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Abstract: Ultrafunctions are a particular class of generalized functions defined on a hyperreal field ℝ∗ ⊃ ℝ
that allow to solve variational problems with no classical solutions. We recall the construction of ultra-

functions and we study the relationships between these generalized solutions and classical minimizing

sequences. Finally, we study some examples to highlight the potential of this approach.
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1 Introduction

It is nowadays very well known that, in many circumstances, the needs of a theory require the introduction

of generalized functions. Among people working in partial differential equations, the theory of distributions

of L. Schwartz is the most commonly used, but other notions of generalized functions have been introduced,

e.g. by J. F. Colombeau [15] and M. Sato [21, 22]. Many notions of generalized functions are based on non-

Archimedean mathematics, namely mathematics handling infinite and/or infinitesimal quantities. Such an

approach presents several positive features, the main probably being the possibility of treating distribu-

tions as non-Archimedean set-theoretical functions (under the limitations imposed by Schwartz’ result). This

allows to easily introduce nonlinear concepts, such as products, into distribution theory. Moreover, a theory

which includes infinitesimals and infinite quantities makes it possible to easily construct newmodels, allow-

ing in this way to study several problems which are difficult even to formalize in classical mathematics. This

has led to applications in various field, including several topics in analysis, geometry and mathematical

physic (see e.g. [17, 19] for an overview in the case of Colombeau functions and their recent extension, called

generalized smooth functions).

In this paper we deal with ultrafunctions, which are a kind of generalized functions that have been

introduced recently in [1] and developed in [2, 4–11].

Ultrafunctions are a particular case of non-Archimedean generalized functions that are based on the

hyperreal field ℝ∗, namely the numerical field on which nonstandard analysis is based. (We refer to Keisler

[16] for a very clear exposition of nonstandard analysis.) No prior knowledge of nonstandard analysis is

requested to read this paper: we will introduce all the nonstandard notions that we need via a new notion of

limit, called Λ-limit (see [10] for a complete introduction to this notion and its relationships with the usual

nonstandard analysis). The main peculiarity of this notion of limit is that it allows us to make a very limited

use of formal logic, in contrast with most usual nonstandard analysis introductions.
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Apart from being framed in a non-Archimedean setting, ultrafunctions have other peculiar properties

that will be introduced and used in the following:

∙ every ultrafunction can be split uniquely (in a sense that will be precised in Section 3.2) as the sum of

a classical function and a purely non-Archimedean part;

∙ ultrafunctions extend distributions, in the sense that every distribution can be identified with an ultra-

function; in particular, this allows to perform nonlinear operations with distributions;

∙ although being generalized functions, ultrafunctions share many properties of C1 functions, like e.g.

Gauss’ divergence theorem.

Our goal is to introduce all the aforementioned properties of ultrafunctions, so to be able to explain

how they can be used to solve certain classical problems that do not have classical solutions; in particu-

lar, we will concentrate on singular problems arising in calculus of variations and in relevant applications

(see e.g. [17] and references therein for other approaches to these problems based on different notions of

generalized functions).

The paper is organized as follows: in Section 2, we introduce the notion of Λ-limit, and we explain how

to use it to construct all the non-Archimedean tools that are needed in the rest of the paper, in particular, how

to construct the non-Archimedean field extension ℝ∗ of ℝ and what the notion of “hyperfinite” means. In

Section 3 we define ultrafunctions, and we explain how to extend derivatives and integrals to them. All the

properties of ultrafunctions needed later on are introduced in this section: we showhow to split an ultrafunc-

tion as the sum of a standard and a purely non-Archimedean part, how to extend Gauss’ divergence theorem

and how to identify distributions with certain ultrafunctions. In Section 4, we present the main results of

the paper, namely, we show that a very large class of classical problems admits generalized ultrafunction

solutions. We study the main properties of these generalized solutions, concentrating in particular on the

relationships between ultrafunction solutions and classical minimizing sequences for variational problems.

Finally, in Section 5, we present two examples of applications of our methods: the first is the study of a vari-

ational problem related to the sign-perturbation of potentials, the second is a singular variation problem

related to sign-changing boundary conditions.

The first part of this paper contains some overlap with other papers on ultrafunctions, but this fact is

necessary to make it self-contained and to make the reader comfortable with it.

1.1 Notations

If X is a set and Ω is a subset ofℝN , then
∙ P(X) denotes the power set of X and P

fin
(X) denotes the family of finite subsets of X;

∙ F(X, Y) denotes the set of all functions from X to Y and F(Ω) = F(Ω,ℝ);
∙ C(Ω) denotes the set of continuous functions defined on Ω ⊂ ℝN ;
∙ Ck(Ω) denotes the set of functions defined on Ω ⊂ ℝN which have continuous derivatives up to the order

k (sometimes we will use the notation C 0(Ω) instead of C (Ω));
∙ Hk,p(Ω) denotes the usual Sobolev space of functions defined on Ω ⊂ ℝN ;
∙ if W(Ω) is any function space, then Wc(Ω) will denote the function space of functions in W(Ω) having

compact support;

∙ C
0
(Ω ∪ Ξ), Ξ ⊆ ∂Ω, denotes the set of continuous functions in C(Ω ∪ Ξ) which vanish for x ∈ Ξ;

∙ D(Ω) denotes the set of the infinitely differentiable functions with compact support defined on Ω ⊂ ℝN ;
D(Ω) denotes the topological dual ofD(Ω), namely the set of distributions on Ω;

∙ if A ⊂ X is a set, then χA denotes the characteristic function of A;
∙ supp(f) = supp∗(f) where supp is the usual notion of support of a function or a distribution;
∙ mon(x) = {y ∈ (ℝN)∗ : x ∼ y}, where x ∼ y means that x − y is infinitesimal;

∙ ∀a.e.x ∈ X means “for almost every x ∈ X”;
∙ if a, b ∈ ℝ∗, then

– [a, b]ℝ∗ = {x ∈ ℝ∗ : a ≤ x ≤ b},
– (a, b)ℝ∗ = {x ∈ ℝ∗ : a < x < b};
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∙ ifW is a generic function space, its topological dual will be denoted byW and the pairing by ⟨ ⋅ , ⋅ ⟩W ;
∙ if E is any set, then |E| will denote its cardinality.

2 Λ-theory

In this section, we present the basic notions of Non-Archimedean Mathematics (sometimes abbreviated

as NAM) and of Nonstandard Analysis (sometimes abbreviated as NSA) following a method inspired by [3]

(see also [1] and [4]). When we talk about NSA, wemean the NSA in the sense of Robinson (see [20]), and not

the internal set theory developed by Nelson in [18].

2.1 Non-Archimedean fields

Here, we recall the basic definitions and facts regarding non-Archimedean fields. In the following, 𝕂 will

denote a totally ordered infinite field. We recall that such a field contains (a copy of) the rational numbers.

Its elements will be called numbers.

Definition 2.1. Let𝕂 be an ordered field. Let ξ ∈ 𝕂. We say that

∙ ξ is infinitesimal if, for all positive n ∈ ℕ, |ξ| < 1

n ;

∙ ξ is finite if there exists n ∈ ℕ such that |ξ| < n;
∙ ξ is infinite if, for all n ∈ ℕ, |ξ| > n (equivalently, if ξ is not finite).

Definition 2.2. An ordered field𝕂 is called non-Archimedean if it contains an infinitesimal ξ ̸= 0.

It is easily seen that infinitesimal numbers are actually finite, that the inverse of an infinite number is

a nonzero infinitesimal number, and that the inverse of a nonzero infinitesimal number is infinite.

Definition 2.3. A superreal field is an ordered field𝕂 that properly extendsℝ.

It is easy to show, due to the completeness of ℝ, that there are nonzero infinitesimal numbers and infinite

numbers in any superreal field. Infinitesimal numbers can be used to formalize a new notion of closeness,

according to the following:

Definition 2.4. We say that two numbers ξ, ζ ∈ 𝕂 are infinitely close if ξ − ζ is infinitesimal. In this case, we

write ξ ∼ ζ .

Clearly, the relation ∼ of infinite closeness is an equivalence relation and we have the following:

Theorem 2.5. If 𝕂 is a totally ordered superreal field, every finite number ξ ∈ 𝕂 is infinitely close to a unique
real number r ∼ ξ , called the standard part of ξ .

Given a finite number ξ , we denote its standard part by st(ξ), and we put st(ξ) = ±∞ if ξ ∈ 𝕂 is a positive

(negative) infinite number. In Definition 2.16, we will see how the notion of standard part can be generalized

to any Hausdorff topological space.

