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Abstract. By virtue of Γ−convergence arguments, we investigate the sta-

bility of variational eigenvalues associated with a given topological index for

the fractional p−Laplacian operator, in the singular limit as the nonlocal op-
erator converges to the p−Laplacian. We also obtain the convergence of the

corresponding normalized eigenfunctions in a suitable fractional norm.

1. Introduction.

1.1. Overview. Let 1 < p < ∞, s ∈ (0, 1) and let Ω ⊂ RN be a bounded domain
with Lipschitz boundary ∂Ω. Recently, the following nonlocal nonlinear operator
was considered in [7, 9, 21, 25, 26, 27, 30]

(−∆p)
s u(x) := 2 lim

ε↘0

ˆ
RN\Bε(x)

|u(x)− u(y)|p−2 (u(x)− u(y))

|x− y|N+s p
dy, x ∈ RN .

(1)
For p = 2, this definition coincides (up to a normalization constant depending on
N and s, see [8]) with the linear fractional Laplacian (−∆)s, defined by

(−∆)s = F−1 ◦Ms ◦ F ,
where F is the Fourier transform operator and Ms is the multiplication by |ξ|2 s.

Many efforts have been devoted to the study of problems involving the fractional
p−Laplacian operator, among which we mention eigenvalue problems [7, 21, 27, 30],
regularity theory [14, 26, 28, 29] and existence of solutions within the framework
of Morse theory [25]. For the motivations that lead to the study of such operators,
we refer the reader to the contribution [9] of Caffarelli. For completeness, we also
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mention that other types of nonlocal quasilinear operators, defined by means of
extension properties, can be found in the literature (see [37]).

In this paper, we are concerned with Dirichlet eigenvalues of (−∆p)
s on the set

Ω. These are the real (positive) numbers λ admitting nontrivial solutions to the
following problem {

(−∆p)
su = λ |u|p−2 u, in Ω,

u = 0, in RN \ Ω.
(2)

It is known that it is possible to construct an infinite sequence of such eigenvalues
diverging to +∞. This is done by means of variational methods similar to the
so-called Courant minimax principle, that we briefly recall below. Then our main
concern is the study of the singular limit of these variational eigenvalues as s↗ 1,
in which case the limiting problem of (2) is formally given by{

−∆pu = λ |u|p−2 u, in Ω,

u = 0, on ∂Ω,
(3)

where ∆pu = div(|∇u|p−2∇u) is the familiar p−Laplace operator.
In order to neatly present the subject, we first need some definitions. The natural

setting for equations involving the operator (−∆p)
s is the space W s,p

0 (RN ), defined
as the completion of C∞0 (RN ) with respect to the standard Gagliardo semi-norm

[u]W s,p(RN ) :=

(ˆ
RN

ˆ
RN

|u(x)− u(y)|p

|x− y|N+s p
dx dy

) 1
p

. (4)

Furthermore, in order to take the Dirichlet condition u = 0 in RN \Ω into account,
we consider the space

W̃ s,p
0 (Ω) =

{
u : RN → R : [u]W s,p(RN ) < +∞ and u = 0 in RN \ Ω

}
,

endowed with (4). Since Ω is Lipschitz, the latter coincides with the space used
in [6, 7] and defined as the completion of C∞0 (Ω) with respect to [ · ]W s,p(RN ) (see
Proposition B.1 below). Then equation (2) has to be intended in the following weak
sense:ˆ

RN

ˆ
RN

|u(x)− u(y)|p−2 (u(x)− u(y)) (ϕ(x)− ϕ(y))

|x− y|N+s p
dx dy = λ

ˆ
Ω

|u|p−2 uϕdx,

for every ϕ ∈ W̃ s,p
0 (Ω). Let us introduce

Ss,p(Ω) = {u ∈ W̃ s,p
0 (Ω) : ‖u‖Lp(Ω) = 1},

and

S1,p(Ω) = {u ∈W 1,p
0 (Ω) : ‖u‖Lp(Ω) = 1},

where W 1,p
0 (Ω) is the completion of C∞0 (Ω) with respect to the Lp norm of the

gradient. The m−th (variational) eigenvalues of (2) and (3) can be obtained as

λsm,p(Ω) := inf
K∈Ws

m,p(Ω)
max
u∈K

[u]p
W s,p(RN )

, (5)

and

λ1
m,p(Ω) := inf

K∈W1
m,p(Ω)

max
u∈K

‖∇u‖pLp(Ω).

In the previous formulas, we noted for 0 < s ≤ 1

Ws
m,p(Ω) = {K ⊂ Ss,p(Ω) : K symmetric and compact, i(K) ≥ m} , (6)
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and i(K) denotes the Krasnosel’skĭı genus of K. We recall that for every nonempty
and symmetric subset A ⊂ X of a Banach space, its Krasnosel’skĭı genus is defined
by

i(A) = inf
{
k ∈ N : ∃ a continuous odd map f : A→ Sk−1

}
, (7)

with the convention that i(A) = +∞, if no such an integer k exists. For complete-
ness, we also mention that for m = 1 and m = 2 the previous definitions coincide
with

λs1,p(Ω) = min
u∈Ss,p(Ω)

[u]p
W s,p(RN )

, global minimum,

and

λs2,p(Ω) = inf
γ∈Σ(u1,−u1)

max
u∈γ([0,1])

[u]p
W s,p(RN )

, mountain pass level,

where u1 is a minimizer associated with λs1,p(Ω) and Σ(u1,−u1) is the set of contin-
uous paths on Ss,p(Ω) connecting u1 and −u1 (see [11, Corollary 3.2] for the local
case, [7, Theorem 5.3] for the nonlocal one).

Remark 1.1. For the limit problem (3), the continuity with respect to p of the
(variational) eigenvalues λ1

m,p has been first studied by Lindqvist [31] and Huang
[24] in the case of the first and second eigenvalue, respectively. Then the problem
has been tackled in more generality in [10, 35, 32]. We also cite the recent paper
[13] where some generalizations (presence of weights, unbounded sets) have been
considered.

1.2. Main result. In order to motivate the investigation pursued in the present
paper, it is useful to observe that based upon the results by Bourgain, Brezis and
Mironescu [3, 4], we have that if u ∈W 1,p

0 (Ω)

lim
s↗1

(1− s) [u]p
W s,p(RN )

= K(p,N) ‖∇u‖pLp(Ω), (8)

(see Proposition 2.8 below). The constant K(p,N) is given by

K(p,N) :=
1

p

ˆ
SN−1

|〈σ, e〉|p dHN−1(σ), e ∈ SN−1. (9)

It is not difficult to see that, due to symmetry reasons, the definition of K(p,N) is
indeed independent of the direction e ∈ SN−1.

Formula (8) naturally leads to argue that the nonlocal variational eigenvalues
λsm,p could converge (once properly renormalized) to the local ones λ1

m,p. This
is the content of the main result of the paper. Observe that we can also assure
convergence of the eigenfunctions in suitable (fractional) Sobolev norms.

Theorem 1.2. Let Ω ⊂ RN be an open and bounded Lipschitz set. For any 1 <
p <∞ and m ∈ N \ {0}

lim
s↗1

(1− s)λsm,p(Ω) = K(p,N)λ1
m,p(Ω).

Moreover, if us is an eigenfunction of (2) corresponding to the variational eigen-
value λsm,p(Ω) and such that ‖us‖Lp(Ω) = 1, then there exists a sequence {sk}k∈N ⊂
(0, 1) converging to 1 such that

lim
k→∞

[usk − u]W t,q(RN ) = 0, for every p ≤ q <∞ and every 0 < t <
p

q
,

where u is an eigenfunction of (3) corresponding to the variational eigenvalue
λ1
m,p(Ω) and such that ‖u‖Lp(Ω) = 1.
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Remark 1.3 (The case p = 2). To the best of our knowledge this result is new
already in the linear case p = 2, namely for the fractional Laplacian operator
(−∆)s. In the theory of stochastic partial differential equations this corresponds to
the case of a stable Lévy process. The kernel corresponding to (−∆)s determines
the probability distribution of jumps in the value of the stock price, assigning less
probability to big jumps as s increases to 1. Therefore, since the parameter s has to
be determined through empirical data, the stability of the spectrum with respect to
s allows for more reliable models of random jump-diffusions, see [2] for more details.

It is also useful to recall that for p = 2, problems (2) and (3) admit only a discrete
set of eigenvalues, whose associated eigenfunctions give an Hilbertian basis of L2(Ω)
(once properly renormalized). Then we have that these eigenvalues coincide with
those defined by (5), see Theorem A.2 below.

One of the main ingredients of the proof of Theorem 1.2 is a Γ−convergence
result for Gagliardo semi-norms, proven in Theorem 3.1 below. Namely, by defining
the family of functionals Es,p : Lp(Ω)→ [0,+∞] as

Es,p(u) :=

{
(1− s)

1
p [u]W s,p(RN ), if u ∈ W̃ s,p

0 (Ω),

+∞ otherwise,
(10)

and E1,p : Lp(Ω)→ [0,+∞] by

E1,p(u) :=

{
K(p,N)

1
p ‖∇u‖Lp(Ω), if u ∈W 1,p

0 (Ω),

+∞ otherwise.
(11)

we prove that for sk ↗ 1 we have

E1,p(u) =
(

Γ− lim
k→∞

Esk,p
)

(u), for all u ∈ Lp(Ω), (12)

where Γ− lim denotes the Γ−limit of functionals, with respect to the norm topology
of Lp(Ω). We refer to [12] for the relevant definitions and facts needed about
Γ−convergence.

Remark 1.4. We point out that a related Γ−convergence result can be found in the
literature, see [36, Theorem 8] by A. Ponce. While his result is for the semi-norms
(1− s) [ · ]W s,p(Ω) on a bounded set Ω, ours is for the semi-norms (1− s) [ · ]W s,p(RN )

on the whole RN . Moreover, the techniques used in the proofs are slightly different,
indeed for the Γ−lim inf inequality we follow the one used in [1] for the s−perimeter
functional. Such a proof exploits a blow-up technique, introduced by Fonseca and
Müller in the context of lower-semicontinuity for quasi-convex functionals, see [20].
As a byproduct of the method, we obtain a variational characterization of the
constant K(p,N) appearing in the limit (see Lemma 3.9 below), which is quite
typical of the blow-up procedure.

Remark 1.5. In Theorem 1.2 the variational eigenvalues are defined by means
of the Krasnosel’skĭı genus, but the same result still holds by replacing it with a
general index i having the following properties:

(i) i(K) ∈ N \ {0} is defined whenever K 6= ∅ is a compact and symmetric subset
of a topological vector space, such that 0 6∈ K;

(ii) if X is a topological vector space and ∅ 6= K ⊆ X \ {0} is compact and
symmetric, then there exists U ⊂ X \ {0} open set such that K ⊆ U and

i(K̂) ≤ i(K) for any compact, symmetric and nonempty K̂ ⊆ U ;
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(iii) if X,Y are two topological vector spaces, ∅ 6= K ⊆ X \ {0} is compact and
symmetric and π : K → Y \ {0} is continuous and odd, then i(π(K)) ≥ i(K) .

