∞.

Hence, starting with segregated data, the system evolves towards a limiting segregated state satisfying
suitable variational inequalities. As we have previously pointed out, in Sections 1, 4 of [8], the reader
can find very nice pictures reproducing (for the classical model) these kind of separation phenomena.
Notice that, due to the nonstandard coupling in system (Sκ) the H1 convergence seems pretty hard to
obtain either working directly on the system (which would require precise quantitative estimate of the
rate of convergence of the solutions to u∞ and v∞) or using indirect arguments such combining blow up
analysis with Liouville theorems (which, however, would naturally require stronger regularity assump-
tions on the boundary conditions). In Section 2, we will obtain, for κ fixed, the asymptotic behaviour of
the system in the case of almost stationary boundary data. The author is not aware of any other result of
this type in the literature (see also [3]).
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2. Long term behaviour for κ fixed

The goal of this section is the study of the long term behaviour of the parabolic system (Pκ), for any
κ > 0 fixed. We cover the general case of boundary data depending on time. Finally, in the particular
case of segregated initial data and time independent boundary conditions, we will prove a stronger global
boundedness result.

2.1. Assumptions and main result

Concerning f and g we will assume condition (1.3). Moreover, the initial and boundary data are
required to satisfy (1.4) and

ψ, ζ ∈ C0([0,∞), H1/2(∂Ω)
)
, ψ(0) = u0|∂Ω , ζ(0) = v0|∂Ω , (2.1)

0 � ψ(x, t) � 1, 0 � ζ(x, t) � 1, on ∂Ω × [0,∞). (2.2)

We will assume that:

ψ(·, t) → ψ∞ and ζ(·, t) → ζ∞ in H1/2(∂Ω) as t → ∞, (2.3)

ψt, ζt ∈ L1(0,∞; H1/2(∂Ω)
)
∩ L2(0,∞; H−1/2(∂Ω)

)
, ψt(·, t), ζt(·, t) → 0 as t → ∞, (2.4)

ψt(·, 0) = ζt(·, 0) = 0, (2.5)

ψtt, ζtt ∈ L1(0,∞; H−1/2(∂Ω)
)
. (2.6)

Under the previous assumptions we have the following result.

Theorem 2.1. Let (u0, v0) ∈ H and κ > 0. Then for every diverging sequence (th) ⊂ R
+ there exist a

subsequence (tj) ⊂ R
+ and a solution (ûκ, v̂κ) ∈ H to system (Sκ) such that

∥∥(
uκ(tj), vκ(tj)

)
− (ûκ, v̂κ)

∥∥
H
→ 0, as j → ∞.

Moreover, the convergence holds in the Lp × Lp norm for any p ∈ [2,∞).

Strenghtening the assumptions we obtain the global boundedness uniformly in κ.

Theorem 2.2. Assume that (u0, v0) ∈ H0 and the boundary conditions are time-independent. Then, in
addition to the conclusion of Theorem 2.1, we have

sup
t�0

sup
κ>0

‖(uκ(t), vκ(t))‖H < ∞,

namely (uκ, vκ) is bounded in H (and in any Lp × Lp space), uniformly with respect to κ.

This second achievement will be of course an important step in order to prove the main result of the
paper.
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2.2. Some preliminary results

From a direct computation, we have positivity and a priori bounds for the solutions to (Pκ), uniformly
with respect to κ.

Lemma 2.3. Σ = [0, 1]× [0, 1] is a globally positively invariant region for system (Pκ), uniformly with
respect to κ, namely

0 � uκ(x, t) � 1, 0 � vκ(x, t) � 1, a.e. x ∈ Ω, t � 0.

Proof. Testing the first equation of (Pκ) with −u−
κ and using (1.3), (1.4), (2.1) and (2.2), we easily

obtain that uκ � 0, while testing the same equation with (uκ − 1)+ we deduce similarly that uκ � 1.
An analogous manipulation of the second equation in (Pκ) yields the corresponding bounds for the
component vκ. �

Let A = −Δ be the Laplace operator on L2(Ω) with domain D(A) = H1
0 (Ω) ∩ H2(Ω) and consider

the hierarchy of Hilbert spaces Hα = D(Aα/2), α ∈ R, with ‖u‖Hα = ‖Aα/2u‖2. We recall an
exponential decay property of the heat kernel operator etΔ.

Lemma 2.4. Let α > 0. Then there exist ω > 0 and Cα > 0 such that

∥∥etΔ∥∥
L(L2,H2α) � Cαe−ωtt−α, t > 0. (2.7)

In particular,

∫ ∞

0

∥∥eσΔ∥∥
L(L2,H2α) dσ < ∞

provided that α ∈ (0, 1).

Proof. As the real part of the spectrum of A is bounded away from zero by a positive constant ω, by
[14, Theorem 1.4.3, p. 26], for α > 0 there exists Cα > 0 such that ‖Aαe−tA‖L(L2, L2) � Cαe−ωtt−α,
for all t > 0. Hence, ‖etΔ‖L(L2, H2α) = ‖(−Δ)αetΔ‖L(L2,L2) � Cαe−ωtt−α, for all t > 0. The second
assertion follows by (2.7). �

Next we provide a compactness result for the trajectories of (Pκ).

Lemma 2.5. For any (u0, v0) ∈ H, κ > 0 and τ > 0 the set {(uκ(t), vκ(t)): t � τ} is relatively compact
in H.

Proof. Let U and V denote the solutions to the linear problems

⎧⎨
⎩

Ut − ΔU = 0, in Ω × (0,∞),
U (x, t) = ψ(x, t), on ∂Ω × (0,∞),
U (x, 0) = U0(x), in Ω,

(2.8)
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and ⎧⎨
⎩

Vt − ΔV = 0, in Ω × (0,∞),
V (x, t) = ζ(x, t), on ∂Ω × (0,∞),
V (x, 0) = V0(x), in Ω,

(2.9)

where U0, V0 ∈ H1(Ω) satisfy

{−ΔU0 = 0, in Ω,
U0(x) = ψ(x, 0), on ∂Ω,

{−ΔV0 = 0, in Ω,
V0(x) = ζ(x, 0), on ∂Ω.

