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We prove that the critical problem for the p-Laplacian operator admits a nontrivial 
solution in annular shaped domains with sufficiently small inner hole. This extends 
Coron’s result [4] to a class of quasilinear problems.
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1. Introduction

We want to extend the classical result of Coron [4]. Consider the problem

{
−Δpu = |u|p∗−2u in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in RN , 1 < p < N , p∗ := Np/(N−p) is the critical Sobolev exponent, 
Δpu := div(|∇u|p−2∇u) is the p-Laplace operator. Solutions on the whole space will be considered in

D1,p(
R

N
)

:=
{
u ∈ Lp∗(

R
N
)

: ∇u ∈ Lp
(
R

N ;RN
)}
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endowed with the norm

‖u‖ := ‖∇u‖Lp(RN ).

We denote by W 1,p
0 (Ω) the closure of C∞

c (Ω) in D1,p(RN ) and define on W 1,p
0 (Ω) the functional

J(u) := 1
p

∫
Ω

|∇u|pdx− 1
p∗

∫
Ω

|u|p∗
dx.

As it is well-known in tackling problem (1.1) with variational techniques, the main difficulty is due to the 
fact that the embedding W 1,p

0 (Ω) ⊂ Lp∗(Ω) is not compact. We refer to [14] for a sample of the extensive 
literature on semi-linear problems involving the critical Sobolev exponent, largely inspired by the pioneering 
paper of Brezis and Nirenberg [3]. We also define

S := inf
{ ∫
RN

|∇u|pdx, u ∈ D1,p(
R

N
)

:
∫
RN

|u|p∗
dx = 1

}

the best Sobolev constant, attained by nowhere zero functions in RN , see e.g. [15]. Equivalently

S = inf
u∈D1,p(RN )

u �=0

∫
RN |∇u|pdx

(
∫
RN |u|p∗dx)

p
p∗

, (1.2)

where by a simple scaling argument the infimum remains unchanged if taken on competing functions sup-
ported in an arbitrary subdomain of RN . In light of the Pohozaev identity obtained by Guedda and Veron 
[9, Corollary 3.1], we know that problem (1.1) does not admit positive solutions on a strictly star-shaped 
domain.

The main result of the paper is the following

Theorem 1.1. Let 2N/(N + 2) ≤ p ≤ 2, x0 ∈ R
N and radii R2 > R1 > 0 such that

{
R1 ≤ |x− x0| ≤ R2

}
⊂ Ω,

{
|x− x0| ≤ R1

}
�⊂ Ω. (1.3)

Then problem (1.1) admits a positive solution for R2/R1 sufficiently large.

Theorem 1.1 is, mainly, a consequence of Lemma 2.3, in which the compactness result [11, Theorem 1.2]
and the symmetry result of [5] play a key role. There are several difficulties arising in the present quasilinear 
setting which are partially highlighted in Lemma 2.3, which make the proof more delicate than for dealing 
with the semilinear case p = 2. One of those is the fact that the classification of all positive solutions of the 
critical problem in RN is not yet available for all p ∈ (1, N). We observe that an extension of Lemma 2.3 to a 
broader range of p would immediately yield an extension of Theorem 1.1. We conjecture that the symmetry 
result of [5] and hence Lemma 2.3 and Theorem 1.1 hold for all values of p ∈ (1, N). Another open problem, 
arising in the proof of Lemma 2.3, is the nonexistence of sign-changing solutions of the critical problem in the 
half-space for p �= 2. Such a limiting problem arises because of the boundary of Ω. We show that in fact only 
the nonexistence result of the positive solutions of the critical problem in the half-space [11, Theorem 1.1]
is needed. The nonexistence of sign-changing solutions to problem (1.1) on strictly star-shaped domains is 
still an open problem, and this seems to be related to the fact that the unique continuation principle for 
the p-Laplacian operator is still another major open question. We incidently notice that in [11, p. 482] it 
has been observed that if Ω = B(0, 1) the unit ball, no nontrivial radial solutions to (1.1) exist if p is in 
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the range of Theorem 1.1. In the case N = 2, Theorem 1.1 holds for all 1 < p < 2, which is the desired 
range for a p-Laplacian extension of the classical result of Coron. Theorem 1.1 extends [10, Theorem 1.1], 
where problem (1.1) had been studied assuming that Ω is invariant under the action of a closed subgroup 
of O(N). In the case Ω is non-symmetric our result on problem (1.1) seems to be the first since Coron’s 
classical paper [4] appeared in 1984. Even though our proof follows the original homotopy argument given 
in [4] (see also e.g. [14]) for the case p = 2, we point out that the present paper provides the first proof of 
the key fact that the Palais–Smale condition holds at energy levels c ∈ (SN/p/N, 2SN/p/N) by using the 
recent results [5,11]. This allows to carry on with a classical homotopy argument by constructing a pseudo 
gradient flow, as given e.g. in [14, pp. 191–193].