Apart from the Krasnosel’skĭı genus, other examples are the Z2−cohomological index
[17] and the Ljusternik-Schnirelman Category [38, Chapter 2].

1.3. Plan of the paper. In Section 2, we collect various preliminary results, such
as sharp functional inequalities and convergence properties in the singular limit
s ↗ 1. We point out that even if most of the results of this section are well-
known, we need to prove them in order to carefully trace the sharp dependence on
the parameter s in all the estimates. In Section 3, we prove the Γ−convergence
(12). For completeness, we also include a convergence result for dual norms, in the
spirit of Bourgain-Brezis-Mironescu’s result. Then the main result Theorem 1.2 is
proven in Section 4. Two appendices close the paper and contribute to make it
self-contained.

2. Preliminaries.

2.1. Some functional inequalities. We start with an interpolation inequality.

Proposition 2.1 (Interpolation inequality). For every t ∈ (0, 1) and 1 < p ≤ q <
r ≤ +∞, we set

α := t
p

q

r − q
r − p

.

Then, for every u ∈ C∞0 (RN ) and every 0 < β < α, we have

β
1
q [u]Wβ,q(RN ) ≤ C

(
α

α− β

) 1
q

‖u‖(1−θ) (1− βα )
Lp(RN )

‖u‖θLr(RN )

×
(

(1− t)
1
p [u]W t,p(RN )

) β
α (1−θ)

.

(13)

where C = C(N, p, q) > 0 and θ = θ(p, q, r) ∈ [0, 1) is defined by1

θ =
r

r − p
q − p
q

. (14)

In the limit case t = 1, the previous holds in the form

β
1
q [u]Wβ,q(RN ) ≤ C

(
α

α− β

) 1
q

‖u‖(1−θ) (1− βα )
Lp(RN )

‖u‖θLr(RN ) ‖∇u‖
β
α (1−θ)
Lp(RN )

, (15)

Proof. We first consider the case t ∈ (0, 1). Let u ∈ C∞0 (RN ), then we have

[u]q
Wβ,q(RN )

=

ˆ
{|h|>1}

ˆ
RN

|u(x+ h)− u(x)|q

|h|N+β q
dx dh

+

ˆ
{|h|≤1}

ˆ
RN

|u(x+ h)− u(x)|q

|h|N+β q
dx dh.

1For r = +∞, α and θ are defined accordingly by α = t p
q

and θ = q−p
q

.
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The first integral is estimated byˆ
{|h|>1}

ˆ
RN

|u(x+ h)− u(x)|q

|h|N+β q
dx dh

≤ 2q−1

ˆ
{|h|>1}

(ˆ
RN

(
|u(x+ h)|q + |u(x)|q

)
dx

)
dh

|h|N+β q

= 2q
ˆ
{|h|>1}

dh

|h|N+β q

(ˆ
RN
|u|q dx

)
≤ N ωN 2q

β q
‖u‖q (1−θ)

Lp(RN )
‖u‖q θ

Lr(RN )
,

where θ ∈ [0, 1) is determined by scale invariance and is given precisely by (14). In
conclusion,ˆ

{|h|>1}

ˆ
RN

|u(x+ h)− u(x)|q

|h|N+β q
dx dh ≤ N ωN 2q

β q
‖u‖q (1−θ)

Lp(RN )
‖u‖q θ

Lr(RN )
. (16)

For the other term, for every ` > β we haveˆ
{|h|≤1}

ˆ
RN

|u(x+ h)− u(x)|q

|h|N+β q
dx dh

=

ˆ
{|h|≤1}

(ˆ
RN

|u(x+ h)− u(x)|q

|h|` q
dx

)
dh

|h|N+(β−`) q

≤
ˆ
{|h|≤1}

(ˆ
RN

|u(x+ h)− u(x)|p

|h|
`

1−θ p
dx

)q 1−θ
p

×
(ˆ

RN
|u(x+ h)− u(x)|r dx

)q θr dh

|h|N+(β−`) q .

We choose
`

1− θ
= t, i.e. ` = t

p

q

r − q
r − p

= α, (17)

and use [6, Lemma A.1], i.e.ˆ
RN

|u(x+ h)− u(x)|p

|h|t p
dx ≤ C (1− t) [u]p

W t,p(RN )
, (18)

for some C = C(N, p) > 0. On the other hand, we have(ˆ
RN
|u(x+ h)− u(x)|r dx

)q θr
≤ 2q θ

(ˆ
RN
|u|r dx

)q θr
.

Thus we getˆ
{|h|≤1}

ˆ
RN

|u(x+ h)− u(x)|q

|h|N+β q
dx dh

≤ C

α− β
2q θ ‖u‖q θ

Lr(RN )

(
(1− t)

1
p [u]W t,p(RN )

)q (1−θ)
,

(19)

where C = C(N, p, q) > 0. By combining (16) and (19), we get

[u]q
Wβ,q(RN )

≤ C

β
‖u‖q (1−θ)

Lp(RN )
‖u‖q θ

Lr(RN )

+
C

α− β
‖u‖q θ

Lr(RN )

(
(1− t)

1
p [u]W t,p(RN )

)q (1−θ)
,
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possibly with a different C = C(N, p, q) > 0. We now use the previous inequality
with uχ(x) = u(xχ−1/q) and optimize in χ > 0. We get

χα−β [u]q
Wβ,q(RN )

− C χα

s
‖u‖q (1−θ)

Lp(RN )
‖u‖q θ

Lr(RN )

≤ C

α− β
‖u‖q θ

Lr(RN )

(
(1− t)

1
p [u]W t,p(RN )

)q (1−θ)
,

(20)

still for some constant C = C(N, p, q) > 0. Observe that by hypothesis on s we
have α− β > 0. The left-hand side of (20) is maximal for

χ0 =

α− β
α

β

C

[u]q
Wβ,q(RN )

‖u‖q (1−θ)
Lp(RN )

‖u‖q θ
Lr(RN )

 1
β

.

Thus we get(
α− β
α

β

C

)α−β
β β

α

[u]
q αβ
Wβ,q(RN )

‖u‖q (1−θ) α−ββ
Lp(RN )

‖u‖q θ
α−β
β

Lr(RN )

≤ C

α− β
‖u‖q θ

Lr(RN )

×
(

(1− t)
1
p [u]W t,p(RN )

)q (1−θ)
,

that is

[u]W s,q(RN ) ≤
(
C

β

α

α− β

) 1
q

‖u‖(1−θ)(1− βα )
Lp(RN )

‖u‖θLr(RN )

(
(1− t)

1
p [u]W t,p(RN )

) β
α (1−θ)

,

with C = C(N, p, q) > 0.
In order to prove (15), it is sufficient to repeat the previous proof, this time

replacing the choice (17) by

` =
p

q

r − q
r − p

, so that
`

1− θ
= 1,

and then using thatˆ
RN

|u(x+ h)− u(x)|p

|h|p
dx ≤

ˆ
RN
|∇u|p dx,

in place of (18), which follows from basic calculus and invariance by translations of
the Lp norm.

Corollary 2.2. Let 1 < p < ∞ and s ∈ (0, 1). Then, for every u ∈ C∞0 (RN ), we
have

s (1− s) [u]p
W s,p(RN )

≤ C ‖u‖(1−s) p
Lp(RN )

‖∇u‖s p
Lp(RN )

, (21)

for some constant C = C(N, p) > 0. In particular, if Ω ⊂ RN is an open bounded

set with Lipschitz boundary, then we have W 1,p
0 (Ω) ↪→W s,p

0 (RN ) and

s (1− s) [u]p
W s,p(RN )

≤ C
(
λ1

1,p(Ω)
)s−1 ‖∇u‖pLp(Ω), u ∈W 1,p

0 (Ω), (22)

where C = C(N, p) > 0.

Proof. In order to prove (21), it is sufficient to use (15) with t = 1, β = s and q = p:
observe that in this case α = 1 and θ = 0.

For u ∈ C∞0 (Ω), by inequality (21) we get

[u]p
W s,p(RN )

≤ C

s (1− s)
‖u‖(1−s) pLp(Ω) ‖∇u‖

s p
Lp(Ω).
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If we now apply the Poincaré inequality for W 1,p
0 (Ω) on the right-hand side, we

obtain inequality (22) for functions in C∞0 (Ω). By using density of C∞0 (Ω) in the

space W 1,p
0 (Ω), we get the desired conclusion.

In what follows, we define the sharp Sobolev constant

Tp,s := sup
u∈W s,p

0 (RN )

{(ˆ
RN
|u|

N p
N−s p dx

)N−s p
N

: [u]W s,p(RN ) = 1

}
. (23)

We need the following result by Maz’ya and Shaponishkova, see [34, Theorem 1].

Theorem 2.3 (Estimate of the sharp constant). Let 1 < p < ∞ and s ∈ (0, 1) be
such that s p < N . Then for the constant (23) we have the estimate

Tp,s ≤ T
s (1− s)

(N − s p)p−1
,

for some T = T (N, p) > 0.

Theorem 2.4 (Hardy inequality for convex sets). Let 1 < p < ∞ and s ∈ (0, 1)
with s p > 1. Then for any convex domain Ω ⊂ RN and every u ∈ C∞0 (Ω) we have(

s p− 1

p

)p
CN,p

∥∥∥∥ uδsΩ
∥∥∥∥p
Lp(Ω)

≤ (1− s) [u]pW s,p(Ω). (24)

with δΩ(x) = dist(x, ∂Ω) and CN,p > 0 a costant depending on N and p only.

Proof. The Hardy inequality without sharp constant can be found in [15, Theorem
1.1]. The sharp constant for convex sets was obtained in [33, Theorem 1.2], where
it is proven

DN,p,s
∥∥∥∥ uδsΩ

∥∥∥∥p
Lp(Ω)

≤ (1− s) [u]pW s,p(Ω).

The optimal constant DN,p,s is given by

DN,p,s = 2π
N−1

2
Γ( 1+s p

2 )

Γ(N+s p
2 )

ˆ 1

0

(
1− r

s p−1
p

)p
(1− r)1+s p

dr.

We claim that

DN,p,s ≥
(
s p− 1

p

)p CN,p
1− s

. (25)

Indeed, by concavity of the map τ 7→ τ (s p−1)/p we have

1− r
s p−1
p ≥ s p− 1

p
(1− r), r ≥ 0.

Thus we get

ˆ 1

0

(
1− r

s p−1
p

)p
(1− r)1+s p

dr ≥
(
s p− 1

p

)p ˆ 1

0

(1− r)p−1−s p dr =

(
s p− 1

p

)p
1

p (1− s)
.

