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1 Introduction and main results

Lets € (0,1), N > 2sand B = {x € R" : |x| < 1}. Consider the fractional system
of Hénon type
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2
(—AY'u = f Ix|*w”~'v? in B,
q
(—Ayv = L vt inB
p+aq ’ M)
u>0,v>0 in B,
u=v=0 in 0B,

where (—A)* stands for the fractional Laplacian. Recently, a great attention has
been focused on the study of nonlinear problems involving the fractional Laplacian,
in view of concrete real-world applications. For instance, this type of operators
arises in the thin obstacle problem, optimization, finance, phase transitions, stratified
materials, crystal dislocation, soft thin films, semipermeable membranes, flame
propagation, conservation laws, ultra-relativistic limits of quantum mechanics,
quasi-geostrophic flows, multiple scattering, minimal surfaces, materials science
and water waves, see, e.g., [1, 3, 11, 26, 28, 30]. See also [20] and the references
therein. In a smooth bounded domain B C R¥, the operator (—A)* can be defined
by using the eigenvalues {A;} and corresponding eigenfunctions {¢;} of the Laplace
operator —A in B with zero Dirichlet boundary values, normalized by [|¢ |25 = 1,
for all k € N, that is,

—A@p = Ay in B, ¢r = 0 on dB.

We define the space Hj(B) by
o0 o0
H(B) := {u - Zukgok in L*(B) : Zuiki < oo},
k=1 k=1

equipped with the norm

oo

24 1/2
el = (o uiag)
k=1

Thus, for all u € Hj(B), the fractional Laplacian (—A)* can be defined as

[e.o]

(A u@) ==Y uAjg(x). x€B.

k=1

We wish to point out that a different notion of fractional Laplacian, available in the
literature, is given by (—A)*u = .Z 1 (||*.% (u)(£)). where .% denotes the Fourier
transform. This is also called the integral fractional Laplacian. This definition,
in bounded domains, is really different from the spectral one. In the case of the
integral notion, due to the strong nonlocal character of the operator, the Dirichlet



Asymptotics of ground states for fractional Hénon systems 135

datum is given in RV \ B and not simply on dB. Recently, Caffarelli and Silvestre
[12] developed a local interpretation of the fractional Laplacian given in RV by
considering a Dirichlet to Neumann type operator in the domain {(x,7) € RV*! :
t > 0}. A similar extension, in a bounded domain with zero Dirichlet boundary
condition, was established, for instance, by Cabre and Tan in [10], Tan [32], Capella,
Davila, Dupaigne, and Sire [14], and by Brindle, Colorado, de Pablo, and Sanchez
[7]. For any u € H}(B), the solution w € Hé’L(CB) of

—div(y'""*Vw) = 0 in Cp := B x (0, c0),
w=0on d,Cp := 3B x (0, 00), 2)
w = uon B x {0},

is called the s-harmonic extension w = E(u) of u, and it belongs to the space

HL,(Cp) = {w € 12(Cg) :w=00n,Cs: / V72V 2drdy < oo}.

Cp

It is proved (see [7, Section 4.1-4.2]) that

ow
—k. i 1-2s "7 = (=A)° ;
s im oy (=4)u

where k; = 2'72I" (1 —5) /I (s). Here H(l). 1 (Cp) is a Hilbert space endowed with the
norm

_ 1/2
lullgy, cp = (ks/ ¥ 2S|Vw|zd)cdy) )
, .
In the local case, the so-called Hénon problem

—Au = |x|*w~" inB,
(HP) u>0 in B,
u=2~0 on 8B,

was first studied in [29] after being introduced by Hénon in [24] in connection
with the research of rotating stellar structures. This problem has been studied
by several authors, e.g. [4, 13, 31] and the references therein. For this class of
problems, moving plane methods [22] cannot be applied, and numerical calculations
[15] suggest that the existence of non-radial solutions is in fact possible. In [13]
the authors have shown that the maximum point x, of a ground state solution
for the Hénon equation (HP) approaches a point xo € 0B as p — 2*, where
2* = 2N/(N —2). This result was extended to local Hénon type variational systems
in [33], as well as for scalar nonlocal Hénon type equations in [18]. The main
goal of this paper is to get a similar result for the nonlocal Hénon system (1).
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We reformulate the nonlocal systems (1) into a local system, by using the local
reduction, that is, we set

—div(y!™>Vw;) =0 in Cz = B x (0, 00),
—div(y'"*Vw;) =0 in Cp = B x (0, 00),
wi =wy =0o0n d.Cpg = dB x (0, 00),

(LS) wi = u > 0 on B x {0},
wy = v >0 on B x {0},

ksy]_zs}% _ %|x|"‘u”_lv” on B x {0},

gy 2 — p%]|x|°‘u"’v"_l on B x {0}.

Here u(x) = wi(x,0), v(x) = wy(x,0), and the outward normal derivative should
be understood as

1-25 W — T yl72s w
v

im .
Y y—>0+ ady

Let us define the space H := Hé’L(CB) X Hé_L(CB) and the functional 7 : H — R,

kq 2
I(wi,wy) = —°/ y1_2S(|VW1|2+|sz|2)dxdy——/|x|°‘w1(x, 0)’wy(x, 0)7dx.
2 Jey p+aqls

A weak solution to system (LS) is a vector (wy, wy) € H verifying I’ (w1, wo) (h, k) =
0 for all (h, k) € H,

I'(wi,wa)(h, k) = ks / YB3 (Vwy - Vi + Vw, - V) dxdy
Cp

2 2
——p/|x|°‘w1(x,O)”_lwz(x,O)"hdx——q/|x|°‘w1(x, 0)’w» (x, 0)7 ' kdx.
Ptqls ptqls

For the nonlocal scalar problem

(=4)’u = x|« inB,

u>0 in B, 3)
u=20 in 0B,
we have
—div(y'™*Vw) = 0 in Cz = B x (0, 00),
(LE) w=0on d,Cp = 3B x (0, 00),

key' =22 = |x|*u”~! on B x {0}.
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For this problem consider the associated minimization problem

ks / Y75 | Vw|*dxdy
S (Cp) = inf Cs

2/
WEHOL(CB) /|x|°‘|w(x 0)|”dx) !

Then 5”02* (Cp), where 2% := 2N /(N — 2s), is never achieved [7] and 5” 2 (RT”)
is attained by the w Wthh are the s-harmonic extensions of

NIZA'
&
ug(.x) —NZr’ £ > 0, X € RN.