By assumption (2.2) and the maximum principle for harmonic functions, 0 � U0(x) � 1 and 0 �
V0(x) � 1 for a.e. x ∈ Ω. Hence, arguing as in the proof of Lemma 2.3, we have 0 � U (x, t) � 1 and
0 � V (x, t) � 1 for a.e. x ∈ Ω and t � 0. Now, the functions

ũκ(x, t) = uκ(x, t) − U (x, t), ṽκ(x, t) = vκ(x, t) − V (x, t) (2.10)

solve the system with homogeneous boundary conditions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ũκ)t − Δũκ = f (ũκ + U ) − κ(ũκ + U )(ṽκ + V )2, in Ω × (0,∞),
(ṽκ)t − Δṽκ = g(ṽκ + V ) − κ(ṽκ + V )(ũκ + U )2, in Ω × (0,∞),
ũκ(x, t) = ṽκ(x, t) = 0, on ∂Ω × [0,∞),
ũκ(x, 0) = u0(x) − U0(x), in Ω,
ṽκ(x, 0) = v0(x) − V0(x), in Ω.

(P̃κ)

Denote now by Ψ = Ψ (x; t) ∈ C0([0,∞), H1(Ω)) the family of harmonic extensions to Ω of ψ

{−ΔΨ (x; t) = 0, in Ω,
Ψ (x; t) = ψ(x, t), on ∂Ω,

(2.11)

and set Ū (x, t) = U (x, t) − Ψ (x; t). Then Ū solves the nonautonomous problem with homogeneous
boundary and initial conditions

⎧⎨
⎩

Ūt − ΔŪ = −Ψt, in Ω × (0,∞),
Ū (x, t) = 0, on ∂Ω × (0,∞),
Ū (x, 0) = 0, in Ω.

(2.12)

Notice that Ū (x, 0) = 0 since U0(x) and Ψ (x; 0) are both harmonic functions with the same boundary
conditions. From (2.5)–(2.6) and classical regularity theory for harmonic functions,

‖Ψt‖L∞(0,∞;L2(Ω)) � c‖ψt‖L∞(0,∞;H−1/2(∂Ω)) � ‖ψtt‖L1(0,∞;H−1/2(∂Ω)).

By Duhamel’s formula Ū is given by

Ū (t) = −
∫ t

0
e(t−σ)ΔΨt(σ) dσ.
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If α ∈ (1/2, 1), in light of (2.7) of Lemma 2.4, since Ψt is in L∞(0,∞; L2(Ω)),

sup
t�0

∥∥Ū (t)
∥∥

H2α < ∞. (2.13)

Of course the same control holds for V̄ (t). Let now Ψ∞ denote the harmonic extension of ψ∞, the limit of
ψ(t) in H1/2(∂Ω) as t → ∞ according to (2.3) . By standard regularity estimates, ‖Ψ (t) − Ψ∞‖H1(Ω) �
c‖ψ(t) − ψ∞‖H1/2(∂Ω), so that Ψ (t) → Ψ∞ in H1(Ω) as t → ∞. Of course the same control holds for
the boundary extensions of ζ. Also, by Duhamel’s formula we have

ũκ(t) = etΔ(u0 − U0) +
∫ t

0
e(t−σ)ΔΦ1

κ(σ) dσ,

ṽκ(t) = etΔ(v0 − V0) +
∫ t

0
e(t−σ)ΔΦ2

κ(σ) dσ,

where

Φ1
κ(σ) = f

(
uκ(σ)

)
− κuκ(σ)v2

κ(σ), Φ2
κ(σ) = g

(
vκ(σ)

)
− κvκ(σ)u2

κ(σ).

By means of Lemma 2.3, we have Φ1
κ, Φ2

κ ∈ L∞(0,∞; L∞(Ω)). If α ∈ (1/2, 1), then again by (2.7)
one obtains for any τ > 0

sup
t�τ

∥∥ũκ(t)
∥∥

H2α < ∞. (2.14)

As H2α is compactly embedded in H1(Ω) and uκ(t) = ũκ(t) + Ū (t) + Ψ (t) the assertion follows by
(2.13)–(2.14) for the component uκ. The same arguments works for ṽκ. �

Remark 2.6. By strengthening the regularity assumptions on the boundary data, say W 1,∞(∂Ω) in
place of H1/2(∂Ω) in the assumptions at the beginning of the section, and defining −Δ over Lq(Ω)
for any q � 2, the previous result can of course be improved, yielding compactness of the trajectories
in W 2α,q(Ω) for any q � 2, and hence into spaces of Hölder continuous functions. Unfortunately the
estimates are not independent of κ and in order to have H1 bounds uniformly in κ we shall need to
exploit energy arguments.

For every τ > 0 and every function h : (0,∞) → H1(Ω), let us set

hτ (t) = h(t + τ ), t > 0.

The following result gives a stabilization property for the solutions of the linear parabolic equation with
nonhomogeneous time-dependent boundary conditions.

Lemma 2.7. Let U be the solution to the problem (2.8). Then U (t) → U∞ in H1(Ω) as t → ∞, where
U∞ ∈ H1(Ω) is the solution to{−ΔU∞ = 0, in Ω,

U∞ = ψ∞, on ∂Ω.
(2.15)



M. Squassina / On the long term spatial segregation for a competition–diffusion system 91

Proof. With the notations introduced in the proof of Lemma 2.5, we consider, for τ > 0, the functions
W (t) = Ū τ (t) − Ū (t) and �(t) = Ψt(t) − Ψ τ

t (t), which satisfy

⎧⎨
⎩

Wt − ΔW = �(t), in Ω × (0,∞),
W (x, t) = 0, on ∂Ω × (0,∞),
W (x, 0) = U (τ ) − U0 + Ψ (0) − Ψ (τ ), in Ω.

