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Abstract. We show the existence of multiple solutions of a perturbed poly-
harmonic elliptic problem at critical growth with Dirichlet boundary conditions
when the domain and the nonhomogenous term are invariant with respect to
some group of symmetries.

1. Introduction and Main Result. Let K > 1 and let Ω be a bounded smooth
domain in RN with N > 2K. In this paper we consider the polyharmonic elliptic
problem 




(−∆)Ku = |u|K∗−2u + f in Ω,
(

∂
∂ν

)j
u
∣∣∣
∂Ω

= 0, j = 0, . . . , K − 1,
(PΩ, f )

where f ∈ H−K(Ω) and K∗ = 2N
N−2K denotes the critical exponent for the Sobolev

embedding HK
0 (Ω) ↪→ LK∗(Ω).

If f = 0 this problem is invariant under dilations. Lack of compactness in elliptic
problems which are invariant under dilations is known to produce quite interesting
phenomena. It often gives rise to solutions of small perturbations of such problems.
This behavior has been extensively studied for K = 1 (and 1∗ = 2∗), we refer to [5],
[27] and [30] for a detailed discussion. For K > 1 perturbations of problem (PΩ, 0)
by adding a subcritical term have been considered by many authors; we refer to the
work of Gazzola [14] and the references therein. For K = 2 perturbations of the
domain giving rise to solutions were also recently considered by Gazzola, Grunau
and one of the authors [15].

Adding a nonhomogeneous term produces a similar effect. For K = 1 it was
shown by Tarantello [29] that, if f 6= 0 and ‖f‖H−1 is small enough, problem
(PΩ, f ) has at least two nontrivial solutions. This result was extended to the case
K = 2 by Deng and Wang [11]. One consequence of the main result in this paper
is that this is true for every K > 1. We shall show that the following holds.
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Corollary 1.1. There exists a κ > 0 such that, if f 6= 0 and ‖f‖H−K < κ, then
problem (PΩ, f ) has at least 2 solutions.

It is well known that the presence of symmetries gives rise, in many cases, to
additional solutions. The impact of symmetries on problem (PΩ, f ) for K = 1 has
been studied recently by Kavian, Ruf and one of the authors [10]. The main goal
of this paper is to study the effect of symmetries on the number and on the type
of solutions of problem (PΩ, f ) for arbitrary K > 1. We consider domains Ω which
are invariant under the action of some closed subgroup G of the group O(N) of
orthogonal transformations of RN , that is, gx ∈ Ω for every g ∈ G, x ∈ Ω. We
assume that f is G–invariant, that is, f(gx) = f(x) for every g ∈ G, x ∈ Ω, and
look for additional solutions of problem (PΩ, f ) which are also G–invariant. Recall
that G is said to act freely on Ω if g1x 6= g2x for all g1 6= g2 ∈ G, x ∈ Ω. As a
consequence of our main result we obtain the following.

Corollary 1.2. If G 6= {1} acts freely on Ω then there exists a κ > 0 with the
property that, for every f 6= 0 which is G–invariant and such that ‖f‖H−K < κ,
problem (PΩ, f ) has at least 3 solutions one of which is G–invariant and one of
which is not.

For example, if Ω is symmetric with respect to the origin (i.e. x ∈ Ω if −x ∈ Ω)
and 0 6∈ Ω then, for every even function f 6= 0 with ‖f‖H−K small enough, problem
(PΩ, f ) has at least 3 solutions, one of which is even and one of which is not. We
write

(u, v)K,2 =

{∫
Ω

∆qu∆qv dx if K = 2q,∫
Ω
∇∆qu∇∆qv dx if K = 2q + 1

(1.1)

for the usual scalar product in the Sobolev space HK
0 (Ω), and denote by SK the

best Sobolev constant for the embedding HK
0 (Ω) ↪→ LK∗(Ω),

SK = inf
{
‖u‖2K,2 : u ∈ HK

0 (Ω),
∫

Ω

|u|K∗ dx = 1
}

.

We write ]Gj for the cardinality of Gj . Our main result is the following.

Theorem 1.3. Let {1} = G1, . . . , Gm be closed subgroups of O(N) acting freely on
Ω such that ]G1 < · · · < ] Gm and Gm−1 ⊂ Gm. Then at least one of the following
assertions holds:
(a) m > 1 and for f = 0 problem (PΩ, 0) has a nontrivial solution u such that

‖u‖2K,2 6 (]Gm−1)(SK)N/2K ;

(b) m > 1 and there exists a κ > 0 with the property that, if f is Gi–invariant
for each i = 1, . . . , m, f 6= 0 and ‖f‖H−K < κ, then problem (PΩ, f ) has at least
m + 1 solutions u0, u1, . . . , um such that ui is Gi–invariant but not Gi+1–invariant
for i = 1, . . . ,m− 1, and um is Gm–invariant.

We recall that a weak solution of (PΩ, f ) belongs to C2K,α(Ω) if ∂Ω is of class
C2K,α and f ∈ C0,α(Ω) [20].

Whether Ω has symmetries or not, Theorem 1.3 (with m = 1) asserts the ex-
istence of at least two solutions of problem (PΩ, f ) for f 6= 0 and ‖f‖H−K small
enough. This is Corollary 1.1. Moreover, if Ω and f have appropriate symmetries,
Theorem 1.3 provides an additional solution. Indeed, since (PΩ, 0) has no ground
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state solution, Theorem 1.3 includes Corollary 1.2 as a special case (a detailed
argument is given in Section 4 below).