(e+ x> 2
LetU(x) = (1+ |x|2)¥ and let W be the extension of U, namely

U(z)
72 +y?) 2

+2v

Py =B = o [
BY (|x —
For the system (LS) consider the following minimization problem

K / PV 4+ Vs P)dxdy
Cp

qu(CB) inf

wi.w2€HJ 1 (Cp)

2 “)
(/ |x|% w1 (x, 0) |7 |wa(x, 0)|qu)p+q
B

Theorem 1.1. For any o > 0, /% (Cp) is achieved if2 < p + g < 27 .

qu

Proof. Since B is bounded and @ > 0 we have |x|*|u|” < C|u|". The trace operator
from H}, (Cg) to L"(B) is continuous if 1/r > 1/2 — s/N, and compact if strict
inequality holds, see [7, Theorem 4.4] see also [5, 10]. Then the trace operator ¢, :
H},(Cg) — L'(|x|* B) is compact for r < 2N/(N — 2s). Taking a minimizing
sequence (W10, Wa.n), there is (w1, wp) € H with w;, — w;, as n — oo. Then

Win —> Wi in Lp+q(|x|a7B)? pt+qg< 2:"

Wy, — wyin PY(x|%.B), p+gq< 2.

By Young inequality we conclude that
/ |x|* w1 (x, 0)]P|wa.n(x, 0)|7dx — / |x|* w1 (x, 0) [P [wa(x, 0)|9dx, as n — oo.
B B

This implies that .~ (Cp) is achieved if 2 < p + g < 2. O

qu
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Remark 1.2. If (w1 5, w2,,) is a minimizing sequence to S¢,  (Cg), then it is readily
seen that the sequence (|wy,|, [w2.,|) is minimizing too. Thus, we can assume
that the minimizer (wj, w;) is nonnegative, that is, wy ,, w2, > 0. By maximum
principle we have wy ,, w, , > 0. Finally, invoking the regularity theory we infer that
Wi, Wa, € CY(Cp), for some y € (0, 1). Notice that (w;, w;) is a weak solution for
(LS). Indeed, by Lagrange multiplier theorem, considering the constraint

M= {(wl,wz) €EH: / |x|*w1 (x, 0)Pwy (x, 0)9dx = 1},
B
there exists A € R such

F (w1, w2)(h. k) = AG/(wy, wo)(h.K), V(h.k) € H,

where

ks _
Fonw) = 2 / PV + [V Py,

Cp

Gy, wy) = / 1|y (x, 0)Pwa (x, 0)9elx — 1.
B
Then, for all (h, k) € H, we have

ks / Y7 (Vwy - Vi + Vw, - Vk)dxdy
Cp

= )Lp/ |x[% w1 (x, 0)P~ 1w (x, O)qhdx+)tq/ X% w1 (x, 0)Pws (x, 0)7 kdx.
B B

By choosing (4, k) = (wy, w;), we get

ks / YEAVw 4 [Vwe))dxdy = A(p + q) / x|“wi (x, 0Y’w) (x, 0)?hdx
Cp B
=Alp+9g).
1
Therefore A > 0 and (Wi, W) = (Bwy, Bw,) with § = (M)"‘*‘F2 is a weak
solution of (LS).

Now, we state the asymptotic behavior of ground states when p 4+ ¢ — 2.

Theorem 1.3. Leta > 0, p., g > 1 withp, +q < 2%, p. - pase — 0 and
p+q = 2F Let (Wiz, wae) € H be a solution to the minimization problem (4).
Then there exists xy € 0B such that

i) ky""B(Vwiel? + [Vwae?) — W8 (xy.0) In the sense of measure,
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ii) |u1lPeluae|? — ydy, in the sense of measure,
where i > 0,y > 0 satisfy 1 > Sy*'% and 8y, is the Dirac mass at x.

Let (w1 ¢, w2,¢) be a minimizer of /7, (Cg) which exists because 2 < p. +¢q < 2r.
By regularity results (see, e.g., [7 9, 14]), (W1 ¢, wa) is Holder continuous. We w111
show that there exists x,, y, € B with

M, = Wi,s(xm 0) = max Wi,s(x’ ).
(x,y)€Bx(0,00)

Let A, > 0 and A, >0besuchthat/\ Mlg—landl Mzs—l where

AeAe >0, asp.+q— 27

We state another description of the phenomenon exhibited in Theorem 1.3.
Theorem 1.4. There hold

i) My, = O:(1)M, . as ¢ — 0, hence, A, = ﬁg(l))_ts ase — 0.
dist(x, dB)

i) dist(xs, dB) — 0 and — T ooasp. +q— 2%
&
iii) lim_k / Y TRV IT1el + |V Ta.l*)dxdy = 0,
De q_>2* Cp
25s—N
where we have set 7 (x,y) 1= wi(x,y) = A; 7 #/ (3%, ), fori = 1,2.

2 Preliminaries

For any u; € H)(B), there is a unique extension w; = E¢(u;) € H0'7L(CB) of u;. The
extension operator is an isometry between H(B) and Héq . (Cp), thatis (see [5,7,18])

1Es@illgy, cqy = Nill g, 1= 1,2

Let us set

1
Xo = (1 ——,o,...,o) eRY, 7 := (x,0) € RN,
|Ing|

Let us denote B, := {x € RV : |x — xo| < p} and

RN+1 RN+1

Ay i={(xy € Hny) =20l < p)y By i=Axy) € |(x, y)| < p}.
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Let ¢ € C;°(Cp) be a cut-off function satisfying

Lif (x,y) € A

o) = { 0if (ry) A+

9
|Ingl

with 0 < ¢(x,y) < 1 and |Ve(x,y)| < Cllng|, for (x,y) € Cg. If # is the
extension of the function U previously introduced, we have (see [5]) [V# (x,y)| <
Cy™ ' (x,y), for (x,y) € RY*!. The extension of U,(x) = (e + |x|?)®>/2 has
the form

X—Xxo Y

\/E%) e>0.

Notice that 9%, € H(I)YL(CB) for & small enough. The following lemma is proved in
[18, Lemma 3.1]

Wiey) =" (

Lemma 2.1. There holds

/ Ky 2|V (@ #5) Pdxdy
Cp

37y = Zanr (Co) + 0:(1).
([ Wl 0t oppa)

B
asp — 27, and e — 0.

