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1 Introduction and main result

Let Ω ⊂ R
n be a bounded domain, 1 < p < n and p < q < p∗, where p∗ denotes

the critical Sobolev exponent. In this paper, we are concerned with the existence
of solutions u ∈ W 1,p

0 (Ω) of the following problem (P ε,λ){
− div (∇ξL (x, u,∇u)) + DsL (x, u,∇u) = |u|p∗−2u + λ|u|q−2u + εh in Ω
u = 0 on ∂Ω

with h ∈ Lp′
(Ω), h �= 0, provided that ε > 0 is small and λ > 0 is large.

Motivations for investigating problems as (P ε,λ) come from various situ-
ations in geometry and physics which present lack of compactness (see [7]). A
typical example is Yamabe’s problem, i.e. to find u > 0 such that

−4
n − 1
n − 2

∆Mu = R′u(n+2)/(n−2) − R(x)u on M
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for some constant R′, where M is an n-dimensional Riemannian manifold, R(x)
its scalar curvature and −∆M is the Laplace-Beltrami operator on M . Since the
embedding W 1,p

0 (Ω) ↪→ Lp∗
(Ω) fails to be compact, as known, one encounters

serious difficulties in applying variational methods to problems as (P ε,λ).
If h = 0 and λ = 0, to obtain solutions of{

− ∆pu = |u|p∗−2u in Ω
u = 0 on ∂Ω,

one has to consider in detail the geometry of Ω (see [5]) or has to replace the
critical term up∗−1 with up∗−1−ε and then investigate the limits of uε as ε → 0
(nearly critical growth). See [16] and references therein.

Assume instead that h = 0 but λ �= 0. As we show in Corollary 6.2 by a
refined version of the well know Pucci-Serrin identity [18], if

p∗∇xL (x, s, ξ) · x − nDsL (x, s, ξ)s� 0

a.e. in Ω and for all (s, ξ) ∈ R × R
n, then (P ε,λ) admits no nontrivial smooth

(C1) solution for each λ � 0, provided that Ω is star-shaped and L is sufficiently
smooth. Therefore, in general, in this case we are reduced to take λ positive.

Let us briefly recall the historical background of existence results for problems
at critical growth having perturbations of lower-order. In 1983, in a pioneering
paper [7], Brézis and Nirenberg proved that the problem{

− ∆u = u(n+2)/(n−2) + λu in Ω
u = 0 on ∂Ω

admits at least one positive solution u ∈ H1
0 (Ω) provided that

• λ ∈ (0, λ1) if n � 4

• λ ∈
(

λ1

4
, λ1

)
if n = 3, Ω = B(0, R),

being λ1 the first eigenvalue of − ∆ with Dirichlet boundary conditions.
The extension to the p-Laplacian was studied by Garcia Azorero and Peral

Alonso [13, 14] (see also [4]). They proved that the problem{
− ∆pu = |u|p∗−2u + λ|u|q−2u in Ω
u = 0 on ∂Ω

has at least one nontrivial solution u ∈ W 1,p
0 (Ω), provided that

• λ ∈ (0, λ1) if 1 < p = q < p∗ and p2 � n
• λ ∈ (λ0, +∞) if 1 < p < q < p∗ and p2 > n
• λ ∈ (0, +∞) if 1 < p < q < p∗ and p2 � n,
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where λ1 is the first eigenvalue of −∆p with Dirichlet boundary conditions and
λ0 is a suitable positive real number.

Let us finally assume h �= 0. Then, a natural question is whether inhomo-
geneous problems like (P ε,λ) have more than one solution. If Ω is bounded, one
of the first answers was given in 1992 by Tarantello [21], who showed that the
problem {

− ∆u = |u|2∗−2u + h(x) in Ω
u = 0 on ∂Ω

has two distinct solutions if h ∈ H−1(Ω) and ‖h‖−1,2 � 4
n−2 (n−2

n+2 )(n+2)/4Sn/4.
The existence of two nontrivial solutions for the degenerate problem{

− ∆pu = |u|p∗−2u + λ|u|q−2u + h(x) in Ω
u = 0 on ∂Ω

with 1 < p < q < p∗, λ > 0 large and ‖h‖p′ small enough, was proven in 1995 by
Chabrowski [9]. Finally, these achievements have been extended by Zhou [22] to
the equations

− ∆pu + c|u|p−2u = |u|p∗−2u + f(x, u) + h(x) (c > 0)

on the entire R
n, being f(x, u) a suitable lower-order perturbation of |u|p∗−2u.

This latter case involves a double loss of compactness, one due to the unbound-
edness of the domain and the other due to the Sobolev embedding.