(2.16)

By multiplying the equation by −ΔW , we get

d
dt

∥∥∇W (t)
∥∥2

2 +
∥∥ΔW (t)

∥∥2
2 = −

∫
Ω

�(t)ΔW (t).

By applying Hölder and then Young inequalities on the right-hand side, we have

d
dt

∥∥∇W (t)
∥∥2

2 +
1
2

∥∥ΔW (t)
∥∥2

2 � 1
2

∥∥�(t)
∥∥2

2.

Let A be the positive operator on L2(Ω) defined by A = −Δ, with domain D(A) = H2(Ω) ∩ H1
0 (Ω).

Due to the (compact and dense) injection H2(Ω) ∩ H1
0 (Ω) = D(A) ↪→ D(A1/2) = H1

0 (Ω), we have

‖∇W‖2 � α
−1/2
1 ‖ΔW‖2 for some α1 > 0 (see e.g. Henry [14]), so that

d
dt

∥∥∇W (t)
∥∥2

2 +
α1

2

∥∥∇W (t)
∥∥2

2 � 1
2

∥∥�(t)
∥∥2

2.

Finally, Gronwall inequality entails

∥∥W (t)
∥∥2

H1
0

�
∥∥W (0)

∥∥2
H1

0
e−σt + ce−σt

∫ t

0
eσs

∥∥�(s)
∥∥2

2 ds,

for some σ > 0 and c > 0. In turn, we readily obtain

lim
t→∞

∥∥U τ (t) − U (t)
∥∥

H1 � c√
σ

lim
t→∞

∥∥Ψ τ
t (t) − Ψt(t)

∥∥
2 + lim

t→∞

∥∥Ψ τ (t) − Ψ (t)
∥∥

H1 .

In view of (2.3) and standard elliptic equations, we deduce

∥∥U τ (t) − U (t)
∥∥

H1 → 0, as t → ∞. (2.17)

The same argument shows that {U (t)}t�0 is bounded in H1(Ω). Let now (th) ⊂ R
+ be any diverging

sequence. Since {U (t)}t�1 is relatively compact in H1(Ω), there exists a subsequence, that we still
denote by (th), such that U (th) → U∞ in H1(Ω). Let η ∈ C∞

c (Ω). By integrating the equation for U on
(th, th + 1) × Ω, yields

lim
h

[∫ th+1

th

∫
Ω

Utη +
∫ th+1

th

∫
Ω
∇U · ∇η

]
= 0.
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On one hand, we have

lim
h

∣∣∣∣
∫ th+1

th

∫
Ω

Utη

∣∣∣∣ � lim
h

∫
Ω

∣∣U (th + 1) − U (th)
∣∣|η| � c lim

h

∥∥U 1(th) − U (th)
∥∥

2 = 0.

Moreover, there exists (sh) ⊂ R
+ with sh = th + ξh, 0 � ξh � 1, such that by (2.17)

∫ th+1

th

∫
Ω
∇U · ∇η =

∫
Ω
∇U (sh) · ∇η =

∫
Ω
∇U (th) · ∇η + o(1), as h → ∞.

Hence, taking the limit as h → ∞, we get
∫
Ω ∇U∞ · ∇η = 0. Moreover, from the convergence of

U (th) to U∞ in H1(Ω) we deduce that U (th)|∂Ω → U∞|∂Ω in H1/2(∂Ω). From (2.3) we deduce that
U∞ = ψ∞ on ∂Ω. Therefore U∞ solves (2.15). Since (2.15) has a unique solution, we actually deduce
the convergence of the whole flow U (t). �

Next, we obtain a summability result for the solutions to (2.8).

Lemma 2.8. Let U be the solution to (2.8). Then Ut ∈ L1(0,∞; H1(Ω)).

Proof. As in the proof of Lemma 2.5, Ū is the solution to (2.12). Hence, taking into account (2.5), it
turns out that Ũ (x, t) = Ūt(x, t) is a solution to

⎧⎨
⎩

Ũt − ΔŨ = −Ψtt, in Ω × (0,∞),
Ũ (x, t) = 0, on ∂Ω × (0,∞),
Ũ (x, 0) = 0, in Ω.

(2.18)

By assumption (2.6) it follows Ψtt ∈ L1(0,∞; L2(Ω)). In addition, we have Ψt ∈ L1(0,∞; H1(Ω)). By
Lemma 2.4 we have ‖etΔ‖L(L2(Ω),H1

0 (Ω)) � Ce−ωtt−1/2, for some C, ω > 0. Hence,

Ũ (t) = −
∫ t

0
e(t−σ)ΔΨtt(σ) dσ,

and we obtain

‖Ũ‖L1(0,∞;H1
0 (Ω)) � C

∫ ∞

0

[∫ t

0
e−ω(t−σ)(t − σ)−1/2∥∥Ψtt(σ)

∥∥
2 dσ

]
dt

= C

∫ ∞

0

∥∥Ψtt(σ)
∥∥

2

[∫ ∞

σ
e−ω(t−σ)(t − σ)−1/2 dt

]
dσ

= C

(∫ ∞

0
e−ωσσ−1/2 dσ

)
‖Ψtt‖L1(0,∞;L2(Ω)).

Hence Ũ ∈ L1(0,∞; H1
0 (Ω)), which yields Ūt ∈ L1(0,∞; H1

0 (Ω)) and, in turn, taking into ac-
count (2.4), also Ut ∈ L1(0,∞; H1(Ω)), concluding the proof. �
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Lemma 2.9. Let ũκ and ṽκ be as in system P̃κ. Then

∫ T

0

∥∥∂tũκ(σ)
∥∥2

2 dσ < ∞,
∫ T

0

∥∥∂tṽκ(σ)
∥∥2

2 dσ < ∞,

for any T > 0.

