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ABSTRACT. The aim of this monograph is to present a comprehensive survey of results
about existence, multiplicity, perturbation from symmetry and concentration phenomena
for the quasi-linear elliptic equation

n n
1 .
— Z Dy, (aij(x, u)Dxiu)+5 Z Dyaij(x,u)Dx;uDx;u = g(x,u) in<Q,
i,j=1 i.j=1
where  is a smooth domain of R”, n > 1. Under natural assumptions on the coeffi-
cients a;;, the above problem admits a standard variational structure, but the associated
functional f : HO1 Q) - R,

n
1
fu) = 7/ Z a,-j(x,u)Dxiqu.udx—/ G(x,u)dx,
2Ja .4 ! Q
i,j=1
turns out to be merely continuous. Therefore, some tools of non-smooth critical point
theory will be employed throughout the various sections.
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PREFACE

This monograph is an updated, expanded and restyled elaboration of the Ph.D. thesis
that the author defended at the University of Milan on January 2002. It contains some of the
author’s researches undertaken from 1997 to 2003 in the field of variational quasi-linear
elliptic partial differential equations, under the supervision of Marco Degiovanni. The
author thanks him for his teaching, encouragement and advice. The author is grateful to
Lucio Boccardo and Filomena Pacella for supporting a couple of stay at Rome University
La Sapienza in 2002 and 2005. Further thanks are due to the Managing Editors of the
Electronic Journal of Differential Equations, in particular to Professor Alfonso Castro for
his kindness. The author was supported by the MIUR research project “Variational and
Topological Methods in the Study of Nonlinear Phenomena” and by the Istituto Nazionale
di Alta Matematica “F.Severi”.

The presentation of the material is essentially self-contained. It only requires some ba-
sic knowledge in functional analysis as well as in the theory of linear elliptic problems.
The work is arranged into nine paragraphs, and each of these is divided into various num-
bered subsections. All results are formally stated as Theorems, Propositions, Lemmas or
Corollaries which are numbered by their section number and order within that section.
Throughout the manuscript formulae have double indexing in each section, the first digit
being the section number. When formulae from another section are referred to, the number
corresponding to the section is placed first.

Marco Squassina
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NOTATION

(1) N, Z, Q, R denote the set of natural, integer, rational, real numbers;
(2) R” (or R¥) is the usual real Euclidean space;
(3) Q is an open set (often implicitly assumed smooth) in R”;
(4) 0% is the boundary of €;
(5) a.e. stands for almost everywhere;
(6) p’ is the conjugate exponent of p;
(7) L?(R) is the space of u measurable with [, |u|?dx < 00,1 < p < o0;
(8) L°°(L2) is the space of u measurable with |u(x)| < C fora.e. x € Q;
9) |- llp and || - ||oo norms of the spaces L? and L°°;

(10) Dy, u(x) is the i-th partial derivative of u at x;

(11) Vu(x) stands for (D, u(x), ..., Dy, u(x));

(12) Au(x) stands for >;_, Digu(x);

(13) HY(Q), H'! (]R")/, HL(Q), WP (Q), WP (R™), W, P () are Sobolev spaces;
(14) H71(Q), Wo_l’p (2) are the first duals of Sobolev spaces;

(15) wkr®R™), Wok’p (£2) denotes higher order Sobolev spaces;
(16) |- 1, p> I * ll&,p Il - [I=1,p norms of the Sobolev spaces;

(17) Lip,,.(R") indicate the space locally Lipschitz functions;
(18) C2°(£2) functions differentiable at any order with compact support;
(19) £"(E) denotes Lebesgue measure of E;

(20) H™'(A) denotes the Hausdorff measure of A;

(21) H usually stands for a suitable deformation;

(22) |df|(u) stands for the weak slope of f at u;

(23) (u;,) denotes a sequence of scalar functions;

(24) (u™) denotes a sequence of vector valued functions;

(25) u™ (resp. u™) is the positive (resp. negative) part of u;

(26) — (resp. —) stands for the weak (resp. strong) convergence;
(27) lim, means the limit as n — +o00;

(28) B,(x) or B(x,r) is the ball of center x and radius r;

(29) d(x, E) is the distance of x from E.

(30) (@, x) evaluation of the linear functional ¢ at x;

(31) x - y scalar product between elements x, y € R”;

(32) 6;jis 1 fori = j and O fori # j;

(33) xk (or 1g) is the characteristic function of the set E;

(34) A & B is the direct sum between 4 and B.

1. INTRODUCTION

The recent years have been marked out by an evergrowing interest in the research of so-
lutions (and, besides, of their various qualitative behaviors) of semi-linear elliptic problems
via techniques of classical critical point theory. Readers which are interested in these as-
pects may look at the following books: Aubin-Ekeland [13], Chabrowski [39, 40], Ghous-
soub [74], Mawhin-Willem [104], Rabinowitz [121], Struwe [137], Willem [148] and Zei-
dler [149].

The present work aims to show how various achievements, well-established in the semi-
linear case, can be extended to a more general class of problems. More precisely, let Q2 be
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an open bounded subset in R” (n > 2) and f : H(} (2) — R a functional of the form

n
fu) = l/ Z a;j(x)Dx;uDx;u dx —/ G(x,u)dx.
2Ja 5 Q@
Since the pioneering paper of Ambrosetti-Rabinowitz [5], critical point theory has been
successfully applied to the functional f', yielding several important results (see e.g. [42,
104, 121, 137]). However, the assumption that f : Ho1 () — Ris of class C! turns out
to be very restrictive for more general functionals of calculus of variations, like

f(u)=/Qé€(x,u,Vu)dx—/;zG(x,u)dx,

(see e.g. [53]). In particular, if f has the form

f(u) = %/;2 Z a,-j(x,u)Dxiqujudx—/QG(x,u)dx,

i,j=1

we may expect f to be of class C! only when the g; ;’s are independent of u or when
n = 1. In fact, if /" was locally Lipschitz continuous, for u € Ho1 (2), we would have

sup {f’(u)(v) v e CR(RQ), ||v||H01(Q) < 1} < 00,
that is to say

n
Z Dyaj(x,u) Dx,uDy,u € H Q).
i,j=1
The above term naturally belongs to L!(£2), which is not included in H~!(Q) for n > 2.
On the other hand, since the papers of Chang [43] and Marino-Scolozzi [102], techniques
of critical point theory have been extended to some classes of non-smooth functionals. In
our setting, in which f is naturally continuous but not locally Lipschitz, it turns out to
be convenient to apply the theory developed in [50, 58, 87, 88] according to the approach
started by Canino [33]. Let us point out that a different approach has been also considered
in the literature. If we consider the space HO1 (2) N L*°(2) endowed with the family of
norms
leelle = llull g + ellullzee, &> 0,

then, under suitable assumptions, f is of class C! in (HO1 (2) N L*®(2), || - ||le) for each
& > 0. This allows an approximation procedure by smooth problems (the original one is
obtained as a limit when ¢ — 0). The papers of Struwe [138] and Arcoya-Boccardo [6, 7]
follow, with some variants, this kind of approach. However, in view of multiplicity results,
it is hard to keep the multiplicity of solutions at the limit. In particular, when f is even
and satisfies assumptions of Ambrosetti-Rabinowitz type, the existence of infinitely many
solutions has been so far proved only by the former approach. The aim of this manuscript
is to present some results concerning existence, nonexistence, multiplicity, perturbation
from symmetry, and concentration for quasi-linear problems such as

n n
1 .
— Z Dy, (ajj(x,u)Dx;u) + 3 Z Dyaij(x,u) Dx,uDyx;u = g(x,u) in
i,j=1 i,j=1
u=0 ondQ
and even for the more general class of elliptic problems

—div (Vgé(i(x,u, Vu)) + DyL(x,u,Vu) = g(x,u) inQ
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u=0 onodS2,

including the case when g reaches the critical growth with respect to the Sobolev embed-
ding. New results have been obtained in the following situations:

Section 3: infinitely many solutions for quasi-linear problems with odd nonlinearities;
existence of a weak solution for a general class of Euler’s equations of multiple integrals of
calculus of variations; existence and multiplicity for quasi-linear elliptic equations having
unbounded coefficients (cf. [133, 134, 115]).

Section 4: multiplicity of solutions for perturbed symmetric quasi-linear elliptic prob-
lems; multiplicity results for semi-linear systems with broken symmetry and non-homogeneous
boundary data (cf. [129, 130, 30, 111]).

Section 5: problems of jumping type for a general class of Euler’s equations of multiple
integrals of calculus of variations; problems of jumping type for a general class of nonlinear
variational inequalities (cf. [80, 81]).

Section 6: positive entire solutions for fully nonlinear elliptic equations; existence of
two solutions for fully nonlinear problems at critical growth with perturbations of lower
order; asymptotics of solutions for a class of nonlinear problems at nearly critical growth
(cf. [128, 135, 131, 108]).

Section 7: concentration phenomena for singularly perturbed quasi-linear elliptic equa-
tions. Existence of families of solutions with a spike-like shape around a suitable point (cf.
[132]).

Section 8: multi-peak solutions for degenerate singularly perturbed elliptic equations.
Existence of families of solutions with multi spike-like profile around suitable points (cf.
[75D).

Section 9: Pucci-Serrin type identities for C'! solutions of Euler’s equations and related
non-existence results (cf. [59]).

For the sake of completeness, we wish to mention a quite recent paper [35] dealing with
the variational bifurcation for quasi-linear elliptic equations (extending some early results
due to Rabinowitz in the semi-linear case [122]) and the paper [92] regarding improved
Morse index type estimates for the functional f.

2. REVIEW OF CRITICAL POINT THEORY

In this section, we shall recall some results of abstract critical point theory [36, 50, 58,
87, 88]. For the proofs, we refer to [36] or [50].

2.1. Notions of non-smooth analysis. Let X be a metric space endowed with the metric
d and let f : X — R be a function. We denote by B, (1) the open ball of center # and
radius r and we set

epi(f) = {(u,A) e X xR : f(u) <A}.
In the following, X x R will be endowed with the metric
1/2
d(@,2), (v, ) = (d.v)? + (= p)?)
and epi( /') with the induced metric.

Definition 2.1. For every u € X with f(u) € R, we denote by |df’|(u) the supremum of
the o’s in [0, 400 such that there exist § > 0 and a continuous map

H 2 (Bs(u, f(u)) Nepi(f)) x[0,6] - X
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satisfying

d(H((v, ), 1), v) =t,  f(H((v, 1), 1)) = p—ot,
whenever (v, 1) € Bs(u, f(u)) Nepi(f) and ¢ € [0, §]. The extended real number |df'|(u)
is called the weak slope of f at u.

Proposition 2.2. Let u € X with f(u) € R. If (uy) is a sequence in X with up, — u and
f(up) = f(u), then we have |df |(u) < liminfy, |df|(up).

Remark 2.3. If the restriction of f to {u € X : f(u) € R} is continuous, then
|[df| :{u e X : f(u) e R} = [0,+00]
is lower semi-continuous.
Proposition 2.4. Let f : X — R U {400} be a function. Set
D(f) ={ueX: f(u)<+oo}
and assume that f|p(y) is continuous. Then for every u € D(f) we have

|df 1) = |df 1o | ()
and this value is in turn equal to the supremum of the ¢’s in [0, +00[ such that there exist
8 > 0 and a continuous map

H o (Bsu) N D(f)) x[0,6] > X
satisfying
d(H(v,t),v) <t, [f(HW,1t) = f(v)—ot,
whenever v € Bg(u) N D(f) andt € [0, 6].

Definition 2.5. Anelement u € X is said to be a (lower) critical point of f if |df |(u) = 0.
A real number c is said to be a (lower) critical value of f if there exists a critical point
u € X of f suchthat f(u) = c. Otherwise c is said to be a regular value of f.

Definition 2.6. Let ¢ be a real number. The function f is said to satisfy the Palais-Smale
condition at level ¢ ((CPS),. for short), if every sequence (uy) in X with |df|(up) — 0
and f(up) — c admits a subsequence (uj, ) converging in X to some u.

Let us also introduce some usual notations. For every b € R U {+00} and ¢ € R we set
Sr=we X fw) =by Ke=t{ueX |df|w)=0.f()=c}.

Theorem 2.7 (Deformation Theorem). Let ¢ € R. Assume that X is complete, f : X — R
is a continuous function which satisfies (CPS).. Then, given ¢ > 0, a neighborhood U
of K. (if K. = 0, we allow U = @) and . > 0, there exist ¢ > 0 and a continuous map
n: X x[0,1] = X such that for every u € X andt € [0, 1] we have:

(@) d(n(u,t),u) < At;

() f(nu,1)) = f(u);

©) f(u) gl —&.c+ &= nu,t) = u:

@ n(fere\uU 1) C e
Theorem 2.8 (Noncritical Interval Theorem). Leta € Rand b € R U {+o0} (a < b).
Assume that [ : X — R is a continuous function which has no critical points u with
a < f(u) < b, that (CPS). holds and f€ is complete whenever ¢ € [a,b]. Then there
exists a continuous map 1 : X x [0, 1] — X such that for every u € X andt € [0, 1] we
have:

(@ n(u,0) =u;
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) f((u,0) = f(w);

© f) =a=n.1)=u

@ fw)<b= f(nu,1)) <a.
Theorem 2.9. Let X be a complete metric space and f : X — RU{+o00} a function such
that D(f) is closed in X and f|,,, is continuous. Let ug, vo, v1 be in X and suppose that
there exists r > 0 such that |vo — uo|lx <r, ||[v1 —uollx > r, inf f(B,(up)) > —o0, and

a =inf{f(u):u € X, |lu—uollx = r} > max{f(vo), f(v1)}.
Let
I'={y:[0,1] > OH(f) continuous with y(0) = vy, y(1) = v}

and assume that I # @ and that f satisfies the Palais-Smale condition at the two levels

¢y = inf f(B,(ug)), ¢z = inf max(f oy).
yer' [0,1]

Then —oo0 < ¢1 < ¢ < +00 and there exist at least two critical points u1,uy of f such
that f(u;) =c¢; (i =1,2).
We now recall the mountain pass theorem without Palais-Smale.

Theorem 2.10. Let X is a Banach space and f : X — R is a continuous functional.
Assume that the following facts hold:

(a) There exist n > 0 and o > 0 such that

VueX:|ulx =0= f(u)>n;
(b) f(0) = 0 and there exists w € X such that:
Sw) <n and [wlx > o.
Moreover, let us set
@ ={y eC(0,1X):7(0) =0, y(1)=w}

and

n=p=inf max f(y(1)).
y€PD tel0,1]

Then there exists a Palais-Smale sequence for f at level B.
In the next theorem, we recall a generalization of the classical perturbation argument of

Bahri, Berestycki, Rabinowitz and Struwe devised around 1980 for dealing with problems
with broken symmetry adapted to our non-smooth framework (See [119]).

Theorem 2.11. Let X be a Hilbert space endowed with a norm || - ||x and let f : X — R
be a continuous functional. Assume that there exists M > 0 such that [ satisfies the
concrete Palais-Smale condition at each level ¢ > M. Let Y be a finite dimensional
subspace of X and u* € X \'Y and set

Y*=Yeou*), Y{={u+i*eY* ucy, 1=0}.
Assume now that f(0) < 0 and that
(a) There exists R > 0 such that
VueY :|ulx = R= fu) = f(0):
(b) there exists R* > R such that:
YueY*:lulx = R* = f(u) = f(0).
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Let us set
P={yeCX,X): y odd, y(u) =u if max{f(u), f(—u)} < 0}.
Then, if
¢ = inf sup f(y(u)) >c = inf sup f(y(u)) > M,
yeP YEP yey

*
ueYJr
f admits at least one critical value ¢ > c*.

2.2. The case of lower semi-continuous functionals. Let X be a metric space and let
f X - R U {400} be a lower semi-continuous function. We set

dom(f)={ueX: f(u) <+oo} and epif ={u,neXxR: f(u) <n}.

The set epi f is endowed with the metric

1/2
d (), (0 ) = (d,0)? + 0= )?)
Let us define the function §¢ : epi f/* — R by setting
Gr(u,m) = 1. 2.1

Note that &, is Lipschitz continuous of constant 1.
From now on we denote with B(u, §) the open ball of center u and of radius §. We recall
the definition of the weak slope for a continuous function introduced in [50, 58, 87, 88].

Definition 2.12. Let X be a complete metric space, g : X — R a continuous function,
and u € X. We denote by |dg|(u) the supremum of the real numbers ¢ in [0, co) such that
there exist § > 0 and a continuous map

H : B(u,8) x[0,8] - X,
such that, for every v in B(u, §), and for every ¢ in [0, 8] it results
d(H#H(v,1),v) <t,
g(H(,1) < g(v) —ot.
The extended real number |dg|(u) is called the weak slope of g at u.

According to the previous definition, for every lower semi-continuous function f we
can consider the metric space epi f so that the weak slope of §y is well defined. Therefore,
we can define the weak slope of a lower semi-continuous function f by using |d§r|(u, f(u)).

More precisely, we have the following

Definition 2.13. For every u € dom( f') let
EAICNO)

T e fw) <L,
df 1) = 1 1] |wra if [ 7. /

~+o00, if|‘§f|(u,f(u)) =1.
The previous notion allow us to give the following concepts.

Definition 2.14. Let X be a complete metric space and f : X — R U {+o0} a lower
semi-continuous function. We say that u € dom(f') is a (lower) critical point of f if
|df |(u) = 0. We say that ¢ € R is a (lower) critical value of f if there exists a (lower)
critical point u € dom( /) of f with f(u) = c.
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Definition 2.15. Let X be a complete metric space, /' : X — R U {+o00} a lower semi-
continuous function and let ¢ € R. We say that f satisfies the Palais-Smale condition at
level ¢ ((PS). in short), if every sequence {u,} in dom( /') such that

|df |(un) — 0,
Sfun) — ¢,
admits a subsequence {u,, } converging in X

For every n € R, let us define the set
fT={ueX: f(u) <n}. (2.2)

The next result gives a criterion to obtain an estimate from below of |df’|(u) (cf. [58]).

Proposition 2.16. Let f : X — R U {400} be a lower semi-continuous function defined
on the complete metric space X, and let u € dom( f). Assume that there exist § > 0,
n > f(u), o0 > 0and a continuous function ¥ : B(u,8) N f7 x[0,8] = X such that

d(H((,t),v) <t, YveBudnf"
f(FH(v,1) < f(v)—0ot, YveBu,snfm
Then |df |(u) = o.
We will also use the notion of equivariant weak slope (see [36]).

Definition 2.17. Let X be a normed linear space and f : X — R U {400} an even
lower semi-continuous function with f(0) < +o0. For every (0,7) € epi / we denote by
|dz.,%r|(0, n) the supremum of the numbers o in [0, co) such that there exist § > 0 and a
continuous map

H = (H1, H2) - (B((0.1).8) Nepi f) x[0,8] — epi f
satisfying
d(H ((w, ). 1), (w, @) <t,  Hr((w,pu).1) < p—ot,
Hi((—w, ). 1) = =H1((w, ). 1),
for every (w, u) € B((0,1),8) Nepi f and ¢ € [0, §].
To compute |d§¢|(u, n), the next result will be useful (cf. [58]).

Proposition 2.18. Let X be a normed linear space, J : X — R U {+o0} a lower semi-
continuous functional, I : X — R a C! functional and let f = J + I. Then the following
facts hold:

(a) Forevery (u,n) € epi(f) we have
ldgr|u.n) =1 <= |d&s|(u.n—1u)) =1:
(b) if J and I are even, for every n > f(0), we have
ldz,5¢1(0.n) =1 <= [dz,5s1(0.n—1(0)) =1;
(¢) ifu € dom(f) and I'(u) = 0, then |df |(u) = |dJ|(u).