Now, more recently, some results for the more general problems{− div (∇ξL (x, u,∇u)) + DsL (x, u,∇u) = g(x, u) in Ω
u = 0 on ∂Ω

with g subcritical and superlinear have been considered in [1, 2, 17] and [19]. It
is therefore natural to wonder what happens when g reaches the critical growth.

The first answer goes back to a work by Arioli and Gazzola [3], who showed
the existence of a solution u ∈ H1

0 (Ω) to the quasilinear problem
−

n∑
i,j=1

Dj(aij(x, u)Diu) + 1
2

n∑
i,j=1

Dsaij(x, u)DiuDju

= |u|2∗−2u + λu in Ω
u = 0 on ∂Ω

(1)

where the coefficients (aij(x, s)) satisfy some suitable assumptions, including a
semilinear asymptotic behaviour as s goes to +∞ (see Remark 1.2).

In view of the above mentioned results, it is expected that under natural
assumptions on L problems (P ε,λ) admits at least two nontrivial solutions for
λ large and ε small (depending on λ). In order to prove this, we argue on the
functional fε,λ : W 1,p

0 (Ω) → R given by

fε,λ(u) =
∫

Ω
L (x, u,∇u) dx − 1

p∗

∫
Ω

|u|p∗
dx − λ

q

∫
Ω

|u|q dx − ε

∫
Ω

hu dx,

where W 1,p
0 (Ω) is endowed with the standard norm ‖u‖1,p =

(∫
Ω |∇u|p dx

)1/p.
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In general, under reasonable assumptions on L , fε,λ is continuous but fails
to be locally Lipschitzian unless L does not depend on u or it is subjected to
some very restrictive growth conditions. Consequently, we will apply techniques
of the non-smooth critical point theory developed in [8, 10, 11].

We assume that L (x, s, ξ) : Ω × R × R
n → R is measurable in x for all

(s, ξ) ∈ R × R
n, of class C1 in s and of class C2 in ξ. Additionally the map

L (x, s, ·) is strictly convex, p-homogeneous and L (x, s, 0) = 0. Moreover:
(H 1) there exists ν > 0 such that

L (x, s, ξ) � ν

p
|ξ|p

a.e. in Ω and for all (s, ξ) ∈ R × R
n ;

(H 2) there exists c1, c2 > 0 such that

|DsL (x, s, ξ)| � c1|ξ|p,∣∣∇2
ξξL (x, s, ξ)

∣∣ � c2|ξ|p−2 (2)

a.e. in Ω and for all (s, ξ) ∈ R × R
n ;

(H 3) there exist R > 0 and γ ∈ (0, q − p) such that

|s| � R =⇒ DsL (x, s, ξ)s � 0, (3)

DsL (x, s, ξ)s � γL (x, s, ξ) (4)

a.e. in Ω and for all (s, ξ) ∈ R × R
n.

Under the previous assumptions, the following is our main result.

Theorem 1.1 For each λ > 0 sufficiently large there exists ε0 > 0 such that
(P ε,λ) has at least two nontrivial solutions in W 1,p

0 (Ω) for any 0 < ε < ε0.

This result extends the achievements of [9, Theorem 6] to a more general
class of elliptic boundary value problems. We stress that, unlike in [9], we prove
our result without any use of concentration-compactness techniques [15]. Indeed,
to prove the existence of the first solution as a local minimum of fε,λ, we merely
show that our functional is weakly lower semicontinuous on small balls of W 1,p

0 (Ω).
From this viewpoint, our approach seems to be simpler and more direct.

Furthermore, we give in Theorem 4.4 a precise range of compactness for fε,λ.
This, to the author’s knowledge, has not been previously stated for fully nonlinear
elliptic problems, not even for the quasilinear problem (1). Infact, in [3] it was
only found a “nontrivial energy range” for the functional, inside which weak limits
of Palais-Smale sequences are nontrivial and solve (1).
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Remark 1.2 No further behaviour is assumed on L (x, s, ξ) and DsL (x, s, ξ)s
as s goes to +∞. In [3] it was supposed that

lim
s→+∞ aij(x, s) = δij , lim

s→+∞ sDsaij(x, s) = 0, (i, j = 1, . . . , n)

uniformly inside Ω, i.e. problem (1) converges “in some sense” to the semilinear
elliptic equation −∆u = |u|2∗−2u + λu.

Remark 1.3 We assume (3) for |s|� R for some R > 0. In [3] it was assumed

∀s ∈ R :
n∑

i,j=1

sDsaij(x, s)ξiξj � 0

for a.e. x ∈ Ω and each ξ ∈ R
n.