Definition 2.6. Let𝕂 be a superreal field and ξ ∈ 𝕂 a number. The monad of ξ is the set of all numbers that

are infinitely close to it,

mon(ξ) := {ζ ∈ 𝕂 : ξ ∼ ζ}.

2.2 The Λ-limit

Let U be an infinite set of cardinality bigger than the continuum, and let L =P
fin
(U) be the family of finite

subsets of U.
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Notice that (L, ⊆) is a directed set.We add toL a point at infinity Λ ∉ L, andwe define the following family

of neighborhoods of Λ:

{{Λ} ∪ Q : Q ∈ U},

where U is a fine ultrafilter on L, namely a filter such that

∙ for every A, B ⊆ L, if A ∪ B = L, then A ∈ U or B ∈ U;
∙ for every λ ∈ L, the set Q(λ) := {μ ∈ L : λ ⊑ μ} ∈ U.
We will refer to the elements ofU as qualified sets. A function φ : L→ E, defined on a directed set E, is called
net (with values in E). If φ(λ) is a real net, we have that

lim

λ→Λ
φ(λ) = L

if, and only if, for every ε > 0, there exists Q ∈ U such that |φ(λ) − L| < ε for all λ ∈ Q.
As usual, if a property P(λ) is satisfied by any λ in a neighborhood of Λ, we will say that it is eventually

satisfied.

Proposition 2.7. If the net φ(λ) takes values in a compact set K, then it is a converging net.

Proof. Suppose that the net φ(λ) has a converging subnet to L ∈ ℝ. We fix ε > 0 arbitrarily, and we have to

prove that Qε ∈ U, where
Qε = {λ ∈ L : |φ(λ) − L| < ε}.

We argue indirectly, and we assume that Qε ∉ U. Then, by the definition of ultrafilter, N = L \ Qε ∈ U, and
hence,

|φ(λ) − L| ≥ ε for all λ ∈ N.

This contradicts the fact that φλ has a subnet which converges to L.

Proposition 2.8. Assume that φ : L→ E, where E is a first countable topological space; then if

lim

λ→Λ
φ(λ) = x

0
,

there exists a sequence {λn} in L such that

lim

n→∞
φ(λn) = x0.

We refer to the sequence φn := φ(λn) as a subnet of φ(λ).

Proof. Let {An : n ∈ ℕ} be a countable basis of open neighborhoods of x0. For every n ∈ ℕ, the set

In := {λ ∈ L : φ(λ) ∈ An}

is qualified. Hence, Jn := ⋂j≤n Ij ̸= 0. Let λn ∈ Jn. Then the sequence {λn}n∈ℕ has trivially the desired property:
for every n ∈ ℕ, for every m ≥ n, we have that φ(λm) ∈ An.

Example 2.9. Let φ : L→ V be a net with values in a bounded subset of a reflexive Banach space equipped

with the weak topology; then

v := lim
λ→Λ

φ(λ)

is uniquely defined, and there exists a sequence n → φ(λn) which converges to v.

Definition 2.10. The set of the hyperreal numbersℝ∗ ⊃ ℝ is a set equipped with a topology τ such that
∙ every net φ : L→ ℝ has a unique limit in ℝ∗, if L and ℝ∗ are equipped with the Λ and the τ topology,

respectively;

∙ ℝ∗ is the closure ofℝ with respect to the topology τ;
∙ τ is the coarsest topology which satisfies the first property.

The existence of suchℝ∗ is a well-known fact in NSA. The limit ξ ∈ ℝ∗ of a net φ : L→ ℝwith respect to the
τ topology, following [1], is called the Λ-limit of φ, and the following notation will be used:

ξ = lim
λ↑Λ

φ(λ); (2.1)



128 | V. Benci, L. Luperi Baglini and M. Squassina, Generalized solutions of PDEs and applications

namely, we shall use the up-arrow “↑” to remind that the target space is equipped with the topology τ. Given

ξ := lim
λ↑Λ

φ(λ), η := lim
λ↑Λ

ψ(λ),

we set

ξ + η := lim
λ↑Λ
(φ(λ) + ψ(λ)), (2.2)

ξ ⋅ η := lim
λ↑Λ
(φ(λ) ⋅ ψ(λ)). (2.3)

Then the following well-known theorem holds:

Theorem 2.11. The definitions (2.2) and (2.3) are well posed andℝ∗, equipped with these operations, is a non-
Archimedean field.

Remark 2.12. We observe that the field of hyperreal numbers is defined as a sort of completion of real num-

bers. In fact,ℝ∗ is isomorphic to the ultrapowerℝL/I, where I = {φ : L→ ℝ | φ(λ) = 0 eventually}. The iso-
morphism resembles the classical one between real numbers and equivalence classes of Cauchy sequences.

Thismethod is surely known to the reader for the construction of the real numbers starting from the rationals.

2.3 Natural extension of sets and functions

To develop applications, we need to extend the notion of Λ-limit to sets and functions (but also to differen-

tial and integral operators). This will allow to enlarge the notions of variational problem and of variational

solution.

Λ-limits of bounded nets of mathematical objects in V∞(ℝ) can be defined by induction (a net φ : L →
V∞(ℝ) is called bounded, if there exists n ∈ ℕ such that, for all λ ∈ L, φ(λ) ∈ Vn(ℝ)). To do this, consider
a net

φ : L→ Vn(ℝ). (2.4)

Definition 2.13. For n = 0, limλ↑Λ φ(λ) is defined by (2.1); so by induction, we may assume that the limit is

defined for n − 1, and we define it for the net (2.4) as follows:

lim

λ↑Λ
φ(λ) = {lim

λ↑Λ
ψ(λ) : ψ : L→ Vn−1(ℝ), for all λ ∈ L, ψ(λ) ∈ φ(λ)}.

A mathematical entity (number, set, function or relation) which is the Λ-limit of a net is called internal.

Definition 2.14. If for all λ ∈ L, Eλ = E ∈ V∞(ℝ), we set limλ↑Λ Eλ = E∗, namely

E∗ := {lim
λ↑Λ

ψ(λ) : ψ(λ) ∈ E};

E∗ is called the natural extension of E.

Notice that, while the Λ-limit of a constant sequence of numbers gives this number itself, a constant sequence

of sets gives a larger set, namely E∗. In general, the inclusion E ⊆ E∗ is proper.
Given any set E, we can associate to it two sets: its natural extension E∗ and the set Eσ, where

Eσ := {X∗ : X ∈ E}. (2.5)

Clearly Eσ is a copy of E; however, it might be different as set since, in general, X∗ ̸= X.

Remark 2.15. If φ : L→ X is a net with value in a topological space, we have the usual limit

lim

λ→Λ
φ(λ)

which, by Proposition 2.7, always exists in the Alexandrov compactification X ∪ {∞}. Moreover, we have the
Λ-limit, that always exists and it is an element of X∗. In addition, the Λ-limit of a net is in Xσ if, and only if,
φ is eventually constant. If X = ℝ, and both limits exist, then

lim

λ→Λ
φ(λ) = st(lim

λ↑Λ
φ(λ)). (2.6)
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The above equation suggests the following definition.

Definition 2.16. If X is topological space equipped with a Hausdorff topology, and ξ ∈ X∗, we set

StX(ξ) = lim
λ→Λ

φ(λ),

if there is a net φ : L→ X converging in the topology of X, and such that

ξ = lim
λ↑Λ

φ(λ),

and StX(ξ) =∞ otherwise.

By the above definition, we have that

lim

λ→Λ
φ(λ) = StX(lim

λ↑Λ
φ(λ)).

Definition 2.17. Let

fλ : Eλ → ℝ, λ ∈ L,

be a net of functions. We define a function

f : (lim
λ↑Λ

Eλ)→ ℝ∗

as follows: for every ξ ∈ (limλ↑Λ Eλ), we set

f(ξ) := lim
λ↑Λ

fλ(ψ(λ)),

where ψ(λ) is a net of numbers such that

ψ(λ) ∈ Eλ and lim

λ↑Λ
ψ(λ) = ξ.

A function which is a Λ-limit is called internal. In particular, if, for all λ ∈ L,

fλ = f, f : E → ℝ,

we set

f∗ = lim
λ↑Λ

fλ;

f∗ : E∗ → R∗ is called the natural extension of f . As expected, the natural extension of functions is a partic-
ular case of the extension of sets: in fact, if we identify f with its graph, then f∗ is the graph of its natural

extension.