Proof. Setting Υ (x, t) = f (ũκ(x, t)+U (x, t))−κ(ũκ(x, t)+U (x, t))(ṽκ(x, t)+V (x, t))2 for any x ∈ Ω
and t > 0 and m(x) = u0(x) − U0(x), it follows that ũκ is the solution to

⎧⎨
⎩

∂tũκ − Δũκ = Υ , in Ω × (0,∞),
ũκ(x, t) = 0, on ∂Ω × [0,∞),
ũκ(x, 0) = m(x), in Ω.

Hence, since m ∈ H1
0 (Ω) and Υ ∈ L2(0, T , L2(Ω)) for any T > 0 (as 0 � uκ, vκ � 1 and f is

continuous), the desired summability for ∂tũκ follows, e.g., by [12, Theorem 5, p. 360]. The proof for
∂tṽκ is similar. �

Let us recall a useful elementary Gronwall-type inequality.

Lemma 2.10. Let g ∈ L1([0,∞), [0,∞)). Assume that Υ : [0,∞) → [0,∞) is an absolutely continuous
function such that

Υ (t) � c1 + c2

∫ t

0
g(σ)

√
Υ (σ) dσ, t � 0,

for some c1, c2 > 0. Then

Υ (t) � 2c1 + c2
2‖g‖2

L1(0,∞), t � 0.

Proof. Let t > 0 and consider t̄ ∈ [0, t] such that Υ (t̄) = max{Υ (σ): σ ∈ [0, t]}. Hence

Υ (t̄) � c1 + c2

∫ t̄

0
g(σ)

√
Υ (σ) dσ � c1 + c2

√
Υ (t̄)‖g‖L1(0,t) � c1 + c2

√
Υ (t̄)‖g‖L1(0,∞),

so the assertion immediately follows by Young inequality and Υ (t) � Υ (t̄). �

Next we obtain an H1 stabilization result for the solutions (uκ, vκ) to (Pκ).

Theorem 2.11. Assume that (u0, v0) ∈ H and set

μ = ‖u0v0‖2
2 + ‖Ψt‖L1(0,∞;L2(Ω)) + ‖Zt‖L1(0,∞;L2(Ω)). (2.19)

Then there exists a positive constant R = R(u0, v0, ψ, ζ) independent of κ such that

∥∥(
uκ(t), vκ(t)

)∥∥
H

� R + κμ, for all t � 0. (2.20)



94 M. Squassina / On the long term spatial segregation for a competition–diffusion system

Moreover, for any τ0 > 0 and κ > 0,

lim
t→∞

sup
τ∈[0,τ0]

∥∥uκ(t + τ ) − uκ(t)
∥∥

H1 = 0, lim
t→∞

sup
τ∈[0,τ0]

∥∥vκ(t + τ ) − vκ(t)
∥∥

H1 = 0.

Proof. Let τ0 > 0 and κ > 0. Let us first prove that

lim
t→∞

sup
τ∈[0,τ0]

∥∥uκ(t + τ ) − uκ(t)
∥∥

2 = 0, lim
t→∞

sup
τ∈[0,τ0]

∥∥vκ(t + τ ) − vκ(t)
∥∥

2 = 0. (2.21)

According to the proof of Lemma 2.5, let again U (resp. V ) be the solution of the linear problems
(2.8) (resp. (2.9)), where U0 (resp. V0) is the harmonic extensions of ψ(0) (resp. ζ(0)). Then ũκ(x, t) =
uκ(x, t) − U (x, t) and ṽκ(x, t) = vκ(x, t) − V (x, t) are solutions to system (P̃κ) having homogeneous
boundary conditions. Let now ε ∈ (0, 1) and, taking into account Lemma 2.9, introduce the auxiliary
energy functional Λκ : [0,∞) → R defined by setting:

Λκ(t) =
1
2

∥∥∇ũκ(t)
∥∥2

2 +
1
2

∥∥∇ṽκ(t)
∥∥2

2 −
∫

Ω
F

(
ũκ(t) + U (t)

)
−

∫
Ω

G
(
ṽκ(t) + V (t)

)

+
κ

2

∫
Ω

(
ũκ(t) + U (t)

)2(
ṽκ(t) + V (t)

)2 + 2
∫ t

0

[∫
Ω
∇ũκ(σ) · ∇Ut(σ)

]
dσ

−
∫

Ω
∇U (t) · ∇ũκ(t) −

∫ t

0 H−1/2

〈
∂ũκ(σ)

∂ν
, ψt(σ)

〉
H1/2

dσ

+ 2
∫ t

0

[∫
Ω
∇ṽκ(σ) · ∇Vt(σ)

]
dσ

−
∫

Ω
∇V (t) · ∇ṽκ(t) −

∫ t

0 H−1/2

〈
∂ṽκ(σ)

∂ν
, ζt(σ)

〉
H1/2

dσ

+ ε

∫ t

0

∥∥∂tũκ(σ)
∥∥2

2 dσ + ε

∫ t

0

∥∥∂tṽκ(σ)
∥∥2

2 dσ.

We prove that Λκ is nonincreasing and there exist two constants ακ ∈ R and βκ ∈ R (which we will
write down explicitely) such that ακ � Λκ(t) � βκ, for all t � 0. By multiplying the first equation of
(P̃κ) by ∂tuκ and the second one by ∂tvκ, using the fact that U and V solve problems (2.8)–(2.9), and
adding the resulting identities, we reaches

d
dt

Λκ(t) = −(1 − ε)
∥∥∂tũκ(t)

∥∥2
2 − (1 − ε)

∥∥∂tṽκ(t)
∥∥2

2 � 0. (2.22)

In particular, {t 
→ Λκ(t)} is a nonincreasing function. Hence,

Λκ(t) � Λκ(0) =
1
2

∥∥∇(u0 − U0)
∥∥2

2 +
1
2

∥∥∇(v0 − V0)
∥∥2

2 −
∫

Ω
F (u0) −

∫
Ω

G(v0)

−
∫

Ω
∇U0 · ∇(u0 − U0) −

∫
Ω
∇V0 · ∇(v0 − V0) +

κ

2

∫
Ω

u2
0v

2
0,
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for all t � 0, namely Λκ is bounded from above, uniformly in time and βκ is of the form