Theorem 1.3 asserts the existence of many solutions of problem (PΩ, f ) provided
that it has many symmetries and that the unperturbed problem (PΩ, 0) has no
nontrivial solution below a certain energy level.

Little is known about nonexistence of solutions of problem (PΩ, 0). For K = 1
Pohožaev’s identity [23] implies nonexistence of solutions in starshaped domains.
But for K > 1, even though Oswald did show that there are no positive solutions
in domains of this kind [21], as far as we know there is no result excluding sign–
changing ones apart from the case K = 2 where the existence of radial solutions on
a ball has been ruled out [15].

In any case, notice that the condition that G acts freely on Ω is quite strong.
It implies that 0 /∈ Ω, which excludes starshaped domains. It also implies that Ω
has nontrivial topology. For K = 1 a well known result of Bahri and Coron [1]
asserts the existence of a solution of problem (PΩ, 0) if Ω has nontrivial topology.
A similar result for any K > 1 was recently obtained by Bartsch, Weth and Willem
[2]. Moreover, even in some contractible domains, solutions of (PΩ, f ) are known
to exist [22], [15]. Quite recently, however, Ben Ayed, El Mehdi and Hammami [3]
obtained a nonexistence result for problem (PΩ, 0) on thin annuli. They showed
that, for K = 1, problem (PΩ, 0) has no positive solution below a given energy level
if the annular domain is thin enough. This fact, together with Theorem 1.3 and
some stronger results of this kind, provides multiple solutions of problem (PΩ, f )
for K = 1 and small f 6= 0 on thin annuli [10].

For f > 0 and K = 1 there is an effect of the domain topology [26] together
with its symmetries [10] on the number of solutions of (PΩ, f ). Also more general
group actions are allowed in this case. This is a consequence of the fact that, for
K = 1, least energy solutions are positive if f > 0 and small enough. For K > 1
this positivity preservation property does not hold in general, due to the lack of
maximum principles for (−∆)K [17].

Finally we would like to mention that for nonhomogeneous polyharmonic prob-
lems at (small enough) subcritical growth with homogeneous or nonhomogeneous
Dirichlet boundary conditions much stronger results hold for arbitrary K > 1 [18].

This paper is organized as follows: in Section 2 we describe the variational setting
associated to problem (PΩ, f ) in the presence of symmetries. In Section 3 we give
a compactness condition for this problem and obtain a first G–invariant solution.
In Section 4 a further G–invariant solution is provided, and Theorem 1.3 is proved.
As in the case K = 1 [29], [10], the proof of Theorem 1.3 for K > 1 relies, on
one hand, on the knowledge of the first G–invariant noncompactness level for the
unperturbed problem (PΩ, 0). On the other hand, it requires fine estimates similar
to those obtained by Brézis and Nirenberg in [8]. These questions will be handled
in Sections 5 and 6 respectively.

2. The Variational Framework. Let G be a closed subgroup of O(N) and as-
sume that Ω and f are G–invariant. Consider the problem





(−∆)Ku = |u|K∗−2u + f in Ω,
(

∂
∂ν

)j
u
∣∣∣
∂Ω

= 0, j = 0, . . . , K − 1,

u(gx) = u(x) for g ∈ G.

(PG
Ω, f )
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The action of G on Ω induces an orthogonal G–action on HK
0 (Ω) given by

(gu)(x) := u(g−1x),

that is, (u, v)K,2 = (gu, gv)K,2 for all g ∈ G, u, v ∈ HK
0 (Ω). We write |·|p for the

Lp–norm. The energy functional

Ef (u) =
1
2
‖u‖2K,2 −

1
K∗

|u|K∗K∗ −
∫

Ω

fu dx

is G–invariant, that is, Ef (gu) = Ef (u) for all g ∈ G and u ∈ HK
0 (Ω).

Weak solutions of problem (PG
Ω, f ) are critical points of the restriction of Ef to

the space of fixed points

HK
0 (Ω)G =

{
u ∈ HK

0 (Ω) : u(gx) = u(x) for all g ∈ G
}
.

They lie on the Nehari set

NG
f =

{
u ∈ HK

0 (Ω)G : DEf (u)u = 0
}

=
{

u ∈ HK
0 (Ω)G : ‖u‖2K,2 − |u|K∗K∗ −

∫

Ω

fu dx = 0
}

From now on we assume that the following condition holds:
(H1) For every v ∈ HK

0 (Ω)G with |v|K∗K∗ = 1,

∣∣∣
∫

Ω

fv dx
∣∣∣ < bN,K‖v‖

N+2K
2K

K,2 , bN,K =
4K

N − 2K

(N − 2K

N + 2K

)N+2K
4K

.

This condition is the same one given by Tarantello [29] for K = 1 and by Deng and
Wang [11] for K = 2. Observe that condition (H1) holds provided that

‖f‖H−K < bN,K S
N/4K
K .

Let us recall some properties satisfied by the Nehari set.