On the other hand, from the definition of Γ we also have

Γ

(
1 + s p

2

)
≥
ˆ 1

0

t
s p−1

2 e−t dt ≥
ˆ 1

0

t
p−1

2 e−t dt =: c1(p) > 0,

and also

Γ

(
N + s p

2

)
≤
ˆ 1

0

t
N−1

2 e−t dt+

ˆ +∞

1

t
N−2+p

2 e−t dt =: c2(p) > 0.
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By using these estimates, we get (25).

The next result is a Poincaré inequality for Gagliardo semi-norms. This is clas-
sical, but as always we have to carefully trace the sharp dependence on s of the
constants concerned.

Proposition 2.5 (Poincaré inequalities). Let s ∈ (0, 1) and 1 ≤ p < ∞. Let
Ω ⊂ RN be an open and bounded set. Then

‖u‖pLp(Ω) ≤ C diam(Ω)s p (1− s) [u]p
W s,p(RN )

, u ∈ C∞0 (Ω), (26)

for a constant C = C(N, p) > 0. Moreover, if Ω is convex and s p > 1, then

‖u‖pLp(Ω) ≤
C

(s p− 1)p
diam(Ω)s p (1− s) [u]pW s,p(Ω), u ∈ C∞0 (Ω), (27)

possibly with a different constant C = C(N, p) > 0, still independent of s.

Proof. Since Ω is bounded, we have Ω ⊂ BR(x0), with 2R = diam(Ω) and x0 ∈ Ω.
Let h ∈ RN be such that |h| > 2R, so that

x+ h ∈ RN \ Ω, for every x ∈ Ω.

Then for every u ∈ C∞0 (Ω) we haveˆ
Ω

|u(x)|p dx =

ˆ
Ω

|u(x+ h)− u(x)|p dx = |h|s p
ˆ
RN

|u(x+ h)− u(x)|p

|h|s p
dx

≤ |h|s pCN,p (1− s) [u]p
W s,p(RN )

,

where in the last estimate we used [6, Lemma A.1]. By taking the infimum on the
admissible h, we get (26).

Let us now suppose that Ω is convex and s p > 1. In order to prove (27), we
proceed as in the proof of [6, Proposition B.1]. For every u ∈ C∞0 (Ω) we have

[u]p
W s,p(RN )

= [u]pW s,p(Ω) + 2

ˆ
Ω

ˆ
RN\Ω

|u(x)|p

|x− y|N+s p
dx dy.

In order to estimate the last term, we first observe that, if δΩ(x) = dist(x, ∂Ω), we
getˆ

Ω

ˆ
RN\Ω

|u(x)|p

|x− y|N+s p
dx dy ≤

ˆ
Ω

(ˆ
RN\BδΩ(x)(x)

1

|x− y|N+s p
dy

)
|u(x)|p dx

= N ωN

ˆ
Ω

(ˆ +∞

δΩ(x)

%−1−s p d%

)
|u(x)|p dx

≤ N ωN

ˆ
Ω

|u|p

δs pΩ

dx,

where we also used that s p > 1. We can now use Hardy inequality (24), so to
obtain ˆ

Ω

ˆ
RN\Ω

|u(x)|p

|x− y|N+s p
dx dy ≤ N ωN

(
p

s p− 1

)p
1− s
CN,p

[u]pW s,p(Ω).

By also using that 1− s < 1, we finally get

[u]p
W s,p(RN )

≤
[
1 + 2N ωN

(
p

s p− 1

)p
1

CN,p

]
[u]pW s,p(Ω).

By combining this, (26) and observing that p/(s p− 1) > 1, we get (27).
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Remark 2.6. The constant in (27) degenerates as s p goes to 1. Indeed, for s p ≤ 1
a Poincaré inequality like (27) is not possible (see [7, Remark 2.7]).

2.2. From nonlocal to local. We will systematically use the following result.

Theorem 2.7 ([3]). Let 1 < p < ∞ and let Ω ⊂ RN be an open bounded set with
Lipschitz boundary. Then, for every u ∈W 1,p(Ω), we have

lim
s↗1

(1− s) [u]pW s,p(Ω) = K(p,N) ‖∇u‖pLp(Ω), (28)

where K(p,N) is defined in (9).

More precisely, we will need the following extension. The main difference with
Theorem 2.7 is that functions are now taken in W 1,p

0 (Ω) and the seminorm on Ω is
replaced by the seminorm on the whole RN .

Proposition 2.8. Let 1 < p < ∞ and let Ω ⊂ RN be an open bounded set with
Lipschitz boundary. Assume that u ∈W 1,p

0 (Ω), then we have

lim
s↗1

(1− s) [u]p
W s,p(RN )

= K(p,N) ‖∇u‖pLp(Ω), (29)

where K(p,N) > 0 is defined in (9).

Proof. Let u ∈W 1,p
0 (Ω), we observe that u ∈W s,p

0 (RN ) for all s ∈ (0, 1) thanks to
Corollary 2.2. Furthermore, since Ω is a bounded set, by virtue of Theorem 2.7 we
have

lim
s↗1

(1− s) [u]pW s,p(Ω) = K(p,N) ‖∇u‖pLp(Ω).

Let us first prove that (29) holds for u ∈ C∞0 (Ω). Recalling that u = 0 outside Ω,
we have

(1− s) [u]p
W s,p(RN )

= (1− s) [u]pW s,p(Ω) + 2 (1− s)
ˆ

Ω

ˆ
RN\Ω

|u(x)|p

|x− y|N+s p
dx dy.

This yields

lim
s↗1

(1− s) [u]p
W s,p(RN )

= K(p,N)

ˆ
Ω

|∇u|p dx

+ 2 lim
s↗1

(1− s)
ˆ

Ω

ˆ
RN\Ω

|u(x)|p

|x− y|N+s p
dy dx.

Since u ∈ C∞0 (Ω), we have dist(∂K, ∂Ω) > 0 where K is the support of u. It follows
that ˆ

Ω

(ˆ
RN\Ω

|u(x)|p

|x− y|N+sp
dy

)
dx ≤ ‖u‖pLp(Ω)

ˆ
RN\Ω

1

δK(y)N+s p
dy,

where we set δK(y) = dist (y, ∂K). We can assume without loss of generality that
Ω contains the origin, then if R = dist(RN \ Ω, ∂K) > 0, there exists a constant
C = C(Ω, R) > 0 such that2

ˆ
RN\Ω

1

δK(y)N+s p
dy ≤ C

ˆ
RN\Ω

1

|y|N+s p
dy.

2Since Ω is bounded, we have Ω ⊂ BM (0) for M large enough. Then we get

δK(y) ≥ R ≥
R

M
|y|, if y ∈ BM (0) \ Ω,

and

δK(y) ≥ |y| −M +R ≥
R

M
|y|, if y ∈ RN \BM (0).
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By recalling that 0 ∈ Ω, the last integral stays bounded as s goes to 1. It follows
that

lim
s↗1

(1− s)
ˆ

Ω

(ˆ
RN\Ω

|u(x)|p

|x− y|N+sp
dy

)
dx = 0,

and the claim is proved for u ∈ C∞0 (Ω).

Assume now that u ∈W 1,p
0 (Ω). Then there exists a sequence {φj}j∈N ⊂ C∞0 (Ω)

such that ‖∇φj −∇u‖Lp(Ω) → 0 as j goes to ∞. Thus for every ε > 0, there exists
j0 ∈ N (independent of s) such that for every j ≥ j0∣∣∣‖∇u‖Lp(Ω) − ‖∇φj‖Lp(Ω)

∣∣∣ ≤ ‖∇φj −∇u‖Lp(Ω) ≤ ε. (30)

Also, if we fix s0 > 0 by inequality (22) we have

(1− s)
1
p [φj − u]W s,p(RN ) ≤ C ‖∇φj −∇u‖Lp(Ω),

with C = C(N, p,Ω) > 0 independent of s ≥ s0 and j. Consequently∣∣∣(1− s) 1
p [φj ]W s,p(RN ) − (1− s)

1
p [u]W s,p(RN )

∣∣∣ ≤ (1− s)
1
p [φj − u]W s,p(RN ) ≤ C ε,

for every j ≥ j0 and s ≥ s0. This in particular implies

(1− s)
1
p [φj ]W s,p(RN ) − C ε ≤ (1− s)

1
p [u]W s,p(RN ) ≤ (1− s)

1
p [φj ]W s,p(RN ) + C ε.

By taking the limit as s goes to 1 in the previous inequality and using the first part
of the proof, we get for every j ≥ j0

K(p,N)
1
p ‖∇φj‖Lp(Ω) − C ε ≤ lim

s↗1
(1− s)

1
p [u]W s,p(RN )

≤ K(p,N)
1
p ‖∇φj‖Lp(Ω) + C ε.

If we now use (30) and exploit the arbitrariness of ε > 0, we get (29) for a general

u ∈W 1,p
0 (Ω).

2.3. Dual spaces. Let Ω ⊂ RN be as always an open and bounded set with Lips-
chitz boundary. Let 1 < p <∞ and s ∈ (0, 1), we set p′ = p/(p− 1) and

W−s,p
′
(Ω) =

{
F : W̃ s,p

0 (Ω)→ R : F linear and continuous
}
,

which is equipped with the natural dual norm

‖F‖W−s,p′ (Ω) = sup
u∈W̃ s,p

0 (Ω)\{0}

|〈F, u〉|
[u]W s,p(RN )

.

The symbol 〈·, ·〉 denotes the relevant duality product. For s = 1, the space

W−1,p′(Ω) and the corresponding dual norm are defined accordingly.
The following is the dual version of (22).

Lemma 2.9. Let F ∈W−s,p′(Ω), then we have

‖F‖W−1,p′ (Ω) ≤
(

C

s (1− s)

) 1
p (

λ1
1,p(Ω)

) s−1
p ‖F‖W−s,p′ (Ω). (31)

Proof. By (22) we have

[u]W s,p(RN ) ≤
(

C

s (1− s)

) 1
p (

λ1
1,p(Ω)

) s−1
p ‖∇u‖Lp(Ω), u ∈ C∞0 (Ω).
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Thus for every u ∈ C∞0 (Ω) \ {0} we have

|〈F, u〉|
[u]W s,p(RN )

≥
(
s (1− s)

C

) 1
p (

λ1
1,p(Ω)

) 1−s
p

|〈F, u〉|
‖∇u‖Lp(Ω)

.

By taking the supremum over u, the conclusion follows from the definition of dual
norm.

If F ∈ W−s,p
′
(Ω), by a simple homogeneity argument (i.e. replacing u by t u

and then optimizing in t) we have

max
u∈W̃ s,p

0 (Ω)

{
〈F, u〉 − (1− s) [u]p

W s,p(RN )

}
=

(
1

p

) 1
p−1 1

p′

(
‖F‖W−s,p′ (Ω)

(1− s)
1
p

)p′
.