Proof. Assertions (a) and (c) follow by arguing as in [58]. Assertion (b) can be reduced to
(a) after observing that, since I is even, it results I'(0) = 0. O
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In [50, 58] variational methods for lower semi-continuous functionals are developed.
Moreover, it is shown that the following condition is fundamental in order to apply the
abstract theory to the study of lower semi-continuous functions

VY(u,n)eepif: fuy<n = |‘§f|(u,n) =1. (2.3)

In the next section we will prove that the functional f* satisfies (2.3). The next result gives
a criterion to verify condition (2.3) (cf. [60, Corollary 2.11]).

Theorem 2.19. Let (u,n) € epi(f) with f(u) < n. Assume that, for every o > 0, there
exist § > 0 and a continuous map

H o {w e Bu,d): f(w)y<n+48}x[0,6] > X
satisfying
dH(w,0),w) <et, [(H(w,0)=1-1)f(w)+1(f(u)+o0)
whenever w € B(u,§), f(w) <n+38andt €[0,8]. Then |d&r|(u,n) = 1. In addition,
if fiseven, u = 0and H(—w,t) = —FH (w, 1), then we have |dz,5¢|(0,n) = 1.
Let us now recall from [50] the following result.

Theorem 2.20. Let X be a Banach space and f : X — R U {400} a lower semi-
continuous function satisfying (2.3). Assume that there exist vo,v; € X and r > 0 such
that ||vy — vo|| > r and

inf{ f(u) : u € X, lu—voll = r} >max{/f(vo), f(v1)}. (2.4)
Let us set
I'={y:[0,1] = dom(f), vy continuous, y(0) = vg and y(1) = v},

and assume that

¢y = inf sup foy < +o0
yel [0,1]

and that [ satisfies the Palais-Smale condition at the level cy. Then, there exists a critical
point uy of [ such that f(uy) = cy. If, moreover,

co = inf (B, (vo)) > —o0,
and f satisfies the Palais-Smale condition at the level ¢y, then there exists another critical
point ug of f with f(ug) = co.
In the equivariant case we shall apply the following result (see [103]).

Theorem 2.21. Let X be a Banach space and f : X — R U {400} a lower semi-
continuous even function. Let us assume that there exists a strictly increasing sequence
(Wh) of finite dimensional subspaces of X with the following properties:

(a) There exist p > 0,y > f(0) and a subspace V- C X of finite codimension with
YueV:ul=p = [fu=y;
(b) there exists a sequence (Ry,) in (p, 00) such that
YueWy: |ul 2Ry = f(u) = f(0);

(¢) [ satisfies (PS)¢ forany ¢ > y and [ satisfies (2.3);
(d) |dz,5¢1(0.n) # 0 for every n > f(0).
Then there exists a sequence {uy,} of critical points of f such that f(up) — +o0.
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2.3. Functionals of the calculus of variations. Let 2 be a bounded open subset of R”,
n>3andlet 1 : Wol’p(Q;]RN) — R (N > 1) be a functional of the form

f(u) :/SZI(x,u,Vu)dx. (2.5)

The associated Euler’s equation is formally given by the quasi-linear problem
—div (VgL (x,u, Vu)) + ViE(x,u,Vu) =0 in Q
u=0 ondQ.
Assume that £ : @ xRN x R"M — R is measurable in x for all (s, §) € RY xRV and of

class C!in (s, £) for a.e. x € Q. Moreover, assume that there exist ag € L' (), by € R,
ay € L}, (Q) and by € L (2) such that for a.e. x € Q and for all (s,£) € RV x R™N

(2.6)

we have foc
|£(x.5.6)] < ao(x) + bols|"/ =P 4 by &7, 2.7)
IVe(x. 5,6 < ar(x) + by (x)|s|"/ =P + by (x)[€]7. 2.8)
[VeL(x.5,6)| < ar(x) + by (x)]s["?/ =P + by (x)|&]7. (2.9)

Conditions (2.8) and (2.9) imply that for every u € Wol’p (2, RY) we have
VeL(x,u,Vu) € L) (0 R™),
Vi (x,u, Vu) € L], (2 RM).
Therefore, for every u € W, 7 (2, RY) we have
—div (Ve L (x,u, Vu)) + VL (x,u, Vu) € D'(Q;RV).
Definition 2.22. We say that u is a weak solution of (2.6), if u € WOI’P (2, RN ) and
—div (VgL (x,u, Vu)) + V& (x,u, Vu) =0
in D'(Q;RN).

If the integrand £ is subjected to suitable restrictive conditions, it turns out that f is of
class C! and

—div (VeL(x,u, Vu)) + VsL(x,u, Vu) € W2 (Q,RN)
for every u € Wol’p (2,RY). In this regular setting, we have that f satisfies condition
(PS)., if and only of every sequence (1) in Wol’p (2, RVN) with f(u;) — ¢ and
—div (Vgcf(x, up, Vuh)) + ViL(x,up, Vuy) — 0
strongly in W 17" (€2, R™) has a strongly convergent subsequence in Wol’p (Q,RN).

Now, a condition of this kind can be formulated also in our general context, without any
reference to the differentiability of the functional f.

Definition 2.23. Let ¢ € R. A sequence (up) in Wol’p (2, RY) is said to be a concrete
Palais-Smale sequence at level ¢ ((CPS).—sequence, in short) for f,if f(uy) — ¢,

—div (VeL(x, up, Vup)) + VsL(x,up, Vuy) € WH2(Q,RY)
eventually as i — oo and

—div (VgL (x, up, Vup)) + VoL (x, up, Vuy) — 0
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strongly in W12 (Q, RN).
We say that f satisfies the concrete Palais-Smale condition at level ¢ ((CPS). in
short), if every (CPS).—sequence for f admits a strongly convergent subsequence in
1,
W, 7(Q,RN).
The next result allow us to connect these “concrete” notions with the abstract critical

point theory.

Theorem 2.24. The functional f is continuous and for all u € Wol’p (2, RN),
ldf|(u) > sup{/ (Vgii(x,u,Vu)-Vv + Vséli(x,u,Vu)-v)dx v el v,y < 1}.
Q

Therefore, if |df |(u) < +o0 it follows
—div (VeL(x,u, Vu)) + VsL(x,u, Vi) € W2 (Q,RY)

and
| = div (Ve£(x,u, Vu)) + Vo (x,u, Vu) ||1’p, < |df|(u).

Corollary 2.25. Letu € WOI’P(Q .RM), ¢ € Rand let (uy) be a sequence in Wol’p (2,RM).
Then the following facts hold:

(@) If u is a (lower) critical point of f, then u is a weak solution of (2.6));
(b) if (up) is a (PS).—sequence for f, then (uy) is a (CPS).—sequence for f;
(¢) if f satisfies (CPS), then f satisfies (PS)e.
By means of the previous result, it is easy to deduce some versions of the Mountain
Pass Theorem adapted to the functional f.

Theorem 2.26. Let (D, S) be a compact pair, let  © S — Wol’p (2, RN) be a continuous
map and let
o ={p D Wy (@ RY): g5 = v|.

Assume that there exists a closed subset A of WO1 P(Q,RN) such that
igffzm(zg;f, ANyYy(S)=0, ANe(D)#BVp e d.
¥

If f satisfies the concrete Palais-Smale condition at level ¢ = infyee maxy(p) f, then
there exists a weak solution u of (2.6) with f(u) = c. Furthermore, if infy f > ¢, then
there exists a weak solution u of (2.6) with f(u) = ¢ and u € A.

Theorem 2.27. Suppose that
E(x,—s,—&) = L£(x,s,§)
fora.e. x € Q and every (s,£) € RN x R™. Assume also that
(a) There exist p > 0, a > f(0) and a subspace V C Wol’p (Q.RN) of finite codi-
mension with
YueV:ul=p= flu)>uwo;
(b) for every finite dimensional subspace W C Wol’p (2, RYN), there exists R > 0
with
YueW: |u| =R = f(u) < f(0);
(¢) f satisfies (CPS). for any ¢ > a.
Then there exists a sequence (uy) C Wol’p (2. RN) of weak solutions of (2.6) with limy, f(up) =
+o0.
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3. SUPER-LINEAR ELLIPTIC PROBLEMS

We refer the reader to [133, 134]. Some parts of these publications have been slightly
modified to give the monograph a more uniform appearance.

3.1. Quasi-linear elliptic systems. Many papers have been published on the study of
multiplicity of solutions for quasi-linear elliptic equations via non-smooth critical point
theory; see e.g. [0, 8,9, 33, 32,36, 49, 113, 138]. However, for the vectorial case only a few
multiplicity results have been proven: [138, Theorem 3.2] and recently [9, Theorem 3.2],
where systems with multiple identity coefficients are treated. In this section, we consider
the following diagonal quasi-linear elliptic system, in an open bounded set 2 C R” with
nz3,
n 1 n N
— Z Dj(af-‘j (x,u)Djuy) + 3 Z Z Dska,}-; (x,u)DjupDju, = D5, G(x,u) in €2,
i,j=1 i,j=1h=1
3.1)
fork=1,...,N,whereu:Q — R andu = 0 on 9. To prove the existence of weak
solutions, we look for critical points of the functional f : HO1 (2, RN ) —> R,

n N
f(u) = %/Q Z Zaf’j(x,u)D;uhDjuh dx—/QG(x,u)dx. (3.2)

i,j=1h=1

This functional is not locally Lipschitz if the coefficients al’.’j depend on u; however, as
pointed out in [6, 33], it is possible to evaluate f”,

n N
7 = [ 353 aly e Dy Dy

ij=1h=1

1 n N i
+ 3 /;2 Z Z Dsaj;(x,u) - vDjup Djup dx — /Q DsG(x,u)-vdx
i,j=1h=1
forallv € HI(Q,RN) N L®(Q,RV).
To prove our main result and to provide some regularity of solutions, we consider the
following assumptions.

j
x € Q with af’j = aj’i. Furthermore, we assume that there existv > 0 and C > 0

such that for a.e. x € Q, all s € RN and £ € R"N

° (al’.’. -,s)) is measurable in x for every s € R¥, and of class C! in s for a.e.

n N
3 Sk (xos)ElEl = vl al}"j(x,s)‘ <cC, ‘Dsaf;(x,s)‘ <cC 3.3)
i,j=1h=1
and
n N
> > s Deali(x.9)EEN > 0. (3.4)

i,j=1h=1
e there exists a bounded Lipschitz function ¥ : R — R, such that for a.e. x € Q,
forall€ e R"™ o € {—1,1}¥ and r,s ¢ RV

n N
Z Z (%Dsaf’j (x,5) - exp, (r,$) + af'j (x,s) Dy, (expy (7, S))h) Eihéjh =0 @39

i,j=1h=1
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where (exp, (7, 5)); := o; explo; (Y (r;) — ¥ (s;))] foreachi =1,..., N.

e the function G(x, 5) is measurable in x for all s € R" and of class C! in s for a.e.
x € 2, with G(x,0) = 0. Moreover for a.e. x € Q we will denote with g(x, )
the gradient of G with respect to s.

e for every & > 0 there exists a, € L2"/#+2)(Q) such that

lg(x,5)] < ag(x) + e|s| T2/ (1=2) (3.6)

forae. x € Q and all s € RY and that there exist ¢ > 2, R > 0 such that for all
s € RN and forae. x € Q

[s]| > R=0<qG(x,s) <s-g(x,s). (3.7
e there exists y € (0, ¢ — 2) such that for all £ e R"M, s € RN and a.e. in Q

n

N n N
YD s Dl EE <y Y Y ali(x,9)EE. (3.8)

i,j=1h=1 i,j=1h=1
Under these assumptions we will prove the following result.

Theorem 3.1. Assume that for a.e. x € Q and for each s € RN
ali(x.—s) = ali(x.5).  glx,—s) = —g(x, ).

Then there exists a sequence (u™) C H(} (2, RYN) of weak solutions to (3.1) such that
fW™) - 400 as m — oo.

The above result is well known for the semi-linear scalar problem

n
— Y Djaij(x)Diu) = g(x.u) inQ
i,j=1
u=0 ondQ.

Ambrosetti and Rabinowitz in [5, 121] studied this problem using techniques of classical
critical point theory. The quasi-linear scalar problem

n n
1
— E Dj(aij(x,u)Dju) + 3 E Dga;j(x,u)DiuDju = g(x,u) inQ
i,j=1 i,j=1
u=0 onds2,

was studied in [32, 33, 36] and in [113] in a more general setting. In this case the functional

fu) = %/;2 Z a,-j(x,u)D,-uDjudx—/QG(x,u)dx

i,j=1

is continuous under appropriate conditions, but it is not locally Lipschitz. Consequently,
techniques of non-smooth critical point theory have to be applied. In the vectorial case, to
my knowledge, problem (3.1) has only been considered in [138, Theorem 3.2] and recently
in [9, Theorem 3.2] for coefficients of the type af’jk (x,s) = Shkozij (x,s).
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3.2. The concrete Palais-Smale condition. The first step for the (CPS), to hold is the
boundedness of (CPS), sequences.

Lemma 3.2. Forall ¢ € R each (CPS). sequence of f is bounded in H(} (2,RM).
Proof. Letag € L'(2) be such that for a.e. x € Q and all s € RV
qG(x,s) <s-g(x,s) + ap(x).

Now let (u™) be a (CPS). sequence for f and let w” — 0in H~' (22, R") such that for
allv e C2(Q,RY),

n N
(w™, v) =/ Z Za;’j(x,um)Diu;l"Djvh dx
Q

i,j=1h=1
1 n N
+ 5/ Z ZDsaf']-(x,um)-vDiuh’”Dju;l" dx—/ glx,u™) - v.
Q.5 Q
i,j=1h=1

Taking into account the previous Lemma, for every m € N we obtain

- ”wm”H*l(Q,RN)”um”H& (Q,RN)

n N
h
5[9 Y D al(x,u™)Duj Djuj dx

i,j=1h=1
1 n N
+—/ Z ZDsaf’~(x,um)-umD,-uZ”Djuhm dx—/ glx,u™) - u™ dx
2 Ja 4 / Q
i,j=1h=1
n N
S/ Z Zaf’j(x,um)DiuZ’Dju;,”dx—i-
Q.7
i,j=1h=1

1 n N
+ 5[ Z ZDsaf’j(x,um)-umDiuhijuf a’x—q/ G(x,u”’)dx-l—/ apdx.
Q Q Q

i,j=1h=1

Taking into account the expression of f and assumption (3.8), we have that for each m €
N,

- ||wm||H—1(Q,]RN)||”m||H01 (Q,RN)

n N
< - (% — 1) /Q Z Zaf’j(x,um)D,-uijuZ’ dx

i,j=1h=1

1 n N
+§/ > " Dealt (e u™) - u™ Dyt Dy dx+qf(um)+/ ag dx
i i=1h=1 @

n N
q v h
== (E -1 5)/9 Z > aly (. u™) Dy Dyjuy dx

i,j=1h=1

+qfW™) +/Qa0 dx.
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Because of (3.3), foreach m € N,

n N
vg=2= IO = (g =2=7) [ D0 alytraum D Dy
ij=1h=1

< 2||wm||H71(Q,RN)||um||H01(Q’RN) +2qf W™ + Z/andx.

Since w™ — 0in H~1(Q,RY), (u™) is a bounded sequence in HO1 (2, RN). O
Lemma 3.3. If condition (3.6) holds, then the map
HI(Q.RV) — L[M0+)(Q RY)
u +— g(x,u)
is completely continuous.

The statement of the above lemma is a direct consequence of [36, Theorem 2.2.7]. The
next result is crucial for the (CPS). condition to hold for our elliptic system.

Lemma 3.4. Let (u™) be a bounded sequence in HO1 (2, RN), and set

n N
(w™, v) =/ Z Zaf’j(x,um)D,-u;,”Djvh dx
Q.

i,j=1h=1

1 n N
+3 /Q i]z_:l }; Dsaf’j(x, u™) -vDjujy Djuy’ dx

forallv € CX(Q,RN). If (w™) is strongly convergent to some w in H='(Q,RN), then

(u™) admits a strongly convergent subsequence in HO1 (2, RM).

Proof. Since (™) is bounded, we have u”" — u for some u up to a subsequence. Each
component u}" satisfies (2.5) in [22], so we may suppose that D;u}’ — Djuy a.e. in  for
allk =1,..., N (see also [54]). We first prove that

n N
/ Z Zaf'j (x,u)DjupDjup dx
Q

i,j=1h=1 3.9)

1 n N
+ E/Q Z Z Dsaf?j(x,u) ~uDjupDjuy dx = (w, u).
i,j=1h=1
Let v be as in assumption (3.5) and consider the following test functions
V" = g(o1 explor (Y (u1) = Y @), ... on explon (¥ (un) — ¥ (uy)))).
where ¢ € C°(2), ¢ > 0 and o; = *£1 for all /. Therefore, since we have
Djv = (ok Djp + (V' (uk) Djur — ' (uy) Djui o) explog (¥ (ux) — ¥ (uy))];
we deduce that for all m € N,

n N
/Q 0> al e u™ Diuf (o4 Djg + ' (u) Djupg) explon (W (up) — ¥ (uf')] dx

i,j=1h=1

n N
oy
+ /Q > 30 % Dyl e explor (9 ) — G DIDef Dy
i,j=1h,l=1
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n N
- /Q S S dl G u™) Dy Dy el explon (9 n) — Y (@ dx

i,j=1h=1
= (w™, ™).
Let us study the behavior of each term of the previous equality as m — oo. First of all,
if v = (019, ...,0N8¢), we have that v — v implies
lim{w™, v™) = (w, v). (3.10)
m
Since u — u, by Lebesgue’s Theorem we obtain
n N
- h
h’f‘n/sz Z Zaij(x,um)D,-u;l"(Dj(ahgo) (3.11)
i,j=1h=1
+ @V (un) Djup) explog (Y (up) — ¥ (uy'))] dx (3.12)
n N
Z/Q > al(x.u)Diup(Djv + @V (up) Djup) dx. (3.13)
i,j=1h=1

Finally, note that by assumption (3.5) we have

n N N 0
> 27 (D2 5 Dty e ™ explon () = y ()]
i,j=1h=1 I=1
—a; (e, u™) Y ) explon (¥ (un) — ¥ () Dy Dyt < 0.
Hence, we can apply Fatou’s Lemma to obtain

1 n N
nmmsup{z fQ 2 2 Dy oo™ exploy (v (ur) = v (uf NIDiaty Dy (o19) dx

i,j=1h,l=1

n N
- /Q S 3l o™ i Dy ) explon () — v ) )

i,j=1h=1

1 n N
= E/Q Z Z Dslal}-‘j(x,u)D,-uhDjuh(alcp)dx

i,j=1hl=1

n N
_/Q D > al(x ) Diup Djupy (up)g dx

i,j=1h=1
which, together with (3.10) and (3.12), yields

n N n N
1
/ Z Zaf’j(x,u)D,-uhDjvh dx + 5/ Z ZDsal}.‘j(x,u)-vDiuhDjuh dx
Q Q

i,j=1h=1 i,j=1h=1
= (w,v)
for all test functions v = (019, ...,on9) with 9 € CX®(Q,RY), ¢ > 0. Since we may

exchange v with —v we get

n N n N
1
|3 Y dsnnan s +5 [ 305" Dy vy - vDa, D dx
Q. Q.

i,j=1h=1 i,j=1h=1



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 19

= (w,v)

for all test functions v = (o1¢, ..., 0N¢@), and since every function v € C°(£2, RY) can
be written as a linear combination of such functions, we infer (3.9). Now, let us prove that

n N n N
limsup/ Z Zaf'j(x,um)D,-uZ’DjuZ” dx 5/ Z Zaﬁ'].(x,u)DiuhDjuh dx.
m Q Q

i,j=1h=1 i,j=1h=1
(3.14)
Because of (3.4), Fatou’s Lemma implies that
n N
| X 3o u Dl Dia Dy dx
2 i=1h=1
n N
. h
< 1111’1n1nf/Q Z Zu’" » Dsaj; (x,u™) Diuj Djuy dx.
i,j=1h=1
Combining this fact with (3.9), we deduce that
n N
. h
hmmsup/;2 Z Zaij(x,um)D,-uZ’Djuf dx
i,j=1h=1
1 n N
= lim sup [ - —[ Z u™ . Dsaf’j (x, u™)Diuy Djuy' dx + (w™, u”’)]
m 2 Ja 4
i,j=1h=1
1 n N
< —5/;2 Z Zu . Dsaf’j(x, u)DiupDjuy dx + (w, u)
i,j=1h=1
n N
= / Z Za?j(x,u)D,-uhDjuh dx,
2 i=1h=1
so that (3.14) is proved. Finally, by (3.3) we have
v|| Du™ — Dul|3
n N
< / Z Za?j(x,um) (Diu} Djuy! — 2D}y Djup + DijujDjuy) dx.
Qi i=1h=1
Hence, by (3.14) we obtain
limsup || Du™ — Dull, <0
m
which proves that u™ — u in H} (Q,RY). O

We now come to the (CPS). condition for system (3.1).
Theorem 3.5. f satisfies (CPS). condition for each ¢ € R.