Remark 1.4 Assumptions (3) and (4) have already been considered in literature
(see [1, 17, 19]). For instance, taking A ∈ C1(R) ∩ L∞(R) with A′ ∈ L∞(R),
A(s) � ν and γA(s) � A′(s)s� 0 for each s ∈ R, the class of Lagrangians

L (x, s, ξ) =
1
p
A(s)|ξ|p

fulfils all the requirements. An example is A(s) = 1
γ + arctan(s2).

2 Recalls of non-smooth critical point theory

We briefly recall from [8] some basic notions of non-smooth critical point theory.

Definition 2.1 Let (X, d) be a metric space, f : X → R a continuous function
and u ∈ X. We denote by |df |(u) the supremum of σ ∈ [0, +∞[ such that there
exist δ > 0 and a continuous map

H : Bδ(u) × [0, δ] → X

such that for all (v, t) ∈ Bδ(u) × [0, δ]

d(H (v, t), v) � t, f(H (v, t)) � f(v) − σt.

We say that the extended real number |df |(u) is the weak slope of f at u.

Definition 2.2 Let (X, d) be a metric space, f : X → R a continuous function
and u ∈ X. We say that u is a critical point of f if |df |(u) = 0.

Definition 2.3 Let (X, d) be a metric space, f : X → R a continuous function
and c ∈ R. We say that f satisfies the Palais-Smale condition at level c if every
(uh) ⊂ X with f(uh) → c and |df |(uh) → 0 admits a convergent subsequence.
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Let us recall the mountain pass theorem without Palais-Smale condition in
its non-smooth version (see [8]).

Theorem 2.4 Assume that X is a Banach space, f : X → R is continuous and
the following facts hold:

(a) there exist η > 0 and � > 0 such that

∀u ∈ X : ‖u‖X = � =⇒ f(u) > η ;

(b) f(0) = 0 and there exists w ∈ X such that

f(w) < η and ‖w‖X > �.

Moreover, let us set

Φ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = w}
and

η � β = inf
γ∈Φ

max
t∈[0,1]

f(γ(t)).

Then there exists a Palais-Smale sequence for f at level β.

Let us now return to our concrete situation.

Definition 2.5 We say that u is a weak solution to (P ε,λ) if u ∈ W 1,p
0 (Ω) and

−div (∇ξL (x, u,∇u)) + DsL (x, u,∇u) = |u|p∗−2u + λ|u|q−2u + εh(x)

in D ′(Ω).

By the growth conditions on L this definition is well posed.

Definition 2.6 We say that (uh) ⊂ W 1,p
0 (Ω) is a concrete Palais-Smale sequence

at level c ∈ R ((CPS)c-sequence, in short) for fε,λ, if fε,λ(uh) → c,

−div (∇ξL (x, uh,∇uh)) + DsL (x, uh,∇uh) ∈ W−1,p′
(Ω)

eventually as h → +∞ and

−div (∇ξL (x, uh,∇uh))

+ DsL (x, uh,∇uh) − |uh|p∗−2uh − λ|uh|q−2uh − εh(x) → 0

strongly in W−1,p′
(Ω). We say that fε,λ satisfies the concrete Palais-Smale

condition at level c ((CPS)c in short), if every (CPS)c-sequence for fε,λ admits
a strongly convergent subsequence.
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Proposition 2.7 Assume that u ∈ W 1,p
0 (Ω) is such that |dfε,λ| (u) < +∞. Then

wu = −div (∇ξL (x, u,∇u))

+ DsL (x, u,∇u) − |u|p∗−2u − λ|u|q−2u − εh(x) ∈ W−1,p′
(Ω)

and ‖wu‖−1,p′ � |dfε,λ| (u).

In particular, if u is a critical point of fε,λ then u is a weak solution to (P ε,λ).

3 The first solution of (P ε,λ)
By combining L (x, s, 0) = 0 and (2), one finds b1, b2 > 0 such that

L (x, s, ξ) � b1|ξ|p, (5)

a.e. in Ω and for each (s, ξ) ∈ R × R
n,

|∇ξL (x, s, ξ)|� b2|ξ|p−1 (6)

for in Ω and for each (s, ξ) ∈ R × R
n.

We now prove a local weakly lower semicontinuity property for fε,λ.

Theorem 3.1 There exists � > 0 such that fε,λ is weakly lower semicontinuous
on BW 1,p

0 (Ω)(0, �) for each λ ∈ R and ε > 0.