βκ = P + κ‖u0v0‖2
2, P = P (u0, v0, ψ, ζ). (2.23)

Now, using the trace inequality, the first equation of (P̃κ), the L∞-boundedness of the solutions and the
Young inequality, we find c > 0 and cε > 0 such that

∣∣∣∣
∫ t

0 H−1/2

〈
∂ũκ(σ)

∂ν
, ψt(σ)

〉
H1/2

dσ

∣∣∣∣
�

∫ t

0

∥∥∇ũκ(σ)
∥∥

2

∥∥∇Ψt(σ)
∥∥

2 dσ +
∫ t

0

∥∥Δũκ(σ)
∥∥

2

∥∥Ψt(σ)
∥∥

2 dσ

�
∫ t

0

∥∥∇ũκ(σ)
∥∥

2

∥∥∇Ψt(σ)
∥∥

2 dσ +
∫ t

0

∥∥∂tũκ(σ)
∥∥

2

∥∥Ψt(σ)
∥∥

2 dσ + cκ

∫ t

0

∥∥Ψt(σ)
∥∥

2 dσ

�
∫ t

0

∥∥∇ũκ(σ)
∥∥

2

∥∥∇Ψt(σ)
∥∥

2 dσ + ε

∫ t

0

∥∥∂tũκ(σ)
∥∥2

2 dσ

+ cε

∫ t

0

∥∥Ψt(σ)
∥∥2

2 dσ + cκ

∫ t

0

∥∥Ψt(σ)
∥∥

2 dσ,

where Ψt is the harmonic extension of ψt to Ω (see formula (2.11)). Analogously, we reach

∣∣∣∣
∫ t

0 H−1/2

〈
∂ṽκ(σ)

∂ν
, ζt(σ)

〉
H1/2

dσ

∣∣∣∣
�

∫ t

0

∥∥∇ṽκ(σ)
∥∥

2

∥∥∇Zt(σ)
∥∥

2 dσ + ε

∫ t

0

∥∥∂tṽκ(σ)
∥∥2

2 dσ

+ cε

∫ t

0

∥∥Zt(σ)
∥∥2

2 dσ + cκ

∫ t

0

∥∥Zt(σ)
∥∥

2 dσ,

where, instead, Zt denotes the harmonic extension of ζt to Ω, namely

{−ΔZt(x; t) = 0, in Ω,
Zt(x; t) = ζt(x, t), on ∂Ω.

From the above estimates, the definition of Λκ, (1.3), Lemma 2.7 and assumptions (2.4) we obtain that

∥∥∇ũκ(t)
∥∥2

2 +
∥∥∇ṽκ(t)

∥∥2
2 � C1 + C2

∫ t

0

∥∥∇ũκ(σ)
∥∥

2

[∥∥∇Ut(σ)
∥∥

2 +
∥∥∇Ψt(σ)

∥∥
2

]
dσ

+ C3

∫ t

0

∥∥∇ṽκ(σ)
∥∥

2

[∥∥∇Vt(σ)
∥∥

2 +
∥∥∇Zt(σ)

∥∥
2

]
dσ,

for some positive constant C1 = C1(κ) independent of t,

C1(κ) = Q + κμ, Q = Q(u0, v0, ψ, ζ), (2.24)

for C2, C3 independent of t and κ, where μ has been defined in (2.19). Hence, by the Cauchy–Schwarz
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inequality

∥∥∇ũκ(t)
∥∥2

2 +
∥∥∇ṽκ(t)

∥∥2
2 � C1 + C4

∫ t

0

√∥∥∇ũκ(σ)
∥∥2

2 +
∥∥∇ṽκ(σ)

∥∥2
2

×
[∥∥∇Ut(σ)

∥∥
2 +

∥∥∇Ψt(σ)
∥∥

2 +
∥∥∇Vt(σ)

∥∥
2 +

∥∥∇Zt(σ)
∥∥

2

]
dσ

for all t � 0, for some positive constant C4 independent of t and κ. From Lemma 2.10 it follows that,
for all t � 0,∥∥∇ũκ(t)

∥∥2
2 +

∥∥∇ṽκ(t)
∥∥2

2 � 2C1 + C2
4

[
‖∇Ut‖L1(0,∞;L2(Ω)) + ‖∇Ψt‖L1(0,∞;L2(Ω))

+ ‖∇Vt‖L1(0,∞;L2(Ω)) + ‖∇Zt‖L1(0,∞;L2(Ω))

]2
,

which, by Lemma 2.8 and assumption (2.4), yields boundedness of (ũκ(t), ṽκ(t)) and, consequently of
the sequence (uκ(t), vκ(t)) in H, with the estimate appearing in (2.20).

In particular, from the H boundedness of (ũκ(t), ṽκ(t)) we deduce that Λκ is bounded from below
uniformly with respect to t, with a constant ακ of the same form as the one appearing in inequality (2.20)
(say, Λκ(t) � −M−Nκμ, for some constants M , N � 0). To prove this it suffices to repeat the estimates
that we have obtained above (see the inequalities following formula (2.23)) on the term which appear in
the functional as time integrals, using the H1 bound of ũκ and ṽκ, uniform in time. Notice that the time
integrals ε

∫ t
0 ‖∂tũκ(σ)‖2

2 dσ and ε
∫ t

0 ‖∂tṽκ(σ)‖2
2 dσ which appear in the estimate of the boundary term

are balanced by the corresponding term in the definition of Λκ. More precisely, we obtain

2
∣∣∣∣
∫ t

0

∫
Ω
∇ũκ(σ) · ∇Ut(σ) dσ

∣∣∣∣ � 2(R + κμ)‖∇Ut‖L1(0,∞;L2(Ω)) � A + Bκμ,

∣∣∣∣
∫

Ω
∇U (t) · ∇ũκ(t)