Proof. Let (u™) be a (CPS), sequence for f. Since (u) is bounded in HO1 (Q,RN),
from Lemma 3.3 we deduce that, up to a subsequence, (g(x, u")) is strongly convergent
in H~1(,RY). Applying Lemma 3.4, we conclude the present proof. U
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3.3. Existence of multiple solutions for elliptic systems. We now prove the main result,
which is an extension of theorems of [33, 36] and a generalization of [9, Theorem 3.2] to
systems in diagonal form.

Proof of Theorem 3.1. We want to apply [36, Theorem 2.1.6]. First of all, because of
Theorem 3.5, f satisfies (CPS). for all ¢ € R. Whence, (c¢) of [36, Theorem 2.1.6] is
satisfied. Moreover we have

1
2/ |Du|2dx—/ G(x,u)dx < f(u) < —nNC/ |Du|2dx—/ G(x,u)dx.
2 Ja Q 2 Q Q

We want to prove that assumptions (a) and (b) of [36, Theorem 2.1.6] are also satisfied. Let
us observe that, instead of (b) of [36, Theorem 2.1.6], it is enough to find a sequence (W},)
of finite dimensional subspaces with dim(W,) — +oo satisfying the inequality of (b)
(see also [103, Theorem 1.2]). Let W be a finite dimensional subspace of Ho1 (2:RM)N
L>®(22,RN). From (3.7) we deduce that for all s € RY with |s| > R

G (x,R‘i—‘)

G(x,s) > R

5|9 = bo(x)]s|?,
where
bo(x) = R™?inf{G(x,s) : |s| = R} > 0
a.e. x € Q. Therefore, there exists ag € L'(2) such that
G(x,5) = bo(x)|s]? — ao(x) (3.15)

ae. x € Qand forall s € RY. Since by € L'(2), we may define anorm || - || on W by

1/q
lulg = ([ bouttax) ™.

Since W is finite dimensional and ¢ > 2, from (3.15) it follows

lim (u) = —o0
||u||G—>+oo,u€Wf( )

and condition (b) of [36, Theorem 2.1.6] is clearly fulfilled too for a sufficiently large
R > 0. Let now (A, uy) be the sequence of eigenvalues and eigenvectors for the problem

Au=—Au inQ
u=0 ondQ.
Let us prove that there exist /1o, @ > 0 such that
YueVT:|Dull,=1= f(u)>a,

where V' = span {u; € H} (2.RN) : h > ho}. In fact, givenu € V¥ and ¢ > 0, we
find
agl) e CCOO(Q), 6122) e LG/(n+2)(Q),

such that ||a§2) 20/ (n+2) < & and
206, 9)| = P (x) + @ (x) + efs| 072,

Ifu € VT, it follows that

fw = 21Dul = [ Glx.uyds

v n—2
> 5||Du||§_/ (<a§1)+a§z)) |u|+2_8|u|2n/(n—2)) "
Q n
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v 2 -2
> || Dull2 = [laP 2 ull2 — c11aP anjui 2y | Dulls — eca | Dul 3

2
v L
> §||Du||§ - ||a§1)||2||u||2 - C18||Du||2 — €C2||Du”2n/(n )'

Then if hy is sufficiently large, from the fact that (1) diverges, forallu € VT, | Du|, = 1
implies
a2z < =
Hence, for ¢ > 0 small enough, | Du|; = 1 implies that f(u) > v/6.
Finally, set V™~ = span {u;, € H} (Q2,RN) : h < ho}, we have the decomposition
H QR =VvToV.
Therefore, since the hypotheses for [36, Theorem 2.1.6] are fulfilled, we can find a se-

quence (#™) of weak solution of system (3.1) such that lim,, f(u™) = 4o00. The proof is
complete. g

3.4. Regularity of weak solutions for elliptic systems. Consider the nonlinear elliptic
system

n N
/ Z Z af’jk(x,u)D,-uhDjvk dx =/b(x,u,Du)-vdx (3.16)
Qi i=1hk=1 Q@
forallv € HOI(Q;]RN). For/ =1,..., N, we choose

n N
bi(x,u, Du) = {— Z Z Ds,af’jk(x,u)D,-uhDjuk + gl(x,u)}.
i,j=1hk=1

Assume that there exist ¢ > 0 and ¢ < % such that for all s € RN and a.e. in Q
lg(x,8)] <c(+|s]9). 3.17)
Then it follows that for every M > 0, there exists C(M) > 0 such that for a.e. x € €, for
all £ e R™N and s € RN with |s| < M
bCx.5.6)| < e(M) (14 16). (3.18)

A nontrivial regularity theory for quasi-linear systems (see, [76, Chapter VI]) yields the
following

Theorem 3.6. For every weak solutionu € H' (2, RVN)NL®(Q,RYN) of the system (3.1)
there exist an open subset Qo C Q and s > 0 such that

Vp e (n 400):ueC® 5 (Q:RY),
FS(Q\ Q) = 0.

For the proof of the above theorem, see [76, Chapter VI]. We now consider the particular
case when af’jk (x,5) = a;j(x, s)8"%, and provide an almost everywhere regularity result.

Lemma 3.7. Assume that (3.18) holds. Then the weak solutions u € HO1 (2, RN) of the
system

n N
/ Z Zaij(x, u)DijupDjvp dx+
Q

ij=1h=1
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n N
1
+§/ Z ZDSaij(xv”)'vDi”hDjuhdx =/ g(x,u)-vdx (3.19)
2 Q

i,j=1h=1
forallv e CX(Q,RN), belong to L®(Q,RN).

Proof. By [138, Lemma 3.3], for each (CPS), sequence (™) there exist u € Ho1 N L*®
and a subsequence (k) with ™% — u. Then, given a weak solution u, consider the
sequence (u™) such that each element is equal to «# and the assertion follows. O

We can finally state a partial regularity result for our system.

Theorem 3.8. Assume condition (3.18) and let u € Ho1 (2, RYN) be a weak solution of the
system

n N n N
1
/slz | E E aij(x,u)DjupDjv, dx + 5/9 | E Z Dyajj(x,u) - vDjupDjuy dx

i,j=1h=1 i,j=1h=1
= / g(x,u)-vdx
Q
SJorallv e C(Q, RN). Then there exist an open subset Qo C Q2 and s > 0 such that
Vp e (n +00):ueC® 5(QuRY), H"(Q\Q) = 0.
To prove the above theorem, it suffices to combine the previous Lemma with Theorem

3.6.

3.5. Fully nonlinear scalar problems. Recently, some results for the quite general prob-
lem
—div (Vgcf(x, u, Vu)) 4+ DsL(x,u,Vu) = g(x,u) inQ
u=0 onadQ2,

have been considered in [6, 7] and [113]. The goal of this section is to extend some of
the results of [6, 113]. To solve (3.20), we shall look for critical points of functionals
I Wol’p(Q) — R given by

(3.20)

f(u)=/Q§£(x,u,Vu)dx—/QG(x,u)dx. (3.21)

In general, f is continuous but not even locally Lipschitz unless £ does not depend on u
or £ is subjected to some very restrictive growth conditions. Then, again we shall refer to
non-smooth critical point theory.

We assume that £ : Q xR xR” — R is measurable in x for all (s, £) € RxR”", of class
Clin (s,£) for a.e. x € Q, the function £(x, s, -) is strictly convex and £(x,s,0) = 0
for a.e. x € Q. Furthermore, we will assume that:

e there exista € L'(Q) and by, v > 0 such that
V[E|P = £(x,5.8) < al(x) + bols|” + bol€|” . (3.22)

fora.e. x € Q and for all (s,&) € R xR”;
e for each ¢ > 0 there exists a, € L () such that

|DsL(x,5,8)| < ae(x) + els|”" + bilg]”, (3.23)
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for a.e. x € Q and for all (s,£) € R x R”, with b; € R independent of ¢.
Furthermore, there exists a; € L”/(Q) such that
*
Ve (x.5.8)] < ar(x) + bals| 7" + by l§]77, (3.24)

fora.e. x € Q and for all (s,&) € R x R";
e there exists R > 0 such that

|s| > R = Dy£(x,s,8)s >0, (3.25)

fora.e. x € Q and forall (s,&) € R xR";
e G : Q xR — Ris a Carathéodory function such that

G(x,s) < d(x)|s|? + b|s|?” (3.26)
Gx.9) _ (3.27)
s—>0 |s|?

forae. x € Qandall s € R, where d € L%(Q) and b € R. Moreover,

N
G(x,s) =/ g(x,7)drt
0
and there exist ¢y, ¢, > 0 such that

lg(x,8)] < c1 +cals|”

fora.e. x € Q and each s € R, where 0 < p* — 1.
e thereis ¢ > p and R’ > 0 such that for each & > 0 there is ¢, € L'(Q) with

0<qgG(x,s) < g(x,s)s, (3.28)
qL(x,5,8) — VeL(x,5,8) - & — DyL(x,5,8)s Z v[E|P —ae(x) —e|s]? (3.29)
for a.e. x € Q and for all (s,&) € R x R” with |s| > R'.

Under the previous assumptions, the following is our main result.

Theorem 3.9. The boundary value problem
—div (Ve£(x,u, Vu)) + DyE(x,u, Vu) = g(x,u) inQ
u=0 onodQ2

has at least one nontrivial weak solution u € Wol’p (2).

This result is an extension of [6, Theorem 3.3], since instead of assuming that
VseR: g&(x,s,§) — VelL(x,s,&) & — DyL(x,s.8)s > v[§|?,

for a.e. x € Q and for all £ € R”, we only request condition (3.29). In this way the proof
of Lemma (3.12) becomes more difficult. The key-point, to deal with the more general
assumption, is constituted by Lemma (3.11).

Similarly, in [113, Theorem 1], a multiplicity result for (3.20) is proved, assuming that

VseR: Dgf(x,s,&s>0,
VseR: gf(x,s,§) — VeL(x,s,&) & — DyL(x,s.6)s > v[§|?,
for a.e. x € Q and for all £ € R”, which are both stronger than (3.25) and (3.29). In

particular, the first inequality above and the more general condition (3.25) are involved in
Theorem 3.10.
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Finally, let us point out that the growth conditions (3.22) - (3.24) are a relaxation of
those of [6, 113], where it is assumed that

VIE]P = £(x.5.8) < BIEIP, [ DsL(x.5.8)] = y[EI7,
Vet (x,5.8)| < ai(x) + byls|?7! + by E[P7,
fora.e. x € Q and for all (s,£&) € R x R”.

3.6. The concrete Palais-Smale condition. Let us point out that as a consequence of
assumption (3.22) and convexity of £(x, s, -), we can find M > 0 such that for each ¢ > 0
there is a, € L'(Q) with

Vel (x,s,6)-& = v[E]P —a(x) — bols|?, (3.30)
|DsE(x,5,6)| < MVeL(x,5,8) - £ +ag(x) +els|P, (3.31)

fora.e. x € Q and for all (s,&) € R x R”.

We now come to a local compactness property, which is crucial for the (CPS). condi-
tion to hold. This result improves [113, Lemma 2], since (3.29) relaxes condition (8) in
[113].

Theorem 3.10. Let (uy) be a bounded sequence in Wol’p () and set
(wp, v) :/ Ve (x,up, Vuy) - Vodx +/ Dy (x,up, Vup)vdx, (3.32)
Q Q

forallv € C (). If (wy) is strongly convergent to some w in WL (Q), then (up)
admits a strongly convergent subsequence in Wol’p ().

Proof. Since (uy,) is bounded in WOI’P(Q), we find a u in Wol’p(Q) such that, up to a
subsequence,

Vup =~ Vu inLP(Q), up —>u inLP(Q), wup(x)— u(x) for ae. x € Q.

By [22, Theorem 2.1], up to a subsequence, we have
Vup(x) = Vu(x) for a.e. x € Q. (3.33)
Therefore, by (3.24) we deduce that
Ve (x, up, Vuy) = Ve (x,u,Vu)  in L? (2, R").

We now want to prove that u solves the equation

Vo e CR(Q): (w,v) = f Ve(x,u,Vu)-Vvdx +/ DsE(x,u, Vu)vdx. (3.34)

Q Q
To this aim, let us test equation (3.32) with the functions
vp = gexpl—MGui + R}, ¢ e WP (@ NLX(Q), ¢=0.

It results that for each 7 € N,

/ Ve (x,up, Vuy) - Voexp{—M (uy + R} dx — (wp, g exp{—M (u;, + R)T})
Q

+ / [Dséﬁ(x, up, Vup) — MVeL(x,up, Vuy) - V(uy + R)+]
Q

pexp{—M(u, + R)"}dx = 0.
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Of course, for a.e. x € €2, we obtain
@exp{—M (up + R)"} — pexp{—M(u + R)*}.
Since by inequality (3.31) and (3.25) for each ¢ > 0 and & € N we have
[DsL(x,up, Vup) — MVeE(x, up, Vup) - V(up + R)T]
xg exp{—M (up + R)*} = elupl”" ¢ < ac(x)p.

Fatou’s Lemma implies that for each ¢ > 0,

lim SUP/ [Ds£(x.up, Vup) — MVeL(x, up, Vup) - V(up + R)+]<pe_M(”"+R)+
h Q

— elug|?" @ dx
< / [DsE(x,u, Vu) — MVeL(x,u,Vu)-V(u + R)+]<pe7]\’“”+R)Jr —elul”" ¢ dx.
Q
Since (1) is bounded in L?” ($2), we find ¢ > 0 such that for each & > 0

lim sup/ [Dsét'i(x, up, Vup) — MVeE(x,up, Vup) - V(uy + R)+](/)e_M(”"+R)+dx
h Q

< / [DyE(x,u, Vu) = MVeL(x,u,Vu) - V(u + R)+]<pe_M("+R)+dx —ce.
Q
Letting ¢ — 0, the previous inequality yields
lim sup/ [DyL(x,up, Vup) — MVeE(x,up, Vup) - V(up + R)T]
h Q

% we—M(uh+R)+ dx

< /Q [DsL(x,u, Vu) — MVeL(x,u,Vu)-V(u + R)*] e MutR* 4
Note that we have also
pexp{—M (up + R)+} — pexp{—M(u + R)+} in Wol’p(Q).
Moreover,
Voexp{—M(up + R)"} - Voexp{—M(u + R)*} in L?(Q,R"),
so that

/ Ve (x,up, Vuy) - Vo exp{—M (up + R)*ldx
Q

— / VeL(x,u,Vu) - Vo exp{—M (u + R) " }dx.
Q
Therefore, we conclude that

/ VeL(x,u,Vu) - Voexp{—Mu + R)*}dx — (w,pexp{—M (u + R)*})
Q

+ [ [Dséﬁ(x, u,Vu) = MVed(x,u,Vu) - V(u + R)+]<p exp{—M(u + R) " }dx
Q

> 0.
Consider now the test functions

u
¢k = @H(7) exp{M (u + R)'}, 9eCXQ)., ¢=0,
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where H € C'(R), H = lin[—4,1]and H = 0in]— 0o, —1]U[1, +oo[. It follows that
[ Vet V- Vo expt-M + R dx = (w.pH ()

Q

+/Q [Dy(x,u, Vi) — MV (x,u, Vur) - V(u + R)*] goH(%)dx > 0.
Furthermore, standard computations yield
Vi = exptM(u + R} VeH() + H (D)2 Vu + MV + R pH () |
Since g H () goes to ¢ in Wol’p(Q), as k — 400 we have

(w.pH (D)) > (w.g).

By the properties of H and the growth conditions on V¢ £, letting k — +oo0 yields
fg Vet (x.u, Vu)- wH(%) - /Q Ve (x.u, Vu) - Vo dx.
/ Ve (x,u, Vu) - Vu H'(z)g dx — 0,
Q k' k

/QMVSO‘@(X, u,Vu) - V(u + R)Jr(pH(%) — /Q MVe&(x,u,Vu)-Vu + R)to.
Whence, we conclude that for all ¢ € C°(R2),
0>0= (w,p) < / VeL(x,u,Vu)-Vodx +/ Dy L(x,u,Vu)p dx.
Q Q

Choosing now as test functions
vp = @ exp{—M(up — R)"},

where as before ¢ > 0, we obtain the opposite inequality so that (3.34) is proven.
In particular, taking into account the Brezis-Browder type results, we immediately ob-
tain

(w, u) =/ Ve&(x,u,Vu)-Vudx +/ DsE(x,u, Vu)u dx. (3.35)
Q Q

The final step is to show that (1) goes to u in Wol’p (f2). Consider the function ¢ : R — R
defined by
Ms if0 <s <R
MR ifs>R
SO =N s if —R<s <0 (3.36)
MR ifs <—R,
and let us prove that

lim sup/ VeL(x,up, Vup) - Vuyexpil(up)} dx
h Q

S/ Ve (x,u, Vu) - Vuexp{¢(u)} dx.
Q

Since uy, exp{¢(uy)} are admissible test functions for (3.32), we have

/Q Ve (x. up. Viug) - Vg exp{& (un)} dx — (wp, up exp{(up)}) +
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—i—/ [DyE(x, up, Vup) + ' (up)VeL(x, up, Vuy) - Vup | up exp{¢(up)} dx = 0.
Let us os‘i)serve that (3.33) implies that
Ve (x,up, Vup) - Vup, — Ve (x,u, Vu) - Vu for ae. x € Q.
Since by inequality (3.31) for each ¢ > 0 and & € N we have
[—DsE(x, up, Vup) — &' (up) Ve L (x, up, Vup) - Vuy |
x up exp{t (up)} — Rexp{MRjelup|””
< Rexp{MR}ae(x) .

Fatou’s Lemma yields

limsup/ [— Dy E(x,up, Vup) — & (up)VeL(x, up, Vuy) - Vu;,]
h Q

ReMRg|uy|P" dx

w upel@n) _
=< / [— DyE(x,u, Vu) — &' (u)VeL(x,u, Vu) - Vu]u exp{¢(u)}
Q
— ReMRg|y|P” dx.