Proof. Let (uh) ⊂ W 1,p
0 (Ω) and u with uh ⇀ u in W 1,p

0 (Ω) and ‖uh‖1,p � �.
Taking into account that, up to a subsequence, we have for s < p∗

uh → u in Ls(Ω) , ∇uh ⇀ ∇u in Lp(Ω) (7)

and uh(x) → u(x) for a.e. x ∈ Ω, by (5) it results∫
Ω

L (x, uh,∇u) dx =
∫

Ω
L (x, u,∇u) dx + o(1)

as h → +∞. Note also that, of course,∫
Ω

|uh|q dx =
∫

Ω
|u|q dx + o(1),

∫
Ω

huh dx =
∫

Ω
hu dx + o(1)

as h → +∞. In particular, it suffices to show that

lim inf
h

{∫
Ω

L (x, uh,∇uh) dx −
∫

Ω
L (x, uh,∇u) dx

− 1
p∗

∫
Ω

|uh|p∗
dx +

1
p∗

∫
Ω

|u|p∗
dx

}
� 0 (8)
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for � sufficiently small. Let k � 1 and consider the function Tk : R → R given by

Tk(s) =

{−k if s� − k
s if − k � s� k
k if s� k

and let Rk : R → R be the map defined by Rk = Id − Tk, namely

Rk(s) =

{
s + k if s� − k
0 if − k � s� k
s − k if s� k.

It is readily seen that∫
Ω

L (x, uh,∇uh) dx

=
∫

Ω
L (x, uh,∇Tk(uh)) dx +

∫
Ω

L (x, uh,∇Rk(uh)) dx (9)

for each k � 1. Of course, one also has∫
Ω

L (x, uh,∇u) dx =
∫

Ω
L (x, uh,∇Tk(u)) dx +

∫
Ω

L (x, uh,∇Rk(u)) dx (10)

for each k � 1. Now, taking into account that∫
Ω

|u|p∗−1|uh − u| dx = o(1)

as h → +∞ and that for any k � 1∫
Ω

|Tk(uh) − Tk(u)|p∗
dx = o(1)

as h → +∞, there exist c1, c2, c3 > 0 such that for any k fixed

1
p∗

∫
Ω

|uh|p∗
dx − 1

p∗

∫
Ω

|u|p∗
dx

� c1

∫
Ω

(
|uh|p∗−1 + |u|p∗−1

)
|uh − u| dx

� c2

∫
Ω

|uh − u|p∗
dx + o(1)

� c3

∫
Ω

|Tk(uh) − Tk(u)|p∗
dx

+ c3

∫
Ω

|Rk(uh) − Rk(u)|p∗
dx + o(1)

= c3

∫
Ω

|Rk(uh) − Rk(u)|p∗
dx + o(1) (11)
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as h → +∞. For each h, k � 1 we have∫
Ω

L (x, uh,∇Rk(uh)) dx � ν

p

∫
Ω

|∇Rk(uh)|p dx.

On the other hand, by the definition of Rk we obtain∫
Ω

L (x, uh,∇Rk(u)) dx � b1

∫
Ω

|∇Rk(u)|p dx � ν

p

∫
Ω

|∇Rk(u)|p dx + o(1)

as k → +∞, uniformly in h ∈ N. In particular, since for each k � 1 it holds

lim inf
h

{ ∫
Ω

L (x, uh, Tk(∇uh)) dx −
∫

Ω
L (x, uh, Tk(∇u)) dx

}
� 0,

by (9), (10) and (11) there exists cp > 0 such that:

lim inf
h

{ ∫
Ω

L (x, uh,∇uh) dx −
∫

Ω
L (x, uh,∇u) dx

− 1
p∗

∫
Ω

|uh|p∗
dx +

1
p∗

∫
Ω

|u|p∗
dx

}
� lim inf

h

{ ∫
Ω

L (x, uh,∇Rk(uh)) dx −
∫

Ω
L (x, uh,∇Rk(u)) dx

−c3

∫
Ω

|Rk(uh) − Rk(u)|p∗
dx

}
� lim inf

h

{
ν

p

∫
Ω

|∇Rk(uh)|p dx − ν

p

∫
Ω

|∇Rk(u)|p dx

−c3

∫
Ω

|Rk(uh) − Rk(u)|p∗
dx

}
− o(1)