It is an open problem whether (1.1) has nontrivial solutions when a Z2-homology group of Ω is nontrivial. 
This is the case for p = 2, see the celebrated analysis done in [1]. In several contributions dealing with the 
semi-linear case p = 2, see e.g. [6,7,12], it is shown that the existence of a nontrivial solution is possible 
also in contractible domains, hence conditions on the homology of Ω are not necessary for problem (1.1)
to have solutions. A very well-known and challenging problem, even in the case p = 2, would be to exploit 
the combined effect of both the topology and the geometry of Ω in order to characterize the existence of a 
positive solution to problem (1.1).

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1.

2.1. Palais–Smale condition

We define RN
+ := {x ∈ R

N : xN > 0} and denote by D1,p
0 (RN

+ ) the closure of C∞
c (RN

+ ) in D1,p(RN ) after 
extending by zero on RN \ RN

+ .

Lemma 2.1. Let u ∈ W 1,p
0 (Ω) be a sign-changing solution to (1.1). Then J(u) ≥ 2SN/p/N . Moreover, the 

same conclusion holds for the sign-changing solutions of −Δpu = |u|p∗−2u in D1,p(RN ) or in D1,p
0 (RN

+ ).

Proof. If u ∈ W 1,p
0 (Ω) is a sign-changing solution to (1.1), then u± ∈ W 1,p

0 (Ω) \ {0} and by testing (1.1)
with u± this yields

∫
Ω

∣∣∇u+∣∣pdx =
∫
Ω

∣∣u+∣∣p∗
dx,

∫
Ω

∣∣∇u−∣∣pdx =
∫
Ω

∣∣u−∣∣p∗
dx.

In turn, using the definition of (1.2), we obtain

J(u) = J
(
u+) + J

(
u−) = 1

N

∥∥u+∥∥p∗

p∗ + 1
N

∥∥u−∥∥p∗

p∗ ≥ 2SN/p/N,

concluding the proof. The same argument works for the problem on RN and on RN
+ . �

The following lemma is a consequence of the recent result [5].

Lemma 2.2. Let 2N/(N + 2) ≤ p ≤ 2 and u ∈ D1,p(RN ) be a positive solution of −Δpu = |u|p∗−2u. Then 
up to translation, and for a suitable a > 0,

u(x) =
(
Na

(
N − p

p− 1

)p−1)(N−p)/p2(
a + |x|p/(p−1))(p−N)/p

, a.e. on R
N .
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Proof. By [5] for some strictly decreasing function v : [0, +∞) → (0, +∞) and for some x0 ∈ R
N there 

holds u(x) = v(|x − x0|). The assertion then follows by [8, Theorem 2.1(ii)] (see also [2]). �
Lemma 2.3. Assume that 2N/(N + 2) ≤ p ≤ 2. Then J satisfies the Palais–Smale condition for all c ∈
(SN/p/N, 2SN/p/N).

Proof. Assume that for some c ∈ (SN/p/N, 2SN/p/N), (un) ∈ W 1,p
0 (Ω) is such that J(un) → c, and 

J ′(un) → 0 in W−1,p′(Ω). We define on D1,p(RN )

J∞(u) :=
∫
RN

|∇u|p
p

dx−
∫
RN

|u|p∗

p∗
dx.

On D1,p
0 (RN

+ ) we define the same functional J∞ extending by zero on RN \ RN
+ .