A minimizer of /7, (Cp) existsas2 < p+q < 2¥ and arguing as in [2, Theorem 5]
we have

SO = G 75y Gyi= (2T (B) ] )
where we have set

/ koy' ™ | Vw|*dxdy
Cp

2 o(Cp) = inf o

| / x| w(x, ) dx)
B

In particular

<yé.p,q(CB) =, 5.ps q(CB) sp+q (CB) Cp,q%+q(CB)~
Furthermore if wo realizes 7, +q(CB) then (ug,v9) = (Bwy, Cwg) realizes
oyq(CB), for

B,C>0, B=./p/qC.
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Setting it, = /p-@¥; and v, = ,/qe#; and applying identity (5), we have

/ ky " (Vite + V5, [2)dxdy
Cp

A ~ 2/(pe+q)
([ el 0 (. 07
B

/ koy 2|V (o #) Pdxdy
Cp —
)2/(pg+q) -

= CPS»‘I

Cpg.l{fg‘(’)z;k (CB) + 08(1)’
([ tot 06 0
B

as p, + g — 2¥ for ¢ — 0. Following [18, Lemma 3.2], we have

Lemma 2.2. Let (uc, v;) be a minimizer of 7, (Cp) and p. +q — 27 for e — 0.
Then we have '

/ k' "2 (Vae [ + Ve Pydxdy
lim B

(s 00 . 1)

— 0 _ #0 N+1
2/(petq) Cp,qys,zj (Cp) = Cpqq/}z;* Ry,

/ Koy "2 (Ve * + [ Ve [P)ddy
lim
e—>0

0 0 1
> orta = CraTsar (Cp) = Cpg o ®Y.
([ et 0 vscr. o))

Proof. We already know that .Y, (Cg) = .2, (R™"). Notice that, by (5), we get
by Lemma 2.1 ' '

/ ksyl_zx(|Vu5|2 + |va|2)dxdy / ksyl_zs(|Vug|2 + |Vv8|2)dxdy
CB CB

)2/(135""(/) - )2/(Ps+(])

([ .o o0 ([ bl 0o, 0
B B
[ 19w Paay
Cs

= CP2~‘1

)2/ peta) CPS*Q‘%;?ZA’!‘ (Cp) + o(e),

([ lot 0w 0 s
B
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as p, + g — 2¥, for ¢ — 0. On the other hand, we infer that

/ ko' ™2 (|Vue|* + |V, |*)dxdy
Cp 0
)2/(pg+q) = 5 pea(CB)

</|MS(X,0)|”€|vg(x, 0)|?dx
B

= Cps,qyo

-Y,pe+q(CB) z Cps.qus(,)z;k (Cs).

The last inequality is due to Holder inequality. This concludes the proof. O
Corollary 2.3. Let p + q = 27. Then the infimum .77, ,(Cg) cannot be achieved.

Proof. Observe that, for all « > 0, there holds X,‘f‘p.q(CB) = Cpq 75 (Cp).

Suppose, by contradiction, that /7, (Cp) is achieved by a function (wi, w») € H.
Without loss of generality, we may assume that w; > 0 and w, > 0. By Lemma 2.2,
we get

| K"V + 192 Py

C

Cp-,qufs(.)z;f (Cp) = 75 4(CB) = ;

([ w07 wae. oytas
B

)2/(17+q)

/ ksy' 2 (Vw2 + [Vwo |*)dxdy
C o o
] ot = 7 spa\C8) = Cpgs5x (Ch),

(/Wl(x, 0)’wo (x, O)qu)
B

so that %?2* (Cp) is achieved at (w1, w;) € H, being

/ ky' 72 (IVwi)? 4 |Vwa|?)dxdy
Cp
)2/(P+4) ’

Cp,qjs(.)zj (Cp) =
(/wl(x, 0)’w,(x, 0)9dx
B

By setting w;(x, 1) := w;(x, t) for (x,t) € B x (0, 00) and w;(x,t) := 0 for (x,¢) €
RM\ Bx (0, 00) we get the minimizer (i;, W,) € .72 (R ). A contradiction, since
w; > 0, by the maximum principle. O

Definition 2.4. A sequence (w;,,wz,) C H is said to be tight if, for all n > 0,
there is pgp > 0 with

neN

sup / / Ky =2 (Vw2 + [VwaalP)dxdy < 1.
{y>po} /B

The following concentration compactness principle [27] can be adapted from
[5, Theorem 5.1]
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Proposition 2.5. Let (wy ,, wy,) C H be tight and weakly convergent to (wy, wy)
in H. Let us denote u;,, = Tr(w;,) and u; = Tr(w;), p + q = 2. Let |, v be two
nonnegative measures such that

i) ky'""2(Vwia > + |[Vwa,l?) = i in the sense of measure,
i) |uyulPlugpl? — v inthe sense of measure.

Then there exist an at most countable set I and points {x;};c; C B such that
= kY (VP VD) 4 0. v =Pl ) wby.  (6)
kel kel

with (> 0, v > 0 and i > Cl’ﬂ'ys?z; vi/% .

Finally, we give an explicit form to the solutions of the problem

' 2 .
(—A)’u = P W e inRY,

p+q
2
(—AYv = —L 1!t inRY, )
p+q
u>0,v>0 inRY,

where p + ¢ = 2*. Letu, v € L (R") be solutions of the following problem

2p / W (y)vi(y)
u= dy,
p+q /ey x—yN=
2q W ()i~ () ®)
v = N o dy.
P+aqJry |x—)l

u>0,v>0 inR".

Denote by

~ 1 X - 1 x
W= e 0= )

the Kelvin transform of u and v, respectively. Hence, (i1, v) is also a solution of (8).
We may prove as in [16, Theorem 4.5] that problems (7) and (8) are equivalent, that
is if (u, v) with u, v € H*(R") is a weak solution of (7), then (u, v) is a solution of
(8), while if (u, v) with u, v € L% (RM) solves (8), then (u, v) is a solution of (7).
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Now we show that L¥-% (RM) solution (u, v) of the following problem is radially
symmetric.

u(x) = /R wOV0)

volx =y
_ [ o) ©)
W= J o

u>0 v>0 inR",

Let ¥y = {x = (x1,---,xy) 1 x1 > A}, x* = (24 —x1, %2, ,xy) and u (x) =
u(xt).
Lemma 2.6. Let (u, v) be a solution of (9). Then (u, v) is radially symmetric with

respect to some point.

Proof. The result is proved by the moving plane methods developed for integral
equations, see [17]. The argument is now standard, we sketch the proof. For details,
we refer to similar arguments in [35]. We have

up (x) —u(x) = /): ( : s _le_ZS)(uﬁ_l(y)v;{(y) —u”_](y)vq(y)) dy

e — y|V=
and
_ 1 1 o g—1 P q—1
w-ve) = [ (o ) (om0 on ) av

Next, we claim that there exist K > 0, such that if A < —K, there holds
u(x) > uy(x) and v(x) > vy (x).
Indeed, define
Ti=xeXiux) smu@}, X ={xe X v < v}

and X = X, \ (X4 U X}), we can deduce as [35] that

0= = [t 0 (00— )

v =y N
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By the Hardy-Littlewood-Sobolev inequality,

—1_ g—1
3 () = u@) | oz gy < Cllidy 0] (W2 = V)| _opn
&)
A LN—‘,—2A-2§k (2}':)

—2
+ Clldy™ v ur —wll orw
LN—‘,—2A-2§k (2}1:)

By Holder’s inequality,
_ N p—1 q—1 _ N
||u/\(x) u(x)”LA (Zlu) = C”ul”Lz?(Zf)”v)L”LZS*(E;)”(vA U)”le (Z‘)’L))
p—2 q _ N
o Cl o 10l o 10 = 05

Choose K > 0 large and for A < —K, we have

1 1
”u)k(x) - M(X)”Lz;k (=1 = Z ”M)»(x) - ”(x)”sz (=1 + Z”v/\(x) - ‘U()C)||L2§k (=)

Similarly,

1 1
02 = 0Oz ey = 71000 = W )+ 5 102D = VOt
The claim follows easily. Now, we may proceed as the proof of
[35, Theorem 1.1]. ad

It is known [16] that a positive solution U € L= (R") of the problem
(—AYu = uv> inRY, (10)

is given by

N—2s
t 2

U =C(— T
() R

for some constant C = C(N, s) > 0, some ¢ > 0 and x, € RV.