Thus in particular we get

‖F‖W−s,p′ (Ω)

(1− s)
1
p

= p
1
p

(
−p′ min

u∈W̃ s,p
0 (Ω)

{
(1− s) [u]p

W s,p(RN )
− 〈F, u〉

}) 1
p′

. (32)

In the local case s = 1, with similar computations we get

‖F‖W−1,p′ (Ω)

K(p,N)
1
p

= p
1
p

(
−p′ min

u∈W 1,p
0 (Ω)

{
K(p,N) ‖∇u‖pLp(Ω) − 〈F, u〉

}) 1
p′

. (33)

2.4. A bit of regularity. We conclude this section with a regularity result. This
is not new, but once again our main concern is the dependence on s of the constants
entering in the estimates below. We also need to pay particular attention to the
case p = N , which becomes borderline in the limit as s goes 1.

Theorem 2.10. Let 1 < p <∞ and s ∈ (0, 1). If u ∈ W̃ s,p
0 (Ω) is an eigenfunction

of (−∆p)
s with eigenvalue λ, then we have:

• if 1 < p < N

‖u‖L∞(Ω) ≤
[

C

(N − s p)p−1
s (1− s)λ

] N
s p2

‖u‖Lp(Ω), (34)

for a constant C = C(N, p) > 0;

• if p = N and s ≥ 3/4

‖u‖L∞ ≤
[
C
(

diam(Ω)
)N 2 s−1

2

(1− s)λ
] 2
N

‖u‖LN (Ω), (35)

for a constant C = C(N) > 0;

• if p > N and s ∈ (0, 1) is such that s p > N

‖u‖L∞(Ω) ≤
[
C (1− s)λ

] 1
p ‖u‖Lp(Ω) diam (Ω)s−

N
p , (36)

for a constant C = C(N, p, s) > 0 not degenerating as s goes to 1.

Proof. In the case 1 < p < N , we have of course s p < N as well. Then by appealing
to [6, Theorem 3.3 & Remark 3.4] and [7, Remark 3.2] we know that

‖u‖L∞(Ω) ≤

[(
N

N − s p

)N−s p
s

p−1
p

Tp,s λ

] N
s p2

‖u‖Lp(Ω).
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where Tp,s is the sharp Sobolev constant (23). By using Theorem 2.3, we obtain

‖u‖L∞(Ω) ≤

[(
1

1− (s p)/N

)(1− s pN ) Ns p (p−1) T s
(N − s p)p−1

(1− s)λ

] N
s p2

‖u‖Lp(Ω).

Then from the previous we get (34), once it is noticed that(
1

1− τ

) (1−τ)
τ

≤ e, for 0 < τ < 1.

Let us now consider the case

p = N and
3

4
≤ s.

By proceeding as in the second part of the proof of3 [6, Theorem 3.3] and using the
same notation, after a Moser’s iteration we end up with

‖u‖L∞ ≤ C
(

λ

αsN (Ω)

) 2
N

‖u‖LN (Ω), (37)

where C = C(N) > 0 and the geometric constant αsN (Ω) is given by

αsN (Ω) = min
u∈W̃ s,N

0 (Ω)

{
[u]NW s,N (RN ) : ‖u‖L2N (Ω) = 1

}
.

Observe that this is not 0, since W̃ s,N
0 (Ω) ↪→ L2N (Ω) as soon as

2N < N∗ =
N

1− s
⇐⇒ 1

2
< s,

which is verified. In order to estimate αsN (Ω) from below, we observe that by
choosing q = p = N , t = s and β = 1/2 in (13), we get (C denotes a constant
depending on N only, varying from one line to another)

1

2
[u]N

W
1
2
,N (RN )

≤ C
(

2 s

2 s− 1

)
‖u‖N (1− 1

2 s )
LN (RN )

(
(1− s) [u]NW s,N (RN )

) 1
2 s

≤ C
(

2 s

2 s− 1

) (
diam(Ω)

)N 2 s−1
2
(

(1− s) [u]NW s,N (RN )

)
,

where in the second inequality we used Poincaré inequality (26). We can now use
Sobolev inequality in the left-hand side, i.e.

[u]N
W

1
2
,N (RN )

≥ 1

TN,1/2
‖u‖NL2N (Ω),

where we used the definition (23). Then by joining the two previous estimates,
appealing to the definition of αsN (Ω) and recalling that s ≥ 3/4, we get

αsN (Ω) ≥ 1

C

(
diam(Ω)

)N 1−2 s
2

(1− s)
,

where C = C(N) > 0. By inserting this estimate in (37), we get the conclusion in
this case as well.

3This is based on the Moser’s iteration technique, this time with the Sobolev embedding

W̃ s,N
0 (Ω) ↪→ L2N (Ω) in place of W̃ s,N

0 (Ω) ↪→ L
N

1−s (Ω).

The proof in [6, Theorem 3.3] is for the first eigenfunction, but it can be easily adapted to the
case of any eigenfunction, as observed in [7, Remark 3.2].
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For s p > N , we already know that W̃ s,p
0 (Ω) ↪→ C0,s−N/p, but of course we need

to estimate the embedding constant in terms of s. We take x0 ∈ RN and R > 0.
We consider the ball BR(x0) having radius R and centered at x0, then we have

ˆ
BR(x0)

∣∣∣∣∣u−
 
BR(x0)

u dz

∣∣∣∣∣
p

dx ≤
ˆ
BR(x0)

 
BR(x0)

|u(x)− u(z)|p dz dx

We now observe thatˆ
BR(x0)

 
BR(x0)

|u(x)− u(z)|p dz dx

≤2N
ˆ
BR(x0)

( 
B2R(x)

|u(x)− u(z)|p dz

)
dx

=2N
ˆ
BR(x0)

( 
B2R(0)

|u(x)− u(x+ h)|p dh

)
dx,

so that by exchanging the order of integration in the last integral

ˆ
BR(x0)

∣∣∣∣∣u−
 
BR(x0)

u dz

∣∣∣∣∣
p

dx ≤ C (2R)s p sup
0<|h|<2R

ˆ
BR(x0)

|u(x)− u(x+ h)|p

|h|s p
dx,

for C = C(N) > 0. If we now divide by RN and use once again [6, Lemma A.1], we
get ( 

BR(x0)

∣∣∣∣∣u−
 
BR(x0)

u dz

∣∣∣∣∣
p

dx

) 1
p

≤ C (2R)s−
N
p (1− s)

1
p [u]W s,p(RN ).

By arbitrariness of R and x0, we obtain that u is in C0,s−N/p(RN ) by Campanato’s
Theorem (see [22, Theorem 2.9]), with the estimate

|u(x)− u(y)| ≤ C (1− s)
1
p [u]W s,p(RN ) |x− y|s−

N
p , (38)

where C = C(N, p, s) > 0. The constant does not degenerate as s goes to 1. The

last estimate is true for every u ∈ W̃ s,p
0 (Ω). On the other hand, if u ∈ W̃ s,p

0 (Ω) is
an eigenfunction with eigenvalue λ, then by the equation we also have

[u]W s,p(RN ) = λ
1
p ‖u‖Lp(Ω).

By inserting this estimate in (38), we get

|u(x)− u(y)| ≤
[
C (1− s)λ

] 1
p ‖u‖Lp(Ω) |x− y|s−

N
p , x, y ∈ RN . (39)

Finally, the estimate (36) follows from (39) by taking y ∈ RN \ Ω.

3. A Γ−convergence result. In this section we will prove the following result.

Theorem 3.1 (Γ−convergence). Let 1 < p < ∞ and Ω ⊂ RN be an open and
bounded set, with Lipschitz boundary. We consider {sk}k∈N a sequence of strictly
increasing positive numbers, such that sk goes to 1 as k goes to ∞. Then

E1,p(u) =
(

Γ− lim
k→∞

Esk,p
)

(u), for all u ∈ Lp(Ω). (40)

where Esk,p and E1,p are the functionals defined by (10) and (11).
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This Γ−convergence result will follow from Propositions 3.3 and 3.11 below.
Before proceeding further with the proof of this result, let us highlight that by
combining Theorem 3.1 and [12, Proposition 6.25], we get the following.

Corollary 3.2. Under the assumptions of Theorem 3.1, we also consider a sequence
of functions {Fsk}k∈N ⊂ Lp

′
(Ω) weakly converging in Lp

′
(Ω) to F . If we introduce

the functionals defined on Lp(Ω) by

Fsk,p(u) := Esk,p(u)p +

ˆ
Ω

Fsk u dx and F1,p(u) := E1,p(u)p +

ˆ
Ω

F udx,

(41)
then we also have

F1,p(u) =
(

Γ− lim
h→∞

Fsk,p
)

(u), for all u ∈ Lp(Ω).

3.1. The Γ− lim sup inequality.

Proposition 3.3 (Γ − lim sup inequality). Let u ∈ Lp(Ω) and let {sk}k∈N be a
sequence of strictly increasing positive numbers, such that sk converges to 1 as k

goes to ∞. Then there exists a sequence {uk}k∈N ⊂ W̃ sk,p
0 (Ω) converging to u in

Lp(Ω) such that

lim sup
k→∞

Esk,p(uk)p ≤ E1,p(u)p.

Proof. If u 6∈ W 1,p
0 (Ω), there is nothing to prove, thus let us take u ∈ W 1,p

0 (Ω). If
we take the constant sequence uk = u and then apply the modification of Bourgain-
Brezis-Mironescu result of Proposition 2.8, we obtain

lim sup
k→∞

(1− sk) [uk]p
W sk,p(RN )

= K(p,N)

ˆ
Ω

|∇u|p dx = E1,p(u)p,

concluding the proof.

In order to prove the Γ − lim inf inequality, we need to find a different charac-
terization of the constant K(p,N). The rest of this subsection is devoted to this
issue.

In what follows, we note by Q = (−1/2, 1/2)N the open N−dimensional cube
of side length 1. Given a ∈ RN , we define the linear function Ψa(x) = 〈a, x〉. For
every a ∈ SN−1, we define the constant

Θ(p,N ; a) := inf

{
lim inf
s↗1

(1− s) [us]
p
W s,p(Q) : us → Ψa in Lp(Q)

}
. (42)

We will show in Lemma 3.9 that indeed this quantity does not depend on the
direction a.

Remark 3.4. If a ∈ RN \ {0}, then we have

inf

{
lim inf
s↗1

(1− s) [us]
p
W s,p(Q) : us → Ψa in Lp(Q)

}
= |a|p Θ

(
p,N ;

a

|a|

)
. (43)

Remark 3.5. For every 1 < p <∞ and every a ∈ SN−1 we have

Θ(p,N ; a) ≤ K(p,N), (44)

where K(p,N) is the constant defined in (9). Indeed, by definition of Θ(p,N ; a),
if we take the constant sequence us = Ψa and use the Bourgain-Brezis-Mironescu
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result, we get

Θ(p,N ; a) ≤ lim inf
s↗1

(1− s) [Ψa]pW s,p(Q) = K(p,N)

ˆ
Q

|∇Ψa|p dx.

This proves (44), since ∇Ψa has unit norm in Lp(Q).