2.4 Hyperfinite sets and hyperfinite sums

Definition 2.18. An internal set is called hyperfinite, if it is the Λ-limit of a net φ : L→ F, where F is a family

of finite sets.

For example, if E ∈ V∞(ℝ), the set
Ẽ = lim

λ↑Λ
(λ ∩ E)

is hyperfinite. Notice that Eσ ⊂ Ẽ ⊂ E∗. So we can say that every standard set is contained in a hyperfinite set.
It is possible to add the elements of a hyperfinite set of numbers (or vectors) as follows: let

A := lim
λ↑Λ

Aλ
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be a hyperfinite set of numbers (or vectors); then the hyperfinite sum of the elements of A is defined in the

following way:

∑
a∈A

a = lim
λ↑Λ
∑
a∈Aλ

a.

In particular, if Aλ = {a1(λ), . . . , aβ(λ)(λ)} with β(λ) ∈ ℕ, then setting

β = lim
λ↑Λ

β(λ) ∈ ℕ∗,

we use the notation

β
∑
j=1
aj = lim

λ↑Λ

β(λ)
∑
j=1

aj(λ).

3 Ultrafunctions

3.1 Definition of ultrafunctions

We start by introducing the notion of hyperfinite grid.

Definition 3.1. A hyperfinite set Γ such thatℝN ⊂ Γ ⊂ (ℝN)∗ is called hyperfinite grid.

From now on, we assume that Γ has been fixed once forever. Notice that, by definition, ℝN ⊆ Γ, and the

following two simple (but useful) properties of Γ can be easily proven via Λ-limits:

∙ for every x ∈ ℝN there exists y ∈ Γ ∩mon(x) so that x ̸= r;
∙ there exists a hyperreal number ρ ∼ 0, ρ > 0, such that d(x, y) ≥ ρ for every x, y ∈ Γ, x ̸= y.

Definition 3.2. A space of grid functions is a familyG(ℝN) of internal functions

u : Γ → ℝ∗

defined on a hyperfinite grid Γ. If E ⊂ ℝN , then G(E) will denote the restriction of the grid functions to the

set E∗ ∩ Γ.

Let E be any set in ℝN . To every internal function u ∈ F(E)∗, it is possible to associate a grid function by the
“restriction” map

∘
: F(E)∗ → G(E) (3.1)

defined as follows:

u∘(x) := u∗(x) for all x ∈ E∗ ∩ Γ;

moreover, if f ∈ F(E), for short, we use the notation

f ∘(x) := (f∗)∘(x). (3.2)

So every function f ∈ F(E) can be uniquely extended to a grid function f ∘ ∈ G(E).
In many problems, we have to deal with functions defined almost everywhere in Ω, such as 1/|x|. Thus,

it is useful to give a “rule” which allows to define a grid function for every x ∈ Γ.

Definition 3.3. If a function f is defined on a set E ⊂ ℝN , we put

f ∘(x) = ∑
a∈Γ∩E∗ f∗(a)σa(x),

where, for all a ∈ Γ, the grid function σa is defined as follows: σa(x) := δax.

If E ⊂ ℝN is a measurable set, we define the “density function” of E as follows:

θE(x) = st(
m(Bη(x) ∩ E∗)
m(Bη(x))

), (3.3)
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where η is a fixed infinitesimal and m is the Lebesgue measure. Clearly, θE(x) is a function whose value is 1
in int(E) and 0 inℝN \ E; moreover, it is easy to prove that θE(x) is a measurable function, and we have that

∫ θE(x) dx = m(E)

whenever m(E) <∞; also, if E is a bounded open set with smooth boundary, we have that θE(x) = 1

2

for

every x ∈ ∂E.
Now, let V(ℝN) be a vector space such that D(ℝN) ⊂ V(ℝN) ⊂ L 1(ℝN).

Definition 3.4. A space of ultrafunctions V∘(ℝN)modeled over the space V(ℝN) is a space of grid functions
such that there exists a vector space V

Λ
(ℝN) ⊂ V∗(ℝN) such that the map¹

∘
: V

Λ
(ℝN)→ V∗(ℝN)

is anℝ∗-linear isomorphism. From now on, we assume that V(ℝN) satisfies the following assumption: if Ω is

a bounded open set such that mN−1(∂Ω) <∞ and f ∈ C0(ℝN), then

fθ
Ω
∈ V(ℝN).

Next, we want to equip V∘(ℝN) with the two main operations of calculus, the integral and the derivative.

Definition 3.5. The pointwise integral ◻∫ : V∘(ℝN)→ ℝ∗
is a linear functional which satisfies the following properties:

(1) for all u ∈ V
Λ
(ℝN) ◻∫ u∘(x) dx = ∫ u(x) dx; (3.4)

(2) there exists an ultrafunction d : Γ → ℝ∗ such that, for all x ∈ Γ, d(x) > 0, and for all u ∈ V∘(ℝN),◻∫ u(x) dx = ∑
a∈Γ

u(a)d(a).

If E ⊂ ℝN is any set, we use the obvious notation◻∫
E

u(x) dx := ∑
a∈Γ∩E∗ u(a)d(a).

A few words to discuss the above definition: Point (2) says that the pointwise integral is nothing else

but a hyperfinite sum. Since d(x) > 0, every non-null positive ultrafunction has a strictly positive integral. In
particular, if we denote by σa(x) the ultrafunctions whose value is 1 for x = a and 0 otherwise, we have that◻∫ σa(x) dx = d(a).
The pointwise integral allows us to define the following scalar product:◻∫ u(x)v(x) dx = ∑

a∈Γ
u(a)v(a)d(a). (3.5)

From now on, the norm of an ultrafunction will be defined as

‖u‖ = (◻∫|u(x)|2 dx) 12 .
1 We use V∗(E) as a shorthand notation for [V(E)]∗.
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Now, let us examine point (1) of the above definition. If we take f ∈ C0
comp
(ℝN), we have that f∗ ∈ V

Λ
(ℝN),

and hence ◻∫ f ∘(x) dx = ∫ f(x) dx.
Thus, the pointwise integral is an extension of the Riemann integral defined on C0

comp
(ℝN). However, if we

take a bounded open set Ω such that m(∂Ω) = 0, then we have that

∫
Ω

f(x) dx = ∫
Ω

f(x) dx.

However, the pointwise integral cannot have this property; in fact,◻∫
Ω

f ∘(x) dx − ◻∫
Ω

f ∘(x) dx = ◻∫
∂Ω

f ∘(x) dx > 0,

since ∂Ω ̸= 0. In particular, if Ω is a bounded open set with smooth boundary and f ∈ C0(ℝN), then◻∫
Ω

f ∘(x) dx = ◻∫ f ∘(x)χ
Ω
(x) dx

= ◻∫ f ∘(x)θ∘
Ω

(x) dx − 1
2

◻∫ f ∘(x)χ∘∂Ω(x) dx
= ∫

Ω

f(x) dx − 1
2

◻∫
∂Ω

f ∘(x) dx,

and similarly ◻∫
Ω

f ∘(x) dx = ∫
Ω

f(x) dx + 1
2

◻∫
∂Ω

f ∘(x) dx;

of course, the term

1

2

◻∫ f ∘(x)χ∂E(x) dx is an infinitesimal number and it is relevant only in some particular

problems.

Definition 3.6. The ultrafunction derivative

Di : V∘(ℝN)→ V∘(ℝN)

is a linear operator which satisfies the following properties:

(1) for all f ∈ C1(ℝN) and for all x ∈ (ℝN)∗, x finite,

Di f ∘(x) = ∂i f∗(x); (3.6)

(2) for all u, v ∈ V∘(ℝN), ◻∫Diuv dx = −◻∫ uDiv dx;
(3) if Ω is a bounded open set with smooth boundary, then for all v ∈ V∘,

◻∫DiθΩv dx = − ∗∫
∂Ω

v(ei ⋅ nE) dS,

where nE is the unit outer normal, dS is the (n − 1)-dimensional measure and (e
1
, . . . , eN) is the canon-

ical basis ofℝN ;
(4) the support² of Diσa is contained inmon(a) ∩ Γ.