Proposition 2.1. If condition (H1) holds then NG
f has the following properties:

(a) if f 6= 0 then NG
f is a C1–submanifold of HK

0 (Ω)G; if f = 0 then NG
0 \{0} is a

C1–submanifold of HK
0 (Ω)G ;

(b) for every 0 6= u ∈ NG
f the line Ru is transversal to NG

f at u ;

(c) NG
f has two components

(NG
f )+ =

{
u ∈ NG

f : ‖u‖2K,2 −
(N + 2K

N − 2K

)
|u|K∗K∗ > 0

}
,

(NG
f )− =

{
u ∈ NG

f : ‖u‖2K,2 −
(N + 2K

N − 2K

)
|u|K∗K∗ < 0

}
;

(d) (NG
f )− is radially diffeomorphic to the unit sphere in HK

0 (Ω)G ;

(e) Ef (u) < 0 for u ∈ (NG
f )+ with u 6= 0 ;

(f) Ef is bounded below on NG
f .

The proof is easy and similar to the one for K = 1 [29], [10]. Details are left to
the reader. We define

cG
f,0 := inf

u∈NG
f

Ef = inf
u∈(NG

f )+
Ef , cG

f,1 := inf
u∈(NG

f )−
Ef .
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These infima are natural candidates for being critical values. We shall show that
they are actually achieved. Notice that Proposition 2.1 implies that −∞ < cG

f,0 6
cG
f,1 < +∞ and that cG

f,0 < 0 if f 6= 0. If f = 0 we write

NG = (NG
0 )−, cG

1 = inf
NG

E0 .

3. The G–invariant Compactness Range.

Definition 3.1. A sequence (uk) ⊂ HK
0 (Ω)G such that

Ef (uk) → c, ‖DEf (uk)‖H−K → 0,

will be called a G–PS–sequence for Ef at the level c. Ef will be said to satisfy the G–
Palais–Smale condition (PS)G

c at the level c if every such sequence has a convergent
subsequence.

Let us set
µG :=

(
min
x∈Ω

]Gx
)K

N
(SK)N/2K

,

where ]Gx denotes the cardinality of the G–orbit Gx =
{
gx : g ∈ G

}
of x. The

following Proposition, which extends a result of P.L. Lions [19] to any K > 1, will
be proved in Section 5.

Proposition 3.2. E0 satisfies (PS)G
c at every c < µG. In particular, if every G–

orbit in Ω is infinite, then E0 satisfies (PS)G
c at every c ∈ R.

Corollary 3.3. Ef satisfies (PS)G
c at every c < cG

f,0 + µG. In particular, if every
G–orbit in Ω is infinite, then Ef satisfies (PS)G

c at every c ∈ R.

Proof. Let (uk) be G–PS–sequence for Ef with Ef (uk) → c. It is readily seen that
(uk) is bounded. Hence a subsequence converges weakly in HK

0 (Ω)G to a weak
solution u of (PG

Ω, f ). Let vk := uk − u. A standard argument shows that

Ef (uk) = Ef (u) + E0(vk) + o(1)

o(1) = DEf (uk) = DEf (u) + DE0(vk) + o(1) = DE0(vk) + o(1)

as k → +∞. Therefore (vk) is a G–PS–sequence for E0 such that vk ⇀ 0 weakly in
HK

0 (Ω)G and
E0(vk) → c− Ef (u) 6 c− cG

f,0 < µG.

It follows from Proposition 3.2 that, up to a subsequence, vk → 0 strongly in
HK

0 (Ω)G and, hence, uk → u strongly in HK
0 (Ω)G.

Easy consequences of Corollary 3.3 are the following.

Theorem 3.4. If f satisfies assumption (H1) then cG
f,0 is achieved at a point uG

f,0 ∈
(NG

f )+ which is a critical point of Ef on HK
0 (Ω)G. Moreover,

‖f‖H−K → 0 =⇒
∥∥uG

f,0

∥∥
K,2

→ 0.

Proof. If f = 0 take uG
f,0 = 0. For f 6= 0 let (un) be a minimizing sequence for

Ef on (NG
f )+. Ekeland’s variational principle [30] allows us to assume that (un)

is a Palais–Smale sequence for Ef on NG
f . Since cG

f,0 < 0, we may also assume
that un 6= 0. Hence Run is transversal to NG

f at un and therefore (un) is a G–PS–
sequence for Ef at the level cG

f,0. Corollary 3.3 above asserts that a subsequence of
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(un) converges strongly to uG
f,0 ∈ (NG

f )+. Hence, Ef (uG
f,0) = cG

f,0. The last assertion
follows immediately from the inequality

0 > Ef (uG
f,0) =

K

N
‖uf,0‖2K,2 −

N + 2K

2N

∫

Ω

fuf,0 dx

> K

N

∥∥uG
f,0

∥∥2

K,2
− N + 2K

2N
‖f‖H−K

∥∥uG
f,0

∥∥
K,2

> − (N + 2K)2

16NK
‖f‖2H−K .

For K = 1 this result is due to Tarantello [29] if G = {1} and for arbitrary G it
was proved in [10]. A further consequence of Corollary 3.3 is the following.

Proposition 3.5. If condition (H1) holds then cG
f,0 < cG

f,1.

Proof. If cG
f,0 = cG

f,1 then, arguing as in Theorem 3.4, we obtain a uG
f,1 ∈ (NG

f )−

such that Ef (uG
f,1) = cG

f,1. Let t0 > 0 be the largest real number with Ef (t0uG
f,1) ∈

(NG
f )+. Assumption (H1) implies that

cG
f,0 6 Ef (t0uG

f,1) < Ef (uG
f,1) = cG

f,1.

This is a contradiction.