We are going to prove that indeed K(p,N) = Θ(p,N ; a) for every a ∈ SN−1. To
this aim, we first need a couple of technical results. In what follows, by W s,p

0 (Q)
we note the completion of C∞0 (Q) with respect to the semi-norm

[u]W s,p(Q) :=

(ˆ
Q

ˆ
Q

|u(x)− u(y)|p

|x− y|N+s p
dx dy

) 1
p

.

Lemma 3.6. For every 1 < p <∞ and every a ∈ SN−1 we have

Θ(p,N ; a) = inf

{
lim inf
s↗1

(1− s) [vs]
p
W s,p(Q) :

vs → Ψa in Lp(Q)
vs −Ψa ∈W s,p

0 (Q)

}
. (45)

Proof. By the definition (42) of Θ(p,N ; a), we already know that

Θ(p,N ; a) ≤ inf

{
lim inf
s↗1

(1− s) [vs]
p
W s,p(Q) :

vs → Ψa in Lp(Q)
vs −Ψa ∈W s,p

0 (Q)

}
.

In order to prove the reverse inequality, let us take a sequence {sk}k∈N such that
0 < sk < 1 and sk ↗ 1. Then we take {vk}k∈N such that

(1− sk) [vk]pW sk,p(Q) < +∞ and lim
k→∞

‖vk −Ψa‖Lp(Ω) = 0.

Without loss of generality, we can assume that sk p > 1, so that for the space
W sk,p

0 (Ω) we have the Poincaré inequality (27). We introduce a smooth cut-off
function η ∈ C∞0 (Q) such that

0 ≤ η ≤ 1, η ≡ 1, on τ Q, |∇η| ≤ C

1− τ
,

for some parameter 0 < τ < 1. Then we define the sequence {wk}k∈N by

wk := vk η + Ψa (1− η).

We observe that by construction we have wk −Ψa ∈W s,p
0 (Q). Moreover we haveˆ

Q

|wk −Ψa|p dx =

ˆ
Q

ηp |vk −Ψa|p dx ≤
ˆ
Q

|vk −Ψa|p dx,

thus wk still converges in Lp(Q) to Ψa. We now have to estimate the Gagliardo
semi-norm of wk. To this aim, we first observe that

wk(x)− wk(y) = vk(x) η(x) + Ψa(x) (1− η(x))− vk(y) η(y)−Ψa(y) (1− η(y))

= η(x)
(
vk(x)− vk(y)

)
+ (1− η(x))

(
Ψa(x)−Ψa(y)

)
+
(
η(x)− η(y)

)(
vk(y)−Ψa(y)

)
.

(46)

Let us set

V (x, y) = η(x)
vk(x)− vk(y)

|x− y|
N
p +sk

Π(x, y) = (1− η(x))
Ψa(x)−Ψa(y)

|x− y|
N
p +sk

,

and

Z(x, y) =
η(x)− η(y)

|x− y|
N
p +sk

(
vk(y)−Ψa(y)

)
.
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Then by definition of wk, (46) and Minkowski inequality we have

[wk]W sk,p(Q) = ‖V + Π + Z‖Lp(Q×Q) ≤ ‖V ‖Lp(Q×Q) + ‖Π‖Lp(Q×Q) + ‖Z‖Lp(Q×Q)

=

(ˆ
Q

ˆ
Q

|vk(x)− vk(y)|p

|x− y|N+sk p
η(x)p dx dy

) 1
p

+

(ˆ
Q

ˆ
Q

|Ψa(x)−Ψa(y)|p

|x− y|N+sk p
(1− η(x))p dx dy

) 1
p

+

(ˆ
Q

ˆ
Q

|η(x)− η(y)|p

|x− y|N+sk p
|vk(y)−Ψa(y)|p dx dy

) 1
p

.

By using the properties of η, we have obtained

[wk]W sk,p(Q) ≤ [vk]W sk,p(Q) +

(ˆ
Q

ˆ
Q\τ Q

|Ψa(x)−Ψa(y)|p

|x− y|N+sk p
dx dy

) 1
p

+
C

1− τ

(ˆ
Q

(ˆ
Q

dx

|x− y|N+sk p−p

)
|vk(y)−Ψa(y)|p dy

) 1
p

.

(47)

We have to estimate the last two integrals. By recalling that Ψa(x) = 〈a, x〉, we
have4 ˆ

Q

ˆ
Q\τ Q

|Ψa(x)−Ψa(y)|p

|x− y|N+sk p
dx dy ≤

ˆ
Q\τ Q

ˆ
Q

1

|x− y|N+sk p−p
dy dx

≤ C

1− sk
|Q \ τ Q|.

For the other integral, we have(ˆ
Q

(ˆ
Q

dx

|x− y|N+sk p−p

)
|vk(y)−Ψa(y)|p dy

) 1
p

≤ C

(1− sk)
1
p

‖vk −Ψa‖Lp(Ω),

with C = C(N, p) > 0. By collecting all these estimates and using them in (47), we
get

lim inf
k→∞

(1− sk)
1
p [wk]W sk,p(Q) ≤ lim inf

k→∞
(1− sk)

1
p [vk]W sk,p(Q)

+
C

1− τ
lim inf
k→∞

‖vk −Ψa‖Lp(Q) + C |Q \ τ Q|

= lim inf
k→∞

(1− sk)
1
p [vk]W sk,p(Q) + C |Q \ τ Q|.

By arbitrariness of 0 < τ < 1, this finally proves the desired result.

Before proceeding further, we need the following.

Lemma 3.7 (Linear functions are (s, p)−harmonic). Let a ∈ SN−1, we define
Ψa(x) = 〈a, x〉 as above. Let 1 < p < ∞ and s ∈ (0, 1) be such that s > (p − 1)/p.
Then for every ϕ ∈ C∞0 (Q) we haveˆ

RN

ˆ
RN

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy = 0. (48)

4We use that for x ∈ Qˆ
Q

1

|x− y|N+sk p−p
dy ≤

ˆ
B√

N
(x)

1

|x− y|N+sk p−p
dy =

ˆ
B√

N
(0)

1

|y|N+sk p−p
dy =

C

1− sk
,

with C = C(N, p) > 0
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Proof. We first observe that the double integral is well-defined and absolutely con-
vergent. Indeed,

ˆ
RN

ˆ
RN

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

=

ˆ
Q

ˆ
Q

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

+ 2

ˆ
Q

ˆ
RN\Q

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
ϕ(x) dx dy.

(49)

For the first term we haveˆ
Q

ˆ
Q

|Ψa(x)−Ψa(y)|p−1

|x− y|N+s p
|ϕ(x)− ϕ(y)| dx dy ≤

ˆ
Q

ˆ
Q

‖∇ϕ‖L∞ dx dy
|x− y|N+s p−p < +∞.

For the second one, by observing that the integral in the x variable is equivalently
performed on K := spt(ϕ) b Q, we get

ˆ
Q

ˆ
RN\Q

|Ψa(x)−Ψa(y)|p−1

|x− y|N+s p
|ϕ(x)| dx dy ≤

ˆ
K

ˆ
RN\Q

‖ϕ‖L∞(Q) dx dy

|x− y|N+s p−p+1
< +∞,

provided that s > (p− 1)/p.
In order to prove (48), for every ε > 0 we have

ˆ
RN

ˆ
RN

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

=

¨
{|x−y|≥ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
ϕ(x) dx dy

−
¨
{|x−y|≥ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
ϕ(y) dx dy

+

¨
{|x−y|<ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

= 2

¨
{|x−y|≥ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
ϕ(x) dx dy

+

¨
{|x−y|<ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

= 2

ˆ
RN

(ˆ
{|h|>ε}

|〈a, h〉|p−2 〈a, h〉
|h|N+s p

dh

)
ϕ(x) dx

+

¨
{|x−y|<ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

=

¨
{|x−y|<ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy,

where we used that by symmetry

ˆ
{|h|>ε}

|〈a, h〉|p−2 〈a, h〉
|h|N+s p

dh = 0.
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Moreover, we have (we still denote K = spt(ϕ))∣∣∣¨
{|x−y|<ε}

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

∣∣∣
≤ ‖∇ϕ‖L∞

ˆ
K+Bε(0)

(ˆ
{|h|<ε}

1

|h|N+s p−p dh

)
dx

≤ C εp (1−s)

1− s
‖∇ϕ‖L∞

∣∣∣K +B1(0)
∣∣∣.

By arbitrariness of ε we get the conclusion.

Lemma 3.8. Let a ∈ SN−1. For every 1 < p <∞ and s ∈ (0, 1) such that s p > 1,
let us be the unique solution of

min
{

[v]pW s,p(Q) : v −Ψa ∈W s,p
0 (Q)

}
. (50)

Then, us converges to Ψa in Lp(Ω) as s goes to 1. Moreover, we have

K(p,N) = lim
s↗1

(1− s) [Ψa]pW s,p(Q) = lim
s↗1

(1− s) [us]
p
W s,p(Q) (51)

Proof. Since we are interested in the limit as s goes to 1, without loss of generality
we can further assume that s > (p− 1)/p as well, i.e.

s > max

{
1

p
,
p− 1

p

}
.

The existence of a (unique, by strict convexity) solution us follows by the Direct
Methods, since coercivity of the functional v 7→ [v]pW s,p(Q) can be inferred thanks

to Poincaré inequality (27) (here we use the assumption s p > 1). We take ϕ ∈
W s,p

0 (Q), by minimality of us there holdsˆ
Q

ˆ
Q

|us(x)− us(y)|p−2(us(x)− us(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy = 0. (52)

Still by minimality of us, we also get

[us]W s,p(Q) ≤ [Ψa]W s,p(Q), (53)

since Ψa is admissible for problem (50). On the other hand, the linear function Ψa

is “almost” a solution of (50), thanks to Lemma 3.7. Indeed from (48) and (49),
for every ϕ ∈ C∞0 (Q) we getˆ

Q

ˆ
Q

|Ψa(x)−Ψa(y)|p−2(Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

= −2

ˆ
spt(ϕ)

ˆ
RN\Q

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
ϕ(x) dx dy.

Thus we obtain∣∣∣∣ˆ
Q

ˆ
Q

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

∣∣∣∣
≤ 2

ˆ
Q

ˆ
RN\Q

|ϕ(x)|
|x− y|N+s p−p+1

dx dy

≤ 2

ˆ
Q

ˆ
RN\BδQ(x)(x)

|ϕ(x)|
|x− y|N+s p−p+1

dx dy,
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where as before we set δQ(x) = dist(x, ∂Q). Hence,∣∣∣∣ˆ
Q

ˆ
Q

|Ψa(x)−Ψa(y)|p−2(Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

∣∣∣∣
≤ 2NωN

ˆ
Q

(ˆ +∞

δQ(x)

1

%2+s p−p d%

)
|ϕ(x)| dx

=
2NωN

1 + s p− p

ˆ
Q

|ϕ|
δ1+s p−p
Q

dx

≤ 2NωN
1 + s p− p

(ˆ
Q

|ϕ|p

δs pQ
dx

) 1
p (ˆ

Q

δ
p (1−s)
Q dx

) p−1
p

≤ C

(ˆ
Q

|ϕ|p

δs pQ
dx

) 1
p

.