Lemma 2.7. Let (u,v) be a nontrivial weak solution of problem (7). There exist
A, B > 0 such that u = AU and v = BU.

Proof. We known that the solutions (u, v) of (7) are solutions of (8). By Lemma 2.6,
any solution (&, v) of (8) is radially symmetric and monotone decreasing about some
point. Let (&, U) be the Kelvin transform of («, v) with the pole p # 0
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< 1 xX—p o 1 xX—p )
i(x) = |x_p|N_2Xu<|x_p|2 +p), 0(x) = —ZYU(|x—p|2 +p).

We remark that (i1, 0) is a solution of (8) too, and then (&, v) is radially symmetric
with respect to some point g. Following the argument on page 280 in [23], we can
see that if p = ¢, then (u, v) is constant, which is not true in our case. Hence, p # q.
Now, using the Kelvin transform

1 X
K = — (—)
N® = ef (4
we deduce as in [6, proof of Lemma 7] that u = AU and v = BU. ad

3 Proof of Theorem 1.3

Choose py such that py + g — 27, as k — oo. Let (w; &, w2 1) € H be a nonnegative
solution to

k, / VB (Vwial? + [V Pdxdy
Cp

Zspea(CB) = an

—.
(/|x|°‘|w1,k(x,O)|p"|w2,k(x,0)|qu)pk+q
B

Up to the factor ((py + g)Ax/2)"/®+4=2 depending upon the Lagrange multiplier
Ak, W1k, Wag) solves

—div(yl_z“‘le_k) =0, —div(y]_ZSszyk) =0, in Cp,
ksyl_zsm = 2”—"|x|‘)‘w1,k(x, 0)*~'wy 1 (x,0)?,  on B x {0},

awns _ oy (12)
ky! TR S, = pgj_q IxX|%W1 & (x, 0wy 1 (x,0)771,  on B x {0},
wig =wy =0, on 0;Cp.

In particular, we get
/ Ky 2 (Vw2 + [V [Ddxdy = 2 / w4, 0w g (v 0. (13)
Cp B

One may now set, for every x € Band y > 0,

o
wik(x,y) = Cowix(x,y), Cp= (/Bwl,k(xa 0)kwo ke (x, O)qu) R = 1,2,
(14)
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We have
/Vvlik(x, 0)7* Wy (x,0)%dx = 1, forallk € N,
B
and by (11) and Lemma 2.2, we have
/c key' T2 (Vb ) + [Vivg ) dxdy = Cp,qfﬂfzr +or(1), ask — oo.
B

The sequence Cj, converges to some C > 0, whenever k — oo. This can be proved
by comparison with the term [, |x[*wy x(x, 0)” w5 i (x, 0)9dx, which converges to a
constant in view of formulas (11), (13) and Lemma 2.2. In fact, taking into account
the Sobolev trace inequality, we have

0<o < X|%wi 1 (x, 0V, wy 1 (x, 0)edx < C, P9 < Cllwy 1 |IP* wa k|9 <
< [ s 0 a5, 0)1ds = G < Clhwnalfe  Ivaslly ) <

The sequence (W x, W2 x) is bounded in H. Furthermore, it is tight. This fact can be
proved by arguing as in [5, Lemma 3.6]. By Proposition 2.5, there exist nonnegative
measures [, v, a pair of functions (wy,w;) € H, an at most countable set J and
points with {x;};,e; C B such that

1) 171/,'.]{ — W, i=1,2,
i) ky'""(|Vwixl? + [Viax|?) — p in the sense of measure,
iii) [Wy x(x, 0)|P|W2£(x,0)|? — v in the sense of measure,

and (6) holds with v > 0 and i > Cp -7+ v,f/z“ . It follows that
: 1-25 (g, |2 -2 _ 00 N+1
im | o AV + (V2 Pty = / 0l V0 €L N CRE

lim/ w1 & (x, 0)[P |2 4 (x, 0) |9 pdx :/ edv, Y eL®nCRY).
k JRN RN

In particular, we infer that
: 1=2s (1o, |2 ~ 2 _ N+1
iim | ok VR (Pl = (BT,

i [ 15105, )P [ 0 = v
RN

Claim: 1 # .
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Verification: 1f I = @, we would have [, [wi(x, 0)[”|w»(x, 0)]%dx = 1 and

Cp,qjv(,)zj = liin key' "2 (VW] + [ Vi k| *)dxdy
: s

> [ (ky'""(IVwi|* 4 [Vwa]?))dxdy,
Cp

yielding C, .77, = Ie, ky' "2 (|Vwi|? 4+ |Vws|?)dxdy, namely a contradiction to
Corollary 2.3. '

Claim: I contains only one point and w; = w, = 0.

Verification: We argue by contradiction and consider the following three cases:

i) wi # 0and w, # 0;
ii) wy; # 0 and w, = 0;
111) wp = 0 and wo # 0.

In the case 1), we have ZJEJ v; € (0, 1). Notice that

Crg oy =lim [ key' (| Viby i + (Vi) dxdy
Cp

2 (ksyl—ZS(|vwl |2 _|_ |VW2|2))dxdy + Cp.qjs(,)zj‘ Z vjz/zs ,

Cs jel

as well as
1= V(RN) = / |w1(x, O)|p|W2(X, 0)|qu + Z Vj.
B jel
These facts imply that

[ QO 4 1VaPhandy = Gy (1= 07
CB 'S

Jj€EI

2/2f
= Cp,qx(.)zs* (1 - Z Vj)

Jj€I

*

= 754( [ w1 O wa, 0)]7ax) "
B

which is a contradiction. In the case ii) or iii), we have Zje ;v; = 1. Notice that

CrgT e = | (ky' 2 (\Vwil? + [Vwa )y + Cpg s Y07/ .

Cs Jjel
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This implies, as above, that
1-2 2 2 2/2¢
/ k' T2 (Vw12 + [Vwa|Pdxdy < Cp g T se (1 -y v,-) =0,
Cs ! 5
JEI

which is a contradiction. Then w; = w, = 0. We claim that J is singleton. Notice
again

1> Zvjz/zj - (ZVJ)z/z?‘ _ 1

jel jel

so there is at most one j* € I such that vjx # 0, proving the claim. Hence there
exists xo € B with

key' T (VP Vo kl®) = wobrys W1, 0)P[W2(x, 0)|9 = 18y, (15)
in the sense of measure with o > Cp,qx(.)z* vé /% Taking into account the relation
(14) between w;; and w; ; the same conclusion follows for the w; .