4. A Second G–invariant Solution. We wish to give conditions for cG
f,1 to be

achieved by Ef on (NG
f )−. Corollary 3.3 immediately gives the following.

Theorem 4.1. Assume that condition (H1) holds. If every G–orbit of Ω is infinite,
then cG

f,1 is achieved at a point uG
f,1 ∈ (NG

f )− which is a critical point of Ef on
HK

0 (Ω)G.

Next we consider the case when the domain Ω has a finite G–orbit. We assume
throughout that condition (H1) holds and also

(H2) G is a finite group acting freely on Ω.
For ε > 0 and y ∈ RN we consider the ground state solutions

Tε,y(x) = cN,K

( ε

ε2 + |x− y|2
)N−2K

2
, cN,K =

{ K∏

j=1−K

(N − 2j)
}N−2K

4K

of the problem (−∆)Ku = |u|K∗−2u in RN (see [28]). It satisfies

‖Tε,y‖2K,2 = (SK)N/2K = |Tε,y|K∗K∗
.

For y ∈ Ω we consider the multi–bump function

wε,y =
∑

g∈G

ϕgyTε,gy ∈ HK
0 (Ω)G

where ϕ ∈ C∞(RN ) is radially symmetric, 0 6 ϕ 6 1, ϕ = 1 on B(0, 1) and ϕ = 0
outside B(0, 2), and ϕgy(x) = ϕ(ρ−1(x− gy)) with

0 < ρ < min
{1

2
dist(y, ∂Ω),

1
4
|gy − g′y| : g, g′ ∈ G, g 6= g′

}
.

Hence supp(ϕgy) ⊂ Ω and supp(ϕgy)∩ supp(ϕg′y) = ∅ if g 6= g′.
If f 6= 0 then uG

f,0 6= 0 and we may assume without loss of generality that uG
f,0 > 0

in some set Σ ⊂ Ω of positive measure. The following lemma, which extends a result
of Brézis and Nirenberg [8] to any K > 1, will be proved in Section 6.
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Lemma 4.2. For each K > 1 and t > 0 and for a.e. y ∈ Σ the following holds∫

Ω

|uG
f,0 + twε,y|K∗ =

∫

Ω

|uG
f,0|K∗ dx + tK∗

∫

Ω

|wε,y|K∗ dx

+ K∗tK∗−1

∫

Ω

uG
f,0 wK∗−1

ε,y dx

+ K∗t
∫

Ω

|uG
f,0|K∗−2uG

f,0 wε,y dx + Rε + Sε

with Rε = o
(
ε(N−2K)/2

)
and Sε = o

(
ε(N−2K)/2

)
as ε → 0.

Proposition 4.3. Assume that f 6= 0 and that conditions (H1) and (H2) hold.
Then for every t > 0 and a.e. y ∈ Σ it results

Ef (uG
f,0 + twε,y) < cG

f,0 + µG

for each ε > 0 sufficiently small .

Proof. For every t > 0 and each y ∈ Ω it results

Ef (uG
f,0 + twε,y) =

1
2
‖uG

f,0‖2K,2 + t(uG
f,0, wε,y)K,2 +

t2

2
‖wε,y‖2K,2

− 1
K∗

|uG
f,0 + twε,y|K∗K∗ −

∫

Ω

fuG
f,0 dx− t

∫

Ω

fwε,y dx.

In view of Lemma 4.2, this equality yields

Ef (uG
f,0 + twε,y) = Ef (uG

f,0) + tDEf (uG
f,0)wε,y +

t2

2
‖wε,y‖2K,2 dx− tK∗

K∗
|wε,y|K∗K∗

−tK∗−1

∫

Ω

uG
f,0 wK∗−1

ε,y dx + o
(
ε(n−2K)/2

)

= cG
f,0 +

t2

2
‖wε,y‖2K,2 dx− tK∗

K∗
|wε,y|K∗K∗

−tK∗−1

∫

Ω

uG
f,0 wK∗−1

ε,y dx + o
(
ε(n−2K)/2

)
(4.1)

as ε → 0 for a.e. y ∈ Σ. Arguing as in [14], one finds C > 0 such that

‖ϕyTε,y‖2K,2 6 S
N/2K
K + CεN−2K , |ϕyTε,y|K∗K∗ > S

N/2K
K − CεN , (4.2)

as ε → 0. Since t2

2 − tK∗
K∗

6 K
N and since G acts freely on Ω, it follows that

Ef (uG
f,0 + twε,y) 6 cG

f,0 + (]G)
K

N
S

N/2K
K

− tK∗−1

∫

Ω

uG
f,0 wK∗−1

ε,y dx + o
(
ε(N−2K)/2

) (4.3)

as ε → 0 for a.e. y ∈ Σ. On the other hand,∫

Ω

uG
f,0 wK∗−1

ε,y dx = (]G)
∫

Ω

uG
f,0ϕ

K∗−1
y TK∗−1

ε,y dx

= (]G)DN,K

∫

RN

uG
f,0(x) ϕK∗−1

y (x)
ε(N+2K)/2

(ε2 + |x− y|2)(N+2K)/2
dx

= (]G)DN,Kε(N−2K)/2

∫

RN

uG
f,0(x) ϕK∗−1

y (x)
1

εN
ψ

(x− y

ε

)
dx
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where DN,K > 0 and ψ(ξ) = (1 + |ξ|2)−(N+2K)/2. Since by [13, Theorem 8.15]
∫

RN

uG
f,0(x)ϕK∗−1

y (x)
1

εN
ψ

(x− y

ε

)
dx → uG

f,0(y)
∫

RN

ψ(ξ) dξ

as ε → 0 for a.e. y ∈ Σ it follows that for some D̃N,K > 0

Ef (uG
f,0 + twε,y) 6 cf,0 + µG

− tK∗−1D̃N,K(]G)uG
f,0(y) ε(N−2K)/2 + o

(
ε(N−2K)/2

)
.