By applying [11, proof of Theorem 1.2], which extends [13], passing if necessary to a subsequence, we can 
infer that there exists a (possibly trivial) solution v0 ∈ W 1,p

0 (Ω) of

−Δpu = |u|p∗−2u in Ω,

k ∈ N ∪ {0}, nontrivial solutions {v1, ..., vk} of

−Δpu = |u|p∗−2u in Hi, i ∈ {0, 1, ..., k},

where Hi is either RN or (up to rotation and translation) RN
+ , with either vi ∈ D1,p(RN ) or (respectively) 

vi ∈ D1,p
0 (RN

+ ), and there exist k sequences {yin}n ⊂ Ω̄ and {λi
n}n ⊂ R+, satisfying

1
λi
n

dist
(
yin, ∂Ω

)
→ ∞, n → ∞,

if Hi ≡ R
N or

1
λi
n

dist
(
yin, ∂Ω

)
< ∞, n → ∞,

if (up to rotation and translation) Hi ≡ R
N
+ , and

∥∥∥∥∥un − v0 −
k∑

i=1

(
λi
n

)(p−N)/p
vi
((
· − yin

)
/λi

n

)∥∥∥∥∥ → 0, n → ∞,

‖un‖p →
k∑

i=0
‖vi‖p, n → ∞,

J(v0) +
k∑

i=1
J∞(vi) = c. (2.1)

The restriction on the levels c and Lemma 2.1 immediately yield the bound k ≤ 1. If k = 0 compactness 
holds and we are done. If instead k = 1, we have two cases, namely v0 ≡ 0 or v0 �≡ 0. If v0 �≡ 0, since

J(v0) ≥ SN/p/N, J∞(v1) ≥ SN/p/N

(actually J(v0) > SN/p/N , as the Sobolev constant is never achieved on bounded domains) we obtain a 
contradiction by combining (2.1) with the assumption c < 2SN/p/N . If, instead, v0 ≡ 0, then formula (2.1)
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reduces to J(v1) = c. Again by Lemma 2.1 v1 does not change sign and by the nonexistence result [11, 
Theorem 1.1] H1 ≡ R

N , namely v1 ∈ D1,p(RN ) solves

−Δpu = up∗−1 in R
N ,

u > 0 in R
N . (2.2)

Now, by Lemma 2.2, after translation in the origin, for a suitable value of a > 0 v1 is a Talenti function

v1(x) =
(
Na

(
N − p

p− 1

)p−1)(N−p)/p2(
a + |x|p/(p−1))(p−N)/p

,

whose associated energy is c = J∞(v1) = SN/p/N [15], since v1 achieves the best Sobolev constant S. This 
is a contradiction again, since c > SN/p/N . This concludes the proof. �
Remark 2.1. The above compactness property holds for a more general class of functionals. Let Ω be a 
smooth bounded domain of RN and, as in [11], define on W 1,p

0 (Ω)

φ(u) :=
∫
Ω

|∇u|p
p

+ a(x) |u|
p

p
− |u|p∗

p∗
dx,

and consider the following hypotheses on a:

• H1) a ∈ LN/p(Ω).
• H2) The Palais–Smale sequences are bounded. This occurs e.g. assuming

inf
‖∇u‖Lp=1

∫
Ω

|∇u|p + a(x)|u|pdx > 0.

• H3) For every nontrivial critical point u of φ, there holds

φ(u) ≥ SN/p/N

(this is the case e.g. if a is a nonnegative function).

With the same proof of Lemma 2.3 we can achieve that if 2N/(N + 2) ≤ p ≤ 2, then φ satisfies the 
Palais–Smale condition for all c ∈ (SN/p/N, 2SN/p/N).

2.2. Proof of Theorem 1.1 concluded

Let R1, R2 be the radii of the annulus as in the statement of Theorem 1.1. As observed in [4,14], without 
loss of generality, we may assume that x0 = 0, R1 = 1/(4R) and R2 = 4R where R > 0 will be chosen 
sufficiently large. Let us set Σ := {x ∈ R

N : |x| = 1} and consider the family of functions

uσ
t (x) :=

[
1 − t

(1 − t)p + |x− tσ|
p

p−1

]N−p
p

∈ D1,p(
R

N
)
, for σ ∈ Σ and t ∈ [0, 1).

Moreover, let us now consider a function ϕ ∈ C∞
c (Ω) be such that 0 ≤ ϕ ≤ 1 on Ω, ϕ = 1 on {1/2 < |x| < 2}

and ϕ = 0 outside {1/4 < |x| < 4}, then define
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ϕR(x) :=

⎧⎪⎨
⎪⎩

ϕ(Rx) on 0 ≤ |x| < 1
R ,

1 on 1
R ≤ |x| < R,

ϕ(x/R) on |x| ≥ R.