∣∣∣∣ � (R + κμ) sup
t�1

∥∥∇U (t)
∥∥

2 � C + Dκμ,

as well as

−
∫ t

0 H−1/2

〈
∂ũκ(σ)

∂ν
, ψt(σ)

〉
H1/2

dσ −
∫ t

0 H−1/2

〈
∂ṽκ(σ)

∂ν
, ζt(σ)

〉
H1/2

dσ

+ ε

∫ t

0

∥∥∂tũκ(σ)
∥∥2

2 dσ + ε

∫ t

0

∥∥∂tũκ(σ)
∥∥2

2 dσ

� −(R + κμ)‖∇Ψt‖L1(0,∞,L2(Ω)) − cε‖Ψt‖2
L2(0,∞,L2(Ω)) − cκ‖Ψt‖L1(0,∞,L2(Ω))

− (R + κμ)‖∇Zt‖L1(0,∞,L2(Ω)) − cε‖Zt‖2
L2(0,∞,L2(Ω)) − cκ‖Zt‖L1(0,∞,L2(Ω)) � −E − Fκμ,

for some constants A, B, C, D, E, F � 0 independent of κ and t. Now, for all τ ∈ [0, τ0],

∥∥ũτ
κ(t) − ũκ(t)

∥∥2
2 +

∥∥ṽτ
κ(t) − ṽκ(t)

∥∥2
2

=
∫

Ω

∣∣ũτ
κ(t) − ũκ(t)

∣∣2 +
∫

Ω

∣∣ṽτ
κ(t) − ṽκ(t)

∣∣2 � τ

∫ t+τ

t

∥∥∂tũκ(σ)
∥∥2

2 dσ + τ

∫ t+τ

t

∥∥∂tṽκ(σ)
∥∥2

2 dσ

=
τ

1 − ε

∫ t+τ

t

(
− d

dσ
Λκ(σ)

)
dσ � τ0

1 − ε

[
Λκ(t) − Λκ(t + τ0)

]
,
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where we exploited Hölder inequality, Fubini’s theorem and identity (2.22) (in the spirit of [6]). Hence,
we obtain

∥∥uτ
κ(t) − uκ(t)

∥∥2
2 +

∥∥vτ
κ(t) − vκ(t)

∥∥2
2

� 2
(∥∥ũτ

κ(t) − ũκ(t)
∥∥2

2 +
∥∥ṽτ

κ(t) − ṽκ(t)
∥∥2

2 +
∥∥U τ (t) − U (t)

∥∥2
2 +

∥∥V τ (t) − V (t)
∥∥2

2

)
� 2τ0

1 − ε

[
Λκ(t) − Λκ(t + τ0)

]
+ 2

∥∥U τ (t) − U (t)
∥∥2

2 + 2
∥∥V τ (t) − V (t)

∥∥2
2. (2.25)

Since Λκ is nonincreasing and bounded from below at fixed κ, it follows that Λκ(t) admits a finite limit
as t → ∞. Therefore, letting t → ∞ in (2.25), and taking into account Lemma 2.7, we obtain (2.21).
Now, assume by contradiction that, for some ε0 > 0,

∥∥uκ(th + τh) − uκ(th)
∥∥

H1 � ε0 > 0,

along a diverging sequence (th) ⊂ R
+ and for (τh) ⊂ R

+ bounded. In light of Lemma 2.5, there exist û
and ǔ ∈ H1(Ω) such that, up to a subsequence that we still denote by (th), uκ(th + τh) → û in H1(Ω)
as h → ∞, and uκ(th) → ǔ in H1(Ω) as h → ∞. In particular, ‖û − ǔ‖H1 � ε0 > 0, while (2.21)
yields ‖û − ǔ‖L2 = 0, thus giving rise to a contradiction. One argues similarly for vκ. This concludes
the proof of the theorem. �

Next we have an important consequence of the previous lemma, proving Theorem 2.2.

Corollary 2.12. Assume that (u0, v0) ∈ H0 and that the boundary data are stationary. Then the se-
quence (uκ(t), vκ(t)) is uniformly bounded in H1 with respect to t and κ. Moreover, the energy func-
tional which appears in the proof of Theorem 2.11 is bounded below and above by constants which are
independent of κ.

Proof. If (u0, v0) ∈ H0, since u0v0 = 0 and ψt = ζt = 0 by (2.19) we have that μ = 0. In turn, by
(2.20), the sequence (uκ(t), vκ(t)) is uniformly bounded with respect to t and κ. By inspecting the proof
of Theorem 2.11 it is easy to check that the auxiliary energy functional satisfies

−M − Nκμ � Λκ(t) � O + Pκμ, t � 0,

for some constants M , N , O, P � 0 independent of κ. Hence, being μ = 0 it follows that Λκ has bounds
uniform in time and in k. �

2.3. Proof of Theorem 2.1 concluded

Let κ > 0 and let (th) ⊂ R
+ be any diverging sequence. Then, by virtue of Theorem 2.11, we have

lim
h→∞

‖uκ(th + τh) − uκ(th)‖H1 = 0, lim
h→∞

‖vκ(th + τh) − vκ(th)‖H1 = 0, (2.26)
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for every sequence (τh) ⊂ [0, 1]. Let us fix η, ξ ∈ C∞
c (Ω). By integrating over (th, th + 1) × Ω the

equations of (Pκ) multiplied by η and ξ respectively, we reach

lim
h

[∫ th+1

th

∫
Ω

∂tuκη +
∫ th+1

th

∫
Ω
∇uκ · ∇η −

∫ th+1

th

∫
Ω

f (uκ)η + κ

∫ th+1

th

∫
Ω

uκv2
κη

]
= 0,

lim
h

[∫ th+1

th

∫
Ω

∂tvκξ +
∫ th+1

th

∫
Ω
∇vκ · ∇ξ −

∫ th+1

th

∫
Ω

g(vκ)ξ + κ

∫ th+1

th

∫
Ω

vκu2
κξ

]
= 0.