(4.4)

as ε → 0. Finally, since uG
f,0(y) > 0 for a.e. y ∈ Σ, the result follows.

Notice that if we knew that uG
f,0 > 0 in all of Ω, a similar argument would yield

Ef (uG
f,0 + twε,y) < cG

f,0 + µG = cG
f,0 +

(
min
x∈Ω

]Gx
)K

N
(SK)N/2K

even if the action of G on Ω is not free (see [10, Proposition 18]). But, since all
we know is that uG

f,0 > 0 in some set Σ of positive measure it might very well be
that, if the action is not free, no G–orbit Gy with y ∈ Σ has minimum cardinality.
This is why we consider free actions. Proposition 4.3 and Theorem 4.4 below are
still true if instead of (H2) we assume that Ω has only one G–orbit type, that is,
all G–orbits in Ω are G–isomorphic.

As a consequence of Proposition 4.3 we obtain the following result.

Theorem 4.4. Assume that f 6= 0 and that conditions (H1) and (H2) hold. Then
cG
f,1 is achieved at a point uG

f,1 ∈ (NG
f )− which is a critical point of Ef on HK

0 (Ω)G.

Proof. Since the ray
{
uG

f,0 + twε,y : t > 0
}

crosses (NG
f )−, it follows from Proposi-

tion 4.3 above that
cG
f,1 = inf

u∈(NG
f )−

Ef < cG
f,0 + µG.

By Corollary 3.3 the value cG
f,1 is achieved by Ef on (NG

f )−.

For K = 1 this result was proved by Tarantello [29] for the trivial group and
extended to arbitrary groups in [10].

For the proof of Theorem 1.3 we require the following easy Lemma.

Lemma 4.5. For every α > 0,

‖f‖H−K 6
(N

K
cG
1

)−1/2

α =⇒ cG
1 − α 6 cG

f,1 .

Proof. Let ε > 0 and let v ∈ (NG
f )− be such that Ef (v) < cG

f,1 + ε. Let t0 > 0 be
such that u = t0v ∈ (NG

0 )−. Then E0(u) = K
N ‖u‖2K,2 > cG

1 and, therefore,

cG
f,1 + ε > Ef (u) = E0(u)−

∫

Ω

fu dx > E0(u)− ‖f‖H−K

(N

K
E0(u)

)1/2

> E0(u)− (
cG
1

)−1/2
α (E0(u))1/2 > cG

1 − α

because the function
{
t 7→ t− (cG

1 )−1/2α t1/2
}

is increasing for t > cG
1 .
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Using the results above and arguing as in the case K = 1 [10] one can now prove
Theorem 1.3. We give the details for the reader’s convenience.

Proof of Theorem 1.3. Assume that problem (PΩ, 0) has no solution u ∈ N
such that E0(u) = K

N ‖u‖2K,2 6 (]Gm−1)K
N (SK)N/2K

. Then, by Theorem 4.1 and

Proposition 3.2, cGi
1 = µGi = (]Gi)K

N (SK)N/2K
< +∞ for i = 1, . . . ,m− 1. If cGm

1

is not achieved by E0 on NGm then cGm
1 = µGm too. On the other hand if it is

achieved then necessarily cGm
1 > c

Gm−1
1 , because c

Gm−1
1 is not achieved by E0 on

NGm−1 ⊃ NGm . So, since ]Gi−1 < ] Gi, we obtain in any case that cGi
1 > c

Gi−1
1 for

all i = 2, . . . , m. Let

α := min
{

cGi
1 − c

Gi−1
1 : i = 2, . . . , m

}
> 0.

By Lemma 4.5 above there is a κ > 0 independent of f, such that, if ‖f‖H−1 6 κ,

then f satisfies assumption (H1) and cGi
1 − α 6 cGi

f,1 for all i = 1, . . . , m. This,
together with Proposition 4.3, implies that

cG1
f,0 < cG1

f,1 < · · · < c
Gi−1
1 6 cGi

f,1 < cGi
1 6 · · · < c

Gm−1
1 6 cGm

f,1 .

Theorem 3.4 and Theorem 4.4 provide m + 1 different solutions, uG1
f,0 ∈ (NG1

f )+,

uGi

f,1 ∈ (NGi

f )−, with Ef (uG1
f,0) = cG1

f,0 and Ef (uGi

f,1) = cGi

f,1 for i = 1, . . . ,m. Since

c
Gi+1
f,1 is the least possible energy of a Gi+1–invariant solution on N−

f , uGi

f,1 is not
Gi+1–invariant for i = 1, . . . , m− 1.

Proof of Corollary 1.2. Since problem (PΩ,0) is invariant under dilations, the
best Sobolev constant SK is independent of the domain. It follows that the infimum

c
{1}
1 =

K

N
(SK)N/2K

is not achieved by E0 on N {1} ⊂ HK
0 (Ω). Indeed, if it were achieved at some point

u1 ∈ N {1}, then extending u1 by 0 outside of Ω would give a minimum of E0 on the
Nehari manifold in HK(RN ), that is, a solution of the problem (−∆)Ku = |u|K∗−2u
in RN which vanishes outside of Ω, contradicting the unique continuation property
[24]. As a consequence, assertion (b) of Theorem 1.3 must hold.