Therefore, since (1) is bounded in L?" (2), we find ¢ > 0 such that for all ¢ > 0

lim S“P/ [—DsL(x, un, Vun) = & (un) VeL(x, up, Vuy) - Viun] upet“ndx
h Q

< f [—Dscf(x, u, Vu) — §'(u)VeL(x,u, Vu) - Vu] uet®dx — ce.
Q

Taking into account that ¢ is arbitrary, we conclude that

limsup/ Ve (x,up, Vup) - Vupexpi(up)} dx
h Q

= lim sup {/ [—DsE(x, up, Vup) — &' (up) Ve L (x, up, Vup) - Vuy | upet@n dx
h Q

+ (wh. up exp{¢ wn)}) |
< / [-Ds£(x.u, Vu) — ' (u)VeL(x,u, Vu) - Vu] uet@dx + (w, uexp{¢(u)})
Q
= /Q Vel (x,u, Vu) - Vuet® dx.
In particular, we have

/ VeL(x,u,Vu)- Vuet® dx < lin}linf/ Ve (x,up, Vuy) - Vuheg("h)dx
Q Q

<lim sup/ Vel (x,up, Vuy) - Vuyet @ dx
h Q

S/ Vgii(x,u,Vu)-VueZ(”)dx,
Q
; namely,

lim/ Ve (x,up, Vup) - Vupexpil(up)idx = / Ve (x,u, Vu) - Vuexp{¢(u)}dx.
h JQ Q
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Therefore, by (3.30), generalized Lebesgue’s theorem yields
limsup/ [Vup|Pdx < / |Vul|Pdx,
h Q Q
that implies the strong convergence of (u) to u in Wol’p (2). O

Lemma 3.11. Let ¢ € R and let (uy) be a (CPS).-sequence in Wol’p (2). Then for each
e > 0and o > 0 there exists Ky ¢ > 0 such that, forall h € N,

/ Ve (x,up, Vuy) - Vup dx
{lupl=<o}

< 8/ Ve (x,up, Vup) - Vupdx + Ky ¢
{o<lup|<Kp. e}

and

/ |Vup|? dx sg/ \Vup|? dx + Kg.e.
{Jun|<o} {o<lupl<Ko.e}

Proof. Leto,e > 0and o > 0. Forall v € Wol’p(Q), we set

(wp, v) =/ Ve (x,up, Vuy) - Vodx
Q

(3.37)
+/ Dséﬁ(x,uh,Vuh)vdx—/ g(x,up)vdx.
Q Q
Let us now consider ¥; : R — R given by
s if |s] <o
—s+20 ifo<s<?2
Biis)={ T2 Bo=s=e (3.38)
—s—20 if —20<s=<-0
0 if |s| > 20.

Then, testing (3.37) with ¥ (1) € L*°([—20, 20]), we obtain

/ VeL(x,up, Vuy) - Vi (up) dx +/ DL (x,up, Vup)O(up) dx
Q Q

f/;zg(x,uh)ﬂl(uh)derIIwh|I—1,pf||z91(uh)||1,p-

Then, it follows that

/ Ve (x,up, Vuy) - Vuy, dx—/ Ve (x,up, Vup) - Vuy dx
{lupl<o}

{o<lupl=20}

+/ DL (x,up, Vup)uy dx +/ DL (x,up, Vup)O(up) dx
{lup|=o} {o<|up|=20}

»

n(p—D+p 4p , v
< / (c1 + 220175 o dx + —— Junl?) + 191 @],
@ p'prve
Let Ko > 0 be such that |[wy||—1,,» < Ko. Then, since by (3.30) we have

vt @l?,

5/ v|Vuh|pdx+/ v|Vuy|? dx
{lupl=o} {o<lup|=20}
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+ / a(x)dx + bo/ lup)? dx + / a(x)dx
{lupl=o} {lupl=o} {o<lup|<20}

+o [ jul? dx
{o<|up|=20}

taking into account (3.31), we get for a sufficiently small value of o > 0,

1
(1-oM — —)/ VeL(x,up, Vup) - Vup dx
{lupl=o}

1
< (1 +oM + —)/ Ve (x,up, Vup) - Vuy dx
4" Jo<lup|=20}
n(p—1)+p 4r o
+ (Cl + 2|20 7P )de + — P KO
Q pyp

ppry
/ as(x) dx + [bo(zp + 1)o? + eo”? +1] £(Q)
Q

Whence, we have shown an inequality of the type
/ Ve (x,up, Vup) - Vuy dx
lupl<o}
< Kl/ VeL(x,up, Vuy) - Vup dx + K.
{o<lup|<20}

Let us now define for each & > 1 the functions ¥ , 925—; : R — R by setting

0 if |s| <ko
s —ko ifko <s < (k+1)o
s+ ko if —(k+ 1o <s<—ko
Dok (s) = .
—s+((k+20 if(k+1)o=<s<((k+2)0
—s—(k+20 if —(k+2)0<s=<—(k+1)o
0 if |s| > (k + 1)o,
and
T if |s| < ko
s+ (k+1Do ifkoc<s<((k+1)o
s—(k+ 1)o if(k+ 1o <s<(k+2)o
Dak—1(s) =

—s—(k+ 1o if —(k+1)o <s<—ko
s+k+Do if —(k+2)0o<s=<—(k+1)o
0 if |s| > (k + Do.

Therefore, by iterating on k, we obtain the k-th inequality
/ Ve&(x,up, Vup) - Vuy, dx
{lunl<ko}

< Ky (k) Vel (x. up, Vup) - Vuy dx + Ky(k).
{ko<|up|<(k+1)o}

29

< / Ve (x,up, Vup) - Vup dx +/ Ve (x,up, Vup) - Vuy dx
lupl<o} {o<lup|=20}

(3.39)
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Let now choose k > 1 suchthatko > pandko > R. Take0 < § < landletds : R — R
be the function defined by setting

0 if |s| < ko
s —ko ifko <s <(k+ 1)o
s+ ko if —(k+1)o<s<—ko

Us(s) = . .
—0s+o0+3dk+1o if(k+1Do=s<(k+1o+3%

—0s—0 =8k + Do if —(k+1Do—-F <s=—(k+1)o
0 if [s| > (k + D)o + §.

As before, we get
/ VeL(x,up, Vuy) - Vig(uy) dx + / DL (x,up, Vup)Vs(uy) dx
Q Q

1 ,
S/ g un)Os(up) dx + ————llwpl|?, , + 8105 )l -
Q p/p757

Taking into account (3.25), by computations, we deduce that
[ DgE(x,up, Vup)0s(uy) dx > 0.
Q

Moreover, we have as before

195 @)},

<

|[Vup|? dx + / |[Vup|? dx

Kk0<|uh|5(k+l)o} {lup|=k+1)o}

=
V Jko<|up|<(k+1)o}
1

+ —/ VeL(x,up, Vuy) - Vuy dx
V Hup|z(k+1)0}

Ve (x,up, Vup) - Vuy, dx

|un|? dx

+ / a(x)dx + b—o

‘ J

V Jiko<|up|<(k+1)o} V Jtko<|up|<(k+1)o}
1

vV

/ a(x)dx + = lup|? dx,
{lup|=(k+1)0} V H{k+Do+S=up|=(k+1)0}

so that
)

(1=7)

v /{ko<|uhs(k+1)o}

8
<@+ —)/ VeL(x,up, Vup) - Vup dx
V" J{upl>(k+1)0}

Ve (x,up, Vup) - Vuy dx

o  np=D+p 1 ,
+/ (c1+c2](k+1)0+—| n—p )adx—i— G Ky
Q ) p/p757
Jr;/a(x)dwrT (k+1)1’+((k+1)+g) a?£"(Q).
Q
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Therefore, we get

/ Ve&(x,up, Vuy) - Vuy dx
{ko<|up|<(k+1)o}

§+8
<< i/ Ve (x,up, Vuy) - Vup dx + K3(k, §).
V=38 J{ul=te+1)0}

Combining this inequality with (3.39) we conclude that
/ VeL(x,up, Vuy) - Vuy dx
{lunl=<e}
=< / Ve (x,up, Vuy) - Vuy dx
{lup|<ko}

< K (k) Ve (x,up, Vup) - Vup dx + Ko (k)
{ko<|up|<(k+1)o}

< Kl(k)v5+5

VeL(x,up, Vuy) - Vuy dx
V=38 J{lup|>k+1)0}
+ K (k)K3(k,8) + Ka(k) <

< 8[ Ve (x,up, Vup) - Vupdx + Kg e,
{lun|>o}

where we have fixed § > 0 in such a way that K, (k)"v‘s—fs‘s <e. O

The next result is an extension of [113, Lemma 1], since (3.29) relaxes [113, condition

1.

Lemma 3.12. Let ¢ € R. Then each (CPS).-sequence for f is bounded in Wol’p ().

Proof. First of all, we can find ag € L'(Q2) such that fora.e. x € Q andalls € R
qG(x.s) = sg(x,5) + ao(x).

Now, let (u;,) be a (CPS).-sequence for f and let for all v € C°(R2)

(w, v) :/ Vgé@(x,u,Vu)-Vvdx—F/ Dséﬁ(x,u,Vu)vdx—[ g(x,up)vdx.
Q Q Q
According to Lemma 3.11, for each ¢ > 0 we have

— llwall-1.plunlr.p
5/ VeL(x,up, Vuy) - Vuy, dx+/ Dséﬁ(x,uh,Vuh)uhdx—/ g(x,up)uy dx
Q Q Q
5/ Ve (x,up, Vuy) - Vuy, dx—i—/ DyE(x,up, Vup)up dx
Q Q
—q/ G(x,u;,)dx—l—/aodx
Q Q
<(1 +8)/ VeL(x,up, Vuy) - Vuy, dx+/ D& (x,up, Vup)uy dx
{lup|>R'} Q

—q/ é@(x,uh,Vuh)dx+qf(uh)+/ apdx + Kp .
Q Q
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On the other hand, from Lemma 3.11 and (3.29), for each ¢ > 0 we obtain

/ DsE(x,up, Vup)uy dx
Q

—/ DyE(x,up, Vup)uy dx+/ D& (x,up, Vup)uy dx
{lup|<R’} {lup|>R'}

= sMR’/ VeL(x,up, Vuy) - Vup dx
{Kgs e>lun|>R'}
—/ Ve (x,up, Vup) - Vuy, dx—l—q/ i(x,uh,Vuh)dx—i-/ ag(x)dx
{lun|>R"} Q Q

+8/ lup)? dx—vf |[Vup|? dx + Kpr .
{lun|>R"} {lun|>R"}

Taking into account Poincaré and Young’s inequalities, by (3.24) we find ¢ > 0 and
Cr ¢ > 0 with

/ D& (x,up, Vup)uy dx

Q

Esc/ |Vuy|? dx—[ Ve (x,up, Vup) - Vuy dx
{lup|>R'} {lupn|>R"}

+q/ é(i(x,uh,Vuh)dx+/ ag(x)dx—v/ [Vup|? dx + Cr .
Q Q {lun|>R"}

Therefore, for a sufficiently small ¢ > 0, there exists ¥, > 0 with

195/ |Vuy|? dx
{lun|>R’"}

< Nwnll—rprlnllrp + af ) + / ao dx + / tpdx + Kiro + Cris.
Q Q

Moreover, it satisfies

/ [Vuy|? dx < (1 + 8)/ [Vup|? dx + Kpre.
Q {lup|>R"}

Since wy, — 0 in W1-P'(), the assertion follows. d
3.7. Existence of a weak solution.

Lemma 3.13. Under assumptions (3.27) we have

fQ G(x,up)dx

> —0 ash— +o0,
lnl?,

for each (uy,) that goes to 0 in Wol’p(Q).

Proof. Let (up) < Wol’p(Q) with u; — 0 in Wol’p(Q). We can find (g;) € R and a

sequence (wy) C Wol’p(Q) such that v, = gpwy, 0p — 0 and ||wy|1,, = 1. Taking into
account (3.27), it follows

G(x, up(x))

m —

> =0 forae.x € Q.
n lull?,
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Moreover, for a.e. x € 2,
G(x,up(x))

2 _ *
2 < dlwal? + bol TP wy P
luall?,

If w is the weak limit of (wy,), since d|w;|? — d|w|? in L' () and bgfz/(n_p)|wh|1’* —

0in L'(R), (a variant of) Lebesgue’s Theorem concludes the proof. U
We conclude with the proof of the main result of this section.

Proof of Theorem 3.9. From Lemma (3.12) and Theorem (3.10) it follows that f satisfies
the (CPS). condition for each ¢ € R. By (3.22) and (3.28) it easily follows that

Vu € Wy P ()\{0} : Jim f (1) = —oco.

From Lemma (3.13) and (3.22), we deduce that 0 is a strict local minimum for f. From
Theorem (2.26) the assertion follows. O

Remark 3.14. As proved by Arcoya and Boccardo in [6], each weak solution of (3.20)

belongs to Wol’p (2) N L*°(L2) provided that £ and g satisfy suitable conditions. Then,
some nice regularity results hold for various classes of integrands £ (see [91]).

3.8. Super-linear problems with unbounded coefficients. The aim of this section is to
prove existence and multiplicity results of unbounded critical points for a class of lower
semi-continuous functionals (cf. [115]). Let us consider a bounded open set Q2 C RN
(N > 3) and define the functional f : Ho1 (R2) > R U {400} by

f(u)zfgj(x,u,w)—/ﬂa(x,u),

where j(x,s,&) : @ x R x R¥ — R is a measurable function with respect to x for all
(s,€) € R x RN and of class C! with respect to (s, &) for a.e. x € . We also assume
that for almost every x in 2 and every s in R

the mapping {E — j(x,s, S)} is strictly convex . (3.40)

Moreover, we suppose that there exist a constant g > 0 and a positive increasing function
a € C(R) such that the following hypothesis is satisfied for almost every x € € and for
every (s,£) e R xRN

aol€* < j(x,5,8) < a(ls]IE]*. (3.41)
The functions js(x,s,&) and jg(x,s,&) denote the derivatives of j(x,s,&) with respect
of the variables s and & respectively. Regarding the function jg(x,s, &), we assume that
there exist a positive increasing function 8 € C(R) and a positive constant R such that the
following conditions are satisfied almost everywhere in € and for every £ € RY:

|ljs(x.5.8)| < B(IsDIEI*,  forevery sinR, (3.42)
Js(x,s,&)s >0, foreverysinR with |s| > R. (3.43)

Note that, from (3.40) and (3.41), it follows that je(x,s,§&) satisfies the following
growth condition (see Remark 3.24 for more details)

lje(x.5.6)| < 4a(|s]IE]. (3.44)

The function G (x, s) is the primitive with respect to s such that G(x, 0) = 0 of a Carathéodory
(i.e. measurable with respect to x and continuous with respect to s) function g(x,s). We
will study two different kinds of problems, according to different nonlinearities g(x, s),
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that have a main common feature. Indeed, in both cases we cannot expect to find critical
points in L*°(€2). To be more precise, let us consider a first model example of nonlinearity
and suppose that there exists p such that

g1(x,s) = a(x)arctgs + |s|P7%s, 2<p< (3.45)

—2’
where a(x) € LNtz (2) and a(x) > 0. Notice that from hypotheses (3.41) and (3.45) it
follows that f is lower semi-continuous on H(} (£2). We will also assume that

als) _

Is|]—>o0 |§|P~2

(3.46)

Condition (3.46), together with (3.41), allows f to be unbounded from below, so that we
cannot look for a global minimum. Moreover, notice that g(x, s) is odd with respect to s, so
that it would be natural to expect, if j(x, —s, —§) = j(x,s, &), the existence of infinitely
many solutions as in the semi-linear case (see [6]). Unfortunately, we cannot apply any
of the classical results of critical point theory, because our functional f is not of class
C! on H(} (). Indeed, notice that [q j(x,v, Vv) is not differentiable. More precisely,
since je(x,s, &) and js(x, s, §) are not supposed to be bounded with respect to s, the terms
Je(x,u, Vu) - Vv and js(x,u, Vu)v may not be L'(Q2) evenif v € Cg°(£2). Notice that
if js(x,s,&) and je(x,s,&) were supposed to be bounded with respect to s, f* would be
Gateaux derivable for every u in Ho1 (£2) and along any direction v € HO1 (R)NL*®(R) (see
[6, 33, 36, 113, 133] for the study of this class of functionals). On the contrary, in our case,
forevery u € Ho1 (R2), f’(u)(v) does not even exist along directions v € HOl (Q)NL*®(Q).

To deal with the Euler equation of f let us define the following subspace of Ho1 (R2) for
afixed u in Hy ()

W, ={v e Hy(Q) : je(x.u, Vu)- Vv € L'(Q) and js(x.u, Vu)v € L'(Q)}. (3.47)
We will see that W, is dense in HO1 (£2). We give the definition of generalized solution

Definition 3.15. Let A € H~!1(RQ) and assume (3.40), (3.41), (3.42). We say that u is a
generalized solution to
—div(je(x,u, Vu)) + jo(x,u,Vu) = A, inQ,
u=0, ondL,
if u € Hy () and it results

Je(x,u,Vu)-Vu € LYQ), Jjs(x,u,Vu)u € LY(Q),
/ Je(x,u, Vu) - Vv +/ Js(x,u, Vu)v = (A,v), YveW,.
Q Q

Theorem 3.16. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.45), (3.46). Moreover,
suppose that there exist R" > 0 and § > 0 such that

5= R = pj(r.s.€) = js(x.s.6)s — je(x.s.8) - & = 8JE, (3.48)

fora.e. x € Qandall (s,&) € R xRN, If j(x,—s,—£) = j(x,s,&), then there exists a
sequence {uy} C Ho1 (R2) of generalized solutions of

—div(jg(x, u, Vu)) + js(x,u, Vu) = gi(x,u), inQ, 349

u=0, ondQ (3.49)

such that f(up) — +o0.
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In the nonsymmetric case we consider a different class of nonlinearities g(x,s). A
simple model example can be the following

2N
g2(x,5) = d(x)arctg(s?) + |s|P72%s, 2<p< I (3.50)

—2’
where d(x) € L> (2) and d(x) > 0. We will prove the following result.

Theorem 3.17. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.46), (3.48), (3.50).
Then there exists a nontrivial generalized solution of the problem

—div(je(x,u, Vu)) + js(x,u, Vu) = g2(x,u), inQ,

u=0, onodQ. (3.5

Since the functions «(]s|) and B(|s|) in (3.41) and (3.42) are not supposed to be bounded,
we are dealing with integrands j(x, s, &) which may be unbounded with respect to s. This
class of functionals has also been treated in [7], [21] and [23]. In these papers the existence
of a nontrivial solution # € L* () is proved when g(x, s) = |s|?~2s. Note that, in this
case it is natural to expect solutions in L*°(£2). To prove the existence result, in [21] and
[23], a fundamental step is to prove that every cluster point of a Palais-Smale sequence
belongs to L°°(£2). That is, to prove that u is bounded before knowing that it is a solution.
Notice thatif « is in L>°(2) and v € C§°(2) then jg(x,u, Vu)- Vv and jg(x,u, Vu)v are
in L'(R2). Therefore, if g(x,s) = |s|?~2s, it would be possible to define a solution as a
function u € L°°(2) that satisfies the equation associated to (P;) (or (P,)) in the distribu-
tional sense. In our case the function a(x) in (3.45) belongs to L2N/(N+2)(Q), so that we
can only expect to find solutions in HO1 (2). In the same way, the function d(x) in (3.50)
is in LN/2(€2) and also in this case the solutions are not expected to be in L>°($2). For
these reasons, we have given a definition of solution weaker than the distributional one and
we have considered the subspace W, as the space of the admissible test functions. Notice
thatif u € Ho1 (2) is a generalized solution of problem (Py) (resp. (Pz)) and u € L*°(R2),
then u is a distributional solution of (P;) (resp. (P3)).