Since we are assuming s > 1/p, we can apply Hardy inequality (24) to the last term
and obtain

ˆ
Q

ˆ
Q

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))

|x− y|N+s p
(ϕ(x)− ϕ(y)) dx dy

≤ C

s p− 1
[ϕ]W s,p(Q),

(54)

for some constant C = C(N, p) > 0 (observe that we used that 1 − s < 1). From
(52) and (54) we finally obtain for every ϕ ∈ C∞0 (Q)

ˆ
Q

ˆ
Q

|Ψa(x)−Ψa(y)|p−2 (Ψa(x)−Ψa(y))− |us(x)− us(y)|p−2(us(x)− us(y))

|x− y|N+sp

× (ϕ(x)− ϕ(y)) dx dy ≤ C [ϕ]W s,p(Q).

(55)

By density, the previous estimate is still true for every ϕ ∈ W s,p
0 (Q), thus we can

use (55) with ϕ = Ψa − us. We distinguish two cases.

Case p ≥ 2. We use the basic inequality (|s|p−2s − |t|p−2t)(s − t) ≥ c |s − t|p in
order to obtain from (55)

[Ψa − us]pW s,p(Q) ≤ C [Ψa − us]W s,p(Q),

for a constant C = C(N, p) > 0. This implies

lim
s↗1

(1− s) [Ψa − us]pW s,p(Q) = 0. (56)

Case 1 < p < 2. We use the inequality

(|s|p−2s− |t|p−2t) (s− t) ≥ c |s− t|2

(|s|2 + |t|2)
2−p

2

which gives

|s− t|p ≤ C
[
(|s|p−2s− |t|p−2t)(s− t)

] p
2

(|s|2 + |t|2)
2−p

2
p
2 ,
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for C = C(p) > 0. We set for notational simplicity Us(x, y) = us(x) − us(y) and
U(x, y) = Ψa(x)−Ψa(y). Then,

[Ψa − us]pW s,p(Q)

≤ C
ˆ
Q

ˆ
Q

[
(|U |p−2 U − |Us|p−2 Us)(U − Us)

] p
2

(|U |2 + |Us|2)
2−p

2
p
2

|x− y|N+s p
dx dy

≤ C
(ˆ

Q

ˆ
Q

(|U |p−2 U − |Us|p−2 Us)(U − Us)
|x− y|N+s p

dx dy

) p
2

×
(ˆ

Q

ˆ
Q

(|U |2 + |Us|2)
p
2

|x− y|N+s p
dx dy

) 2−p
2

≤ C
(

[Ψa − us]W s,p(Q)

) p
2
(

[us]
p
W s,p(Q) + [Ψa]pW s,p(Q)

) 2−p
2

,

where we used Hölder inequality with exponents 2/p and 2/(2 − p), relation (55)
and the subadditivity of the function t 7→ tp/2. The previous estimate and (53)
imply

[Ψa − us]pW s,p(Q) ≤ C [Ψa]
(2−p) p
W s,p(Q),

that is

(1− s) [Ψa − us]pW s,p(Q) ≤ C (1− s)p−1
(

(1− s) [Ψa]pW s,p(Q)

)2−p
.

Since 2− p < 1, after a simplification we get(
(1− s) [Ψa − us]pW s,p(Q)

)p−1

≤ C (1− s)p−1.

It thus follows again

lim
s↗1

(1− s) [Ψa − us]pW s,p(Q) = 0. (57)

Observe that as a byproduct of (56) and (57), we also get

lim
s↗1

∣∣∣(1− s) 1
p [Ψa]W s,p(Q) − (1− s)

1
p [us]W s,p(Q)

∣∣∣
≤ lim
s↗1

(1− s)
1
p [Ψa − us]W s,p(Q) = 0.

This shows that

lim
s↗1

(1− s)
1
p [Ψa]W s,p(Q) = lim

s↗1
(1− s)

1
p [us]W s,p(Q),

thus (51) is proved.
Finally, since us − u ∈W s,p

0 (Q), Q is a convex set and we are assuming s p > 1,
we can use Poincaré inequality (27) in conjuction with (56) or (57). In both cases
we have

lim
s↗1
‖us −Ψa‖pLp(Q) ≤ lim

s↗1

C

(s p− 1)p
(1− s) [us −Ψa]pW s,p(Q) = 0,

where C = C(N, p) > 0. This concludes the proof.

Finally, we can prove an equivalent characterization of K(p,N).
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Lemma 3.9. Let 1 < p <∞ and a ∈ SN−1, then we have

K(p,N) = Θ(p,N ; a).

In particular, Θ(p,N ; a) does not depend on the direction a.

Proof. By (44) we know that K(p,N) ≥ Θ(p,N ; a). In order to prove the reverse
inequality, we define the linear function Ψa(x) = 〈a, x〉. Let vs ∈ W s,p(Q) be a
sequence converging to Ψa in Lp(Q) and such that vs−Ψa ∈W s,p

0 (Q). We consider
the function us defined in Lemma 3.8, then from (51) we get

lim inf
s↗1

(1− s) [vs]
p
W s,p(Q) ≥ lim inf

s↗1
(1− s) [us]

p
W s,p(Q) = K(p,N).

By appealing to (45), we get Θ(p,N ; a) ≥ K(p,N) as well.

3.2. The Γ− lim inf inequality. At first, we need a technical result which will be
used various times.

Lemma 3.10. Let 1 < p < ∞ and s0 ∈ (0, 1). Let Ω ⊂ RN be an open and
bounded set with Lipschitz boundary. For every family of functions {us}s∈(s0,1)

such that us ∈ W̃ s,p
0 (Ω) and

(1− s) [us]
p
W s,p(RN )

≤ L, (58)

there exist an increasing sequence {sk}k∈N ⊂ (s0, 1) converging to 1 and a function

u ∈W 1,p
0 (Ω) such that

lim
k→∞

‖usk − u‖Lp(Ω) = 0.

Proof. By Poincaré inequality (26), the estimate (58) implies

‖us‖Lp(Ω) ≤ C1, for every s0 < s < 1, (59)

for some C1 = C1(N, p, diam(Ω), L) > 0. Moreover, again by [6, Lemma A.1] and
(58) there exists a constant C2 = C2(N, p, L) > 0 such that

sup
0<|ξ|<1

ˆ
RN

|us(x+ ξ)− us(x)|p

|ξ|s p
dx ≤ C2, for every s0 < s < 1. (60)

Since s > s0, from the previous estimate, we can also infer

sup
0<|ξ|<1

ˆ
RN

|us(x+ ξ)− us(x)|p

|ξ|s0p
dx ≤ C2, for every s0 < s < 1. (61)

Estimates (59) and (61) and the fact that us ≡ 0 in RN \ Ω enables us to use
the Riesz-Fréchet-Kolmogorov Compactness Theorem for Lp. Thus, there exists a
sequence {usk}k∈N and u ∈ Lp(RN ) such that

lim
k→∞

‖usk − u‖Lp(RN ) = 0.

In order to conclude, we need to prove that u ∈ W 1,p
0 (Ω). Up to a subsequence,

we can suppose that usk converges almost everywhere. This implies that u ≡ 0 in
RN \ Ω. Moreover, thanks to Fatou Lemma we can pass to the limit in (60) and
obtain

sup
0<|ξ|<1

ˆ
RN

|u(x+ ξ)− u(x)|p

|ξ|p
dx ≤ C2.

This implies that the distributional gradient of u is in Lp(RN ). Thus u ∈W 1,p(RN )
and it vanishes almost everywhere in RN \Ω. Since Ω is Lipschitz, this finally implies

that u ∈W 1,p
0 (Ω) by [5, Propostion IX.18].
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The following result will complete the proof of Theorem 3.1.

Proposition 3.11 (Γ − lim inf inequality). Given {sk}k∈N ⊂ R an increasing se-
quence converging to 1 and {uk}k∈N ⊂ Lp(Ω) converging to u in Lp(Ω), we have

E1,p(u)p ≤ lim inf
k→∞

Esk,p(uk)p. (62)

Proof. The proof follows that of [1, Lemma 7]. We start by observing that if

lim inf
k→∞

(1− sk) [uk]p
W sk,p(RN )

= +∞,

there is nothing to prove. Thus, let us suppose that

lim inf
k→∞

(1− sk) [uk]p
W sk,p(RN )

< +∞,

this implies that for k sufficiently large we have

uk ∈ W̃ sk,p
0 (Ω) and (1− sk) [uk]p

W sk,p(RN )
≤ L,

for some uniform constant L > 0. By Lemma 3.10, we get that u ∈W 1,p
0 (Ω).

We now continue the proof of (62). For every measurable set A ⊂ Ω we define
the absolutely continuous measure

µ(A) :=

ˆ
A

|∇u|p dy,

and we observe that, by Lebesgue’s Theorem

lim
r→0+

µ(x+ r Q)

rN
= lim
r→0+

1

rN

ˆ
x+r Q

|∇u|p dy = |∇u(x)|p for a. e. x ∈ Ω, (63)

where as before Q = (−1/2, 1/2)N . For a Borel set E ⊂ Ω we define

αk(E) := (1− sk) [uk]pW sk,p(E) and α(E) := lim inf
k→∞

αk(E).

For x ∈ Ω, set Cr(x) := x+ r Q. We claim that

lim inf
r→0

α(Cr(x))

µ(Cr(x))
≥ K(p,N), for µ− a. e. x ∈ Ω. (64)

In order to prove (64), for every measurable function v, we introduce the notation

vr,x(y) :=
v(r y + x)− u(x)

r
, y ∈ Q.

We keep on using the notation Ψa(x) = 〈a, x〉, for any given vector a ∈ RN . Then
we will prove (64) at any point x ∈ Ω such that

lim
r↘0
‖ur,x −Ψa‖Lp(Q) = 0, where a = ∇u(x), (65)

and such that (63) holds. We recall that (65) is true at almost every x ∈ Ω by [16,
Theorem 2, page 230]. Therefore, to prove (64) it will be sufficient to show that

lim inf
r→0

α(Cr(x))

rN
≥ K(p,N) |∇u(x)|p.

To this aim, let rj ↘ 0 be a sequence such that

lim
j→∞

α(Crj (x))

rNj
= lim inf

r→0

α(Cr(x))

rN
.

For any j ∈ N we can choose k = k(j) so large that

i) αk(j)(Crj (x)) ≤ α(Crj (x)) + rN+1
j ;
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ii) r
(1−sk(j)) p

j ≥ 1− 1/j;

iii) r−N−pj ‖uk(j) − u‖pLp(Crj (x)) < 1/j.

Then, by using i), the definitions of αk and (uk)r,x and ii) we have

α(Crj (x))

rNj
≥
αk(j)(Crj (x))

rNj
− rj

=

(1− sk(j)) r
N−sk(j) p

j rpj

[
(uk(j))rj ,x

]p
W
sk(j),p(Q)

rNj
− rj

≥
(

1− 1

j

)
(1− sk(j))

[
(uk(j))rj ,x

]p
W
sk(j),p(Q)

− rj .