Observe that Theorem 1.3 is still true if we assume that every Gm–orbit of Ω is
infinite instead of asking that Gm acts freely on Ω. The proof is similar except
that, in this case, both cGm

1 and cGm

f,1 are always achieved (cf. Theorem 4.1). In
particular, the following holds.

Corollary 4.6. If every G–orbit of Ω is infinite, then there exists a κ > 0 with
the property that, for every f 6= 0 which is G–invariant and such that ‖f‖H−K < κ,
problem (PΩ, f ) has at least three solutions one of which is G–invariant and one of
which is not.

Remark 4.7. These results can be extended to eigenvalue problems



(−∆)Ku = λu + |u|K∗−2u + f in Ω,(
∂

∂ν

)j

u

∣∣∣∣
∂Ω

= 0, j = 0, . . . , K − 1,
(PΩ,λ,f )

provided that 0 6 λ < λ1, where λ1 is the first eigenvalue of (−∆)K with Dirichlet
boundary conditions (see [11]). For f = 0 and Ω = BR(0) this problem has been
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studied by many authors (see e.g. [4, 25]), mainly in dealing with the so called Pucci–
Serrin conjecture which says that the dimensions for which there is 0 < Λ < λ1 such
that (PΩ,λ,0) admits no solution for λ < Λ are precisely

2K + 1, . . . , 2K + j, . . . , 4K − 1.

Even though a full proof of the Pucci–Serrin conjecture seems out of reach, a weak
version (for positive solutions) has been given by Grunau in [16].

5. Proof of Proposition 3.2. In this section we prove Proposition 3.2. Let us
first prove the following result.

Lemma 5.1. Assume that (vk) ⊂ HK(RN ) is such that vk ⇀ 0. Then

∀h ∈ C∞c (B) : ‖hvk‖2K,2 = (vk, h2vk)K,2 + o(1)

as k → +∞.

Proof. We consider the case K = 2q. The case K = 2q + 1 can be treated in a
similar fashion. Setting for each k > 1

Ak =
q∑

j1,..., jq=1

α∈{0,1,2}q, α 6=0

cj,α
∂2q−|α|vk

∂x2−α1
j1

· · · ∂x
2−αq

jq

∂|α|h
∂xα1

j1
· · · ∂x

αq

jq

,

it results
|∆q(hvk)|2 = h2|∆qvk|2 + 2hAk∆qvk + A2

k . (5.1)
Moreover, setting

Bk =
q∑

j1,..., jq=1

α∈{0,1,2}q, α6=0

cj,α
∂2q−|α|vk

∂x2−α1
j1

· · · ∂x
2−αq

jq

∂|α|h2

∂xα1
j1
· · · ∂x

αq

jq

,

it follows that
∆qvk∆q(h2vk) = h2|∆qvk|2 + Bk∆qvk . (5.2)

By combining (5.1) and (5.2) yields

|∆q(hvk)|2 = ∆qvk∆q(h2vk) + A2
k −

(
Bk − 2hAk

)
∆qvk . (5.3)

Since Djvk → 0 in L2
loc(RN ) for j = 0, . . . , 2q − 1, being α 6= 0, it results

Ak → 0, Bk − 2hAk → 0 in L2(supt h)

as k → +∞. In particular equation (5.3) yields the assertion.

Proof of Theorem 3.2. Let (uk) ⊂ HK
0 (Ω)G be a G–PS–sequence for E0 such

that E0(uk) → c < µG. We wish to show that a subsequence of (uk) converges
strongly in HK

0 (Ω). Since PS–sequences for E0 are bounded in HK
0 (Ω),

‖uk‖2K,2 =
N

K
E0(uk)− N − 2K

2K
DE0(uk)uk → N

K
c

as k → +∞. Thus c > 0 . We may assume that uk ⇀ u weakly in HK
0 (Ω) and

that uk → u a.e. in Ω. It is easy to see that DE0(u) = 0 and that vk := uk − u is a
PS–sequence for E0 such that vk ⇀ 0 weakly in HK

0 (Ω) and

E0(vk) = E0(uk)− E0(u) + o(1) = c− E0(u) + o(1).

Let d := c− E0(u). Thus 0 6 d 6 c. If d = 0 then uk → u strongly in HK
0 (Ω) and

we are done.
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So let us assume that d > 0. Since (vk) is a PS–sequence for E0, it is bounded
in HK

0 (Ω). Hence

|vk|K∗K∗ =
N

K
E0(vk)− N

2K
DE0(vk)vk → N

K
d > 0.

Let δ = min
{

Nd
2K ,

(
SK

2

) N
2K

}
and denote by B(x, %) the closed ball in RN with center

x and radius %. The Levy concentration function

Φk(%) = sup
x∈RN

∫

B(x,%)

|vk|K∗ dξ

satisfies Φk(0) = 0 and Φk(+∞) > δ for k large enough. Hence we may choose
yk ∈ Ω and εk > 0 such that

sup
x∈RN

∫

B(x,εk)

|vk|K∗ dξ =
∫

B(yk,εk)

|vk|K∗ dξ = δ > 0 . (5.4)

Observe that, Ω being bounded, the sequence (εk) is bounded. We define

vk(z) = ε
N−2K

2
k vk(εkz + yk) ∈ HK(RN ).