We want to stress that we have considered here particular nonlinearities (i.e. g; and
g») just to present - in a simple case - the main difficulties we are going to tackle. Indeed,
Theorems 3.16 and 3.17 will be proved as consequences of two general results (Theorems
3.18 and 3.20). To prove these general results we will use an abstract critical point theory
for lower semi-continuous functionals developed in [50, 58, 60]. So, firstly, we will show
that the functional f can be studied by means of this theory (see Theorem 3.23). Then, we
will give a definition of a Palais-Smale sequence {u,} suitable to this situation (Definition
3.37), and we will prove that u, is compact in HO1 (2) (Theorems 3.34 and 3.43). To do
this we will follow the arguments of [33, 36, 113, 133] where the case in which «(s) and
B(s) are bounded is studied. In our case we will have to modify the test functions used
in these papers in order to get the compactness result. Indeed, here the main difficulty is
to find suitable approximations of u, that belong to W,,,, in order to choose them as test
functions. For this reason a large amount of work (Theorems 3.30, 3.31, 3.32 and 3.33) is
devoted to find possible improvements of the class of allowed test functions.

3.9. General setting and main results. Let us consider © a bounded open set in RV
(N = 3). Let us define the functional J : Ho1 (2) > R U {400} by

J(v) =/ j(x,v, V), (3.52)
Q
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where j(x, s, &) satisfies hypotheses (3.40), (3.41), (3.42), (3.43). We will prove existence

and multiplicity results of generalized solutions (see Definition 3.15) of the problem
—div(jg(x,u, Vu)) + jo(x,u, Vu) = g(x,u), in€,

(3.53)

u=0, ondS.

To do this, we will use variational methods, so that we will study the functional f :
H}(Q2) > R U {+00} defined as

f(0) = J(v) — /Q G(x,v),

where G(x,s) = fos g(x, t)dt is the primitive of the function g(x,s) with G(x,0) = 0.
To state our multiplicity result let us suppose that g(x, s) satisfies the following condi-
tions. Assume that for every & > 0 there exists a, € L*Y/(N+2)(Q) such that
N42
g (x, 9)| = ae(x) + efs| V=2, (3.54)
fora.e. x € Q2 and every s € R. Moreover, there exist p > 2 and functions a¢(x), a(x) €
LY(Q), bo(x), b(x) € L%(Q) and k(x) € L°°(2) with k(x) > 0 almost everywhere,
such that
pG(x,s) < g(x,8)s + ao(x) + bo(x)]s], (3.55)
G(x,s) = k(x)[s|? —a(x) = b(x)|s], (3.56)
for a.e. x € Q2 and every s € R (the constant p is the same as the one in (3.48)).
In this case we will prove the following result.

Theorem 3.18. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.46), (3.48), (3.54),
(3.55), (3.56). Moreover, let

J(x,=s, =€) = j(x,5,6) and g(x,—s) =—g(x,s), (3.57)
fora.e. x € Q and every (s,£) € R x RN. Then there exists a sequence {uy} C Ho1 ()
of generalized solutions of problem (3.53) with f(up) — 4o00.

Remark 3.19. In the classical results of critical point theory different conditions from
(3.54), (3.55) and (3.56) are usually supposed. Indeed, as a growth condition on g(x, s), it
is assumed that

2N
lg(x.5)| <a(x)+bls|”™". 2<0< ¥

5 beRY al) € LN42(Q). (3.58)

Note that (3.58) implies (3.54). Indeed, suppose that g(x, s) satisfies (3.58), then Young
inequality implies that (3.54) is satisfied with a.(x) = a(x) + C(b,e). Moreover, as a
superlinearity condition, it is usually assumed that there exist p > 2 and R > 0 with

0< pG(x,s) < g(x,s)s, foreverysinR with|s| > R. (3.59)

Note that this condition is stronger than conditions (3.55), (3.56). Indeed, suppose that
g(x, s) satisfies (3.59) and notice that this implies that there exists @ € L!(2) such that

pG(x,s) < g(x,s)s +ap(x), foreverysinRR.
Then (3.55) is satisfied with bg(x) = 0. Moreover, from (3.59) we deduce that there exists
a(x) € L'() such that
1
G(x,s) = R min{G(x, R), G(x,—R), 1}|s|” —a(x),

so that also (3.56) is satisfied.
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To state our existence result in the nonsymmetric case, assume that the function g sat-
isfies the following condition

lg(x,8)| < ai(x)|s| + bls|°?, (3.60)

2<o < a1(x) e LT (Q), beR™.

-2’
We will prove the following

Theorem 3.20. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.46), (3.48), (3.55),
(3.56), (3.60). Also, let
L 858
im ——=
s—0 N
Then there exists a nontrivial generalized solution of the problem (3.53). In addition, there

exist &€ > 0 such that for every A € H™'(Q2) with |A||-1 2 < & the problem
—div(je(x,u, Vu)) + jo(x,u, Vu) = g(x,u) + A, inQ,
u=0, ond2,

=0, a.e inf. (3.61)

(3.62)

has at least two generalized solutions uy,uy with f(uy) <0 < f(uy).

Remark 3.21. Notice that, in order to have g(x,v)v € L!(Q) for every v € HO1 (R2), the

function a;(x) has to be in L> (£2). Nevertheless, also in this case we cannot expect to
find bounded solution of problem (3.53). The situation is even worse in problem (3.62),
indeed in this case we can only expect to find solutions that belong to Ho1 (2) Ndom(J).

Remark 3.22. Notice that condition (3.60) implies (3.54). Indeed, suppose that g(x, s)
satisfies (3.60). Then Young inequality implies that, for every ¢ > 0, we have

N+2 N+2
lg(x.9) = B(e)(ar1(x)) * +els|N=2 + y(e.b),
where B(¢) and y (¢, b) are positive constants depending on ¢ and 5. Now, since we have
ay(x) € LY (R2), there holds

a:(x) = (BE@ ()% +y(e.b)) € L2 ().
which yields (3.54).

3.10. Verification of the key condition. Let us now set X = Ho1 (£2) and consider the
functional J : HO1 () — R U {+oo} defined in (3.52). From hypothesis (3.41), we
immediately obtain that J is lower semicontinuous. We will now prove that J satisfies
(2.3). To this aim, for every k > 1, we define the truncation T : R — R at height &,
defined as

Ti(s)=s ifls| <k, Tk(s):k|s—| if |s] > k. (3.63)
S

Theorem 3.23. Assume conditions (3.40), (3.41), (3.43). Then, for every (u,n) € epiJ
with J(u) < n, there holds

|d&y|(u,n) = 1.
Moreover, if j(x,—s,—§) = j(x,s.£), V> J(0)(= 0) it results |dz, $r|(0,n) = 1.

Proof. Let (u,n) € epiJ with J(u) < n and let ¢ > 0. Then, there exists § € (0, 1],
8 =6(0),and k > 1, k = k(p), such that k > R (where R is as in (3.43)) and

| Tx(v) —v|1,2 <o, foreveryve B(u,$§). (3.64)
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From (3.41) we have
J (0, VTi(v) < a(h)|Vol.

Then, up to reducing §, we get the following inequalities

/ Jj(x,v, VT (v)) < / Jx,u, VTx(u)) + o0 < / j(x,u,Vu) + o, (3.65)

Q Q Q

for each v € B(u, §). We now prove that, for every ¢ € [0, §] and v € B(u, §), there holds
J((=Dv+tTr () <A —0)J) + t(J(u) + o). (3.66)

From (3.40) and since j(x, s, &) is of class C 1 with respect to the variable s, there exists
6 € [0, 1] such that

Jx, A=+ tTr(w),(1 —)Vu +tVTr(v)) — j(x,v, Vv)

=jx,0=0Hv+tTx(v),1 —t)Vv+tVTi(v)) — j(x,v,(1 —t)Vv + t VT (v))
4+ j(x,v,(1 —t)Vv +tVTi(v)) — j(x,v,Vv)

<tjs(x,v+ 0t(Tr(v) —v),1 —)Vv + t VT (v))(Tx (v) — v)
+t((x,v,VTr(v)) — j(x,v,Vv)).

Notice that

v(x) >k = v(x)+0t(Tr(v(x)) —v(x)) >k >R,
v(x) < -k = v(x)+0t(Tr(v(x)) —v(x)) < —k < —R.

Then, in light of (3.43) one has
Js(x, v+ 0t(T(v) —v), (1 —=)Vv + tV T (v)) (T (v) —v) < 0.
It follows that

J, (I =t)v+tTr(v), 1 —t)Vv + tVTi(v))
(1 =1)j(x,v,Vv) +tj(x,v, VI (v)).

Therefore, from (3.65) one gets (3.66). To apply Theorem 2.19 we define
J:{ve Bw,§): J() <n+8 x[0,8] - Hy ()
by setting
H,t) =1 —-1t)v+tTi(v).
Hence, taking into account (3.64) and (3.606), it results
d(H(v,1),v) <ot and J(H(v.1)) = (1 =0)J(v) +1(J(u) + 0),

forv € B(u,§), J(v) <n+6andt € [0,8]. The first assertion now follows from Theo-
rem 2.19. Finally, since #(—v,t) = H#(v,t) one also has |dz,9;|(0,n) = 1, whenever

j(x,—s,—E)zj(x,s,S). O
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3.11. The variational setting. This section concerns the relationship between |dJ|(u)
and the directional derivatives of the functional J. Moreover, we will obtain some Brezis-
Browder (see [27]) type results.

First of all, we make a few observations.

Remark 3.24. It is readily seen that hypothesis (3.40) and the right inequality of (3.41)
imply that there exists a positive increasing function @(|s|) such that

|Je(x.5.9)] = a(sDEL. (3.67)
for a.e. x € Q and every (s,£) € R x R¥. Indeed, from (3.40) one has
VoeRY <1 = jls g+ E) = (s §) + Je(x.s.8) - vlg].
This, and (3.41) yield
Je(x,5,8) - vIE] < da(s)IE].

From the arbitrariness of v, (3.67) follows. On the other hand, if (3.67) holds we have

! 1
01 = [ LkGrs,ie)-£ldr < Sas)gr

As a consequence, it is not restrictive to suppose that the functions in the right hand side
of (3.41) and (3.67) are the same. Notice that, in particular, there holds jg(x,s,0) = 0.

Remark 3.25. It is not restrictive to suppose that the functions «(s) and B(s) are both
increasing. Indeed, if this is not the case, we can consider the functions

Ar(|s|) = sup a(|s|) and B, (|s]) = sup B(s).
|s|<r ls|=r
which are increasing.
Remark 3.26. The assumption of strict convexity on the function {§ — j(x, s, £)} implies
that, for almost every x in Q2 and for every s in R, we have

[e(x,5.8) — je(x,5,E9)]- (6 — &%) > 0, (3.68)
for every £, £* € RN, with £ # £*. Moreover, hypotheses (3.40) and (3.41) imply that,
Je(x.5.8) & = aolg]”. (3.69)

Indeed, we have
0=j(x,s0)=j(x,58) + je(x,5,8)-(0=8),
so that inequality (3.69) follows by virtue of (3.41).

Now, for every u € Ho1 (£2), we define the subspace
V, = {v € HIQ)NL®(Q): ue L®(x € Q: v(x) £ 0})} . 370)

As proved in [61], V}, is a vector space dense in Ho1 (2). Since V, C W,, also W, (see
the introduction) is dense in Ho1 (£2). In the following proposition we study the conditions
under which we can compute the directional derivatives of J.

Proposition 3.27. Assume conditions (3.41), (3.42), (3.44). Then there exists J'(u)(v) for
everyu € dom(J) and v € V,,.. Furthermore, we have

Js(x,u, Vuyp € LY(Q) and  je(x,u,Vu)- Vv € L'(Q),
and
J (1) (v) =f jg(x,u,Vu)-Vv+/ Js(x,u, Vu)u.
Q Q
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Proof. Letu € dom(J) and v € V,,. Forevery ¢t € R and a.e. x € Q, we set
F(x,t) = j(x,u(x) + tv(x), Vu(x) + tVo(x)).
Since v € V, and by using (3.41), it follows that F(x,t) € L'(2). Moreover, it results
oF
E(x,l) = js(x,u +tv,Vu +tVo)v + je(x,u + tv, Vu + tVv) - Vu.
From hypotheses (3.42) and (3.44) we get that for every x € Q with v(x) # 0, it results
oF
|¥(x,t)| < [vllooBlulloo + [0ll00) (| Vu| + [VV])?
+ a([[ulloo + lVlle) (IVul| 4 [VVD[VY].

Since the function in the right hand side of the previous inequality belongs to L!(2), the
assertion follows. U

In the sequel we will often use the cut-off function H € C*°(R) given by
H(s)=1 on[-1,1], H(s)=0 outside[-2,2], |H'(s)] <2. (3.71)
Now we can prove a fundamental inequality regarding the weak slope of J.

Proposition 3.28. Assume conditions (3.41), (3.42), (3.44). Then
|d(J —w)|(u) > sup{/ Je(x,u, Vu) - Vo +/ Js(,u, Vu)v — (w, v) :
Q Q
ve Vi ulia <1f

for every u € dom(J) and every w € H~1(Q).
Proof. If |d(J — w)|(u) = oo, orif

sup{/ Je(x,u, Vu) - Vv +/ Js(x,u, Vu)v — (w,v) :v eV, |[v]i2 < l} =0,
Q Q

then the inequality holds. Otherwise, let u € dom(J) and let n € R™ be such that J (1) <
1. Moreover, let us consider & > 0 and v € V,, such that ||v]|; » < 1 and

/ Je(x,u,Vu) - Vﬁ—i—/ Js(x,u, Vu)v — (w,v) < —0o. (3.72)
Q Q

Let us fix ¢ > 0 and let us prove that there exists ko > 1 such that

Gyl <1 e 67
and
/Q Js(x, u, Vu)H(klo)B + /;2 Je(x,u, Vu) - V(H(kl())i) - <w, H(kio>5> < (—367.4)

Let us set vy = H(u/k)v, where H(s) is defined as in (3.71). Since v € V,, we deduce
that vy € V,, forevery k > 1 and v converges to v in HO1 (£2). This, together with the fact
that |[v]|1,2 < 1, implies (3.73). Moreover, Proposition 3.27 implies that we can consider

J'(u)(vg). In addition, as k goes to infinity, we have
Js(x,u(x), Vu(x))vg (x) = Jjs(x,u(x), Vu(x))v(x), forae. x e,
Je(x,u(x), Vu(x)) - Vug (x) — je(x,u(x), Vu(x)) - Vu(x), forae. x € Q.
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Moreover, we get

Js e V) H()T)| = s e, Yyl
}jg(x, u,Vu) - Vvk‘ < |j$(x, u, Vu)||Vi| + 2|9]| je(x, u, Vu) - Vul.

Since v € V,, and by using (3.42) and (3.44), we can apply Lebesgue Dominated Conver-
gence Theorem to obtain

lim Js(x, u, Vu)vg =/ Js(x,u, Vu)v,
Q

k—o0 JO

1im/jg(x,u,Vu)~Vvk =/j5(x,u,Vu)~Vﬁ,
k—o00 JQ Q

which, together with (3.72), implies (3.74). Since we want to apply Proposition 2.16, let
us consider J" as defined in (2.2). Let us now show that there exists §; > 0 such that

”H( )UH<1+8 (3.75)
as well as
/Q Je(x,z,Vz) - V(H(kio)i) / Js(x, z, VZ)H(kO) <w, H(kio>6> < —0,
(3.76)

for every z € B(u, 1) N J". Indeed, take u, € J" such that u, — u in HOl (2) and set

””ZH(ko)_

We have that v, — H(u/ko)v in HO1 (R2), so that (3.75) follows from (3.73). More-
over, note that v, € V,,, so that from Proposition 3.27 we deduce that we can consider
J'(uy)(vy). From (3.42) and (3.44) it follows

st Tt ] = BR Tl |Vt
2 —
et Vi) - Ttn| = i) Vit | 2 0l V| + 1951
0

Then we obtain

n—o0

im [yt Vitg)on = / JoGru, Vi) H (AL )s
Q Q ko

n—>oo

lim ng(x,u,,,Vun)-an =/;2j5(x,u,Vu)-V[H(klo)ﬁ],

which, combined with (3.74), immediately implies (3.76). Now, observe that (3.76) is
equivalent to say that J'(z) (H (£) ) — (w, H (£) ¥) < —0. Thus, there exists § < &;
with

t z o
J(z+—H —J@) = (w, = H(7)7) < ———1, 3.77
<+1+ <k0)> @ ={w (z)7 I+e G77
for every t € [0,8] and z € B(u,8) N J". Finally, let us define the continuous function
H: Bu,8)NJ"x][0,5] — Ho1 (L2) given by

t
H(z1) =z + —H(i)—
ko
From (3.75) and (3.77) we deduce that J¢ satisfies all the hypotheses of Proposition 2.16.
Then, |d(J — w)|(u) > and the conclusion follows from the arbitrariness of e. [

1+a’
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The next Lemma will be useful in proving two Brezis-Browder type results for J.

Lemma 3.29. Assume conditions (3.40), (3.41), (3.42), (3.43) and let u € dom(J). Then

/ Je(x,u,Vu)-Vu +/ JsOeou, Vuyu < |dJ|(u)||ull1,2. (3.78)
Q Q

In particular, if |dJ|(u) < oo, then
Je(x,u,Vu)-Vu € LY Q) and js(x,u,Vu)u € L'(Q).

Proof. First, notice that if u is such that |dJ|(u) = oo, or

/ Je(x,u,Vu) - Vu +/ JsCe,u, Vu)u <0,
Q Q

then the conclusion holds. Otherwise, let k > 1, u € dom(J) with |dJ|(u) < oo, and
o > 0 be such that

/ Je (o u. V) - VT (u) +/ s Geott, V) T () > 0| T (@) 1.2
Q Q

where Ty (s) is defined in (3.63). We will prove that |dJ|(u) > o. Fixed ¢ > 0, we first
want to show that there exists §; > 0 such that

1Tk )ll12 = (14 &) Tk @)]1,2 (3.79)

fg Je (. w. V) - VT (w) + /Q Js e w V) T ) > 0| Te@lha  (3.80)

forevery w € Ho1 (2) with ||w —u||1,2 < 6;. Indeed, take w, € HO1 (2) such that w, — u
in H(} (€2). Then, (3.79) follows directly. Moreover, notice that from (3.42) and (3.43)
there holds

Js (. wa (%), Vwa (X)) wa (x) = —RB(R)|Vwa (x)|.
Since w, — u in Ho1 (2), from (3.69) and by applying Fatou Lemma we get
liminf |:/S‘2 jg(X, Wy, Vwy) - VT (wy) + »/;Z Js(x, wp, an)Tk(wn)]

n—oo

z[ JeCeatt, Vir) - VT () +[ Js (et Vi T (1) > 0| Te(@) 1.2
Q Q

which yields (3.80). Consider now the continuous map J : B(u,81) x [0,8;] — H; ()

defined as
t

CT@h (1 +e)
From (3.79) and (3.80) we deduce that there exists § < §; such that

d(H(w.1), w) <1,
J(H(w,1) = J(w) = —

H(w,t) =w

Tk (U))

1+¢

forevery ¢t € [0,8] and w € Hol (2) with |[w —ul|1,» < dand J(w) < J(u) + 6. Then, the
arbitrariness of ¢ yields |dJ|(u) > o. Therefore, for every k > 1 we get

/ s Cett, Vi) T (1) + / JeCeatt, Via) - V() < |dJ160)| T @)1 2.
Q Q

Taking the limit as k — oo, the Monotone Convergence Theorem yields (3.78). Il
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Notice that a generalized solution u (see Definition 3.15) is not, in general, a distribu-
tional solution. This, because a test function v € W, may not belong to C5°. Thus, it is
natural to study the conditions under which it is possible to enlarge the class of admissible
test functions. This kind of argument was introduced in [27]. More precisely, suppose we
have a function u € HO1 (£2) such that

/ Je(x,u,Vu)-Vz +/ Js(x,u,Vu)z = (w,z), VzeV, (3.81)
Q Q

where V, is defined in (3.70) and w € H~'(R). A natural question is whether or not we
can take as test function v € HO1 (2) N L°°(2). The next result gives an answer to this
question.