� lim inf
h

{
cp

∫
Ω

|∇Rk(uh) − ∇Rk(u)|p dx

−c3

∫
Ω

|Rk(uh) − Rk(u)|p∗
dx

}
− o(1) (12)

as k → +∞. By Sobolev inequality we find d1, d2 > 0 with

lim inf
h

{
cp

∫
Ω

|∇Rk(uh) − ∇Rk(u)|p dx − c3

∫
Ω

|Rk(uh) − Rk(u)|p∗
dx

}
� lim inf

h
‖Rk(uh) − Rk(u)‖p

p∗{d1 − d2‖Rk(uh) − Rk(u)‖p∗−p
p∗ } � 0

provided that � is sufficiently small (independently of ε and λ). In particular the
assertion follows by (12) by the arbitrariness of k. �
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Lemma 3.2 For each λ ∈ R there exist ε > 0 and �, η > 0 such that

∀u ∈ W 1,p
0 (Ω) : ‖u‖1,p = � =⇒ fε,λ(u) > η.

Proof. Since

fε,λ(u) � ν

p

∫
Ω

|∇u|p dx − 1
p∗

∫
Ω

|u|p∗
dx − λ

q

∫
Ω

|u|q dx − ε

∫
Ω

hu dx,

by [9, Lemma 2] one gets

fε,λ(u) � ‖u‖1,p{‖u‖p−1
1,p ϕλ(‖u‖1,p) − ε‖h‖p′cLn(Ω)

p∗−p
pp∗ } (13)

where ϕλ : [0, +∞[→ R is given by

ϕλ(τ) =
ν

p
− S−p∗

p∗ τp∗−p − λ

q
cqLn(Ω)

p∗−q
p∗ τ q−p

for some c > 0. By (13) the assertion follows. �

Proposition 3.3 For each λ ∈ R there exists ε0 > 0 such that (P ε,λ) admits at
least one solution u1 ∈ W 1,p

0 (Ω) for each ε < ε0. Moreover fε,λ(u1) < 0.

Proof. Let us choose φ ∈ W 1,p
0 (Ω) so that∫

Ω
hφ dx > 0.

Since for each t > 0 it results

fε,λ(tφ) = tp
∫

Ω
L (x, tφ,∇φ) dx

− tp
∗

p∗

∫
Ω

|φ|p∗
dx − λtq

q

∫
Ω

|φ|q dx − εt

∫
Ω

hφ dx,

there exists tε,λ > 0 such that fε,λ(tφ) < 0 for each t ∈ ]0, tε,λ[. In particular,

inf
‖u‖1,p��

fε,λ(u) < 0 ,

for each � > 0. By Theorem 3.1 there exists u1 ∈ BW 1,p
0 (Ω)(0, �) such that

fε,λ(u1) = min
‖u‖1,p��

fε,λ(u) < 0

for � small enough. Moreover, up to reducing �, it has to be ‖u1‖1,p < � for ε > 0
sufficiently small, otherwise by Lemma 3.2 we get fε,λ(u1) > 0. In particular u1
is a weak solution of (P ε,λ). �
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Remark 3.4 By (13), one can get a weak solution of (P ε,λ) for each ε > 0 on
domains Ω having Ln(Ω) sufficiently small.

Remark 3.5 Following Lemmas 3 and 4 of [9], one obtains existence of a weak
solution also in the case p � q. On the other hand we remark that if p � q and
λ > 0 one has to require that Ln(Ω) is small enough.

4 The (CPS)c for fε,λ

In this section we prove that fε,λ satisfies the concrete Palais-Smale condition
inside a suitable range of energies.

Lemma 4.1 Let c ∈ R. Then each (CPS)c-sequence for fε,λ is bounded.

Proof. Let c ∈ R and let (uh) be a (CPS)c-sequence for fε,λ. Set:

〈wh, ϕ〉 =
∫

Ω
∇ξL (x, uh,∇uh) · ∇ϕ dx +

∫
Ω

DsL (x, uh,∇uh)ϕ dx

−
∫

Ω
gε,λ(x, uh)ϕ dx −

∫
Ω

|uh|p∗−2uhϕ dx

for all ϕ ∈ C∞
c (Ω), where ‖wh‖−1,p′ → 0 as h → +∞ and

gε,λ(x, s) = λ|s|q−2s + εh(x).