It results ‖vk‖2K,2 = ‖vk‖2K,2 and |vk|K∗K∗ = |vk|K∗K∗ . In particular, (vk) is a bounded
sequence in HK(RN ) and, up to a subsequence,

vk ⇀ v weakly in HK(RN ),

Djvk → Djv a.e. in RN , j = 0, . . . , K − 1,

Djvk → Djv in L2
loc(RN ), j = 0, . . . ,K − 1,

as k → +∞. We wish to show that v 6= 0. Assume by contradiction that v = 0.
It follows from Lemma 5.1 and equality (5.4) above, and from Sobolev and Hölder
inequalities that, as k → +∞,

SK |hvk|2K∗ 6 ‖hvk‖2K,2

=
(
vk, h2vk

)
K,2

+ o(1)

=
∫

RN

h2 |vk|K∗dx + DE0(vk)
(
h2

( · − yk

εk

)
vk

)
+ o(1)

6
( ∫

B(z,1)

|vk|K∗dx

)2K/N( ∫

RN

|hvk|K∗dx

)2/K∗

+ o(1)

6 δ2K/N |hvk|2K∗ + o(1) 6 SK

2
|hvk|2K∗ + o(1)

for each z ∈ RN and h ∈ C∞c (B(z, 1)). Hence vk → 0 in LK∗
loc (RN ). This is a

contradiction to (5.4). Therefore, v 6= 0.
Since Ω is bounded and vk ⇀ 0 in HK

0 (Ω), up to a subsequence, yk → y ∈ Ω
and εk → 0. If (ε−1

k dist(yk, ∂Ω)) is bounded, we may assume that

lim
k→+∞

ε−1
k dist(yk, ∂Ω) = b.

It is then easy to verify that, up to a rotation of RN , the sets

Ωk =
{
z ∈ RN : εkz + yk ∈ Ω

}
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satisfy
+∞⋂
n=1

( +∞⋃

k=n

Ωk

)
= HN :=

{
(z1, . . . , zN ) ∈ RN : zN > −b

}
.

Hence, v is a nontrivial solution of the equation

(−∆)K
u = |u|K∗−2

u in HN .

On the other hand, if

ε−1
k dist(yk, ∂Ω) → +∞

then v is a nontrivial solution of the equation

(−∆)K
u = |u|K∗−2

u in RN .

In both cases we obtain that E0(v) = K
N ‖v‖2K,2 > K

N (SK)N/2K .

Let Γ = {g ∈ G : gy = y} be the isotropy subgroup of y. Thus, the G–orbit
Gy of y is G–homeomorphic to the homogeneous space of right cosets G/Γ [12].
Let S = {g1, . . . , gm} be a finite subset of G whose elements represent pairwise
distinct cosets [g1], . . . , [gm] in G/Γ. Since yk → y and εk → 0, it follows that
ε−1
k |giyk − gjyk| → +∞ for each i 6= j. Hence, since vk is G–invariant, it results

∥∥∥∥vk −
m∑

i=1

ε
2K−N

2
k vg−1

i

( · − giyk

εk

)∥∥∥∥
2

K,2

=
∥∥∥∥ε

N−2K
2

k vk(εk · + g1yk)−
m∑

i=1

vg−1
i

(
· +

g1yk − giyk

εk

)∥∥∥∥
2

K,2

=
∥∥∥∥vkg−1

1 − vg−1
1 −

∑

i 6=1

vg−1
i

(
· +

g1yk − giyk

εk

)∥∥∥∥
2

K,2

=
∥∥∥∥vkg−1

1 −
∑

i 6=1

vg−1
i

(
· +

g1yk − giyk

εk

)∥∥∥∥
2

K,2

−
∥∥vg−1

1

∥∥2

K,2
+ o(1)

=
∥∥∥∥vk −

∑

i 6=1

ε
2K−N

2
k vg−1

i

( · − giyk

εk

)∥∥∥∥
2

K,2

−
∥∥v

∥∥2

K,2
+ o(1)

and, inductively,

‖vk‖2K,2 =
∥∥∥∥vk −

m∑

i=1

ε
2K−N

2
k vg−1

i

( · − giyk

εk

)∥∥∥∥
2

K,2

+ m ‖v‖2K,2 + o(1)

> m(SK)N/2K + o(1)

as k → +∞ for all m 6 ] G/Γ. Since ‖vk‖2K,2 is bounded it follows that Gy ∼= G/Γ

is finite. If c < µG, then ‖vk‖2K,2 → N
K d < N

K µG. It follows that

]Gy <
(

min
x∈Ω

]Gx
)
.

This is a contradiction. Hence E0 satisfies (PS)G
c for each c < µG.

For a complete description of all G–PS–sequences for K = 1 we refer to [9].
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6. Proof of Lemma 4.2. By [8, Lemma 4] there exists CN,K > 0 such that for
all α, β ∈ R

∣∣|α + β|K∗ − |α|K∗ − |β|K∗ −K∗αβ (|α|K∗−2 + |β|K∗−2)
∣∣

6 CN,K

{ |α| |β|K∗−1 for |α| > |β|,
|α|K∗−1|β| for |α| 6 |β| (6.1)

if N > 6K, and for all α, β ∈ R
∣∣|α + β|K∗ − |α|K∗ − |β|K∗ −K∗αβ (|α|K∗−2 + |β|K∗−2)

∣∣
6 CN,K

(|α|K∗−2|β|2 + |α|2|β|K∗−2
)

provided that N ∈ {2K + 1, . . . , 6K − 1}.
In the following, it is understood that uG

f,0 = 0 outside Ω.