Theorem 3.30. Assume that conditions (3.40), (3.41), (3.42) hold. Let w € H™'(Q) and
u e HOl (82) that satisfies (3.81). Moreover, suppose that je(x,u,Vu)-Vu € LY(Q) and
there exist v € HO1 () N L>®(Q) and n € L' (Q) such that

Js(e,u, Vuyv + je(x,u, Vu) - Vv > 1. (3.82)
Then je(x,u,Vu)- Vv + js(x,u, Vu)v € L'(Q) and
/ Je(x,u, Vu) - Vo +/ Js(x,u, Vu)v = (w, v).
Q Q

Proof. Since v € HO1 (2) N L*(2), then H()v € V,. From (3.81) we have

[ et v (1G] + [ v rGe = (w10 68y
Q k Q k k
for every k > 1. Note that
. , UV 2 .
’]g(x,u,Vu)-VuH (—)—’ < —lvlleo | Jelx,u,Vu)-Vu.
Q k' k k Q
Since jg(x,u, Vu) - Vu € L1(Q), the Lebesgue Dominated Convergence Theorem yields
u_v
li je(x,u, Vu) - VuH' (=)~ = 0,
kggo/gz Je(ox.u, Vu) - Vu (k)k
u
lim (w, H(;)v) = (w,v).
i, (o HGEm) = o)
As far as the remaining terms in (3.83) concerns, note that from (3.82) it follows
Us (0. Vi + Je(x,u, V) - VOJH(7) 2 H(n = =™ € L'(Q).
Thus, we can apply Fatou Lemma and obtain
/ Js(x,u, Vuyv + je(x,u, Vu) - Vv < (w, v) .
Q

The previous inequality and (3.82) imply that
Js(e,u, Vu)v + je(x,u, Vu) - Vo € L'(Q). (3.84)
Now, notice that
‘[js(x,u, Vu)v + jg(x,u, Vu) - V] H(%)‘ < |jsGx.u, Vuyv + jg(x,u, Vu) - Vol

From (3.84) we deduce that we can use Lebesgue Dominated Convergence Theorem to
pass to the limit in (3.83) and obtain the conclusion. Il
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In the next result we find the conditions under which we can use v € HO1 (2) in (3.81).
Moreover, we prove, under suitable hypotheses, that if u satisfies (3.81) then u is a gener-
alized solution (see Definition 3.15) of the corresponding problem.

Theorem 3.31. Assume that conditions (3.40), (3.41), (3.42), (3.43) hold. Let w €
H™YQ), and let u € HO1 (2) be such that (3.81) is satisfied. Moreover, suppose that
Je(x,u, Vu) - Vu € LY(Q), and that there exist v € Hy () and n € L'(2) such that

Js(x,u,Vuyp >n and  je(x,u,Vu)- Vv > 1. (3.85)
Then js(x,u,Vu)v € L'(Q), je(x,u,Vu)- Vv € L'(Q) and
/ Je(x,u, Vu) - Vv +/ Js(x,u, Vu)v = (w, v). (3.86)
Q Q

In particular, it results js(x,u, Vu)u, jo(x,u, Vu) € LY(Q) and

/ Je(x,u, Vu) - Vu —i—/ Js(x,u, Vu)u = (w, u).
Q Q
Moreover, u is a generalized solution of the problem

—div(je(x,u, Vu)) + jo(x,u,Vu) = w, in<Q,

u=0, ondQ.
Proof. Letk > 1 be fixed. For every v € H; () we have that Ty (v) € Hy (€2) N L®(R)
and —v~ < Ty (v) < v™. Then, from (3.85), we get
JsGrou, Vi Tie(v) = =1~ € LY(Q). (3.88)

(3.87)

Moreover,
Je(x,u, Vu) - VT (v) = —[je(x,u, Vu) - VI (0)]” = -1~ € L1(Q). (3.89)
Then, we can apply Theorem 3.30 and obtain

/st(x,u,Vu)Tk(v) + /Q Je(x,u, Vu) - VT (v) = (w, Tk (v)) (3.90)

for every k > 1. By using again (3.88) and (3.89) and by arguing as in Theorem 3.30 we
obtain

Js(x,u, Vuyp € L'(Q) and  je(x,u, Vu)- Vv e L'(Q).
Thus, we can use Lebesgue Dominated Convergence Theorem to pass to the limit in (3.90)
and get (3.86). In particular, by (3.42), (3.43) and (3.69) we can choose v = u. Finally,
since

Js (e u, Vu) = Js (e, u, Vi) xgu<ay + Js (o, 1, Vi) Xguj=13
and

}js(xa u, vu)X{\u|Zl}| = |js(xv u, Vu)u|,

by (3.42) it results also js(x,u, Vi) € L'(R). Finally, notice that if v € W, we can take
n = je(x,u,Vu) - Vv and n = js(x,u, Vu)v, so that (3.86) is satisfied. Thus, u is a
generalized solution to Problem (3.87). Il

We point out that the previous result readily implies that, if u € Ho1 (R2) satisfies (3.81)
and Jjg (x, u, Vu)-Vu € L'(Q), itresults that js(x,u, Vu) € L1(), then js(x,u, Vu)v €
L'(Q) for every v € C{°(£2). Instead, the term which has not a distributional interpreta-
tion in (3.81) is jg(x,u, Vu). In the next result we show that if we multiply je(x, u, Vu)
by a suitable sequence of C functions, we obtain, passing to the limit, a distributional
interpretation of (3.81).
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Theorem 3.32. Assume conditions (3.40), (3.41), (3.42), (3.43). Let w € H™1(Q) and
ue HO1 (2) be such that (3.81) is satisfied. Let (9y,) be a sequence in C} (R) with

sup [94lloc < 00, sup || lloc < 00,
h=1 h=1

hll)n;o Pp(s) = 1, hli)n;o B, (s) = 0.
If je(x,u, Vu) - Vu € L'(Q), the sequence
div [95,(u) jg (x, u, Vu)]
is strongly convergent in W—14(Q) for every 1 < q < % and

hlim {—diV [19h(u)j§(x,u,Vu)]} + s u,Vuy=w in W H(Q).
—00

Proof. Let w = —div F with F € L?>(Q,RV) and v € C2°(R2). Then ¥y (u)v € V, and
we can take v as test function in (3.81). It results

/ Je(x,u, Vu)dp(u) - Vo = —/ Je(x,u, Vu)dy (u) - Vuv —/ Js (e, u, Vu)dy, (u)v
Q Q Q

+/ F,(u)Vuv +/ Fo,(u)Vv.
Q Q
Then u is a solution of the following equation
—div [ je(x. 0. Vi) | = & in D'(),
where
£ = —[l%(u)(jg(x, u, Vi) — F) - Vi + 05,(u) js (x, u, Vu)] — div(9, () F).

Now, notice that

Y(u)F — F, strongly in L*(Q).
Then, div(d;, (1) F) is a convergent sequence in H~! (). Since the embedding of H~! ()
in W~14(Q) is continuous, we get the desired convergence. Moreover, Theorem 3.31
implies that js(x,u, Vu) € L'(Q2). Then, the remaining terms in £, converge strongly
in L'(Q). Thus, we get the conclusion by observing that the embedding of L!() in
W~=14(Q) is continuous. O

Consider the case j(x,s,£) = a(x,s)|£|* with a(x, s) measurable with respect to x,
continuous with respect to s and such that hypotheses (3.40), (3.41), (3.42), (3.43), (3.46)
are satisfied. The next result proves that, in particular, if there exists u € Ho1 (R2) that satis-
fies (3.81) and if a(x, u)|Vu|* € L'(R2), then u satisfies (3.81) in the sense of distribution.

Theorem 3.33. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.46). Let w € H™(Q)
and u € Ho1 () that satisfies (3.81). Moreover, suppose that jg(x,u,Vu)-Vu € L'(Q)
and that

Jx.s.6) = jxs €D, (3.91)
Then jg(x,u,Vu) € LY () and u is a distributional solution to
—div(je(x,u, Vu)) + js(x,u,Vu) =w, inQ,
u=0, ono2.
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Proof. Tt is readily seen that, in view of (3.40) and (3.91), it results
Ellje (x5, = V2g(x.5.8) - €.
fora.e. x € Q,every s € Rand § € RY. Then
Je(x.u, Vi) xvu=1y € L' (R).

Moreover, we take into account (3.46), and we observe that (3.44) implies that there exists
a positive constant C such that

El <1 = |jelx, 5, < da(s]) = C(Is|P72 + 1),
which, by the Sobolev embedding, implies also that je(x, u, V) xqvui<1; € L' (). Then
Je(x,u,Vu) € L'(Q). Moreover, from (3.42) and (3.43) we have
JsCe,u, Viyu > jo(x,u, vu)u)({x: lu(x)|<R} € L' (€2).

Then Theorem 3.31 implies that js(x,u, Vu)u € L'(2). Finally, again Theorem 3.31
yields the conclusion. 0

3.12. A compactness result for J. In this section we will prove the following compact-
ness result for J. We will follow an argument similar to the one used in [36] and in [133].

Theorem 3.34. Assume conditions (3.40), (3.41), (3.42), (3.43). Let {u,} C Ho1 (RQ) bea
bounded sequence with jg(x,un, Vi) - Vu, € L'() and let {w,} C H™'(Q) be such
that

YveV,,: / Js(X,un, Vuy)v + je(x,un, Vuy) - Vv = (wy, v). (3.92)
Q

If wy, is strongly convergent in H=1(Q), then, up to a subsequence, u, is strongly conver-
gent in Ho1 ().

Proof. Let w be the limit of {w,} and let L > 0 be such that

lunlli2 < L, foreveryn > 1. (3.93)
From (3.93) we deduce that there exists u € HO1 (£2) such that, up to a subsequence,
up — u, weakly in H; (). (3.94)
Step 1. Let us first prove that u is such that
[ eyt [ Vay = o). Yo eV 695)
Q Q

First of all, from Rellich Compact Embedding Theorem, up to a subsequence,
up —>u, inLY(Q), Vqel[l,2N/(N —2)),
(3.96)
un(x) > u(x), forae. x € Q.
We now want to prove that, up to a subsequence,
Vu,(x) = Vu(x), forae. x € Q. 3.97)
Let i > 1. For every v € C°(2) we have that H (”T”) v € V,, (where H is again the
function defined in (3.71)), then

/ H(L;l—")jg(x, U, Vuy) - Vv
Q

= —/;2 [H (";l_n) Js(x,un, Vuy) + H' (L;l_"> Je (X ttn, Vity) - Vuni| .

h
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Up
+ (one 1 () ).
Let w, = —div(F,), with (F,) strongly convergent in L?($2, RY). Then it follows that

/QH<uh—"> Je(x,up, Vuy,) - Vo

= /Q [H’ (uh_,,> (Fn — Jje(x,tn, Vuy)) - VZ" - H(uh—"> js(x,un,Vun)i| v

+/QH<L;I—")F,,-Vv.

For the square bracket is bounded in L!(Q) and (H (”T”) F,) is strongly convergent in
L2(Q,RY) we can apply [54, Theorem 5] with

up(x)

h

and deduce (3.97) by the arbitrariness of 27 > 1. Notice that, by virtue of Theorem 3.31,
for every n we have

by(x,&) = H( )jg(x,u,,(x),é) and E=E,={xeQ: [ux)| <h}

/S;jrf(x’u”’ Vuy) - Vuy +/;st(xvuna Vup)up = (W, un).

Then, in view of (3.43), one has

sup/ Je(x up, Vuy) - Vu, < o0. (3.98)
Q

n=1

Letnow k > 1, ¢ € C°(R2), ¢ > 0 and consider

2k
v = peMkwntRT i (%) ,  where M), = Al ). (3.99)
o
Note that v € V,,,, and
Vv = Vge Mkt RT (L;C—”) — Mygpe M@ty L Ry H (’;C—”)
_Mlc(un+R)+ H/ (M_n) vun
+ pe 2 o

Taking v as test function in (3.92), we obtain
/ Je(xX, un, Vuy) - oM +R* (u_n> Vo
@ k

+ f [jS(X, Uy, Vun) - Mkjg(x, Uy, Vun) . V(un + R)+](pe_Mk(un+R)+H (L;c_n)

Q
\

= / j{:(x’ Uy, Vu,,) . (/)g_Mk(un‘i‘R)"' H/ (ﬂ) Up

Q

k k
e ()

(3.100)
Observe that

u
[ t0n. Vatn) = M je e, . Vi) - Vatn + RY* [t pr (Z1) < 0.
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Indeed, the assertion follows from (3.43), for almost every x such that u,(x) < —R while,
for almost every x in {x : —R < u,(x) < 2k} from (3.44), (3.69) and (3.99) we get

L5 C6t, Vitn) = My (e ttn, Vi) -V + RY* | < (B2K) = to M) Vit < 0.
Moreover, from (3.44), (3.93), (3.96) and (3.97) we have

/ Je(x,up, Vuy) - e_M/f(”n+R)+H (u_n) Vo
. k

— / Je(x,u, Vu) - e—M/((u+R)+ H(%)V%
Q

and

<wn,¢e_M’<(""+R)+H (1;(—”» — <w, <pe_Mk("+R)+H(%)),

as n — oo. We take into account (3.98) and deduce that there exists a positive constant C
such that
—Mj (un+R)T H (M_n) % | < g
k k ' Tk
We take the limit superior in (3.100) and we apply Fatou Lemma to obtain

|/;2j§(xvuns Vun) '(pe

/ jg(x, u,Vu) - e—Mk(u+R)Jr H(Z)w + [ Js(x,u, Vu)(pe_Mk('”‘R)JrH(z)
Q k Q %
- Mk /;2 jg(X, u, Vu) . Vu+¢e_Mk(u+R)+ H(%)

-_C. <w, <pe—Mk<"+R)+H(3)>
k k
(3.101)
for every ¢ € C°(2) with ¢ > 0. Then, the previous inequality holds for every ¢ €
HO1 N L*°(2) with ¢ > 0. We now choose in (3.101) the admissible test function

Q= e]uk(u"'R)+ 1//, w c Vu’ 1/[ > 0.

It results

c
/st(x,u,vu)'H(%)Vt/f +/st(x,u,Vu)H(%)l// > —;+<w,H(%)w>. (3.102)
Notice that
[jee.u, Vu) - HEOVY| = [jeCrau V| VY,

o Vi H)Y | < eCe.u Vi .

Since Y € V,, and from (3.42) and (3.44) we deduce that we can pass to the limit in (3.102)
as k — oo, and we obtain

/ Je(x,u, Vu) -V +/ Js(x,u, Vu)y > (w,v), VyeV,, ¥ >0.
Q Q

To show the opposite inequality, we can take v = e~ Mk =R~ (%) as test function
in (3.92) and we can repeat the same argument as before. Thus, (3.95) follows.

Step 2. In this step we will prove that u,, — u strongly in Ho1 (2). From (3.69), (3.98) and
Fatou Lemma, we have

0< / Je(x,u,Vu)-Vu < liminf/ Je (X, tun, Vuy) - Vuy, < 00
Q n Q
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so that jg(x, u, Vu) - Vu € L'(2). Therefore, by Theorem 3.31 we deduce
/ Je(x,u,Vu)-Vu +/ Js(Ce,u, Vu)yu = (w, u). (3.103)
Q Q

To prove that u, converges to u strongly in HO1 (2) we follow the argument of [133, The-
orem 3.2] and we consider the function ¢ : R — R defined by

Ms, if0<s<RM=ER
MR, ifs>R
5) = ’ - 3.104
¢6) —Ms, if—R<s<0, ( )

MR, ifs <-—R.
We have that v, = u,e®n) belongs to HO1 (£2), and conditions (3.42), (3.43) and (3.44)

imply that hypotheses of Theorem 3.31 are satisfied. Then, we can use v, as test function
in (3.92). It results

/ jf(x? Un, Vun) . Vune;'(un)
Q
= (Wn. V) — /Q [Js e, un, Viup) + je (X, ttn, Vitg) - Viupt' () | v

Note that v, converges to ue®® weakly in HO1 (£2) and almost everywhere in 2. Moreover,
conditions (3.42), (3.43) and (3.104) allow us to apply Fatou Lemma and get that

limsup/ Je(xX,up, Vuy) - Vet n)
h Q

(3.105)
< (w,uet®) —/ [Js(x,u, Vi) + je(x,u, Vu) - Vut' (u)] uet®.
Q
On the other hand (3.103) and (3.104) imply that
Je(x,u, V) - V[uet @] + ji(x,u, Vuyuet™@ e L'(Q), (3.106)
JeCe.u, Vu) - V[uet®] e L'(Q). .
Therefore, from Theorem 3.31,
/ Je(x,u,Vu)-V [uet(”)] +/ Js(x,u, Vu)ueg(”) = (w, ueg(")). (3.107)
Q Q

Thus, (3.105) and (3.107) imply
./ Je(x,u,Vu) - Vu W < limiﬂf/ Je(X, up, Vuy,) - Vet @
Q n—o00 Sz

< lim sup/ Je(x, un, V) - Vi, et tn)
Q

n—>oo

= / Je(x,u, Vu) - Vuet®,
Q

Then (3.69) implies that u,, — u strongly in H; (2). O
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3.13. Proofs of the main Theorems. In this section we give the definition of a Concrete
Palais-Smale sequence, we study the relation between a Palais-Smale sequence and a Con-
crete Palais-Smale sequence, and we prove that f satisfies the (PS), for every ¢ € R.
Finally, we conclude by giving the proofs of Theorems 3.18 and 3.20.

Let us consider the functional 7 : Ho1 (2) — R defined by

I(v) = —/s; G(x,v) — (A, v),

where A € H71(Q), G(x,s) = fos g(x,t)dt and g : @ xR — R is a Carathéodory func-
tion satisfying assumption (3.54). Then (3.41) implies that the functional f : HO1 (Q) —»
RU{+o0} defined by f(v) = J(v)+ I(v) is lower semi-continuous. To apply the abstract
theory, it is crucial to have the following result.

Theorem 3.35. Assume conditions (3.40), (3.41), (3.43), (3.54). Then, for every (u,n) €
epi f with f(u) <, it results

|dGr|(u.n) = 1.
Moreover, if j(x,—s,—&) = j(x,s,§), g(x,—s) = —g(x,s) and A = 0, for every
n > f(0) one has |dz,§¢|(0,n) = L.