Assume by contradiction that xo € B. Then it follows dist(xy,dB) = o, for
o € (0,1). Notice that |wy x(x, 0)|”* < |wy(x,0)|” 4+ 0x(1). By the concentration

behavior of the sequence |wy x(x, 0)|”|wa i (x,0)|¢ stated in (15), there exists ¢ €
L>® N C(RN) with ¢(xo) = 0 and

L B O 5,00 a2
= [ s 0PIz 0) gy = ou(1).
R

Since [, [wak(x,0)|?dx < C by the Sobolev inequality [5, formula (2.11)], then we
conclude

/ el e (. )P i e, )l = / x| e, O) P i Cx, 0) el
B B(x0,0/2)
b [t O (e O oy (1
R
< (1-0/2)" / [ e, )P [ (x. 0) el
B(x0,0/2)

+ /N Wik (x, 0) [ [wa i (x, 0)| X B\B(xg.0/2) (X)dx + 0k (1)
R

< 4@ ([ s OP bease O+ ox(). (10
B
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where A(0) := (1 — 0/2)®/% € (0,1). By formula (16), on account of by
Lemma 2.2, it follows that

/ Ky T (Vwial? + [VwaiP)dxdy
Cp

0 _ 1
CpgT 52y = lim - ' 2/t
([ B hore 0P pozs . 07as)

B

/ Ky 2 (V1 12+ [V x|2)dlxcy
im —Cz

k
([ riate o wagte oyt
B

0
> CpgTspx

= A(0) ! )2/(Pk+q)

which is a contradiction, since A~ (c) > 1. The proof of Theorem 1.3 is complete.

4 Proof of Theorem 1.4

Let (w; ., w2.) € H be a nonnegative solution to (11). Then, up to a multiplicative
constant depending upon the Lagrange multiplier, we may assume that (w ¢, wa )
solves the system (12). In particular, identity (13) follows. Hence, from Lemma 2.2,
we infer

N N
(3,4(CB))> _ (F0, RYF)

N—2s N—2s

2 2s ZT

lim [ ky'"" (| Vwie]* + [VwaeP)dxdy =
B

e—0 C
(17)
We know that (w; ., w; ) is a solution of the system

—diV(yl_stWLg) =0, —diV(yl_ZSVWQ’E) =0, X € CB,

ksyl_zs% = F%[|x|“w1.g(x, 0)7= " ws ¢ (x, 0)4, x € B,

£

—250 2 —
k' B0 = 2 (x, 0w o (1,007, x € B,
Wie =W = 0, X € 8LCB.

Then, we can assume w;, € C*(B), for some t € (0, 1). There exist xj ¢, X, € B
such that

M = wi(xi.,0) = sup Wie(x,y), i=12. (18)
(x,y)€Bx(0,00)

In fact, let x| ¢, x5 . € B be such that

Miyg .= sup Wi_g(x, 0) = Wi’g(xi_g,o), i = 1,2.

X€EB
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Then the second equality in (18) holds, since we have the following maximum
principle

Lemma 4.1. w;.(x,y) < M, fora.e. (x,y) € Bx (0,00), fori =1,2.

Proof. Define 7;(x,y) := (Wi c(x,y) — M;,)™ for (x,y) € B x (0, 00). Then, testing
in (LS), we obtain

) 2
ky / V|V (x, y) Pdxdy = —2E— / el w1 (e, 07wy o (x, 077 (x, 0)dx = O,
Cp Pe+4qJB

k /C 32|V ey (e, y) Py = / w1 (2. 0P w20 (5, 0) 1 (x, O)dlx = 0,
B B

q
Pe t4q
Then 7; = 0 for i = 1, 2, yielding he conclusion. O

Lemma 4.2. Foralli= 1,2, we have M;, — +o0 asp, + q — 2}.

Proof. Suppose by contradiction that there exist C > 0 and a sequence {¢,} C R
such that p,, + ¢ — 2¥ and M, ., < C, for all n € N. Since (w;,) is bounded in
H(%.L(CB), up to a subsequence, by the conclusions of Theorem 1.3 we get w;,, — 0
weakly in Hj, (Cp) and w;,, — 0 in L"(B), for every r < 2. Then, from identity
(13) and formula (17), there exists a positive constant ¢ independent of ¢, such that

0<o< / X 0 2, O)P* w2, (5, 0) el
B
< Iy 5 O) % I, (5, OV ) < Con1),

which yields a contradiction. O

Now we want to recall some general PohoZaev type identity. Consider the following
system

—div(y'"*Vw,) =0, in Cz = B x (0, 00),
—div(y!™Vw,) = 0, in Cz = B x (0, 00),
(LG) wi =wy =0, on d,Cp = 9B x (0, 00),
ksyl_zs% = Ciwi(x,0)""wy(x,0)?, on B x {0},

¢ dw _
key! zs% = Cow;(x,0)’w1(x,0)9"", on B x {0},
where % denotes the outward normal derivative, and v is exterior normal vector to
dB. For the scalar case, the next result was obtained in [7], while for the system we

refer to [19].

Theorem 4.3. Let p + g = 2. Then system (LG) does not admit any nontrivial
nonnegative solution.

The following nonexistence result is crucial for our argument. Consider the
following problem
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—div(y'™*Vwy) = 0, in RYE',

—div(y'"*Vw,) = 0, in RYE',
(LS) wi =w; =0, o0n {xy =0,y> 0},
kgy! =2 aawl = Cywi(x,0)" 'wy(x,0)7, on {xy > 0,y = 0},

koy! =% aa“l? = Cow;(x,0)’w1(x,0)!, on {xy > 0,y = 0},

where C;, C, > 0, = denotes the outward normal derivative, p + ¢ = 27 and
RYE = {(r1.x0. o oxy—r. . y) € RV iy > 0,y > 0},

Proposition 4.4. Let w;,w, € Hé L(RN 1Y be a bounded solution of (LS). Then
(w1, w2) = (0,0).
RN+

Proof. Since (x,y)-v = 0on dR]" ", one cannot apply directly PohoZaev identities.
Whence, we use the Kelvin transformation as in [19, 21] to study a new system set
in a ball. Let w; € H&L(RN *1) be a solution to system (LS). Then, the Kelvin
transformation of w; is defined by

~ _ z
wi(z) = |Z|2s NWi(W)’ Z€ RN+1

and from [21, Proposition 2.6] we infer that w; is also a solution to (LS). By [25,

Corollary 2.1, Proposition 2.4], there exists y € (0, 1) with w;(z) < Clz|?, for
z € B1(0). Then there exists C > 0 such that

N—2s+
W@ < C(+ 12>~ 2, forallze RV (19)

Arguing as in [18], denote by B 1 (%) C R the ball centered at < with radius %
Define

vi(2) 1= |z]*Mw i(— (en. 0) + E |2) forall z € CB%(%N) \ {0}.
By means of (19), for a positive constant C and for |z| small enough, we have
vi(z) < Clz]”, forallz e R\ {0}

Therefore, we may extend v; by 0 at 0. Then, as above, (v;, vy) is a weak solution
of the system
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—div(y'"*Vuv;) = 0, in CBI(%N),

2
_diV(yl_ZSVl)z) = O, in CB[ (%),

2
(LSB) V) = Uy = 0 on aLCB (ﬂ),

k'~ 2568? = Civ;1(x, 0" 'va(x,0)?, on Bl (eN) x {0},

key' 282 = Cyuy (x, 0P va(x, 0)7", on BE(ZN) x {0}.