On the other hand by iii) we have∥∥∥(uk(j))rj ,x − urj ,x
∥∥∥
Lp(Q)

<

(
1

j

) 1
p

,

while by (65)

lim
j→∞

‖urj ,x −Ψa‖Lp(Q) = 0.

Thus by triangle inequality we get that (uk(j))rj ,x converges to Ψa in Lp(Q), with
direction a = ∇u(x). This in turn implies

lim
j→∞

α(Crj (x))

rNj
≥ lim inf

j→∞

[(
1− 1

j

)
(1− sk(j))

[
(uk(j))rj ,x

]p
W
sk(j),p(Q)

− rj
]

≥ Θ

(
p,N ;

∇u(x)

|∇u(x)|

)
|∇u(x)|p

= K(p,N) |∇u(x)|p, for µ−a. e. x ∈ Ω,

thanks to the definition (42) of Θ(p,N ; a), property (43) and Lemma 3.9. This
proves (64).

The conclusion is exactly as in [1, Lemma 7]. Let us consider for ε > 0 the
following family of closed cubes

F :=
{
Cr(x) ⊂ Ω : (1 + ε)α

(
Cr(x)

)
≥ K(p,N)µ

(
Cr(x)

)}
.

By observing that

α
(
Cr(x)

)
= α(Cr(x)) and µ

(
Cr(x)

)
= µ(Cr(x)),

and using (64), we get that F is a fine Morse cover (see [19, Definition 1.142]) of
µ−almost all of Ω, then we can apply a suitable version of Besicovitch Covering
Theorem (see [19, Corollary 1.149]) and extract a countable subfamily of disjoint
cubes {Ci}i∈I ⊂ F such that µ(Ω \ ∪i∈ICi) = 0. This yields

K(p,N)

ˆ
Ω

|∇u|p dx = K(p,N)µ

(⋃
i∈I

Ci

)
= K(N, p)

∑
i∈I

µ(Ci)

≤ (1 + ε)
∑
i∈I

α(Ci) ≤ (1 + ε) lim inf
k→∞

∑
i∈I

αk(Ci)

≤ (1 + ε) lim inf
k→∞

(1− sk) [uk]p
W sk,p(RN )

.
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By the arbitrariness of ε we get

K(p,N)

ˆ
Ω

|∇u|p dx ≤ lim inf
k→∞

(1− sk) [uk]p
W sk,p(RN )

.

This concludes the proof.

3.3. A comment on dual norms. By using Theorem 3.1, we can prove a dual
version of the Bourgain-Brezis-Mironescu result. The result of this section is not
needed for the proof of Theorem 1.2 and is placed here for completeness.

Proposition 3.12. Let 1 < p <∞, for every F ∈ Lp′(Ω) we have

lim
s↗1

(1− s)−
1
p ‖F‖W−s,p′ (Ω) = K(p,N)−

1
p ‖F‖W−1,p′ (Ω). (66)

Proof. We are going to use the variational characterization (32) for dual norms. By
Corollary 3.2, the family of functionals

Es,p(u)p −
ˆ
F udx, u ∈ Lp(Ω), (67)

Γ−converges to

E1,p(u)p −
ˆ

Ω

F udx, u ∈ Lp(Ω).

We now observe that the functionals (67) are equi-coercive on Lp(Ω). Indeed, if
u ∈ Lp(Ω) is such that

Es,p(u)p −
ˆ

Ω

F udx ≤M, (68)

this of course implies that u ∈ W̃ s,p
0 (Ω). Moreover, by Young inequality and (31)

we have

M ≥ (1− s) [u]p
W s,p(RN )

−
ˆ

Ω

F udx

≥ (1− s) [u]p
W s,p(RN )

− 1

p′

(
‖F‖W−s,p(Ω)

(1− s)
1
p

)p′
− 1− s

p
[u]p

W s,p(RN )

≥ 1

p′
(1− s) [u]p

W s,p(RN )
− C ‖F‖W−1,p′ (Ω),

for a constant C = C(N, p,Ω) > 0 independent of s (provided s is sufficiently close
to 1). Thus from (68) we get

(1− s) [u]p
W s,p(RN )

≤M p′ + C p′ ‖F‖W−1,p′ (Ω).

The desired equicoercivity in Lp(Ω) now follows from Lemma 3.10. In conclusion,
from (32), the Γ−convergence and (33) we get

lim
s↗1

‖F‖W−s,p′ (Ω)

(1− s)
1
p

= lim
s↗1

p
1
p

(
−p′ min

u∈Lp(Ω)

{
Es,p(u)p −

ˆ
Ω

F udx

}) 1
p′

= p
1
p

(
−p′ min

u∈Lp(Ω)

{
E1,p(u)p −

ˆ
Ω

F udx

}) 1
p′

=
‖F‖W−1,p(Ω)

K(p,N)
1
p

,

as desired.
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Remark 3.13. We recall the following dual characterization of ‖ · ‖W−s,p′ (Ω) from

[6, Section 8]

‖F‖W−s,p′ (Ω) = min
ϕ∈Lp′ (RN×RN )

{
‖ϕ‖Lp′ (RN×RN ) : R∗s,p(ϕ) = F in Ω

}
, (69)

where R∗s,p is the adjoint of the linear continuous operator Rs,p : W̃ s,p
0 (Ω) →

Lp(RN × RN ) defined by

Rs,p(u)(x, y) =
u(x)− u(y)

|x− y|
N
p +s

, for every u ∈ W̃ s,p
0 (Ω).

Formula (69) is the nonlocal analog of the well-known duality formula

‖F‖W−1,p′ (Ω) = min
V ∈Lp′ (Ω;RN )

{
‖V ‖Lp′ (Ω;RN ) : −div V = F in Ω

}
.

Then we end this section with the following curious convergence result.

Corollary 3.14. Let 1 < p <∞ and F ∈ Lp′(Ω), then we have

lim
s↗1

[
(1− s)−

1
p min
ϕ∈Lp′ (RN×RN )

{
‖ϕ‖Lp′ (RN×RN ) : R∗s,p(ϕ) = F in Ω

}]
= K(p,N)−

1
p min
V ∈Lp′ (Ω;RN )

{
‖V ‖Lp′ (Ω;RN ) : −div V = F in Ω

}
.

4. Proof of Theorem 1.2.

4.1. Convergence of the variational eigenvalues. By Theorem 3.1, we already
know that

E1,p(u) =
(

Γ− lim
k→∞

Esk,p
)

(u), for all u ∈ Lp(Ω).

For every 1 < p <∞, let us define the functional gp : Lp(Ω)→ [0,∞) by

gp(u) := ‖u‖Lp(Ω).

We now observe that for every increasing sequence kn and for any sequence {un}n∈N
⊂ Lp(Ω) such that

M := sup
n∈N
Eskn ,p(un) < +∞,

there exists a subsequence {unj}j∈N such that

lim
j→∞

gp(unj ) = gp(u).

Indeed, this is a consequence of Lemma 3.10. Then the functionals Es,p and gp
satisfy all the assumptions in [13, Corollary 4.4], which implies

lim
k→∞

(
inf

K∈Km,p(Ω)
sup
u∈K
Esk,p(u)

)
= inf
K∈Km,p(Ω)

sup
u∈K
E1,p(u), (70)

where

Km,p(Ω) =
{
K ⊂ {u : gp(u) = 1} : K compact and symmetric, i(K) ≥ m

}
.

In order to conclude, we only need to show that the minimax values with respect to

the W̃ s,p
0 (Ω)−topology are equal to those with respect to the weaker topology Lp(Ω).

Observe now that, for every b ∈ R, the restriction of gp to {u ∈ Lp(Ω) : Es,p(u) ≤ b}
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is continuous: for s = 1 this is classical, while for 0 < s < 1 we can appeal for
example to [6, Theorem 2.7]. Whence, [13, Corollary 3.3] yields

inf
K∈Km,p(Ω)

sup
u∈K
E1,p(u) = inf

K∈W1
m,p(Ω)

sup
u∈K
E1,p(u), (71)

inf
K∈Km,p(Ω)

sup
u∈K
Esk,p(u) = inf

K∈Wsk
m,p(Ω)

sup
u∈K
Esk,p(u), (72)

where we recall that Ws
m,p(Ω) has been defined in (6). By using (71) and (72) in

(70), the assertion follows by definition of λsm,p(Ω) and λ1
m,p(Ω).

4.2. Convergence of the eigenfunctions. For every s ∈ (0, 1), let us ∈ W̃ s,p
0 (Ω)

be an eigenfunction corresponding to the variational eigenvalue λsm,p(Ω), normalized
by ‖us‖Lp(Ω) = 1. Then it verifies

(1− s) [us]
p
W s,p(RN )

= (1− s)λsm,p(Ω).

The convergence of the eigenvalues, which has been proved in the previous subsec-
tion, implies that

(1− s) [us]
p
W s,p(RN )

≤ K(p,N)λ1
m,p(Ω) + 1, (73)

up to choosing 1 − s sufficiently small. By appealing again to Lemma 3.10, this
in turn implies that there exists a sequence {sk}k∈N with sk ↗ 1 such that the
corresponding sequence of eigenfunctions {usk}k∈N converges strongly in Lp to a

function u ∈W 1,p
0 (Ω). By strong convergence, we still have ‖u‖Lp(Ω) = 1.

In order to prove that u is an eigenfunction of the local problem, let us notice
that each usk weakly solves

(−∆p)
sku = λskm,p(Ω) |usk |p−2 usk , in Ω, u = 0, in RN \ Ω.

Thus it is the unique minimizer of the following strictly convex problem

min
v∈Lp(Ω)

{
Esk,p(v)p + p

ˆ
Ω

Fsk v dx

}
,

where

Fsk = −(1− sk)λskm,p(Ω) |usk |p−2 usk ∈ Lp
′
(Ω).

Observe that the sequence {Fsk}k∈N converges strongly in Lp
′
(Ω) to the function

F = −K(p,N)λ1
m,p(Ω) |u|p−2 u, (74)

thanks to the strong convergence of {usk}k∈N and to the first part of the proof.
By appealing to the Γ−convergence result of Corollary 3.2, we thus get that u is a
solution (indeed the unique, again by strict convexity) of the limit problem

min
v∈Lp(Ω)

{
E1,p(v)p + p

ˆ
Ω

F v dx

}
,

with F ∈ Lp′(Ω) defined in (74). As a solution of this problem, u has to satisfy the
relevant Euler-Lagrange equation, i.e. u weakly solves

−∆pu = λ1
m,p(Ω) |u|p−2 u, in Ω, u = 0, on ∂Ω.

This proves that the renormalized eigenfunctions {usk}k∈N converges strongly in
Lp(Ω) to an eigenfunction u corresponding to λ1

m,p(Ω) having unit norm.