2 If u is an ultrafunction, the support of u is the set {x ∈ Γ : u(x) ̸= 0}.
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Let us comment the above definition. Point (1) implies that, for all f ∈ C1(ℝN) and for all x ∈ ℝN ,

Di f ∘(x) = ∂i f(x); (3.7)

namely, the ultrafunction derivative coincides with the usual partial derivative whenever f ∈ C1(ℝN). The
meaning of point (2) is clear; we remark that this point is very important in comparing ultrafunctions with

distributions. Point (3) says that DiθΩ is an ultrafunction whose support is contained in ∂Ω ∩ Γ; it can be

considered as a signed measure concentrated on ∂Ω. Point (4) says that the ultrafunction derivative, as well
as the usual derivative or the distributional derivative, is a local operator, namely if u is an ultrafunction

whose support is contained in a compact set K with K ⊂ Ω, then the support of Diu is contained in Ω∗. More-
over, property (4) implies that the ultrafunction derivative is well defined in V∘(Ω) for any open set Ω by the

following formula:

Diu(x) = ∑
a∈Γ∩Ω∗ u(a)Diσa(x).

Remark 3.7. If u ∈ V∘(Ω) and ū is an ultrafunction in V∘(Ω) such that, for all x ∈ Ω, u(x) = ū(x), then, by
point (3), for all x ∈ Ω∗ such thatmon(x) ⊂ Ω∗, we have that

Diu(x) = Di ū(x);

however, this property fails for some x ∼ ∂Ω∗. In fact, the support of Diσa is contained inmon(a) ∩ Γ, but not
in {a}.

Theorem 3.8. There exists an ultrafunction space V∘(ℝN) which admits a pointwise integral and an ultrafunc-
tion derivative as in Definitions 3.5 and 3.6.

Proof. In [2], there is a construction of a space V
Λ
(ℝN)which satisfies the desired properties. The conclusion

follows, taking

V∘(ℝN) = {u∘ : u ∈ V
Λ
}.

3.2 The splitting of an ultrafunction

In many applications, it is useful to split an ultrafunction u in a part w∘ which is the canonical extension of
a standard function w and a part ψ which is not directly related to any classical object. If u ∈ V∘(Ω), we set

S = {x ∈ Ω : u(x) is infinite}

and

w(x) =
{
{
{

st(u(x)) if x ∈ Ω \ S,
0 if x ∈ S.

We will refer to S as to the singular set of the ultrafunction u.

Definition 3.9. For every ultrafunction u, consider the splitting

u = w∘ + ψ,

where

∙ w = w|
Ω\S and w∘, which is defined by Definition 3.3, is called the functional part of u;

∙ ψ := u − w∘ is called the singular part of u.

Notice that w∘, the functional part of u, may assume infinite values for some x ∈ Ω∗ \ S∗, but they are deter-
mined by the values of w which is a standard function defined on Ω.

Example 3.10. Take ε ∼ 0, and
u(x) = log(x2 + ε2).
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In this case,

w(x) =
{
{
{

log(x2) = 2 log(|x|) if x ̸= 0,
0 if x = 0;

ψ(x) =
{
{
{

log(x2 + ε2) − log(x2) = log(1 + ε2x2 ) if x ̸= 0,
log(ε2) if x = 0;

S := {0}.

We conclude this section with the following trivial proposition which, nevertheless, is very useful in appli-

cations.

Proposition 3.11. Take a Banach spaceW such thatD(Ω)⊂W ⊂ L1(Ω). Assume that {un}⊆ V(Ω) is a sequence
which converges weakly inW and pointwise to a function w; then, if we set

u := ((lim
λ↑Λ

u|λ|)∘),

we have that
u = w∘ + ψ,

where ◻∫ψv dx ∼ 0 for all v ∈ W;

moreover, if
lim

n→∞
‖un − w‖W = 0,

then ‖ψ‖W ∼ 0.

Proof. As a consequence of the pointwise convergence of {un} to w, we have that, for all a ∈ Γ, u(a) ∼ w∘(a).
In particular, for all a ∈ Γ, ψ(a) ∼ 0. As Γ is hyperfinite, the set {|ψ(a)| : a ∈ Γ} has a maximum η ∼ 0. Hence,
for every v ∈ W, we have


◻∫ψv dx  ≤ ◻∫ |ψ| |v| dx ≤ η ◻∫ |v| dx ∼ η∫|v| dx ∼ 0,

as η ∼ 0 and ∫|v| dx ∈ ℝ. For the second statement, let us notice that

‖ψ‖W = ‖u − w∘‖W = (lim
λ↑Λ
‖u|λ| − w‖W)∘ ∼ 0,

as limn→∞‖un − w‖W = 0.

An immediate consequence of Proposition 3.11 is the following:

Corollary 3.12. If w ∈ L1(Ω), then ◻∫w∘(x) dx ∼ ∫w(x) dx.
Proof. Since V(Ω) is dense in L1(Ω), there is a sequence un ∈ V(Ω) which converges strongly to w in L1(Ω).
Now, set

u := (lim
λ↑Λ

u|λ|)∘.

By Proposition 3.11, we have that

u = w∘ + ψ
with ‖ψ‖L1 ∼ 0. Then ◻∫ u(x) dx ∼ ◻∫w∘(x) dx.
On the other hand, since u ∈ V∘(Ω), by Definition 3.5 (1),◻∫ u(x) dx = ∗∫ u∘(x) dx = lim

λ↑Λ
∫ u|λ| dx

∼ lim
n→Λ
∫
Ω

un dx = ∫w(x) dx.
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3.3 The Gauss divergence theorem

First of all, we fix the notation for the main differential operators:

∙ ∇ = (∂
1
, . . . , ∂N) will denote the usual gradient of standard functions;

∙ ∇∗ = (∂∗
1

, . . . , ∂∗N) will denote the natural extension of internal functions;
∙ D = (D

1
, . . . , DN) will denote the canonical extension of the gradient in the sense of ultrafunctions.

Next, let us consider the divergence:

∙ ∇ ⋅ φ = ∂
1
φ
1
+ ⋅ ⋅ ⋅ + ∂NφN will denote the usual divergence of standard vector fields φ ∈ [C1(ℝN)]N ;

∙ ∇∗ ⋅ φ = ∂∗
1

φ
1
+ ⋅ ⋅ ⋅ + ∂∗NφN will denote the divergence of internal vector fields φ ∈ [C

1(ℝN)∗]N ;
∙ D ⋅ φ = D

1
φ
1
+ ⋅ ⋅ ⋅ + DNφN will denote the divergence of vector-valued ultrafunctions φ ∈ [V∘(ℝN)∗]N .

And finally, we can define the Laplace operator of an ultrafunction u ∈ V∘(Ω) as the only ultrafunction

∆

∘ u ∈ V∘(Ω) such that ◻∫ ∆∘ uv dx = −◻∫Du ⋅ Dv dx for all v ∈ V∘
0

(Ω),

where

V∘
0

(Ω) := {v ∈ V∘(Ω) : for all x ∈ ∂Ω ∩ Γ, v(x) = 0}.

By Definition 3.6 (3), for any bounded open set Ω with smooth boundary,◻∫DiθΩv dx = − ∗∫
∂Ω

v(ei ⋅ nE) dS,

and by Definition 3.6 (2), ◻∫DiθΩv dx = −◻∫DivθΩ dx,
so that ◻∫DivθΩdx = ∗∫

∂Ω

v(ei ⋅ nΩ) dS.

Now, if we take a vector field φ = (v
1
, . . . , vN) ∈ [V∘(ℝN)]N , by the above identity, we get◻∫D ⋅ φθ

Ω
dx =

∗

∫
∂Ω

φ ⋅ n
Ω
dS. (3.8)

Now, if φ ∈ C1, by Definition 3.6 (1), we get the Gauss divergence theorem

∫
Ω

∇ ⋅ φ dx = ∫
∂Ω

φ ⋅ nE dS.

Then, (3.8) is a generalization of the Gauss theorem which makes sense for any bounded open set Ω with

smooth boundary and every vectorial ultrafunction φ. Next, we want to generalize Gauss’ theorem to any

subset ofA ⊂ ℝN . It iswell known, that, for any bounded open setΩwith smooth boundary, the distributional

derivative ∇θ
Ω
is a vector-valued Radon measure, and we have that

⟨|∇θ
Ω
|, 1⟩ = mN−1(∂Ω).

Then, the following definition is a natural generalization.

Definition 3.13. If A is a measurable subset ofℝN , we set

mN−1(∂Ω) := ◻∫ |Dθ∘A| dx,
and, for all v ∈ V∘(ℝN), ◻∫

∂A

v(x) dS := ◻∫ v(x)|Dθ∘A| dx. (3.9)
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Remark 3.14. Notice that ◻∫
∂A

v(x) dS ̸= ◻∫
∂A

v(x) dx.