Regarding the first terms in the previous identities, we obtain

lim
h

∣∣∣∣
∫ th+1

th

∫
Ω

∂tuκη

∣∣∣∣ � lim
h

∫
Ω

∣∣uκ(th) − uκ(th + 1)
∣∣|η| � lim

h
c
∥∥uκ(th) − uκ(th + 1)

∥∥
2 = 0,

lim
h

∣∣∣∣
∫ th+1

th

∫
Ω

∂tvκξ

∣∣∣∣ � lim
h

∫
Ω

∣∣vκ(th) − vκ(th + 1)
∣∣|ξ| � lim

h
c
∥∥vκ(th) − vκ(th + 1)

∥∥
2 = 0.

Moreover, there exist two sequences (sh), (rh) ⊂ R
+ such that

th � sh � th + 1, th � rh � th + 1, sh = th + ρ1
h, rh = th + ρ2

h,

with (ρ1
h), (ρ2

h) ⊂ [0, 1], and

∫ th+1

th

∫
Ω
∇uκ · ∇η − f (uκ)η + κuκv2

κη =
∫

Ω
∇uκ(sh) · ∇η − f

(
uκ(sh)

)
η + κuκ(sh)v2

κ(sh)η,

∫ th+1

th

∫
Ω

[
∇vκ · ∇ξ − g(vκ)ξ + κvκu2

κξ
]
=

∫
Ω
∇vκ(rh) · ∇ξ − g

(
vκ(rh)

)
ξ + κvκ(rh)u2

κ(rh)ξ.

In turn, we get

lim
h

[∫
Ω
∇uκ(sh) · ∇η −

∫
Ω

f
(
uκ(sh)

)
η + κ

∫
Ω

uκ(sh)v2
κ(sh)η

]
= 0,

lim
h

[∫
Ω
∇vκ(rh) · ∇ξ −

∫
Ω

g
(
vκ(rh)

)
ξ + κ

∫
Ω

vκ(rh)u2
κ(rh)ξ

]
= 0.

On the other hand, in light of (2.26), there holds

lim
h

∥∥∇uκ(sh) −∇uκ(th)
∥∥

2 = lim
h

∥∥∇uκ(th + ρ1
h) −∇uκ(th)

∥∥
2 = 0,

lim
h

∥∥∇vκ(rh) −∇vκ(th)
∥∥

2 = lim
h

∥∥∇vκ

(
th + ρ2

h

)
−∇vκ(th)

∥∥
2 = 0.

Hence
∫
Ω(∇uκ(sh) −∇uκ(th)) · ∇η → 0 and, as f , g are C1 on [0, 1] and 0 � uκ, vκ � 1,

∣∣∣∣
∫

Ω

(
f
(
uκ(sh)

)
− f

(
uκ(th)

))
η

∣∣∣∣ � c sup
[0,1]

∣∣f ′∣∣∥∥uκ(sh) − uκ(th)
∥∥

2 → 0,
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as h → ∞, and finally,

∣∣∣∣
∫

Ω

(
uκ(sh)v2

κ(sh) − uκ(th)v2
κ(th)

)
η

∣∣∣∣ � c
∥∥uκ(sh) − uκ(th)

∥∥
2 + c

∥∥vκ(sh) − vκ(th)
∥∥

2 → 0,

as h → ∞, the positive constant c varying from line to line. Of course, the same conclusions hold for
the limit involving the sequence vκ(rh). In conclusion, we reach

lim
h

[∫
Ω
∇uκ(th) · ∇η −

∫
Ω

f
(
uκ(th)

)
η + κ

∫
Ω

uκ(th)v2
κ(th)η

]
= 0,

lim
h

[∫
Ω
∇vκ(th) · ∇ξ −

∫
Ω

g
(
vκ(th)

)
ξ + κ

∫
Ω

vκ(th)u2
κ(th)ξ

]
= 0.

Again in view of Theorem 2.11, we can assume that, up to a subsequence, which we shall denote again
by th, we have that uκ(th) ⇀ ûκ and vκ(th) ⇀ v̂κ weakly in H1(Ω). Up to a subsequence, in light of
Lemma 2.5, this convergence is actually strong. Notice also that

ûκ|∂Ω = lim
h

uκ(th)|∂Ω = lim
h

ψ(th)|∂Ω = ψ∞,

v̂κ|∂Ω = lim
h

vκ(th)|∂Ω = lim
h

ζ(th)|∂Ω = ζ∞,

where we exploited the compact embedding H1(Ω) ↪→ H1/2(∂Ω). Moreover, by Lemma 2.3 and the
Dominated Convergence Theorem, as h → ∞, we get

∫
Ω
∇ûκ · ∇η −

∫
Ω

f (ûκ)η + κ

∫
Ω

ûκv̂2
κη = 0, ∀η ∈ H1

0 (Ω),

∫
Ω
∇v̂κ · ∇ξ −

∫
Ω

g(v̂κ)ξ + κ

∫
Ω

v̂κû2
κξ = 0, ∀ξ ∈ H1

0 (Ω).

Hence (ûκ, v̂κ) ∈ H is a solution to (Sκ). The convergence occurs of course in Lp(Ω) for any p ∈ [2, 2∗).
For p � 2∗, taking ε > 0 and using the bounds 0 � uκ(th) � 1 and 0 � ûκ � 1, we have

∫
Ω

∣∣uκ(th) − ûκ

∣∣p � 2p+ε−2∗∥∥uκ(th) − ûκ

∥∥2∗−ε
2∗−ε,

concluding the proof.