It is easily verified that for each p � α < p∗ there exists bα ∈ L1(Ω) with

gε,λ(x, s)s + |s|p∗ � α

{
λ

q
|s|q +

1
p∗ |s|p∗

+ εh(x)s
}

− bα(x)

a.e. in Ω and for each s ∈ R. Now, from

f ′
ε,λ(uh)(uh)
‖uh‖1,p

= o(1)

as h → +∞, one deduces that∫
Ω

pL (x, uh,∇uh) dx +
∫

Ω
DsL (x, uh,∇uh)uh dx

=
∫

Ω
gε,λ(x, uh)uh dx +

∫
Ω

|uh|p∗
dx + 〈wh, uh〉

� α

{
λ

q

∫
Ω

|uh|q dx +
1
p∗

∫
Ω

|uh|p∗
dx + ε

∫
Ω

huh dx

}
−

∫
Ω

bα(x) dx + 〈wh, uh〉 � α

∫
Ω

L (x, uh,∇uh) dx

−αfε,λ(uh) −
∫

Ω
bα(x) dx + 〈wh, uh〉.
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On the other hand, by (4) one obtains

ν

p
(α − γ − p)

∫
Ω

|∇uh|p dx � (α − γ − p)
∫

Ω
L (x, uh,∇uh) dx

� αfε,λ(uh) +
∫

Ω
bα(x) dx + ‖wh‖−1,p′‖uh‖1,p.

Choosing α > p such that α − γ − p > 0, the assertion follows. �

Remark 4.2 By exploiting the proof of Lemma 4.1 one notes that

sup
{∣∣∣∣∫

Ω
hu dx

∣∣∣∣ : u is critical point of fε,λ at level c ∈ R

}
� σ

for some σ > 0 independent of ε > 0 and λ > 0.

Remark 4.3 Let 1 � p < ∞. It is readily seen that the following fact holds:
assume that uh → u strongly in Lp(Ω) and vh → v weakly in Lp′

(Ω) and a.e.
in Ω. Then uhvh → uv strongly in L1(Ω).

Let now S denote the best Sobolev constant [20], i.e.

S = inf{‖∇u‖p
p : u ∈ W 1,p

0 (Ω), ‖u‖p∗ = 1}.

The next result is the main technical tool of our paper.

Theorem 4.4 There exist K > 0 and ε0 > 0 such that fε,λ satisfies (CPS)c with

0 < c <
p∗ − γ − p

p∗(γ + p)
(νS)n/p − Kε (14)

for each ε < ε0 and λ > 0.

Proof. Let (uh) be a concrete Palais-Smale sequence for fε,λ at level c. Since (uh)
is bounded in W 1,p

0 (Ω) by Lemma 4.1, up to a subsequence, we have

uh → u in Lp(Ω) , ∇uh ⇀ ∇u in Lp(Ω).

Moreover, by the results of [6], we also have

for a.e. x ∈ Ω : ∇uh(x) → ∇u(x).

Arguing as in [19, Theorem 3.2] we get

〈wε,λ, u〉 + ‖u‖p∗
p∗ =

∫
Ω

∇ξL (x, u,∇u) · ∇u dx +
∫

Ω
DsL (x, u,∇u)u dx ,
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where wε,λ ∈ W−1,p′
(Ω) is defined by

〈wε,λ, ϕ〉 = λ

∫
Ω

|u|q−2uϕ dx + ε

∫
Ω

hϕ dx.

This, following again [19, Theorem 3.2], yields the existence of d ∈ R with

lim sup
h

{∫
Ω

∇ξL (x, uh,∇uh) · ∇uh −
∫

Ω
|uh|p∗

dx

}
� d

�
∫

Ω
∇ξL (x, u,∇u) · ∇u −

∫
Ω

|u|p∗
dx. (15)

Of course, we have:

∇ξL (x, uh,∇uh) − ∇ξL (x, uh,∇(uh − u)) ⇀ ∇ξL (x, u,∇u)

in Lp′
(Ω). Let us note that it actually holds the strong limit

∇ξL (x, uh,∇uh) − ∇ξL (x, uh,∇(uh − u)) → ∇ξL (x, u,∇u)

in Lp′
(Ω). Indeed, by (2) there exist τ ∈]0, 1[ and c > 0 with∣∣∇ξL (x, uh,∇uh) − ∇ξL (x, uh,∇(uh − u))

∣∣
�

∣∣∇2
ξξL (x, uh,∇uh + (τ − 1)∇u)

∣∣ |∇u|
� c|∇uh|p−2|∇u| + c|∇u|p−1.

Therefore, by Remark 4.3, we have

∇ξL (x, uh,∇uh) · ∇uh = ∇ξL (x, uh,∇(uh − u)) · ∇uh

+∇ξL (x, u,∇u) · ∇u → u + o(1) = ∇ξL (x, uh,∇(uh − u)) · ∇(uh − u)
+∇ξL (x, u,∇u) · ∇u + o(1) in L1(Ω)

as h → +∞, i.e.