In fact, the left-hand term has been defined as follows:◻∫
∂A

v(x) dS = ∑
x∈Γ

v(x)|Dθ∘A(x)|d(x),

while the right-hand term is ◻∫
∂A

v(x) dx = ∑
x∈Γ∩∂A∗ v(x)d(x);

in particular, if ∂A is smooth and v(x) is bounded, ◻∫∂A v(x) dx is an infinitesimal number.

Theorem 3.15. If A is an arbitrary measurable subset ofℝN , we have that◻∫D ⋅ φθ∘A dx = ◻∫
∂A

φ ⋅ n∘A(x) dS, (3.10)

where

n∘A(x) =
{
{
{

− Dθ
∘
A(x)
|Dθ∘A(x)| if Dθ∘A(x) ̸= 0,

0 if Dθ∘A(x) = 0.

Proof. By Definition 3.6 (3), ◻∫D ⋅ φθ∘A dx = −◻∫φ ⋅ Dθ∘A dx,
then, using the definition of n∘A(x) and (3.9), the above formula can be written as follows:◻∫D ⋅ φθ∘A dx = ◻∫φ ⋅ n∘A|Dθ∘A| dx = ◻∫

∂A

φ ⋅ n∘A dS.

3.4 Ultrafunctions and distributions

One of the most important properties of the ultrafunctions is that they can be seen (in some sense that we

will make precise in this section) as generalizations of the distributions.

Definition 3.16. The space of generalized distributions on Ω is defined as follows:

D G(Ω) = V
∘(Ω)/N,

where

N = {τ ∈ V∘(Ω) : for all φ ∈ D(Ω), ∫ τφ dx ∼ 0}.

The equivalence class of u in V∘(Ω) will be denoted by [u]D .

Definition 3.17. Let [u]D be a generalized distribution. We say that [u]D is a bounded generalized distri-

bution if, for all φ ∈ D(Ω), ∫ uφ∗ dx is finite. We will denote by D 
GB

(Ω) the set of bounded generalized

distributions.

We have the following result.

Theorem 3.18. There is a linear isomorphism

Φ : D 
GB

(Ω)→ D (Ω)

such that, for every [u] ∈ D 
GB

(Ω) and for every φ ∈ D(Ω),

⟨Φ([u]D ), φ⟩D(Ω) = st(◻∫ uφ∗ dx).
Proof. For the proof, see e.g. [7].
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From now on, we will identify the spaces D 
GB

(Ω) and D (Ω); so, we will identify [u]D with Φ([u]D ) and we
will write [u]D ∈ D (Ω) and

⟨[u]D , φ⟩D(Ω) := ⟨Φ[u]D , φ⟩ = st(◻∫ uφ∗ dx).
If f ∈ C0

comp
(Ω) and f∗ ∈ [u]D , then, for all φ ∈ D(Ω),

⟨[u]D , φ⟩D(Ω) = st(
∗

∫ uφ∗ dx) = st(
∗

∫ f∗φ∗ dx) = ∫ fφ dx.

Remark 3.19. The set V∘(Ω) is an algebra which extends the algebra of continuous functions C0(ℝN). If we
identify a tempered distribution³ T = ∂m f with the ultrafunction Dm f ∘, we have that the set of tempered

distributions S  is contained in V∘(Ω). However, the Schwartz impossibility theorem is not violated as

(V∘(Ω), +, ⋅, D) is not a differential algebra since the Leibnitz rule does not hold for some pairs of ultrafunc-

tions. See also [7].

4 Properties of ultrafunction solutions

The problems that wewant to studywith ultrafunctions have the following form:minimize a given functional

J on V(Ω) subjected to certain restrictions (e.g., some boundary constrictions, or a minimization on a proper

vector subspace of V(Ω)). This kind of problems can be studied in ultrafunctions theory bymeans of amodifi-

cation of the Faedo–Galerkin method, based on standard approximations by finite-dimensional spaces. The

following is a (maybe even too) general formulation of this idea.

Theorem 4.1. LetW(Ω) ̸= 0 be a vector subspace of V(Ω). Let

F = {f : V(Ω)→ ℝ | for all E finite-dimensional vector subspaces ofW(Ω),
there exists u ∈ Ef(u) = min

v∈E
f(v)}.

Then every F ∈ F∗ has a minimizer inW
Λ
(Ω).

Proof. Let F = limλ↑Λ fλ, with fλ ∈ F for every λ ∈ L. By hypothesis, for every λ ∈ L, there exists

uλ ∈ Wλ := Span(W ∩ λ)

that minimizes fλ on Wλ. Then u = limλ↑Λ uλ minimizes F on limλ↑Λ Wλ = WΛ
as, if v = limλ↑Λ vλ ∈ Wλ(Ω),

then, for every λ ∈ L, we have that fλ(vλ) ≤ fλ(uλ), hence,

F(v) = lim
λ↑Λ

fλ(vλ) ≤ lim
λ↑Λ

fλ(uλ) = F(u).

For applications, the following particular case of Theorem 4.1 is particularly relevant.

Corollary 4.2. Let f(ξ, u, x) be coercive in ξ on every finite-dimensional subspace of V(Ω) and for every x ∈ Ω.
Let F(u) := ◻∫ f(∇u, u, x) dx. Then F∘ has a minimum on V

Λ
.

Proof. Just notice that F ∈ F, in the notations of Theorem 4.1.

Theorem 4.1 provides a general existence result. However, such a general result poses two questions: the

first is how wild such generalized solutions can be; the second is if this method produces new generalized

solutions for problems that already have classical ones.

3 We recall that, by a well-known theorem of Schwartz, any tempered distribution can be represented as ∂m f , wherem is a multi-

index and f is a continuous function.
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The answer to these questions depends on the problem that is studied. However, regarding the second

question, we have the following result, which strengthens Theorem 4.1:

Theorem 4.3. Let F : V
Λ
(Ω)→ ℝ∗, F = limλ↑Λ Fλ. For every λ ∈ L, let

Mλ := {u ∈ Vλ(Ω) : Fλ(u) = min

v∈Vλ
Fλ(v)}.

Assume that limλ↑Λ Mλ ̸= 0. Then

M
Λ
:= {u ∈ V

Λ
(Ω) : F(u) = min

v∈V
Λ

F(v)} = lim
λ↑Λ

Mλ ̸= 0.

Proof. M
Λ
⊆ limλ↑Λ Mλ: Let v = limλ↑Λ vλ ∈ MΛ

, and let u = limλ↑Λ uλ ∈ limλ↑Λ Mλ. As F(v) ≤ F(u), there is
a qualified set Q such that, for every λ ∈ Q, Fλ(vλ) ≤ F(uλ). But then vλ ∈ Mλ, for every λ ∈ Q, hence v =
limλ↑Λ vλ ∈ limλ↑Λ Mλ.

M
Λ
⊇ limλ↑Λ Mλ: Let u = limλ↑Λ uλ ∈ limλ↑Λ Mλ. Let v = limλ↑Λ vλ ∈ VΛ

(Ω). Let

Q = {λ ∈ L : uλ ∈ Mλ}.

Then Q is qualified and, for every λ ∈ Q, Fλ(uλ) ≤ Fλ(vλ). Therefore F(u) ≤ F(v), and so u ∈ MΛ
.

The following easy consequences of Theorem 4.3 hold:

Corollary 4.4. In the same notations of Theorem 4.3, let us now assume that there exists k ∈ ℕ such that
|Mλ| ≤ k for every λ ∈ L. Then |MΛ

| ≤ k.

Proof. This holds, as the hypothesis on |Mλ| trivially entails that |limλ↑Λ Mλ| ≤ k.

Corollary 4.5. In the same notations of Theorem 4.3, let us now assume that F = J∗, where J : V(Ω)→ ℝ. Let

M := {v ∈ V(Ω) : v = min

w∈V(Ω)
J(w)}.

Assume that M ̸= 0. Then the following facts are equivalent:
(1) u is a minimizer of F : V

Λ
(Ω)→ ℝ∗.

(2) u ∈ M∗ ∩ V
Λ
(Ω).

In particular, if u ∈ M, then u∗ minimizes F.

Proof. (1)⇒ (2) Let u ∈ M. Let Q(u) := {λ ∈ L : u ∈ λ}. Then, for every λ ∈ Q(u),

v ∈ Mλ ⇐⇒ J(v) = J(u) ⇒ v ∈ M,

hence Mλ ⊆ M for every λ ∈ Q(u), which is qualified, and so limλ↑Λ Mλ ⊆ M∗ ∩ VΛ
, and we conclude by

Theorem 4.3.

(2)⇒ (1) By definition,
u ∈ M∗ ⇐⇒ F(u) = min

v∈[V(Ω)]∗ F(v),
hence, if u ∈ M∗ ∩ Vλ(Ω), it trivially holds that u minimizes F.