3. Proof of Theorem 1.1

Before concluding the proof of Theorem 1.1, we provide the convergence of the sequences (ûκ, v̂κ)
in any Lp space with p � 2 towards a segregated state. Notice that the solutions (ûκ, v̂κ) to (Sκ) pop
up as H1 limits of the solutions to (1.2), and the boundedness of (ûκ, v̂κ) in H1 is inherited by the
boundedness of (uκ(th), vκ(th)) in H1 uniform in t and κ (in the case (u0, v0) ∈ H0). Without this
information it would not have been clear how to show the boundedness of (ûκ, v̂κ) working directly on
the elliptic system (instead, for system (1.1), this is an easy task, cf. [5], Lemma 2.1).
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Lemma 3.1. Assume that (u0, v0) ∈ H0. Let (ûκ, v̂κ) ∈ H be the solution to system (Sκ) as obtained in
Theorem 2.1 for κ > 0. Then there exists (u∞, v∞) ∈ H0 with

u∞, v∞ � 0, −Δu∞ � f (u∞), −Δv∞ � g(v∞)

and u∞|∂Ω = ψ, v∞|∂Ω = ζ such that, up to a subsequence, as κ → ∞,

(ûκ, v̂κ) → (u∞, v∞) in the Lp × Lp norm for any p ∈ [2,∞).

Proof. By virtue of Corollary 2.12 the sequence (uκ(th), vκ(th)) is bounded in H, uniformly with respect
to κ. Hence, since (ûκ, v̂κ) is the H1-limit of (uκ(th), vκ(th)) as h → ∞, we deduce that (ûκ, v̂κ) is
bounded in H and 0 � ûκ(x) � 1, 0 � v̂κ(x) � 1, for a.e. x ∈ Ω. Taking into account that some terms
in the functional Λκ introduced within the proof of Theorem 2.11 vanish under the current assumptions
(stationary boundary conditions) and that the terms ε

∫ t
0 ‖∂tũκ(σ)‖2

2 and ε
∫ t

0 ‖∂tṽκ(σ)‖2
2 were artificially

attached to make things work (notice that the original Λκ is decreasing also in the case ε = 0, see formula
(2.22)), we now just consider the natural energy functional (for the sake of simplicity we do not change
the name)

Λκ(t) =
1
2

∥∥∇ũκ(t)
∥∥2

2 +
1
2

∥∥∇ṽκ(t)
∥∥2

2 −
∫

Ω
F

(
ũκ(t) + U (t)

)
−

∫
Ω

G
(
ṽκ(t) + V (t)

)
+

κ

2

∫
Ω

(
ũκ(t) + U (t)

)2(
ṽκ(t) + V (t)

)2
.

Then, we have

κ

∫
Ω

u2
κ(th)v2

κ(th) = 2Λκ(th) −
∥∥∇ũκ(th)

∥∥2
2 −

∥∥∇ṽκ(th)
∥∥2

2 + 2
∫

Ω
F

(
uκ(th)

)
+ G

(
vκ(th)

)
.

Since by Corollary 2.12 the right-hand side is uniformly bounded with respect to κ, we have

κ

∫
Ω

û2
κv̂2

κ � C, (3.1)

for some positive constant C independent of κ. Let u∞ ∈ H1(Ω) and v∞ ∈ H1(Ω) be the weak limits, as
κ → ∞, of ûκ and v̂κ in H1(Ω) respectively. Or course, by the compact embedding H1(Ω) ↪→ L2∗(Ω),
up to a further subsequence, ûκ → u∞ and v̂κ → v∞ in Lp(Ω) for any p ∈ [2, 2∗) and 0 � u∞(x) � 1,
0 � v∞(x) � 1, for a.e. x ∈ Ω. In the case p � 2∗, let ε > 0, so that

∫
Ω
|ûκ − u∞|p � 2p+ε−2∗‖ûκ − u∞‖2∗−ε

2∗−ε,

yielding again the convergence. Due to inequality (3.1), we get

lim
κ→∞

∫
Ω

û2
κv̂2

κ =
∫

Ω
u2
∞v2

∞ = 0,
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which yields u∞v∞ = 0 a.e. in Ω, namely (u∞, v∞) ∈ H0. Moreover, for each κ > 0,

−Δûκ � f (ûκ), −Δv̂κ � g(v̂κ),

which pass to the weak the limit, yielding −Δu∞ � f (u∞) and −Δv∞ � g(v∞). By the compact
embedding H1(Ω) ↪→ H1/2(∂Ω), also the boundary conditions are conserved. �

3.1. Proof of Theorem 1.1 concluded

We can now conclude the proof of Theorem 1.1. Let (u0, v0) ∈ H0, p ∈ [2,∞) and let (th) ⊂ R
+ be

any diverging sequence. In light of Theorem 2.1, for every κ � 1, there exist a solution (ûκ, v̂κ) of (Sκ)
and a subsequence (tκh) ⊂ R

+ such that,

∥∥(
uκ

(
tκh

)
, vκ

(
tκh

))
− (ûκ, v̂κ)

∥∥
H
→ 0, as h → ∞.

Moreover, by Lemma 3.1, there exists (u∞, v∞) ∈ H0 with the required properties, such that, up to a
subsequence,

∥∥(ûκ, v̂κ) − (u∞, v∞)
∥∥

Lp×Lp → 0, as κ → ∞.

Now, let m � 1 and let κm � 1 be such that

∥∥(ûκm , v̂κm) − (u∞, v∞)
∥∥

Lp×Lp <
1

2m
.

Then, there exists tκm
hm

� 1 such that

∥∥(
uκm

(
tκm
hm

)
, vκm

(
tκm
hm

))
− (ûκm , v̂κm)

∥∥
Lp×Lp <

1
2m

.

In turn, setting tm = tκm
hm

, and combining the previous inequalities, we get

∥∥(
uκm(tm), vκm(tm)

)
− (u∞, v∞)

∥∥
Lp×Lp <

1
m

,

which concludes the proof of the first assertion. In the one dimensional case, by means of Morrey theo-
rem, for every x, y ∈ Ω, we have

∣∣uκm(tm)(x) − uκm(tm)(y)
∣∣ � 4

∥∥∇uκm(tm)
∥∥

2

√
|x − y| � C

√
|x − y|,

together with |uκm(tm)(x)| � 1, yielding the convergence to (u∞, v∞) in the L∞×L∞ norm via Ascoli’s
theorem.
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