• Case N > 6K ; by (6.1), to prove the assertion on Rε it suffices to estimate the
right hand side of the inequality

|Rε| 6 CN,K

∫

{|uG
f,0|>twε,y}

|uG
f,0| (twε,y)K∗−1 dx .

Splitting the integration into |x− y| < %/2 and %/2 6 |x− y|, one gets

|Rε| 6 C ′N,K,t (]G)εγ2(N−2K)/2

∫

RN

|uG
f,0(x)|1+γ1

|x− y|γ2(N−2K)
dx

+C ′N,K,t (]G) ε(N+2K)/2

where γ1, γ2 > 0 satisfy γ1 + γ2 = K∗ − 1 and γ2 < N/(N − 2K). Note that

|uG
f,0|1+γ1 ∈ L1(RN ), |x|−γ2(N−2K) ∈ L1(RN )

since 1 + γ1 < K∗ and γ2(N − 2K) < N . In particular, by [13, p.232],
∫

RN

|uG
f,0(x)|1+γ1

1
|x− y|γ2(N−2K)

dx < +∞

for a.e. y ∈ Σ (as convolution of two L1 functions). It follows that Rε = O
(
εNϑ/2

)
for each ϑ < 1. In a similar fashion, estimating the right hand side of

|Sε| 6 C ′N,K

∫

{|uG
f,0|<twε,y}

|uG
f,0|K∗−1 twε,y dx

yields Sε = O
(
εNϑ/2

)
for each ϑ < 1 as ε → 0 .

• Case N ∈ {2K + 1, . . . , 6K − 1} ; it results

N = 2K + j, K∗ =
4K + 2j

j
, j = 1, . . . , 4K − 1.

We distinguish three cases:

• j = 1, . . . , 2K − 1,

• j = 2K,

• j = 2K + 1, . . . , 4K − 1.
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• Case j = 1, . . . , 2K − 1 ; by (6.2) for each j it results

|Rε| 6 C ′N,K,t εj(]G)
∫

RN

|uG
f,0(x)|4K/j 1

|x− y|2j
dx ,

|Sε| 6 C ′N,K,t εj(]G)
∫

RN

uG
f,0(x)2

ε2K−j

(ε2 + |x− y|2)2K
dx.

The first estimate gives Rε = O
(
εj

)
since the integral, again by [13, p.232], is finite

for a.e. y ∈ Σ. The second estimate gives Rε = O
(
εj

)
as well, since the kernels

{
x 7→ ε2K−j

(ε2 + |x− y|2)2K
=

1
εN

1(
1 +

∣∣x−y
ε

∣∣2
)2K

}

correspond to that of a mollifier (up to a constant) and thus
∫

RN

uG
f,0(x)2

ε2K−j

(ε2 + |x− y|2)2K
dx → cuG

f,0(y)2

as ε → 0 for some c > 0 and a.e. y ∈ Σ (see [13, Theorem 8.15]).

• Case j = 2K ; by (6.2) it results

|Rε|, |Sε| 6 C ′N,K,t (]G)
∫

RN

|uG
f,0(x)|2 ε2K

(ε2 + |x− y|2)2K
dx .

If γ1, γ2 > 0 satisfy γ1 + γ2 = 2K, then
1

(ε2 + |x− y|2)2K
6 1

ε2γ1

1
|x− y|2γ2

,

which implies

|Rε|, |Sε| 6 C ′N,K,t ε2K−2γ1(]G)
∫

RN

|uG
f,0(x)|2 1

|x− y|2γ2
dx.

This yields Rε = Sε = O(ε2Kϑ) for all ϑ < 1.

• Case j = 2K + 1, . . . , 4K − 1 ; by (6.2), one has

|Rε| 6 C ′N,K,t ε2K(]G)
∫

RN

|uG
f,0(x)|4K/j εj−2K

(ε2 + |x− y|2)j
dx ,

|Sε| 6 C ′N,K,t ε2K(]G)
∫

RN

|uG
f,0(x)|2 1

|x− y|4K
dx.

Taking into account that∫

RN

|uG
f,0(x)|2 1

|x− y|4K
dx < +∞

a.e. y ∈ Σ and that the kernels{
x 7→ εj−2K

(ε2 + |x− y|2)j
=

1
εN

1(
1 +

∣∣x−y
ε

∣∣2
)j

}

correspond to that of a mollifier (up to a constant), arguing as before one gets

Rε = Sε = O
(
ε2K

)
.

Therefore, putting the previous conclusions together, we have
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Rε = Sε =





O (ε) if N = 2K + 1,
...

...
O

(
εj

)
if N = 2K + j,

...
...

O
(
ε2K−1

)
if N = 4K − 1,

O
(
ε2Kϑ

)
if N = 4K,

O
(
ε2K

)
if N ∈ {

4K + 1, . . . , 6K − 1
}
,

O
(
εNϑ/2

)
if N > 6K

for each ϑ < 1 as ε → 0. In particular, in any case it results

Rε = Sε = o
(
ε(N−2K)/2

)

as ε → 0 and the proof is complete.
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