Corollary 4.6. In the same hypotheses and notations of Corollary 4.3, let us assume that M = {u
1
, . . . , un} is

finite. Then v minimizes F in V
Λ
(Ω) if, and only if, there exists u ∈ M such that u∗ = v.

Proof. Just remember that S∘ = {s∗ : s ∈ S} for every finite set S, and that

Mσ = {u∗ : u ∈ M} ⊆ V(Ω) ⊆ V
Λ
(Ω).

In general, onemight not haveminima, butminimization sequences could still exist. In this case, we have the

following result (in which, for every ρ ∈ ℝ∗, we set stℝ(ρ) = −∞ if, and only if, ρ is a negative infinite num-

ber). Notice that in the following result we are not assuming the continuity of J with respect to any topology
on V(Ω), in general.
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Theorem 4.7. Let V(Ω) be a Banach space, let J : V(Ω)→ ℝ and let infu∈V(Ω) J(u) = m ∈ ℝ ∪ {−∞}. The follow-
ing facts hold:
(1) J∗(v) ≥ m for every v ∈ V

Λ
(Ω).

(2) There exists v ∈ V
Λ
(Ω) such that stℝ(J∗(v)) = m.

(3) If v ∈ V
Λ
(Ω) is a minimum of J∗ : V

Λ
(Ω)→ ℝ∗ then J∗(v) ≥ stℝ(J∗(v)) = m.

(4) Let {un}n∈ℕ be a minimizing sequence that converges to u ∈ V(Ω) in some topology τ. Then there exists
v ∈ V

Λ
(Ω) such that stτ(v) = u and J∗(v) ≥ stℝ(J∗(v)) = m. Moreover, if w∘ + ψ is the canonical splitting

of v, then
∙ if τ is the topology of pointwise convergence, then w = v and w(x) = u(x) for every x ∈ Ω;
∙ if τ is the topology of pointwise convergence a.e., then w = v and w(x) = u(x) a.e. in x ∈ Ω;
∙ if τ is the topology of weak convergence, then w(x) = u(x) for every x ∈ Ω and ⟨ψ, φ∗⟩∗ ∼ 0 for every φ

in the dual of V(Ω);
∙ if τ is the topology associatedwith a norm ‖⋅‖ and,moreover, {un}n converges pointwise to u, thenw = u

and ‖ψ‖∗ ∼ 0.
(5) If allminimizing sequences of J converge to u ∈ V(Ω) in some topology τ and v is aminimumof the functional

J∗ : V
Λ
(Ω)→ ℝ∗, then stτ(v) = u and J∗(v) ≥ stℝ(J∗(v)) = m.

Proof. (1) Let v = limλ↑Λ vλ. Sincem = infu∈V(Ω) J(u), we have that J(vλ) ≥ m for every λ ∈ Λ, hence J∗(v) ≥ m.
(2) By (1) it suffices to show that stℝ(J∗(v)) = m. Let {un}n∈ℕ be a minimizing sequence for J. For every

λ ∈ L, let vλ := u|λ|. Let v := limλ↑Λ vλ. We claim that v is the desired ultrafunction.
To prove that stℝ(J∗(v)) = limn→+∞ J(un) = m, we just have to observe that, by our definition of the

net {vλ}λ, it follows that⁴
lim

n→+∞
J(un) = stℝ(lim

λ↑Λ
J(vλ)),

and we conclude as limλ↑Λ J(vλ) = J∗(v) by definition.
(3) Let v = limλ↑Λ vλ, and let w ∈ V

Λ
(Ω) be such that stℝ(J∗(w)) = m. Then m ≤ J∗(v) by (1), whilst

stℝ(J∗(v)) ≤ stℝ(J∗(w)) = m. Hence, st(J∗(v)) = m, as desired.
(4) Let v be given as in point (2). Let us show that stV(Ω)(v) = u; let A ∈ τ be an open neighborhood of u.

As {un}n converges to u, there exists N > 0 such that, for every m > N, un ∈ A. Let μ ∈ L be such that |μ| > N.
Then, for every

λ ∈ Qμ := {λ ∈ L : μ ⊆ λ}, vλ ∈ A,

and as Qμ is qualified, this entails that v ∈ A∗. Since this holds for every A neighborhood of u, we deduce that
stτ(v) = u, as desired.

Now, let u = w∘ + ψ be the splitting of u.
If τ is the pointwise convergence, stτ(v)(x) = u(x) for every x ∈ Ω, hence, by Definition 3.9, we have that

the singular set of u is empty and that w(x) = u(x) for every x ∈ Ω, as desired. A similar argument works in

the case of the pointwise convergence a.e.

If τ is the weak convergence topology, then stτ(v) = u means that ⟨v, φ∗⟩∗ ∼ ⟨u, φ⟩ for every φ in the

dual of V(Ω). Now, let S be the singular set of u. We claim that S = 0. If not, let x ∈ S and let φ = δx. Then
⟨v, φ∗⟩∗ = v(x) is infinite, whilst ⟨u, δx⟩ = u(x) is finite, which is absurd. Henceforth, for every x ∈ Ω, we have
that ψ(x) = 0. But

⟨u, φ⟩ ∼ ⟨v, φ∗⟩∗ = ⟨w∘ + ψ, φ∗⟩∗ = ⟨w∘, φ∗⟩∗ + ⟨ψ, φ∗⟩∗ = ⟨w, φ⟩ + ⟨ψ, φ∗⟩∗,

hence, stτ(ψ) = u − w. As ψ(x) = 0 for all x ∈ Ω, this means that u(x) = w(x) for every x ∈ Ω. Then

⟨u, φ⟩ + ⟨ψ, φ∗⟩∗ = ⟨w, φ⟩ + ⟨ψ, φ∗⟩∗ = ⟨v, φ⟩ ∼ ⟨u, φ⟩,

and so ⟨ψ, φ∗⟩∗ ∼ 0.

4 A proof of this simple claim is given in [11, Lemma 28].
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Finally, if τ is the strong convergence with respect to a norm ‖⋅‖ and {un}n converges pointwise to u, then,
by what we proved above, we have that v(x) ∼ u(x) for every x ∈ Ω, hence u(x) ∼ w(x) for every x ∈ Ω, which
means u = w as both u, w ∈ V(Ω). Then ‖ψ‖ = ‖u − w∘‖ = ‖u − v∘‖ + ‖v∘ − w∘‖ ∼ 0.

(5) Let v = limλ↑Λ vλ. By point (2), the only claim to prove is that stτ(v) = u. We distinguish two cases:

Case 1: J∗(v) ∼ r ∈ ℝ. As we noticed in point (2), it must be r = m. By contrast, let us assume that

stτ(v) ̸= u. In this case, there exists an open neighborhood A of u such that the set

Q := {λ ∈ L : vλ ∉ A}

is qualified. For every n ∈ ℕ, let
Qn := {λ ∈ L : |J(vλ) − r| <

1

n}
∩ Q.

Every Qn is qualified, hence nonempty. For every n ∈ ℕ, let λn ∈ Qn. Finally, set un := vλn . By construction,
limn∈ℕ J(un) = m. This means that {un}n∈ℕ is a minimizing sequence, hence, it converges to u in the topol-

ogy τ, and this is absurd as, for every n ∈ ℕ, by construction, un ∉ A. Henceforth, stτ(v) = u.
Case 2: J∗(v) ∼ −∞. As we noticed in the proof of point (2), in this case m = −∞. Let us assume that

stV(Ω)(v) ̸= u. Then there exists an open neighborhood A of u such that the set

Q := {λ ∈ L : vλ ∉ A}

is qualified. For every n ∈ ℕ, let
Qn = {λ ∈ L : J(vλ) < −n} ∩ Q

and let λn ∈Qn. Finally, let un := vλn . Then J(un)<−n for every n ∈ℕ, hence {un}n∈ℕ is aminimizing sequence,

and so it must converge to u. However, by construction, un ∉ A for every n ∈ ℕ, which is absurd.

Example 4.8. Let Ω = (0, 1), let

V(Ω) = {u : Ω → ℝ | u is the restriction to Ω of a piecewise C1([0, 1]) function}

and let J : V(Ω)→ ℝ be the functional

J(u) := ∫
Ω

u2(x) dx + ∫
Ω

((u)2 − 1)2 dx.

It is easily seen that infu∈V(Ω) J(u) = 0, and that theminimizing sequences of J convergepointwise and strongly
in the L2 norm to 0, but J(0) = 1.