In order to improve the convergence in W̃ β,q
0 (Ω) for every p ≤ q <∞ and every

β < p/q, it is now sufficient to use the interpolation inequality of Proposition 2.1
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with r = +∞ and t = sk, so that α = sk p/q. Observe that since sk is converging
to 1, if we choose β < p/q we can always suppose that

β < sk
p

q
,

up to choosing k large enough. This yields for a constant5 C = C(N, p, q, β) > 0
which varies from one line to another

lim
k→∞

β
1
q [usk − u]Wβ,q(RN )

≤ C lim
k→∞

‖usk − u‖
p
q

(
1− qp

β
sk

)
Lp(Ω) ‖usk − u‖

(1− pq )
L∞(Ω)

×
(

(1− sk)
1
p [usk − u]W sk,p(RN )

) β
sk

≤ C lim
k→∞

‖usk − u‖
p
q

(
1− qp

β
sk

)
Lp(Ω)

×
(
‖usk‖L∞(Ω) + ‖u‖L∞(Ω)

)(1− pq )

×
(

(1− sk)
1
p [usk ]W sk,p(RN ) + (1− sk)

1
p [u]W sk,p(RN )

) β
sk .

If we use (34) (if 1 < p < N), (35) (if p = N) or (36) (if p > N) to bound the L∞

norms, (73) and Proposition 2.8 to bound the Gagliardo semi-norms, we finally get

lim
k→∞

β
1
q [usk − u]Wβ,q(RN ) ≤ C lim

k→∞
‖usk − u‖

p
q

(
1− qp

β
sk

)
Lp(RN )

= 0,

as desired.

Remark 4.1 (Pushing the convergence further). In the previous result, we used
that the initial convergence in Lp norm can be “boosted” by combining suitable
interpolation inequalities and regularity estimates exhibiting the correct scaling in
s. Thus, should one obtain that eigenfunctions are more regular with good a priori
estimates, the previous convergence result could still be improved. Though it is
known that eigenfunctions are continuous for every 1 < p < ∞ and 0 < s < 1 (see
[28, 26]), unfortunately the above mentioned results do not provide estimates with
an explicit dependence on s and thus we can not directly use them.

In the case p = 2, regularity estimates of this type can be found in [8, Lemma
4.4] for bounded solutions of the equation in the whole space

(−∆)su = f(u) in RN ,

where f is a (smooth) nonlinearity. For such an equation, the authors prove
Schauder-type estimates for the solutions, with constants independent of s (pro-
vided s > s0 > 0).

Appendix A. Courant vs. Ljusternik-Schnirelmann. Here we prove that for
p = 2 the variational eigenvalues defined by the Ljusternik-Schnirelman procedure
(5) coincide with the usual eigenvalues coming from Spectral Theory (see Theorem
A.2 below). Thus in particular for p = 2 definition (5) give all the eigenvalues. This
fact seems to belong to the folklore of Nonlinear Analysis, but since we have not
been able to find a reference in the literature, we decided to include this Appendix.

5We may notice that the constant C degenerates as β approaches p/q.
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Let H1 ⊂ H2 be two separable infinite dimensional Hilbert spaces, endowed with
scalar products 〈·, ·〉Hi and norms

‖u‖Hi =
√
〈u, u〉Hi , u ∈ Hi, i = 1, 2.

On the space H1 is defined a symmetric bilinear form Q : H1×H1 → R. We assume
the following:

1. the inclusion I : H1 → H2 is a continuous and compact linear map;

2. Q is continuous and coercive, i.e. for C ≥ 1

1

C
‖u‖2H1

≤ Q[u, u], Q[u, v] ≤ C ‖u‖H1
‖v‖H1

u, v ∈ H1.

Thus Q defines a scalar product on H1, whose associated norm is equivalent
to ‖ · ‖H1

.

We set

S = {u ∈ H1 : ‖u‖H2 = 1}.
Then the restriction of the functional u 7→ Q[u, u] to S has countably many critical
values 0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · ↗ +∞, with associated a sequence of
critical points {ϕn}n∈N ⊂ S defining a Hilbertian basis of H2.6 The critical point
ϕi satisfies

Q[ϕi, u] = λi 〈ϕi, u〉H2
, for every u ∈ H1,

so in particular

Q[ϕi, ϕj ] = λi δij , i, j ∈ N \ {0}.
These critical points have a variational characterization: indeed, if we introduce for
every m ∈ N \ {0}

Em = {E ⊂ H1 : E vector space with dim(E) ≥ m},

and

Fm = {F ⊂ S : F = E ∩ S for some E ∈ Em},
then we have

λm = min
F∈Fm

max
u∈F
Q[u, u].

A minimizer for the previous problem is given by

Fm := Span
{
ϕ1, . . . , ϕm

}
. (75)

We also recall that the eigenvalues can be also characterized as

λm = min
u∈H1\{0}

{
Q[u, u]

‖u‖2H2

: 〈u, ϕi〉H2
= 0, i = 1, . . . ,m− 1

}
.

6These are indeed the inverses of the eigenvalues of the resolvent operator R : H2 → H2 defined

by:

for f ∈ H2, R(f) ∈ H1 ⊂ H2 is the unique solution of

Q[R(f), u] = 〈f, u〉H2
, for every u ∈ H1.

The hypotheses above guarantee that R is a well-defined compact, positive and self-adjoint linear

operator. Then discreteness of the spectrum follows from the Spectral Theorem, see for example
[23, Theorem 1.2.1].
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Lemma A.1. Let m ∈ N \ {0}, we define

Wm = {K ⊂ S : K compact and symmetric, i(K) ≥ m},

where i is the Krasnosel’skĭı genus, see definition (7). Then for every K ∈ Wm we
have

K ∩ F⊥m−1 6= ∅. (76)

Here Fm−1 is defined as in (75) and orthogonality is intended in the H2 sense.

Proof. We proceed by contradiction. Let us assume that there exists K ∈ Wm such
that (76) is not true, this implies that

m−1∑
j=1

〈u, ϕj〉2H2
6= 0, for every u ∈ K. (77)

We can now define the following map Φ : K → Sm−2 by

u 7→
m−1∑
j=1

ej 〈u, ϕj〉H2

m−1∑
j=1

〈u, ϕj〉2H2

− 1
2

,

where ej is the j−th versor of the canonical basis. Thanks to (77), the previous
map is well-defined, continuous and odd. This contradicts the fact that K has genus
greater or equal than m and thus (76) holds true.

Theorem A.2. For every m ∈ N \ {0}, we have

λm = inf
K∈Wm

max
u∈K
Q[u, u]. (78)

Proof. The inequality

λm ≥ inf
K∈Wm

max
u∈K
Q[u, u],

easily follows from the fact that Fm ⊂ Wm (see [38, Chapter 2, Proposition 5.2]).
In order to prove the reverse inequality, for every ε > 0 let Kε ∈ Wm be such

that

max
u∈Kε

Q[u, u] ≤ inf
K∈Wm

max
u∈K
Q[u, u] + ε.

By Lemma A.1, Kε is such that Kε ∩ F⊥m−1 6= ∅. In particular, there exists v ∈
Kε ∩M⊥m−1 which can then be written as

v =

∞∑
j=m

αj ϕj , with

∞∑
j=m

α2
j = 1.

We have

max
u∈Kε

Q[u, u] ≥ Q[v, v] =

∞∑
j=m

α2
j λj ≥ λm.

This in turn implies

λm ≤ inf
K∈Wm

max
u∈K
Q[u, u] + ε,

and by the arbitrariness of ε we get the conclusion.
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Appendix B. A density result. For completeness, we present the density result
below. This permits to infer that for 1 < p <∞ the space{

u : RN → R : [u]W s,p(RN ) < +∞ and u = 0 in RN \ Ω
}

coincides with the completion of C∞0 (Ω) with respect to [ · ]W s,p(RN ). For a fairly
more general result obtained by means of a different proof, we also refer to [18,
Theorem 6].

Proposition B.1. Let 1 < p <∞ and s ∈ (0, 1). Let Ω ⊂ RN be an open bounded
set with Lipschitz boundary. For every measurable function u : RN → R such that

[u]W s,p(RN ) < +∞ and u = 0 in RN \ Ω,

there exists a sequence {ϕn}n∈N ⊂ C∞0 (Ω) such that

lim
n→∞

[ϕn − u]W s,p(RN ) = 0. (79)

Proof. The proof is similar to that of [6, Lemma 2.3], concerning the case p = 1.
By using [32, Lemma 3.2], the regularity of Ω implies that there exists a family of
diffeomorphisms Φε : RN → RN with inverses Ψε such that:

• we have

lim
ε→0+

‖DΦε − Id‖L∞ + ‖Φε − Id‖L∞ = 0,

and

lim
ε→0+

‖DΨε − Id‖L∞ + ‖Ψε − Id‖L∞ = 0;

• Ωε := Φε(Ω) b Ω for all ε� 1.

We then define the sequence ϕn = (u◦Ψ1/n)∗%n, where %n is a positive convolution
kernel such that ‖%n‖L1 = 1 and chosen so that ϕn has compact support in Ω. Then
by construction ϕn ∈ C∞0 (Ω) and

lim
n→∞

‖ϕn − u‖Lp(RN ) = 0.

By Fatou Lemma, this also implies that

lim inf
n→∞

[ϕn]W s,p(RN ) ≥ [u]W s,p(RN ).

Moreover, we have

[ϕn]p
W s,p(RN )

= [(u ◦Ψ1/n) ∗ %n]p
W s,p(RN )

≤ [u ◦Ψ1/n]p
W s,p(RN )

, (80)

which follows by using convexity of τ 7→ τp and Jensen’s inequality with respect to
the measure %n dx. Then we use that

[u ◦Ψ1/n]p
W s,p(RN )

=

ˆ
RN

ˆ
RN

|u(z)− u(w)|p |JΦ1/n(z)| |JΦ1/n(w)|
|Φ1/n(z)− Φ1/n(w)|N+s p

dz dw,

which follows by a simple change of variables (z, w) = (Ψ1/n(x),Ψ1/n(y)), where
JΦ1/n denotes the Jacobian determinant. Observe that by construction

|Φ1/n(z)− Φ1/n(w)| ≥M1 |z − w| and |JΦ1/n(z)| ≤M2,

for some M1 > 0 and M2 ≥ 1 independent of n. Thus we can apply Lebesgue
Dominated Convergence Theorem and keeping into account (80), we can infer that

lim sup
n→∞

[ϕn]W s,p(RN ) ≤ [u]W s,p(RN ),
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as well. In conclusion, we get that

lim
n→∞

[ϕn]W s,p(RN ) = [u]W s,p(RN ). (81)

In order to conclude, by (81) the sequence

φn(x, y) :=
ϕn(x)− ϕn(y)

|x− y|
N
p +s

,

is bounded in Lp(RN × RN ) and it weakly converges to

φ(x, y) :=
u(x)− u(y)

|x− y|
N
p +s

∈ Lp(RN × RN ).

By using this, (81) and uniform convexity of the Lp norm, we get the desired
result.
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