Now, applying Theorem 4.3 to system (LSB) we infer that v; = 0,i = 1, 2, that is,
w; = O,l = 1, 2. O

We are now ready to complete the proof. By Lemma 4.2, we may assume

Mo =wie(x16,0) = sup  wielx,y) = +o0,
(x.y)EEX(O,oo)

We may assume M; . > M, .. Let A, > 0 be such that

N—2s N—2s

AE2M1,8=17 0<12M25<1

where A, — 0, as p, + g — 2¥. Define the scaled functions

Wie(x,y) _A Wls(Asx+x18a ¥
WZS(X y) = A WZE(A’S-X—F-xlSv sy)

B, = {x € R : Ax + x1. € Bi(0)} and C, := B, x (0,00). Then
(wl,a('xv y)’ 1:{)I,E(Xs y)) SatiSﬁeS

—div(y!"™ Vi) =0, —div(y!™>Viny,) =0, x € Cp,
0<V~V15§1 0<wy, <1, Vvl_s(O 0)—1 xECBS

k‘yl —25 0Wie — ﬂusx"‘xlsla/x 2 (Ps+(1)~ ()C O)pF 1w2 g(x 0) x € B,

T Pe +q
k'™ 2Y3’512)€ = ex + x1e|%A0 = (p,+q)~1€(x 0)P i, (x,0)7~", x € By,

Pe +q
leg =0, Wzys = O, X € 8Bg n 8LC3€.

Suppose x;, — xo for some xo € B;(0). We claim that x, € 0B;(0). By
contradiction, assume that x, € B;(0) and let d := %dist(xo, dB1(0)). Denote
#0,r) = {z € RVl 1 |z] < r}. For ¢ > 0 small, both w; . and W, are well
defined in 2(0,d/A,) NRY*!, and

sup Wie(x,y) = wi(0,0) = 1, sup Wae(x.y) € (0,1].
(x)€BO.£4)NRH @ »)eBO. £)NRYH
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Since M, — 400, we have 0 < A, < 1, for ¢ > 0 small. Let
N=252(pe+q) .
he) := Ay 2 and h(0) := lim h&(e).
Petq—>2f

Hence, 0 < h(e) < 1. Three possibilities may occur, namely

(1) h(0) =0,
(2) h(0) =B € (0,1,
3) h(0) = 1.

We show that any of these cases yields a contradiction. We observe that, for any R >
0, Br(0) C Bgy3,(0) for & > 0 small enough. By Schauder estimates [7, 12, 14, 25]
there are C > 0 and 0 < ¥ < 1 with

”f"l,e||c0-ﬂ(@(o,2R)mRi+‘) =C, ”fvlf”cw(ga(o,szRf’jl) =C
for & small enough. By Arzela-Ascoli’s Theorem, there exist subsequences {W; 4, }
such that w;,, — w; as k — oo, fori = 1,2, in Cﬁ;g(’ for some ¥ € (0, ¥). Then,
we derive that (w;, wy) satisfies

—div(y'"*Vw) =0, —div(y!"*Vw,) =0, inR}",
k' 2R = 2|kl h(O)W] T (r, 0)wd(x,0),  on RN x {0}, (20)

ksyl_zs% = ;Tf|xo|°‘h(0)w’f(x, O)WZ_l(x, 0), on R x {0},
and w1 (0,0) = 1, 0 < wy < 1. Moreover, w; € H} , (R{*"). If xo = 0 or h(0) = 0
or w, = 0, we have w; = 0, which is impossible since w;(0,0) = 1. Suppose

xo 7% 0, wy #£ 0and h(0) = B € (0, 1]. Then

—div(y!™>Vw;) =0, —div(y! ™>Vw,) =0, in ]R]f'l,

Ky "2 = 2 AW (. 0)w(x, 0). on R x {0}, 2D
k' 782 = 2 AW (e 0w (. 0), on RY x {0},

where A = |xo|*B € (0, 1). Setting

J 1
Wy = A% 2wy, Wy 1= AT 2wy,

1 1 1
we have 0 < w; < A¥2,0 < wy < A%¥2, w(0,0) = AZ—2 and (Wi, w»)
satisfies
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—div(y!"=Vin)) =0, —div(y!"*Vinp) =0, inRYT,

ksyl—%% = ;Tgw;’“(x, 0)wl(x,0), on RN x {0}, (22)
ksyl_zs% = %‘{WT(}C O)v‘vg_l(x, 0), on RY x {0},

Define .7 := .70 (R’_VF‘H) and observe that

$.p.q
/ - ky' "B (Vi )? + |Vws[H)dxdy = 2 / W] (x, 0)w (x, 0)dx.
]R+ RN

Then, by formula (17), we have

N—2s

s <25 [k AV + VP
R

N—2s N—2s

_ AN /N+lksy1*2S(|vwl|2+|VWZ|2)dxdy
R
+

< A" liminf2'5" / Ky TE(VIL + (Vi Py (23)
e—> Cg,

=A% limi(r)le%/ ky' T2 (Vi el? + [Vwo ) dxdy
e—> Cp

N—2s

N N
=A> 5 < L,

a contradiction. Then xy € dB;(0). We can straighten dB in a neighborhood of x
by a non-singular C' change of coordinates. Let xy = v (x’) be the equation of 9B,
where X' = (x1,x2,...,xy-1), ¥ € C I Define new coordinate system given by
z=xifori=1,...,N—1,zy = xy — ¥ (x') and zy+; = y. Let d. = dist(x, 9B).
For p, + g — 2} as ¢ — 0, w; . are well defined in B(0, N RIX‘H N{zy > —%}
for some § > 0 small enough. Moreover ’ ’

sup Wie(x,y) = w1(0,0) =1,
BO.H)NRY T nfey>— 4}
sup Wy (x,y) € (0,1].
BO.HNRY T nfey>—£&
We now have the following
Claim: d;/A; — +00 ase — 0.