∇ξL (x, uh,∇uh) · ∇uh − ∇ξL (x, u,∇u) · ∇u

= ∇ξL (x, uh,∇(uh − u)) · ∇(uh − u) + o(1) in L1(Ω) (16)

as h → +∞. In a similar way, since there exists c̃ > 0 with

||uh|p∗ − |uh|p∗−p|uh − u|p|� c̃ |uh|p∗−p
(|uh|p−1 + |u|p−1)|u|,

one obtains
|uh|p∗ − |uh|p∗−p|uh − u|p → |u|p∗

in L1(Ω). (17)
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In particular, by combining (15), (16) and (17), it results

lim sup
h

∫
Ω
[∇ξL (x, uh,∇(uh − u)) · ∇(uh − u) − |uh|p∗−p|uh − u|p] dx � 0. (18)

On the other hand, by Hölder and Sobolev inequalities, we get∫
Ω
[∇ξL (x, uh,∇(uh − u)) · ∇(uh − u) − |uh|p∗−p|uh − u|p] dx

� ν‖∇(uh − u)‖p
p − 1

S
‖uh‖p∗−p

p∗ ‖∇(uh − u)‖p
p (19)

=
{

ν − 1
S

‖uh‖p∗−p
p∗

}
‖∇(uh − u)‖p

p ,

which turns out to be coercive if

lim sup
h

‖uh‖p∗
p∗ < (νS)n/p. (20)

Now, from fε,λ(uh) → c we deduce∫
Ω

L (x, uh,∇uh) dx − 1
p∗ ‖uh‖p∗

p∗ =
λ

q
‖u‖q

q + ε

∫
Ω

hu dx + c + o(1) (21)

as h → +∞. On the other hand, by using (4), from f ′
ε,λ(uh)(uh) → 0 we obtain

γ + p

p

∫
Ω

L (x, uh,∇uh) dx − 1
p
‖uh‖p∗

p∗ � λ

p
‖u‖q

q +
ε

p

∫
Ω

hu dx + o(1) (22)

as h → +∞. Multiplying (21) by γ+p
p , we obtain

γ + p

p

∫
Ω

L (x, uh,∇uh) dx − γ + p

pp∗ ‖uh‖p∗
p∗

=
γ + p

pq
λ‖u‖q

q +
γ + p

p
ε

∫
Ω

hu +
γ + p

p
c + o(1) (23)

as h → +∞. Therefore, by combining (23) with (22), one gets

p∗ − γ − p

pp∗ ‖uh‖p∗
p∗ � − q − γ − p

pq
λ‖u‖q

q

+ c′ε
∫

Ω
hu dx +

γ + p

p
c + o(1)

� c′ε
∫

Ω
hu dx +

γ + p

p
c + o(1)

as h → +∞. Now, taking into account Remark 4.2, we deduce

‖uh‖p∗
p∗ � p∗(γ + p)

p∗ − γ − p
c + K̃ε + o(1),
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as h → +∞ for some K̃ > 0. In particular, condition (20) is fulfilled if

p∗(γ + p)
p∗ − γ − p

c + K̃ε < (νS)n/p

which yields range (14) for ε small and a suitable K > 0. By combining (18), (19)
and (20) we conclude that uh goes to u strongly in W 1,p

0 (Ω). �

Remark 4.5 for the equation

−∆pu = |u|p∗−2u + λ|u|q−2u + εh(x)

being γ = 0 and ν = 1, the range (14) reduces to

0 < c <
Sn/p

n
− Kε

for some K > 0, according to the results found in [9].

5 The second solution of (P ε,λ)
Finally, we come to the proof of Theorem 1.1.

Proof. Let us choose φ ∈ W 1,p
0 ∩ L∞(Ω) such that

‖φ‖p∗ = 1 and
∫

Ω
hφ dx < 0.

It is readily seen that
lim

t→+∞ fε,λ(tφ) = −∞ ,

so that there exists tλ,ε > 0 with

fε,λ(tλ,εφ) = sup
t�0

fε,λ(tφ) > 0. (24)