Finally, let us set

wσ
t (x) := uσ

t (x)ϕR(x) ∈ W 1,p
0 (Ω), w0(x) := u0(x)ϕR(x), u0(x) :=

[
1

1 + |x|
p

p−1

]N−p
p

.

Then, we have the following

Lemma 2.4. For σ ∈ Σ and t ∈ [0, 1), ‖uσ
t ‖ = ‖u0‖, ‖uσ

t ‖p∗ = ‖u0‖p∗ and ‖uσ
t ‖p = S‖uσ

t ‖pp∗ . Furthermore, 
there holds

lim
R→∞

sup
σ∈Σ,t∈[0,1)

∥∥wσ
t − uσ

t

∥∥ = 0.

Proof. The first properties of uσ
t follow by [15]. In the following C will denote a generic positive constant, 

independent of σ ∈ Σ and t ∈ [0, 1), which may vary from line to line. We have the inequality

∫
RN

∣∣∇(
wσ

t − uσ
t

)∣∣pdx ≤ C

4∑
i=1

Ii,

where we have set

I1 :=
∫

RN\B2R

∣∣∇uσ
t

∣∣pdx,

I2 :=
∫

B(2R)−1

∣∣∇uσ
t

∣∣pdx,

I3 := 1
Rp

∫
B4R\B2R

∣∣uσ
t

∣∣pdx,

I4 := Rp

∫
B(2R)−1

∣∣uσ
t

∣∣pdx.

Taking into account that

∣∣∇uσ
t (x)

∣∣ ≤ C

((1 − t)p + |x− tσ|
p

p−1 )
N
p

≤ C |x| ≤ 1
2 ,

∣∣∇uσ
t (x)

∣∣ ≤ C

|x|
N−1
p−1

|x| ≥ 2,

we obtain

I1 =
∫

RN\B2R

∣∣∇uσ
t

∣∣pdx ≤ C

∫
RN\B2R

1

|x|
p(N−1)

p−1
dx ≤ C

R
N−p
p−1

,

I2 =
∫

B

∣∣∇uσ
t

∣∣pdx ≤ C

∫
B

dx ≤ C

RN
.

(2R)−1 (2R)−1
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Moreover, we have

I3 = 1
Rp

∫
B4R\B2R

[
1 − t

(1 − t)p + |x− tσ|
p

p−1

]N−p

dx ≤ C

Rp

∫
B4R\B2R

1

|x|
p(N−p)

p−1
dx ≤ C

R
N−p
p−1

,

I4 = Rp

∫
B(2R)−1

[
1 − t

(1 − t)p + |x− tσ|
p

p−1

]N−p

dx ≤ RpC

∫
B(2R)−1

dx ≤ C

RN−p
.

This concludes the proof. �
Let us now define

S(u) := ‖∇u‖p
‖u‖p

Lp∗ (RN )
, u ∈ D1,p(

R
N
)
\ {0}, (2.3)

with the understanding that

S(u;Ω) =
‖∇u‖pLp(Ω)

‖u‖p
Lp∗ (Ω)

, u ∈ W 1,p
0 (Ω) \ {0}, (2.4)

after extending by zero outside Ω.
As a consequence of Lemma 2.4, we have the following

Lemma 2.5. If vσt (x) := ‖wσ
t ‖−1

Lp∗ (RN )w
σ
t (x) and v0(x) = ‖w0‖−1

Lp∗ (RN )w0(x), then

lim
R→∞

S
(
vσt ;Ω

)
= S

(
uσ
t

)
= S,

uniformly with respect to σ ∈ Σ and t ∈ [0, 1).

We observe that J satisfies the Palais–Smale condition between the levels SN/p/N and 2SN/p/N . There-
fore, as it can be readily verified, the functional S(·; Ω), constrained to

M =
{
u ∈ W 1,p

0 (Ω) : ‖u‖p
∗

p∗ = 1
}
,

satisfies the Palais–Smale condition between S and 	S, for some 	 > 1 depending upon p and N . Then, 
taking Lemma 2.5 into account, and assuming by contradiction that the problem does not admit any positive 
solution, by arguing exactly as in [14, pp. 191–193] one proves Theorem 1.1 by performing a well-established 
deformation argument on S(·; Ω) as restricted to M, yielding a contradiction with the geometrical properties 
(1.3) of Ω. We point out that under our assumption 2N/(N + 2) ≤ p, it follows p∗ ≥ 2 so that M is a C1,1

smooth manifold. �
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