Let v ∈ V
Λ
(Ω) be the minimum of J∗ : V

Λ
(Ω). From points (4) and (5) of Theorem 4.7, we deduce that

0 < J∗(v) ∼ 0, that stV(Ω)(v) = 0 and that the canonical decomposition of v is v = 0∘ + ψ, with ψ = 0 for every
x ∈ Ω and ∫

∗
Ω

∗ ψ2 dx ∼ 0. Moreover, as J∗(ψ) = 0, we also have that ∫∗
Ω

∗ ((ψ)2 − 1)2 dx ∼ 0.

5 Applications

5.1 Sign-perturbation of potentials

The first problem that we would like to tackle by means of ultrafunctions regards the sign-perturbation of

potentials.

Let us start by recalling some results recently proved by Brasco and Squassina in [13] as a refinement

and extension of some classical result by Brezis and Nirenberg [14].

Let Ω be a bounded domain ofℝN with⁵ N > 2. Consider the minimization problem

S(a) := inf

u∈D1,2

0

(Ω)
{‖∇u‖2L2(Ω) + ∫

Ω

a|u|2 dx : ‖u‖L2∗ (Ω) = 1}, (5.1)

5 In [13], the authors work more in general with a p ∈ (1, N), and consider also a fractional version of Problem 5.2; however,

in this paper, we prefer to consider only the local case p = 2.
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where a ∈ LN/2(Ω) is given, 2∗ = 2N/(N − 2),

D
1,2

0

(Ω) := {u ∈ L2∗ (Ω) : ∇u ∈ L2(Ω), u = 0 on ∂Ω}.
By Lagrange multipliers rule, minimizers of the previous problem (provided they exist) are constant sign

weak solutions of

{
−∆u + au = μ|u|2∗−2u in Ω,

u = 0 on ∂Ω,
(5.2)

with μ = S(a), namely

∫
Ω

∇u ⋅ ∇φ dx + ∫
Ω

auφ dx = μ∫
Ω

|u|2∗−2uφ dx,
for every φ ∈ D1,2

0

(Ω).
The main result in [13] is the following theorem, where the standard notations

a+ = max{a, 0}, a− = max{−a, 0}, BR(x0) = {x ∈ ℝN : |x − x
0
| < R}

are used.

Theorem 5.1 (Brasco, Squassina). Let Ω ⊂ ℝN be an open bounded set. Then the following facts hold:
(1) If a ≥ 0, then S(a) does not admit a solution.
(2) Let N > 4. Assume that there exist σ > 0, R > 0 and x

0
∈ Ω such that

a− ≥ σ, a.e. on BR(x0) ⊂ Ω.

Then S(a) admits a solution.
(3) Let 2 < N ≤ 4. For any x

0
∈ Ω, for any R > 0 s.t. BR(x0) ⊂ Ω, there exists σ = σ(R, N) > 0 such that if

a− ≥ σ, a.e. on BR(x0),

then S(a) admits a solution.

In [1], V. Benci studied, in the ultrafunctions setting, the following similar (simpler) problem: minimize

min

u∈Mp
J(u),

where

J(u) = ∫
Ω

|∇u|2 dx

and

Mp = {u ∈ C2
0

(Ω) : ∫
Ω

|u|p dx = 1}.

Here Ω is a bounded set in ℝN with smooth boundary, N ≥ 3 and p > 2. In the ultrafunctions setting intro-

duced in [1] (and with the notations of [1]), the problem takes the following form:

min

u∈M̃p

J(u), (5.3)

where

J(u) =
∗

∫
Ω

|∇u|2 dx

and

M̃p = {u ∈ V2,0

B (Ω) :
∗

∫
Ω

|u|p dx = 1}

with V2,0

B (Ω) = B[C
2

0

(Ω)].
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For every p > 2, problem (5.3) has an ultrafunction solution ũp and, by setting m̃p = J(ũp), one can show
that

(i) if 2 < p < 2∗, then m̃p = mp ∈ ℝ+ and there is at least one standard minimizer ũp, namely ũp ∈ C2
0

(Ω);
(ii) if p = 2∗ (and Ω ̸= ℝN), then m̃

2
∗ = m

2
∗ + ε, where ε is a positive infinitesimal;

(iii) if p > 2∗, then m̃p = εp, where εp is a positive infinitesimal.

Our goal is to show that a similar result can be obtained for problem (5.2).

In the present ultrafunctions setting, problem (5.2) takes the following form: find

S̃(a) := inf

u∈V
Λ
(Ω)
{
∗

∫

(ℝN )∗|∇u|
2 dx +

∗

∫

(ℝN )∗a|u|
2 dx : ‖u‖[L2∗ (ℝN )]∗ = 1}, (5.4)

where a ∈∗ [LN/2(Ω)] is given, andV
Λ
(Ω) = [D1,2

0

(Ω)]
Λ
.With the abovenotations,we canprove the following:

Theorem 5.2. Let Ω ⊂ ℝN be an open bounded set. Then the following facts hold:
(1) For every a ∈ [LN/2(Ω)]∗, there exists u ∈ V

Λ
(Ω) that minimizes S̃(a).

(2) Let a ∈ [LN/2(Ω)]. If u ∈ C1(Ω) ∩ C
0
(Ω) is a minimizer of problem (5.1), then u∗ is a minimizer of S̃(a∗).

(3) If a = 0, then S̃(0) = S + ε, where

S := inf

u∈D
0
(ℝN )\{0}

‖∇u‖2L2
‖u‖2L2∗

and

ε =
{
{
{

0 if Ω = ℝN ,
a strictly positive infinitesimal if Ω ̸= ℝN ;

moreover, if u is the minimizer in V
Λ
(Ω), then the functional part w of u is 0.

(4) Let a ≥ 0 have an isolated minimum xm, and let u ∈ VΛ
(Ω) be the minimum of problem (5.4). If u = w∘ + ψ

is the canonical splitting of u, thenw = 0 andψ concentrates in xm, in the sense that, for every x ∉ mon(xm),
ψ(x) ∼ 0. Moreover, ⟨ψ, φ∗⟩∗ ∼ 0 for every φ in the dual of V(Ω).

Proof. (1) This follows from Theorem 4.3, as the functional ‖∇u‖2L2(Ω) + ∫Ω a|u|
2 dx admits a minimum on

every finite-dimensional subspace of V
Λ
.

(2) This follows from Corollary 4.5.

(3) In [13, Lemma 3.1], it was proved that, if we consider problem (5.1), we have that S(0) = S, and S(0)
is attained inD

0
(Ω) if, and only if, Ω = ℝN . Therefore, if Ω = ℝN , the result follows from point (2). If Ω ̸= ℝN ,

the fact that S̃(0) = S + ε follows from Theorem 4.7 (3). Moreover, all minimizing sequences {un}n converge
weakly to 0 in H1

, therefore they converge strongly in L2(Ω) and so they converge pointwise a.e., hence, by
Theorem 4.7 (5), we deduce that, in the splitting u = w∘ + ψ, we have that w = 0, namely the ultrafunction

solution coincides with its singular part.

(4) We start by following the approach of [13]. We let U be a minimizer of

inf

u∈D1,2

0

(Ω)

[u]2
D1,2

‖u‖2L2∗
and, for every ε > 0, let Uε(r) := ε

2−N
2 U( rε ). Let δ > 0 be such that Bδ(xm) ⊆ Ω, and let uδ,ε be defined as

follows:

uδ,ε =
{{{
{{{
{

Uε(r) if r ≤ δ,
Uε(δ) Uε(r)−Uε(δΘ)Uε(δ)−Uε(δΘ) if δ < r ≤ δΘ,
0 if r > δΘ,

where Θ is a constant given in [13, Lemma 2.4]. Moreover, if F(u) := ‖∇u‖2L2(Ω) + ∫Ω a|u|
2 dx, for δ

1
, δ

2
small

enough, we have that F(uδ
1
,ε) ≤ F(uδ

2
,ε). Then (uε,ε) is a minimizing net (for ε → 0), so we can use Theo-

rem 4.7 (4). As (uε,ε) converges pointwise to 0, we obtain that w = 0, whilst the definition of the net ensures
the concentration of ψ in xm. The last statement is again a direct consequence of Theorem 4.7 (4).
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Let us notice that the above theorem shows a strong difference between the ultrafunctions and the classi-

cal case. The existence of solutions in V
Λ
(Ω) is ensured independently of the sign of a whilst, as discussed

in [13, Section 4], the conditions on a for the existence of solutions in the approach of Brasco and Squassina
are essentially optimal. Of course, ultrafunction solutions might be very wild in general; their particular

structure can be described in some cases, depending on a.