Verification: Suppose by contradiction that d. /A, remains bounded and d. /A, — s
for some s > 0. By the previous argument, since |xo| = 1, we get w; . — W; in CIOO’Z,
w1(0,0) = 1 and
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div(y'"™Vwy) =0, in{(z1,....2v.2v+1) : Zv > —S,2v4+1 > 0},
div(y'™*Vw,) =0, in{(z1,....2v.2v+1) : Zv > =S, 2v+1 > 0},
e i 2 ~p—1 -
ksyl 2“)5% = A%Wlf (x, O)WZ(x, 0), on {(Z], Ce ,ZN+1) L IN > TS, AN+ = 0},
25 B3 2~ - g—1
kyy! 7282 = AW (x, 0005 (x,0), on {(z1.....2v41) © 2y > —s.2v+1 = O,
wi(z) = wa(z) =0, on{(z1,....2n.2n+1) : 2v = =S, Zn+1 > 0},
wi(2),wa2(z) € (0,1], in{(z1.....2v,2v41) ¢ 2v > —S,Zv41 > O}.
(24)
By a translation, (wy, w,) verifies
div(y! "2 Vivy) =0, div(y! Vi) = 0, in R,
o5 O —p—1 -
key' =28 ‘Jg‘v‘ = A%W’f (x,0)W(x,0), on{(z1.....2n.2n41) 1 v > 0,2v41 = O},
25 O - _g—1
ksy! 7280 = A%’wf(x, 0)ws (x,0), on {(z1, ..., N, ZN+1) ¢ N > 0,zv4+1 = 03,
Wwi(z) = wa(z) = 0, on{(z1,....2n.2n+1) © 2v = 0,2y+1 > 0},
W2(2) € (0. 1],%1(0,....5,0) = 1, inRY .
(25)
Since w; € H},(RY%"), by Proposition 4.4, (W, w2) = (0,0), which violates
wi(0,...,s,0) = 1. Then the claim follows and Cp, converges to the entire RT_’FL

ase¢ — 0.

Claim. A = |x)h(0) = h(0) = 1. We can assume (W, Wre) — (W, Ws),
as ¢ — 0, and (w;, wy) satisfies

div(y!">*Viw;) =0, div(y! Vi) =0, in RYE
ky' T2 EL = AT (x, 00 (x, 0), on RN x {0},
k' 82 = A (x, 0)wd " (x,0). on RN x {0}, (26)
Wwi(z) = wa(z) = 0, on {0} x (0, 00),
wi(z) € (0, 1],W;(0,0) = 1, in RV
Ifw, = 0or0 < A < 1, we reach the contradiction either as in (23) or by

Proposition 4.4. Hence, A = 1 and w, # 0. This implies M; ! :(A.x + x;) —
v(x) # 0,and then 1 > MM, — 0 > Oase — 0, thatis My, = O(1)My.
This is (i) of Theorem 1.4.

Let y, € B;1(0) be such that w; (y.) = maxg, ) w2,(y). We define W, .(x) =
o) N=29/2y, (Aox + v.), where 227240, . (v.) = 1. Suppose y, — yo. Again,
using a blow-up argument, we get yo € dB1(0). Then, in light of Lemma 2.7, we
have

wi(x,y) = a#i(x,y). w2 (x,y) = b#1(x,y)
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for some positive numbers a, b such that a/b = /p/q. Let v;, = Ww;. — w;. Then
U;e — 0 weakly in Hé,L(Cw) for any w C RIJ\;H and

div("2V5,.) = 0, div(y'"2Vi,,) = 0, in Cs,,
05 1. ) 1 _ —1
Kos)! Z‘Y% = pf‘iq wp (x, 0)Ws ,(x,0) — p(NN2s)W117 wi  on B, x {0}
05 80as — —1
Kogy! TR = p—f_{iq L (x, 0) g (x, 0) — L0290y g on B, x {0}
i}i,é? = —w;, on BLCBS,

(27
where we have set Q, := |A.x + x ¢|*h(e). Multiplying the first equation in (27) by
V1. and vy ¢, respectively, integrating by parts, and applying Brézis-Lieb Lemma, as
Pe +q — 27, we have

K / VBV + (Vs )drdy
Cp,

e

= [, G0 ot 0 - BECE 0t ) 5.0

0
_ kS / y1—25 8118
01.B¢ v

29 - N=25) , . _
+ /B 6 (pa—iqggw';;(x, 0t (x, o)_%wf;(x, 04! (¢, 0) ) e (x. 0)dlx

0
— kg / yli=% ;2 £ wodS
d7.B¢

_ p(N —2s)
= T

o (w’;fgl (x, 00, (x. 0) — W~ (x. ) (x, 0)) 910 (x, 0)dx

—kx/ ¥ 8 Dhe i as + B2 =0 PN = 25) (Q: — D~ (x, 0)i (x, 0)ddx
91.Be 8\) N B,

+ @ 0 (ﬁﬁ; (x, 0y (x, 0) — W (x, 0 ' (i, 0)) B0 (x, 0)dx
Be

00y, N —2 ~ e
_ kx/ yl—zsﬁwzdg + u/ (0 — )i (x, 0)vd Y(x, 0)dx + 0,(1),
91.B: 81) N B

since Q, — 1 as ¢ — 0. Recalling that %, decay at infinity, we obtain

K, / V(i1 + Vil [?)ddy
Cp,

€

- @ /BS 08 ((171,8 + W) (x, 0) (B2, + W2)!(x, 0)
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— 7 (6, 0)(x, 0) ) 1.0 x, 0)lx
+ —q(N]; 2) / O ((51,8 + 1) (x,0) (Da.e 4 )7 (x, 0)
BE
= 05, 00 (5, 0)) e, 0)dx + 0 (1),

Inserting w; . = v;, = W;, and using the following inequalities (cf. [8, 34])

la||bP~L if |a| > |b],
lla + blP — |alP — 6" — pab(lalP~* + [bIP72])| < C 4 |aP~"|b| if |a| < |b],
l<p<3,

lla+ b —lal’ — b’ — pab(lal’~> + [bP)| < C(lalP (b + |al*[blP~?), p =3,

we infer that

_ N N N —2s N N
b [ TR+ o Prasty = P2 08 0y 0y
Be B,
N —2s . . . -
Rl [ 0.0, 0cro.) =2 [ 0., (5,058, (5. Odi--o (1.
J Bg J Be
(28)

By definition of ., and recalling that 7, = % + 0.(1), we get

K, / VBV + [Via. [)dxdy
Cp,

e

2

> y( / 0. . (x, 054, (x, O)dx) P o1,
B

Assume by contradiction that

lm k, / VIV + [V Pdxdy = p > 0.