Taking into account (4), the value tλ,ε must satisfy

ε

∫
Ω

hφ = tq−1
λ,ε

{
tp−q
λ,ε

[ ∫
Ω

pL (x, tλ,εφ,∇φ) dx

+
∫

Ω
DsL (x, tλ,εφ,∇φ)tλ,εφ dx

]
− tp

∗−q
λ,ε − λ

∫
Ω

|φ|q dx

}

� tq−1
λ,ε

{
tp−q
λ,ε M

∫
Ω

|∇φ|p dx − tp
∗−q

λ,ε − λ

∫
Ω

|φ|q dx

}
,
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for some M > 0. Now, being

lim
λ→+∞

{
tp

∗−q
λ,ε + λ

∫
Ω

|φ|q dx

}
= +∞

it has to be tλ,ε → 0 as λ → +∞. In particular, by (24) we obtain

lim
λ→+∞

sup
t�0

fε,λ(tφ) = 0 ,

so that there exists λ0 > 0 with

0 < sup
t�0

fε,λ(tφ) <
p∗ − γ − p

p∗(γ + p)
(νS)n/p − Kε (25)

for each λ � λ0 and ε < ε0. Let w = tφ with t so large that fε,λ(w) < 0 and set

Φ = {γ ∈ C([0, 1], W 1,p
0 (Ω)) : γ(0) = 0, γ(1) = w}

and
βε,λ = inf

γ∈Φ
max

t∈[0,1]
fε,λ(γ(t))

Taking into account Lemma 3.2, by Theorem 2.4 one finds (uh) ⊂ W 1,p
0 (Ω) with

fε,λ(uh) → βε,λ, |dfε,λ|(uh) → 0 ,

0 < η � βε,λ = inf
γ∈Φ

max
t∈[0,1]

fε,λ(γ(t)) � sup
t�0

fε,λ(tφ). (26)

By Theorem 4.4 fε,λ satisfies (CPS )βε,λ
, since by (25) and (26)

λ � λ0 =⇒ 0 < βε,λ <
p∗ − γ − p

p∗(γ + p)
(νS)n/p − Kε

for each ε < ε0. Therefore there exist a subsequence of (uh) ⊂ W 1,p(Ω) strongly
convergent to some u2 which solves (P ε,λ). Since fε,λ(u1) < 0 and fε,λ(u2) > 0,
of course u1 �= u2. �

Remark 5.1 For the Lagrangian L (x, s, ξ) = 1
p |ξ|p in [9, Theorem 6] it was also

provided a quantitative estimate for the smallness of h (in norm). Given λ > 0
large enough, one gets two solutions if

max{‖h‖p′ , ‖h‖p∗′
p∗′} � min

ελ,
p∗′p′p∗′

p∗ p∗′
p∗

n
p∗′
p∗ +1

Sn/p


being ελ > 0 such that fε,λ(u) � 0 if ‖h‖p′ � ελ and ‖u‖1,p is sufficiently small,
according to [9, Lemma 2].
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Remark 5.2 In the case 1 < q � p < p∗, in general, our method is inconclusive
since it is not clear whether

sup
t�0

fε,λ(tφ) �→ 0 as λ → +∞

Furthermore, it may also happen that for each λ > 0 fixed

sup
t�0

fε,λ(tφ) �→ 0 as Ln(Ω) → 0.

See section 4 of [9] where this is discussed for L (x, s, ξ) = 1
p |ξ|p.

6 Non-existence results for (P 0,λ)

Assume that L is of class C1 on Ω×R×R
n and ∇ξL is of class C1. The following

results follow by the general variational identity for C1 solutions recently proven
in [12], which relaxes in the regularity assumptions a classical result due to Pucci
and Serrin [18].

Theorem 6.1 Let Ω be star-shaped with respect to the origin and

∇xL (x, s, ξ) · x − n

p∗ DsL (x, s, ξ)s − p∗ − q

p∗q
nλ |s|q � 0 , (27)

a.e. in Ω and for all (s, ξ) ∈ R × R
n. Then problem (P 0,λ) admits no nontrivial

solution u ∈ C1(Ω).

Proof. If we define F : Ω × R × R
n → R by setting

∀(x, s, ξ) ∈ Ω × R × R
n : F (x, s, ξ) = L (x, s, ξ) − λ

q
|s|q − 1

p∗ |s|p∗
,

the assertion follows by the main result of [12], being the inequality

nF + ∇xF · x − aDsF s − (a + 1)∇ξF · ξ � 0

equivalent to (27) provided that a = n−p
p . �

Corollary 6.2 Let Ω be star-shaped with respect to the origin, λ � 0 and

p∗∇xL (x, s, ξ) · x − nDsL (x, s, ξ)s� 0, (28)

a.e. in Ω and for all (s, ξ) ∈ R × R
n. Then problem (P 0,λ) admits no nontrivial

solution u ∈ C1(Ω).

Proof. Being q < p∗ and λ � 0, condition (28) implies condition (27). �
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Remark 6.3 Assume that λ � 0 and ∇xL = 0. Then the non-existence condi-
tion (28) becomes DsL (s, ξ)s� 0. Note that this is the contrary of (3). From
this point of view (3) seems to be pretty natural.
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