5.2 The singular variational problem

5.2.1 Statement of the problem

LetW be a C1-function defined inℝ \ {0} such that

lim

t→0
W(t) = +∞

and

lim

t→±∞

W(t)
t2
= 0.

We are interested in the singular problem (SP).

Naive formulation of problem SP. Find a continuous function

u : Ω → ℝ,

which satisfies the equation

− ∆u +W(u) = 0 in Ω (5.5)

with the following boundary condition:

u(x) = g(x) for x ∈ ∂Ω, (5.6)

where Ω is an open set such that ∂Ω ̸= 0 and g ∈ L1(∂Ω) is a function different from 0 for every x which
changes sign, e.g. g(x) = ±1. Clearly, this problem does not have any solution in C1. This problem could be

reformulated as a kind of free boundary problem in the following way:

Classical formulation of problem SP. Find two open sets Ω
1
and Ω

2
and two functions

ui : Ωi → ℝ, i = 1, 2,

such that all the following conditions are fulfilled:

Ω = Ω
1
∪ Ω

2
∪ Ξ, where Ξ = Ω

1
∩ Ω

2
∩ Ω;

−∆ui +W(ui) = 0 in Ωi , i = 1, 2; (5.7)

ui(x) = g(x) for x ∈ ∂Ω ∩ ∂Ωi , i = 1, 2;
lim

x→Ξ
ui(x) = 0;

Ξ is locally a minimal surface. (5.8)

Condition (5.8) is natural, since formally equation (5.5) is the Euler–Lagrange equation relative to the

energy

E(u) = 1
2

∫
Ω

(|∇u|2 +W(u)) dx, (5.9)

and the density of this energy diverges as x → Ξ. In general this problem is quite involved since the set Ξ

cannot be a smooth surface and hence, it is difficult to be characterized. However, this problem becomes

relatively easy if formulated in the framework of ultrafunctions.
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Let us recall that the Laplace operator of an ultrafunction u ∈ V∘(Ω) is defined as the only ultrafunction
∆

∘u ∈ V∘(Ω) such that ◻∫
Ω

∆

∘uv dx = −◻∫
Ω

Du ⋅ Dv dx, for all v ∈ V∘
0

(Ω),

where

V∘
0

(Ω) := {v ∈ V∘(Ω) : for all x ∈ ∂Ω ∩ Γ, v(x) = 0}.

Notice that, we can assert that ∆

∘u(x) = D ⋅ D(x) only in x ≁ ∂Ω∗.

Ultrafunction formulation of problem SP⁶. Find u ∈ V∘(Ω) such that

u(x) ̸= 0 for all x ∈ (Ω)∗ ∩ Γ, (5.10)

−∆∘u +W(u) = 0 for x ∈ Ω∗ ∩ Γ, (5.11)

u(x) = g∘(x) for x ∈ (∂Ω)∗ ∩ Γ. (5.12)

As we will see in the next section, the existence of this problem can be easily proven using variational

methods.

5.2.2 The existence result

The easiest way to prove the existence of an ultrafunction solution of problem SP is achieved exploiting the

variational structure of equation (5.11). Let us consider the extension

E∘(u) = ◻∫
Ω

(
1

2

|Du|2 +W(u)) dx (5.13)

of the functional (5.9) to the space

V∘g(Ω) := {u ∈ V∘(Ω) : for all x ∈ (∂Ω)∗ ∩ Γ, u(x) = g(x)}.

Remark 5.3. We remark that the integration is taken over Ω

∗
, but u is defined in Ω

∗
. This is important, in

fact, for some x ∈ Ω∗, x ∼ ∂Ω∗, the value of Du(x) depends on the value of u in some point y ∈ ∂Ω∗, y ∼ x.
This is a remarkable difference between the usual derivative and the ultrafunction derivative.

Lemma 5.4. Equation (5.11) is the Euler–Lagrange equation of the functional (5.13).

Proof. We use the expression of ◻∫ as given in Definition 3.6. As
E∘(u) = ◻∫

Ω

(
1

2

|Du|2 +W(u)) dx,

let us compute separately the variations given by

1

2

|Du|2 andW(u). As◻∫
Ω

∗
1

2

|Du|2 dx = ∑
a∈Γ∩Ω∗ 12 |Du(a)|2 da

is a quadratic form, for v ∈ V∘
0

(Ω), we have that

(
d
du)
∗

(◻∫
Ω

∗
1

2

|Du|2 dx)[v] = ◻∫
Ω

∗ Du Dv dx = ◻∫
Ω

∗(−∆
∘u ⋅ v) dx.

6 If u is an ultrafunction andW,W, etc. are functions, for short, we shall writeW(u),W(u), etc. instead ofW∗(u), (W)∗(u), etc.
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The variation given byW(u) for v ∈ V∘
0

(Ω) is

(
d
du)
∗

(◻∫
Ω

∗(W(u) dx))[v] = (
d
du)
∗

∑
a∈Γ∩Ω∗ W(u(a))v(a) da = ◻∫

Ω
∗ W
(u(x))v(x) dx.

Therefore, the total variation of E∘ is

dE∘(u)[v] = ◻∫
Ω

∗(−∆
∘u +W(u))v dx,

which proves our thesis.

The existence of an ultrafunction solution of problem SP follows from the following lemma.

Lemma 5.5. The functional (5.13) has a minimizer.

Proof. The functional E∘(u) is coercive in the sense that, for any c ∈ ℝ∗,

Ec := {u ∈ Vg(Ω) : E∘(u) ≤ c}

is hypercompact (in the sense of NSA), since Vg(Ω) is a hyperfinite-dimensional affine manifold. Then, since

E∘ is hypercontinuous (in the sense of NSA), the result follows.

Regarding Ξ being a minimal surface, we can prove the following:

Proposition 5.6. Let u be the ultrafunction minimizer of problem (5.13), as given by Lemma 5.5. Then the sets

Ω
1
= {x ∈ Ω : for all y ∈ mon(x) ∩ Γ, u(y) > 0},

Ω
2
= {x ∈ Ω : for all y ∈ mon(x) ∩ Γ, u(y) < 0}

are open, hence

Ξ := {x ∈ Ω : there exist y
1
, y

2
∈ mon(x) ∩ Γ such that u(y

1
) < 0, u(y

2
) > 0}

is closed.

Proof. This follows from overspill⁷. Let us prove it for Ω
1
. Let x ∈ Ω

1
. By definition of Ω

1
, for every ε ∼ 0,

we have that u(y) < 0 for every y ∈ Bε(x) ∩ Γ. Hence, by overspill, there exists a real number r > 0 such that
u(y) < 0 for every y ∈ B∗r (x) ∩ Γ. As Bσr (x) ⊂ B∗r (x) ∩ Γ, we deduce that the open ball Br(x) ⊆ Ω1

.

Notice that property (1) in Proposition 5.6 is a first step towards property (5.8) in the classical formulation

of problem SP. It is our conjecture, in fact, that Ξ is a minimal surface, at least under some rather general

hypothesis. We have not been able to prove this yet, however.

Let us conclude with a remark. When studying problems like problem (5.13) with ultrafunctions, one

would like to be able to generalize certain properties of elliptic equations based on the maximum principle.

For example, one would expect to have the following properties:

(1) Let Ω be a bounded connected open set with smooth boundary and let g be a bounded function. Then, if

u = w∘ + ψ

is the canonical splitting of u, as given in Definition 3.9, we have that w ∈ L∞ and ψ(x) ∼ 0 for every

x ∈ Ω.

7 Overspill is a well-known and very useful property in nonstandard analysis. The idea behind the version that we use here is the

following: if a certain property P(x) holds for every x ∼ 0, then there must be a real number r > 0 such that P(x) holds for every
x < r. For a proper formulation of overspill, we refer to [16].
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(2) Let Ω
1
, Ω

2
be the sets defined in Proposition 5.6. Then in Ω

1
∪ Ω

2
, we have

−∆w +W(w) = 0,
∆ψ(x) ∼ 0.

(3) If a = inf(g), b = sup(g) andW(t) ≥ 0 for all t ∈ ℝ \ (a, b), we have that

a ≤ u(x) ≤ b.

However, in the spaces of ultrafunctions constructed in this paper, the maximum principle does not

hold directly. This is due to the fact that the kernel of the derivative is, in principle, larger than the space

of constants. This problem could be avoided by modifying the space of ultrafunctions. As this leads to some

technical difficulties, we prefer to postpone this study to a future paper.
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