Proof. Since G is of class C!, Theorem 3.23 and Proposition 2.18 imply the result. g

Furthermore, since G a C! functional, as a consequence of Proposition 3.28 one has the
following

Proposition 3.36. Assume conditions (3.41), (3.42), (3.44), (3.54) and consider u €
dom( f) with |df |(u) < oo. Then there exists w € H~1(Q) such that |w| -1 < |df|(u)
and

YveV,: /ng(x,u,Vu) -Vu + /gz Js(x,u, Vu)v — [Q glx,u)v — (A, v) = (w, v).
Proof. Given u € dom(f) with |df|(u) < oo, let
J(v) = J(v) —/ g(x, u)v — (A, v),
Q
T(v) = I(v) —+—/ glx,u)v + (A, v).
Q

Then, since 7 is of class C! with fl(u) = 0, by (¢) of Proposition 2.18 we get |df|(u) =
|d J|(u). By Proposition 3.28, there exists w € H~1(R) with |w| -1 < |df|(u) and

YveV,: / Je(x,u,Vu)-Vu +/ Js(x,u, Vu)v —[ glx,u)v — (A, v) = (w,v),
Q Q Q
and the assertion is proved. g

We can now give the definition of the Concrete Palais-Smale condition.

Definition 3.37. Let ¢ € R. We say that {u,} is a Concrete Palais-Smale sequence for f
at level ¢ ((CPS).-sequence for short) if there exists w, € H~!(Q) with w, — 0 such
that jg(x, tn, Vi) - Vuy, € L'(Q) forevery n > 1, and

Sun) = c, (3.108)

/jg(x,u,,,Vun)-Vv+fjs(x,un,Vu,,)v—/g(x,un)v—(A,v) (3.109)
Q Q Q
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= (wy,v), YveV,,.

We say that f satisfies the Concrete Palais-Smale condition at level ¢ ((CPS), for short)
if every (CPS).-sequence for f admits a strongly convergent subsequence in HO1 ().

Proposition 3.38. Assume conditions (3.41), (3.42), (3.43), (3.44), (3.54). If u € dom(f)
satisfies |df |(u) = 0, then u is a generalized solution to

—div(je(x,u, Vu)) + jo(x,u, Vu) = g(x,u) + A,in Q,
u=0, ondf.

Proof. 1t is sufficient to combine Lemma 3.29, Proposition 3.36, and Theorem 3.31. O

The following result concerns the relation between the (PS'), condition and the (CP.S),
condition.

Proposition 3.39. Assume conditions (3.41), (3.42), (3.43), (3.44), (3.54). Then if f sat-
isfies the (CPS). condition, it satisfies the (PS). condition.

Proof. Let {u,} C dom(f) that satisfies the Definition 2.15. From Lemma 3.29 and
Proposition 3.36 we get that u, satisfies the conditions in Definition 3.37. Thus, there
exists a subsequence, which converges in H(} (). 0

We now want to prove that f* satisfies the (CPS), condition at every level c. To do this,
let us consider a (CPS).-sequence {u,} € dom(f).
From Theorem 3.34 we deduce the following result.

Proposition 3.40. Assume that conditions (3.40), (3.41), (3.42), (3.43), (3.54) are satisfied.
Let {uy} be a (CPS).-sequence for f, bounded in HO1 (2). Then {u,} admits a strongly
convergent subsequence in HO1 ().

Proof. Let {u,} C dom(f) be a concrete Palais-Smale sequence for f at level ¢. Taking
into account that, as known, by (3.54) the map {u# +— g(x,u)} is compact from HO1 ()
to H~'(Q), it suffices to apply Theorem 3.92 to see that {u,} is strongly compact in
H(Q). O

Proposition 3.41. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.48), (3.54), (3.55).
Then every (CPS).-sequence {uy} for f is bounded in HO1 (2).

Proof. Condition (3.43) and (3.69) allow us to apply Theorem 3.31 to deduce that we may
choose v = uy as test functions in (3.109). Taking into account conditions (3.48), (3.54),
(3.59), (3.108), the boundedness of {u,} in Ho1 (R2) follows by arguing as in [133, Lemma
4.3]. O

Remark 3.42. Note that we use condition (3.48) only in Proposition 3.41.
We can now state the following result.

Theorem 3.43. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.48), (3.54), (3.55).
Then the functional f satisfies the (PS). condition at every level ¢ € R.

Proof. Let {u,} C dom(f) be a concrete Palais-Smale sequence for f at level ¢. From
Proposition 3.41 it follows that {u,,} is bounded in HO1 (€2). By Proposition 3.40 f satisfies
the Concrete Palais-Smale condition. Finally Proposition 3.39 implies that f satisfies the
(PS), condition. O
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Proof of Theorem 3.18. This theorem will as a consequence of Theorem 2.21. First, note
that (3.41) and (3.54) imply that f is lower semi-continuous. Moreover, from (3.57) we
deduce that f is an even functional, and from Theorem 3.23 we deduce that (2.3) and
condition (d) of Theorem 2.21 are satisfied. Hypotheses (3.56) implies that condition (b) of
Theorem 2.21 is verified (see the subsequent proof of Theorem 3.20). Let now (Ap, ¢5) be
the sequence of solutions of —Au = Au with homogeneous Dirichlet boundary conditions.
Moreover, let us consider V' = span{gp;, € HO1 () : h > hg} and note that V' has finite
codimension. To prove (a) of Theorem 2.21 it is enough to show that there exist /g,y > 0
such that for all u € V't with ||Vul|, = 1 there holds f () > y. First, note that condition
(3.54) implies that, for every ¢ > 0, we find agl) € C(R2) and agz) e LAN/IN+2)(Q)
with |a$® | an(v+2) < € and

Nt2
lg(x.5)] < alP(x) + aP (x) + els| V2.

Now, let u € V1 and notice that there exist two positive constants ¢y, ¢, such that

F() zoeonwn%—/QG(x,u)

N—-2 2N
= oVl = [ (ol + o) ul + 2 el )

2N
2 1 2 p—
> a0l Vull3 = lal s — e1 1| g, IVull2 — eca| Varl T2

2N
2 1 —
> ao|Vull5 = llaP 2 ullz = crel| Vull — scal| Vull 32

Then if &g is sufficiently large, since A, — +oo, forallu € VT, |[Vul|l, = 1 implies
some y > O._Then also (a) of Theorem 2.21 is satisfied. Theorem 3.43 implies that f
satisfies (PS). condition at every level ¢, so that we get the existence of a sequence of
critical points {uy} C HOl (R2) with f(up) — +o00. Proposition 3.38 yields the assertion.

O

||a£1)||2||u||2 < @¢/2. Thus, for ¢ > 0 small enough, ||Vul||, = 1 implies f(u) > y for

Let us conclude this section with the following proof.

Proof of Theorem 3.20. We will prove this theorem as a consequence of Theorem 2.20. To
do this, let us notice that, from (3.41) and (3.60), f is lower semi-continuous on HO1 ().
Moreover, Theorem 3.23 implies that condition (2.3) is satisfied. From Theorem 3.43 we
deduce that f satisfies (PS). condition at every level c. It is left to show that f satisfies
the geometrical assumptions of Theorem 2.20.

Let us first consider the case in which A = 0. Notice that conditions (3.41), (3.60)
and (3.61) imply that there exist y > 0 and r > 0 such that for |lu|[;,» = r there holds
f(u) = y. Conditions (3.41) and (3.56) imply that there holds

5o = [ aubIVeP = [ klul? + lal + Golfl gy, lolhz  (.110)

Q Q N+2
Now, let us consider a finite dimensional subspace W of H(} (€2) such that W C L*°(R2).
Condition (3.46) implies that, for every ¢ > 0, there exists R > r, w € W, with ||w|e >

R and a positive constant C such that

[ atuivup < e ull, + il G111
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where Cyy is a positive constant depending on W. Then, by suitably choosing &, (3.110)
and (3.111) yield condition (2.4) for a suitable v; € H(} (2) and for vy = 0. Thus, we can
apply Theorem 2.20 and deduce the existence of a nontrivial critical point # of f. From
Proposition 3.38, u is a generalized solution of Problem (3.53).

Now, let us consider the case in which A # 0. Let ¢ be the first eigenfunction of the
Laplace operator with homogeneous Dirichlet boundary conditions and set vy = #yp; for
to > 0. Then, if o sufficiently small, thanks to (3.41) and (3.60), we get f(vg) < 0. As
before, (3.41), (3.60) and (3.61) imply that there exist e > 0,7 = r(¢) > Oand y > 0
such that, for every A € H~!(Q) with ||A|_; < &, there holds

f(u) =y, foreveryu with lu—uvgli2=r.

Moreover, we use condition (3.41), (3.46) and (3.56) and we argue as before to deduce the
existence of v; € HO1 (R2) with |lv; — vg|| > r and f(v;) < 0. Condition (2.4) is thus
fulfilled. Then, we can apply Theorem 2.20 getting the existence of two distinct nontrivial
critical points of f'. Finally, Proposition 3.38 yields the conclusion. O

Remark 3.44. Notice that Theorems 3.16 and 3.17 are an easy consequence of Theorems
3.18 and 3.20 respectively. Indeed, consider for example g, (x, s) = a(x)arctgs + |s|?~2s.
To prove Theorem 3.16, it is left to show that g (x, s) satisfies conditions (3.54), (3.55)
and (3.56). First, notice that Young inequality implies that, for every ¢ > 0, there exists a
positive constant B(¢e) such that (3.54) holds with a.(x) = B(e) 4+ a(x). Moreover, (3.55)
is satisfied with ao(x) = 0 and bo(x) = m/2(p — 1). Finally, (3.56) is verified with
k(x) = 1/p,a(x) = 0and b(x) = (/2 4+ C)a(x) where C € R¥ is sufficiently large.
Theorem 3.17 can be obtained as a consequence of Theorem 3.20 in a similar fashion.

3.14. Summability results. In this section we suppose that g(x, s) satisfies the following
growth condition

lg(x,5)| < a(x) +bls| N2, a(x) e L'(Q), beR™. (3.112)
Note that (3.54) implies (3.112). Let us set 2* = 2N/(N — 2). We prove the following

Theorem 3.45. Assume conditions (3.40), (3.41), (3.42), (3.43), (3.112). Letu € Ho1 ()
be a generalized solution of problem (P). Then the following conclusions hold:

(@) Ifr € @N/(N + 2), N/2), then u belongs to L""" (), where r** = Nr/(N —
2r);
(b) if r > N/2, then u belongs to L>°(R2).

The above theorem will be proved as a consequence of the following result.

Lemma 3.46. Let us assume that conditions (3.40), (3.41), (3.42), (3.43) are satisfied. Let
ue HO1 () be a generalized solution of the problem

—div(je(x, u, Vu)) + jo(x,u, Vu) + c(x)u = f(x), inQ,

u=0, ondQ. (3.113)

Then the following conclusions hold:

(1) Ifce L%(Q) and f € L"(Q), withr € QN/(N + 2), N/2), then u belongs to
L™ (), where r** = Nr/(N —2r);

(i) ifc € LY(Q) witht > N/2 and [ € L1(R), with q > N/2, then u belongs to
L=(Q).
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Proof. Let us first prove conclusion (i). For every k > R (where R is defined in (3.43)),
let us define the function 1 (s) : R — R such that n; € C!, ny is odd and

0, if0 <s < R,
() =4 —R)¥*, ifR<s <k, (3.114)
brs + ¢, ifs > k,
where by and ¢j are constant such that 1 is C!. Since u is a generalized solution of
(3.113), v = ng(u) belongs to W,. Then we can take it as test function, moreover,
Js(x,u, Vu)ng(u) > 0. Then from (3.43) and (3.69) we get
o [ n1VuP = [ feome = [ e, (.115)

Now, let us consider the odd function ¥ (s) : R — R defined by

Vi(s) = /0 S . (3.116)

The following properties of the functions ¥4 and 1y can be deduced from (3.114) and
(3.116) by easy calculations

[V ()] = n(s). (3.117)
0 < ni(s)(s — R) < Covic(s)>, (3.118)
Ik (s)| < C0|‘/fk(5)|2"y7rll, (3.119)

where Cy is a positive constant. Notice that for every ¢ > 0 there exist ¢;(x) € LY (),
with ||¢; ||% < egandc; € L*®(Q2) such that ¢(x) = ¢1(x) + ¢2(x). From (3.115), (3.117),
(3.118) and Holder inequality, we deduce

% /Q IV (W )

«72/2%
= Golla @y [ [ 1P ]+ [ 1) = Rt = expline .

We fix ¢ = (2¢8)/(2Cp), where § is the Sobolev constant. We obtain

[P ] <c [ 150 -Ra -l 3120)
Now, let us define the function
h(x) = |f(x) = Re1(x) — ca(x)u(x)], (3.121)
and note that /2(x) belongs to L’ (2) with
¢t = min{r, 2*}. (3.122)

Let us consider first the case in which ¢ = r, then from (3.119) and (3.120), we get

[/Q ] < Cllhllr[/g o ]

Since 2N/(N +2) < r < N/2 we can define y € RY by

V(N+2)—2N * / *k
=2 = =2 ) =r'Qy+1)=r*. 3.123
Y o) y+D=rQr+D=r (3.123)
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Moreover, since r < N/2 we have that 2/2* > 1/r’, then

2 _ 1
[/ Wk(u)|2*]2 T < Chll,. (3.124)
Q

Note that | ()| = C(¥)|lu — R|¥ ™! X(x:ju(x)|> R} almost everywhere in 2. Then Fatou
Lemma implies that [u — R|”"*'x (. juco> &y belongs to L2 (). Thus, u belongs to
L¥+D)(Q) = L™ (Q) and the conclusion follows. Consider now the case in which
t = 2* and note that this implies that N > 6. In this case we get

x72/2" oy 20417 e
[/Q [k (u)|? ] =< C||h||2*[/QSWk(U)|(2 VS ](2 »
Since N > 6 it results 2/2* > 1/(2*)’. Moreover, we can choose y such that
"+ D =22y + 1.

Thus, we follow the same argument as in the previous case and we deduce that u belongs
to L51(2) where

_2*N
N 22
If it still holds s; < r we can repeat the same argument to gain more summability on u. In
this way for every s € [2*, r) we can define the increasing sequence
Nsy
N —2s,’
and we deduce that there exists 77 such that s5—; < r and sz > r. At this step from (3.122)
we getthat = r and thenu € L”" (§2), that is the maximal summability we can achieve.
Now, let us prove conclusion (ii). First, note that since f € L9(Q2), with ¢ > N/2,
f belongs to L”(2) for every r > (2N)/(N + 2). Then, conclusion (i) implies that
u € L°(Q2) forevery o > 1. Now, take § > 0 such thatt — & > N/2, since u € Lé(Q) it
results

81

*
so =2, Spp1 =

/g ) < e ] /Q |u(x)|t/8]% < oo,

Then, the function d(x) = f(x) — c(x)u(x) belongs to L"(2) with r = min{q,t —§} >
N/2. Let us take k > R (R is defined in (3.43)) and consider the function v = Gy (u) =
u — Ty (u) (where Ty (s) is defined in (3.63)). Since u is a generalized solution of (3.113)
we can take v as test function. From (3.43) and (3.69) it results

o [ 1961w = [ 1a@IIGeol
The conclusion follows from Theorem 4.2 of [136]. Il

Remark 3.47. In classical results of this type (see e.g. [105] or [26]) it is usually consid-
ered as test function v = |u|?”u. Note that this type of function cannot be used here for
it does not belong to the space W,. Moreover, the classical truncation 7;, seems not to be
useful because of the presence of ¢(x)u. Then, we have chosen a suitable truncation of u
in order to manage also the term ¢ (x)u.

Proof of Theorem 3.45. This theorem will be proved as a consequence of Lemma 3.46.
So, consider u a generalized solution of Problem (3.53), we have to prove that u is a gen-
eralized solution of Problem 3.113 for suitable f(x) and ¢(x). This is shown in Theorem
2.2.5 of [36], then we will give here a sketch of the proof of [36] just for clearness. We set

go(x,s) = min{max{g(x,s), —a(x)},a(x)},
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gi(x,5) = g(x,5) = go(x, 9).

It follows that g(x,s) = go(x,s) + g1(x,s) and |go(x, s)| < a(x) so that we can set
f(x) = go(x,u(x)). Moreover, we define

g1lxux)
oy = [T iU £ 0
0, ifu(x) =0.

Then |c(x)| < b|u(x)|ﬁ, so that c(x) € L%(Q). Lemma 3.46 implies that conclusion
(a) holds. Now, if » > N/2 we have that f(x) € L"(Q2) with r > N/2. Moreover,
conclusion (a) implies that u € L’(2) for every ¢ < oo, so that ¢(x) € L'(2) with
t > N/2. Then Lemma 3.46 implies that u € L>®(Q). 0

Remark 3.48. When dealing with quasi-linear equations (i.e. j(x,s,&) = a(x, s)& - §),
a standard technique, to prove summability results, is to reduce the problem to the linear
one and to apply the classical result (see e.g. [136]). Note that here this is not possible due
to the general form of ;.
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4. PERTURBATION FROM SYMMETRY

We refer the reader to [129, 130, 111, 93, 30]. Some parts of these publications have
been slightly modified to give this collection a more uniform appearance.

4.1. Quasi-linear elliptic systems. In critical point theory, an open problem concerning
existence, is the role of symmetry in obtaining multiple critical points for even functionals.
Around 1980, the semi-linear scalar problem

n
- Z Dj(ajj(x)Dju) = g(x,u) +¢ inQ
i,j=1
u=0 ondf2,

with g super-linear and odd in u and ¢ € L?(2), has been object of a very careful analysis
by A. Bahri and H. Berestycki in [15], M. Struwe in [138], G-C. Dong and S. Li in [66]
and by P.H. Rabinowitz in [119] via techniques of classical critical point theory. Around
1990, A. Bahri and P.L. Lions in [17, 18] improved the previous results via a Morse-Index
type technique. Later on, since 1994, several efforts have been devoted to study existence
for quasi-linear scalar problems of the type

n n
1
= ) Djlai(x.u)Diu) + 5 37 Dyayj(x.u) DiuDju = g(x.u) inQ
ij=1 i,j=1
u=0 ondQ.