Cs,

Then, we have

K, / VBV + [Via. [P)dxdy
Cp,

e

N

o
= 2/ Q. (x,0)05 ,(x,0)dx + o(1) > —— + 0:(1).
By ’ ’ 225
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By using a Brézis-Lieb type Lemma and arguments similar to the ones above, we get

- . ks 1_os1o~ -
Lo, re) = / ST 5Py
B,

e

2
Ps+61 B

k
Q.1 .(x, 0)P D0 (x, 0)dx + / . Esyl—zf(a2 + )|V |Pdxdy
R
+

2 25 I
- la#1(x, 0) [P |b#1 (x, 0)|9dx + 0.(1) > — —= + 0.(1).
Pe +q JrY N 2 5~

On the other hand,

I SN N
1G5, = 5 [PV + (Vi Py
Cp

2

N
- - s S
ey /B O, (x, 0], (x,0)dx = ]TJZNE + 0.(1),

2s

a contradiction. Hence p = 0, proving also Theorem 1.4(ii).

Acknowledgements O.H. Miyagaki was partially supported by CNPq/Brazil and CAPES/Brazil
(Proc 2531/14-3). J. Yang was supported by NNSF of China, No:11271170; GAN PO 555 program
of Jiangxi and NNSF of Jiangxi, No:2012BAB201008. This paper was completed while the second
author was visiting the Department of Mathematics of the Rutgers University, whose hospitality
he gratefully acknowledges. He wishes to thank Professor H. Brézis for invitation.

References

1. Alberti, G., Bouchitté, G., Seppecher, P.: Phase transition with the line-tension effect. Arch.
Ration. Mech. Anal. 144, 1-46 (1998)

2. Alves, C.O., de Morais Filho, D.C., Souto, M.A.S.: On systems of elliptic equations involving
subcritical or critical Sobolev exponents. Nonlinear Anal. 42, 771-787 (2000)

3. Bates, P.W.: On some nonlocal evolution equations arising in materials science. In: Nonlinear
Dynamics and Evolution Equations, Fields Inst. Commun., vol. 48, pp. 13-52. American
Mathematical Society, Providence (2006)

4. Badiale, M., Serra, E.: Multiplicity results for the supercritical Hénon equation. Adv. Nonlinear
Stud. 4, 453467 (2004)

5. Barrios, B., Colorado, E., de Pablo, A., Sanchez, U.: On some critical problems for the
fractional Laplacian operator. J. Differ. Equ. 252, 613-6162 (2012)

6. Bianchi, G.: Non-existence of positive solutions to semilinear elliptic equations on R” or R,
through the method of moving planes. Commun. Partial Differ. Equ. 22, 1671-1690 (1997)

7. Brindle, C., Colorado, E., de Pablo, A., Sdnchez, U.: A concave-convex elliptic problem
involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143, 39-71 (2013)

8. Brézis, H., Nirenberg, L.: A minimization problem with critical exponent and non-zero data.
In: Symmetric in Nature, Sc. Norm. Sup. Pisa, pp. 129-140 (1989)



160

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

D.G. Costaet al.

Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians I: regularity, maximum
principles and Hamiltonian estimates. Ann. Inst. H. Poincaré 31, 23-53 (2014)

Cabré, X., Tan, J.G.: Positive solutions of nonlinear problems involving the square root of the
Laplacian. Adv. Math. 224, 2052-2093 (2010)

Caffarelli, L., Roquejoffre, J.-M., Savin, O.: Non-local minimal surfaces. Commun. Pure Appl.
Math. 63, 1111-1144 (2010)

Caffarelli, L., Silvestre, L.: An extension problems related to the fractional Laplacian.
Commun. Partial Differ. Equ. 32, 1245-1260 (2007)

Cao, D.M., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon
equation. J. Math. Anal. Appl. 278, 1-17 (2003)

Capella, A., Davila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some
non local semilnear equations. Commun. Partial Differ. Equ. 36, 1353-1384 (2011)

Chen, G., Ni, W.-M., Zhou, J.: Algorithms and visualization for solutions of nonlinear elliptic
equations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 10, 1565-1612 (2000)

Chen, W., Li, C., Ou, B.: Classification of solutions of an integral equation. Commun. Pure
Appl. Math. 59, 330-343 (2006)

Chen, W., Li, C.: Methods on Nonlinear Elliptic Equations, Aims Series on Differential
Equations and Dynamical Systems, vol. 4. American Institute of Mathematical Science,
Springfield (2010)

Chen, X.L., Yang, J.: Limiting behavior of solutions to an equation with the fractional
Laplacian. Differ. Integr. Equ. 27, 157-179 (2014)

Choi, W.: A priori bound for nonlinear elliptic equation and system involving a fractional
laplacian, arXiv:1502.07913v1

Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces.
Bull. Sci. Math. 136, 521-573 (2012)

Fall, M.M., Weth, T.: Nonexistence results for a class of fractional elliptic boundary value
problems. J. Funct. Anal. 263, 2205-2227 (2012)

Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum
principle. Commun. Math. Phys. 68, 209-243 (1979)

Guo, Y., Liu, J.: Liouville type theorems for positive solutions of elliptic system in RY.
Commun. Partial Differ. Equ. 33, 263-284 (2008)

Hénon, M.: Numerical experiments on the stability of spheriocal stellar systems. Astron.
Astrophys. 24, 229-238 (1973)

Jin, T., Li, Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and
compactness of solutions. J. Eur. Math. Soc. 16, 1111-1171 (2014)

Kurzke, M.: A nonlocal singular perturbation problem with periodic well potential. ESAIM
Control Optim. Calc. Var. 12, 52-63 (2006)

Lions, P.L.: The concentration compactness principle in the calculus of variations. The limit
case (Part 1 and Part 2). Rev. Mat. Iberoamewricana 1, 145-201, 45-121 (1985)

Majda, AJ., Tabak, E.G.: A two-dimensional model for quasigeostrophic flow: comparison
with the two-dimensional Euler flow. Phys. D 98, 515-522 (1996)

Ni, W.M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ.
Math. J. 31, 801-807 (1982)

Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator.
Commun. Pure Appl. Math. 60, 67-112 (2007)

Smets, D., Su, J.B., Willem, M.: Non-radial ground states for the Hénon equation. Commun.
Contemp. Math. 4, 467-480 (2002)

Tan, J.: Positive solutions for non local elliptic problems. Discret. Cont. Dyn. Syst. 33, 837-859
(2013)



Asymptotics of ground states for fractional Hénon systems 161

33. Wang, Y., Yang, J.: Asymptotic behavior of ground state solution for Henon type systems.
Electron. J. Differ. Equ. 116, 1-14 (2010)

34. Wang, Y., Yang, J.: Existence and asymptotic behavior of solutions for Hénon type systems.
Adv. Nonlinear Stud. 13, 533-553 (2013)

35. Zhao, Y., Lei, Y.: Asymptotic behavior of positive solutions of a nonlinear integral system.
Nonlinear Anal. 75, 1989-1999 (2012)



	Asymptotics of ground states for fractional Hénon systems
	1 Introduction and main results
	2 Preliminaries
	3 Proof of Theorem 1.3
	4 Proof of Theorem 1.4
	References