We refer the reader to [9, 33, 32, 36, 138] and to [6, 113, 133] for a more general setting.
In this case the associated functional [ : HO1 (2,RM) — R given by

Su) = %/Q Z aij(X,M)DiuDjudx—/QG(x,u)dx,

i,j=1

is not even locally Lipschitz unless the a;;’s do not depend on u or n = 1. Consequently,
techniques of non-smooth critical point theory have to be applied. It seems now natural
to ask whether some existence results for perturbed even functionals still hold in a quasi-
linear setting, both scalar (N = 1) and vectorial (N > 2). In [134] it has recently been
proved that diagonal quasi-linear elliptic systems of the type (k = 1,..., N)

n n N
1 .
-y D,-(a{fj(x,u)p,-uk)+§ > > Dyali(x.u)Diuy Djuy = Dy G(x.u) in €,
ij=1 i,j=1h=1
4.1)
possess a sequence (1) of weak solutions in HO1 (22, R") under suitable assumptions,
including symmetry, on coefficients af’j and G. To prove this result, we looked for critical

points of the functional fy : Ho1 (2,RY) — R defined by

n N
fo(u) = %/ Z Zaf’j(x,u)D,-uhDjuh dx—/ G(x,u)dx. 4.2)
Q. Q

i,j=1h=1
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In this section we want to investigate the effects of destroying the symmetry of system
(4.1) and show that for each ¢ € L?(2,R") the perturbed problem

n n N
1
- Z Dj(affj(x,u)Diuk) + 5 Z ZDska?j(X,u)DiuhDjuh
ij=1 i,j=1h=1
= D, G(x,u) + i inQ,

(4.3)

still has infinitely many weak solutions. Of course, to this aim, we shall study the associ-
ated functional

n N
1
fu) = 5/ Z Zafj(x,u)D,-uhDjuh dx—/ G(x,u)dx—/ p-udx. (4.4)
Q.5 Q Q
i,j=1h=1

In the next, 2 will denote an open and bounded subset of R”. To adapt the perturbation
argument of [119], we shall consider the following assumptions: - the matrix (af’j (x, s))

is measurable in x for each s € RY and of class C! in s for a.e. x € § with
h h
al-j(x,s) = ajl-(x,s).
Moreover, there exist v > 0 and C > 0 such that

n N
Nl EER = gl

i,j=1h=1

al’»’j (x, s)) <C,
4.5)

n N
D=L 3 Y s Doty =0,
i,j=1h=1

forae. x € Q and forall s € RN and & € R"V; - (if N > 2) there exists a bounded
Lipschitz function ¥ : R — R such that

n N
1
Z Z (EDsa’hj (x,s) - expy(r,s) + af’j (x, 5) Dy, (exp, (r, s));,) Slhéjh <0, 4.6
i,j=1h=1
forae. x € @, forall £ R"™N o € {—1, I}N and r, s € RV, where
(expy (1, 5)); = oi explo; (Y (r;) — ¥ (si))],

foreachi = 1,..., N. - the function G(x, s) is measurable in x for all s € RY, of class
Clinsforae. x € Q with G(x,0) = 0 and g(x, -) denotes the gradient of G with respect
of s. - there exist ¢ > 2 and R > 0 such that

|s| > R=0<qG(x,s) <s-g(x,s), @.7
fora.e. x € Q and all s € RY ; - there exists ¥ €]0, g — 2[ such that
n N n N
Z Zs . Dsa?j (x,s)f;‘f’é}’ <y Z Zaﬁ’j(x,s)éf’gj‘, (4.8)
ij=1h=1 i,j=1h=1

forae. x € Q and for all s € RN and £ € R™Y. Under the previous assumptions, the
following is our main result.
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gn+(@—1)(n+2)
> gn+(g—1)(n—2)

lg(x,s)| <a+bls|°, 4.9)
with a,b € R and that for a.e. x € Q and for each s € RN

Theorem 4.1. Assume that there exists o in ]1 [ such that

ali(x,—s) = al(x,5),  g(x,—s) = —g(x,s).

Then there exists a sequence (u™) C HO1 (2, RYN) of solutions to the system

n n N
1
- Z Dj(af-{j(x,u)Diuk) + 5 Z ZDskal}-lj(X,u)DiuhDjuh
i,j=1 i,j=1h=1
=D, G(x,u) + ¢ inQ
such that f(u™) — +00 asm — oQ.

This is clearly an extension of the results of [15, 66, 119, 138] to the quasi-linear case,
both scalar (N = 1) and vectorial (N > 2).

Let us point out that in the case N = 1 a stronger version of the previous result can be
proven. Indeed, we may completely drop assumption (b) and replace Lemma 3.4 with [36,
Lemma 2.2.4]. To the best of our knowledge, in the case N > 1 only very few multiplicity
results have been obtained so far via non-smooth critical point theory (see [9, 134, 138]).

4.2. Symmetry perturbed functionals. Given ¢ € L?*(Q,R"), we shall now consider
the functional f : HO1 (2,RY) — R defined by

n N
fu) = %/Q Z Zaf’j(x,u)D,-uhDjuhdx—/S;G(x,u)dx—/ggo-udx.

i,j=1h=1
If ¢ # 0, clearly f is not even. Note that by (4.7) we find ¢y, ¢3, ¢3 > 0 such that

1
g(s-g(x,S) +c1) 2 G(x,5) + 2 = c3ls]. (4.10)

Lemma 4.2. Assume that u € H(} (2, RN ) is a weak solution to (4.3). Then there exists
o > 0 such that

/ (G(x,u) + ) dx < o (f(u)2 n 1)1/2.
Q

Proof. Ifu € HO1 (2,RY) is a weak solution to (4.3), taking into account (4.8), we deduce
that

f@ = f@) - 3 /@
= /s; [%g(x,u)-u—G(x,u)—%(p-u] dx

1 "N
_Z[ Z ZDsa?j(x»“)‘uDiu},Djuh dx
Q

i,j=1h=1

11 1
> (E_5)/Q(g(x,u)-u+cl)dx_5”‘/)”2”””2

n N
4
_Z/Q Z Zazﬁj(xv”)DiuhDjuh dx — ¢4

i,j=1h=1
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=(1-1-2) /Q (G, w) +e2) dx— 5 f () = elfully = Be)lll§ —cs

with ¢ = 0 and B(g) — 400. Choosing ¢ > 0 small enough, by (4.10) we have
of(u) > / (G(x,u) + c3) dx — cg,
Q

2+y
q=2-y’

where 0 = and the assertion follows as in [119, Lemma 1.8]. O

We now want to introduce the modified functional, which is the main tool in order to
obtain our result. Let us define x € C*°(R) by setting x = 1fors <1, x = 0fors > 2
and —2 < ¥’ < Owhen 1 <s < 2, and let for each u € HOI(Q,RN)

s =20 (a2 +1)" . v = (s [ Go+en d).
Finally, we define the modified functional by
_ 1 n N
fu) = 5/;2 Z Zaf’j(x,u)DiuhDjuh dx+
i,j=1h=1 4.11)
—/ G(x,u)dx—W(u)/ @ -udx.
Q Q
The Euler’s equation associated to the previous functional is given by
n 1 n N
- Z Dj(af.‘j(x,u)D,-uk) + 3 Z Z Dskaf’j(x,u)D,-uhDju;, =g(x,u) inQ,
i,j=1 i,j=1h=1

(4.12)
where we set

Fvu) = geou) + YW + ¥ (1) /Q ¢ udsx.

Note that taking into account the previous Lemma, if u € HO1 (2,RY) is a weak solution
to (4.3), we have that ¥ (u) = 1 and therefore f (u) = f(u). In the next result, we
measure the defect of symmetry of f , Which turns out to be crucial in the final comparison
argument.

Lemma 4.3. There exists § > 0 such that for all u € H(} (2,RN)
7@ = F=wl < g (17 @]V +1).
Proof. Note first that if u € supp(y) then
‘/ g -udx| <ol f@]"1+1), (4.13)
Q
where o« > 0 depends on ||¢]2. Indeed, by (4.10) we have
. 1/q
[ [ v-uax] = lulalplls = clily <2 [ G +e2) ax) .
Q Q

and since u € supp(Vy),

1/2
/Q (Gx.u) +2) dx < do (@ +1) " < f@)] + 1),
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inequality (4.13) easily follows. Now, since of course

=171+ [ g-uds],

by (4.13) we immediately get for some b > 0

w(u)\fgw-udx) sbw(u)(|f(u)|”q+\/ng-udx)”"ﬂ).

Using Young’s inequality, for some by, b, > 0 we have that

vl [ p-udx <y (17w 1),

and
_ . 7 /
v [ x| < b (1701 +1).
and since
170 = el = ) + | [ -]
the assertion follows. g

Theorem 4.41. There exists M > 0 such that if u € HO1 (2 ,~RN ) is a weak solution to
(4.12) with f(u) > M then u is a weak solution to (4.3) and f(u) = f(u).
Proof. Let us first prove that there exist M > 0and & > 0 such that

VM €[M,+oo[: f(u)> M, ucsupp(y) = f(u)>aM. (4.14)
Since we have

)

sz fan | [ o-u

by 4.13 we deduce that
~ M
S +ealfa@lV = fo) —a = —

for M > M, with M large enough. Now, if it was f(u) < 0, we would obtain

g M
oz al @]V = = 4 | ),
q q 2

which is not possible if we take M > 204 (¢')~!. Therefore itis f(u) > 0 and
. M . M\
Sw)>— or flu)=|_—] .
4 4o

and (4.14) is proven. Of course, taking into account the definition of ¥, to prove the
Lemma it suffices to show that if M > 0 is sufficiently large and u € HO1 (Q,RN)isa

weak solution to (4.12) with ]7 (u) = M, then

¢>(u)‘1f (G(x,u) +¢3) dx < 1.
Q
If we set
D) = p(u)”! / (G, u) + ¢2) dx,
Q

it follows that

V) = £ O [pw) [ eten-udy = Q00w 1/ ww]
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Define now 77, 75 : Hy (Q,RY) — R by setting
Ty(u) = x' O ()(20)* 9 (w)p ()~ f (u) fg @ udx,

o) = (0P )" /Q ¢-udx + Ty (u).

Then we obtain

T =+ 1w [ S™ S aly ) Dyt Dy dn

i,j=1h=1

+ = (1 +T1(u))/ Z ZDsaU(x u) - uDjupDjuy dx

i,j=1h=1
~ (14 Ta) [ e udy— @@ + i) [ ¢-uds.
Q Q
Consider now the term
~ 1 =
u)— ——— (u)(u).
@ = sy @@

If y(u) = 1 and T1(u) = 0 = T>(u), the assertion follows from Lemma 4.2. Other-
wise, since 0 < ¥ (u) < 1, if T (u) and T3 (u) are both small enough the computations we
have made in Lemma 4.2 still hold true with ¢ replaced by (2 — ¢)a, for a small ¢ > 0, and
again assertion follows as in Lemma 4.2.

It then remains to show that if M — oo, then T7(u), T>(u) — 0. We may assume that

u € supp(¥), otherwise T;(u) = 0, for i = 1,2. Therefore, taking into account (4.13),
there exists ¢ > 0 with

w)|V9 41
71 < @)
| f ()]
Finally, by (4.14) we deduce |77 (u)| — 0 as M — oo. Similarly, |75 (u)| — 0. O

4.3. Boundedness of concrete Palais-Smale sequences.

Definition 4.5. Let ¢ € R. A sequence (u™) C HO1 (2,RY) is said to be a concrete
Palais-Smale sequence at level ¢ ((CPS).-sequence, in short) for f, if f(u™) — c,

Z ZDsk al; (x.u™) Dy Djuly € H'(Q,RY)
i,j=1h=1

eventually as m — oo and

- Z D; (au(x u™)D; uf)—i— Z ZDsk ”(x u™)Dijuy Djuy' — gr(x,u™),
i,j=1 lj—lh 1

approaches zero strongly in H~'(Q,R"), where
B = glo) + YWy + V') [ ¢-uar.

We say that f satisfies the concrete Palais-Smale condition at level ¢, if every (CPS),
sequence for f admits a strongly convergent subsequence in H (@, RN).
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Lemma 4.6. There exists M > 0 such that each (CPS).-sequence (u™) for ]7 with
¢ > M is bounded in H} (Q,RM).

Proof. Let M > 0 and (u™) be a (CPS).-sequence for fwith ¢ > M in HO1 (2, RN)
such that, eventually as m — 400

M < fu") <K.

for some K > 0. Taking into account [134, Lemma 3], we have f’(u”’)(u”’) — 0 as
m — +o00. Therefore, for large m € N and any ¢ > 0, it follows

ollu™|12+ K = fu™) —of (u™)u™)

1 n N
= (3 -+ T (u”’)))/Q > D> aly(e.u™) Diujy Djuj dx

i,j=1h=1

n N
— %(1 + T (um))/Q Z Z Dsaf'j(x, u™) - u" Djuj Djuy dx
ij=1h=1

+o(l + To™)) /Q g™ - dx

- [ Glxou™) dx + [y (™) + Ty (™)) — ¥ (™)) [ U dx >
Q Q

n N
> G —o(1+ Ti@™) - 2L+ T, (u’"))) /Q D D diy (e u™) Dyt Djuj dx

i,j=1h=1

+o(1 + To(u™)) /Q (v u™) - 1™ dx
- / GGx.u™) dx + [o(W @™ + Ty (™)) — Y (™) / ¢ u" dx
Q Q

= 20 =0 Q0 1+ T ", + (ol + To6™) = 1) [ Grm) d
—lo( + T3 ™) + Ulg a2

If we choose M sufficiently large, we find ¢ > 0,7 > O and o € ]lqﬂ, ;182[ such that

uniformly inm € N

(I-0Q+y)(A+Ti@™)) >e (qo(l + T2 (™) —1) > .
Hence we obtain

ve
ollu™lh2 + K = 7|Ium||f,2 + onllu™ (1§ — cllu™]1 .2,
which implies that the sequence (u™) is bounded in HO1 (Q,RY). O

Lemma 4.7. Let ¢ € R. Then there exists M > 0 such that for each bounded (CPS). se-

quence (u™) for ]7 with ¢ > M, the sequence (g(x, u™)) admits a convergent subsequence
in H-1(Q,RM).

Proof. Let (u™) be a bounded (CPS).-sequence for f with ¢ > M. We may assume that
(u™) C supp(v), otherwise ¥ (u™) = 0 and ¥’ (u™) = 0. Recall that

Flxou™) = gl u™) + Y (u™)p + 9 W™ fg ¢ u" dx.
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Since by [36, Theorem 2.2.7] the maps

HNQ,RY) — H7Y(Q,RV)
u — g(x,u)

and
H (Q.RY) — HY(Q.RY)
u — v(u)e,

are completely continuous, the sequences (g(x,u™)) and (¥ (u™)¢) admit a convergent
subsequence in H -(Q, RN ). Now, we have

Y@ = X @ | ge um+
= [402x @@ @ 2o @ f@m) 1w,
On the other hand,
rram = Famy e | [ viam + e - .
Therefore,
[1 + [402)(’(19(u’"))¢(um)_219(u”’)f(u’") Lo-um dxﬂ v ")
=[x @@ e |gx.um)
—[40x @ @mg @ 2o @) £ Fwm)
~ [402 0 @ @S @™ 20w W @™ -1 .

(4.15)

By assumption we have f’ ™) — 0in H~'(Q2,R"). Taking into account the definition
of x, ¢ and ¥, all of the square brackets in equation (4.15) are bounded in R for some M >
0 and we conclude that also (y'(x™)) admits a convergent subsequence in H~'(Q2,RY).
The assertion is now proven. g

4.4. Compactness of concrete Palais-Smale sequences. The next result is the crucial
property for Palais-Smale condition to hold.

Lemma 4.8. Let (u™) be a bounded sequence in HO1 (2, RY) and set

n N
(w™, v) :/ Z Zaf’j(x,um)Diuhijvh dx
Q

i,j=1h=1
1 n N
+ 3 /Q ijZ_l }; Dsal’.’j (x,u™) - vD;uy Djuy dx

forallv e CX(Q,RN). Then, if (w™) is strongly convergent to some w in H='(Q,RN),
u™) admits a strongly convergent subsequence in H} (Q,RY).
q 0

For the proof of the above lemma, sew [134, Lemma 6].

Theorem 4.9. There exists M > 0 such that f~ satisfies (CPS).-condition forc > M.
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Proof. Let (u™) be a (CPS), sequence for f with ¢ > M, where M > 0 is as in
Lemma 4.6. Therefore, (#™) is bounded in HO1 (2,RY) and from Lemma 4.7 we deduce
that, up to subsequences, (g(x, u")) is strongly convergent in H~'(Q,R"). Therefore,
the assertion follows from Lemma 4.8. g

4.5. Existence of multiple solutions. Let (Aj,u;) be the sequence of eigenvalues and
eigenvectors for the problem

Au=—-lu inQ
u=0 onodf,
and set
Vi = span{ul,...,uk S HOI(SZ,RN)}.
We deduce that for all s € RV

G<X’R|§_|)
Is| > R = G(x,s) > T|S|q > bo(x)]s]?,

where
bo(x) = R™?inf{G(x,s): |s| = R} > 0.
Then it follows that for each k € N there exists Ry > 0 such that for all u € Vj
lull2 = Re = f(u) <0.
Definition 4.10. For each k € N set
Dy = Vi N B(0, Ry),
Iy = {7/ € C(Dy, Hol) : yis odd and T Id} ,

be = inf max f(y(u)).

y€ly ueDy
Lemma 4.11. Foreachk € N, o €]0, Ri[and y € T
y(Di) N 0B(0.0) N V-, # 0.
For the proof of the above lemma, wee, [119, Lemma 1.44].

Lemma 4.12. There exist B > 0 and ko € N such that
n+2)—(n—2)o

(
Vk > ko: by = Bk ne-D
Proof. Lety € I'y and o €]0, Ry[. By previous Lemma there exists
w e y(Dg) N3B0.0) N Vi, .

and therefore

max f(yu)) = f(w) > inf f). (4.16)
u€Dy u€dB(0,0)NV;E

Given u € dB(0,0) N VkJ-_l, by (4.9) we find oy, o2, 3 > with

~ 1
S )= 592 —ar[|ullfT] = aallellzllullz —as.
Now, By Gagliardo-Nirenberg inequality, there is &g > 0 such that

® 1-9
g1 < callully pllull™",
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n(o—1)

where ¢ = ICETE As is well known, it is
ull2 = fluell1,2,
J_
so that we obtain
! dsten o -
f(“) = —Q —al)»k o —azllell2d, %0 — as.
Choosing now
U9 e+l
— (o—1
0= ckk ,

yields
~ 1 _1
S(w) = ZQIZ‘ —azll@llary * ok — as.

Now, as is shown in [52], there exists &s > 0 such that for large k, Ay > ask%. Therefore.
we find 8 > 0 with

(n+2)—(n—2)o

Sz gk e,
and by (4.16) the Lemma is proved. O

Definition 4.13. For each k € N set
Uk = {E =tupr+w: t €0, Req1], we BO, Reyr) N Vi, €12 < Rk+1},

Ay = {)\ € C(Up. HY) : Ay, € Tr and

)\‘lBB(O,RkJ,_l)U((B(O Ry )\ B(0, Rk))ﬂVk) = Id}
cr = inf max f()»(u))

AeAj uelUy

We now come to the our main existence tool. Of course, differently from the proof of
[119, Lemma 1.57], in this non-smooth framework, we shall apply [36, Theorem 1.1.13]
instead of the classical Deformation Lemma [119, Lemma 1.60].

Lemma 4.14. Assume that ¢, > by > M, where M is as in Theorem 4.9. If § €0, ¢ — by
and

Ar(8) = {A eAp: fO) <bp +6 for ue Dk},
set

() = 1nkf(8) max f()»(u))

Then ¢y (8) is a critical value for f

Proof. Lete = %(ck — by — &) > 0 and assume by contradiction that ¢ (§) is not a critical

value for ]7 . Therefore, taking into account Lemma 4.9, by [36, Theorem 1.1.13], there
exists € > 0 and a continuous map

n: HN(Q,RY) x[0,1] - H!(2,RY)
such that for each u € HO1 (Q,RN)andt €0, 1],
F@) Aee(®) —5.ce(8) +2 = n(u.1) =u, @.17)
n(fCI((8)+s» 1) g fck(ﬁ)—s. (418)



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 67

Choose A € Ag(8) so that
max f(h(u)) < ck(8) + ¢ (4.19)
ueUy

and consider n(A(-), 1) : Uy — HO1 (2,RN).

Observe that if u € dB(0, Rg41) oru € (B(0, Rg4+1)\B(0, Ry)) N Vi, by definition
F(A(u)) = f(u). Hence, by (4.17), it is n(A(u), 1) = u. We conclude that n(A(), 1) €
Aj. Moreover, by our choice of € > 0 and 6 > 0 we obtain

VueDp: fu) <bg+8<ck—%<cr(§)—F%

Therefore (4.17) implies that n(A(-),1) € Ag(8). On the other hand, again by (4.18) and
(4.19)

max f(10u(u), 1)) < e (8) — &, (4.20)
ueUy
which is not possible, by definition of ¢ (§). O
It only remains to prove that we cannot have ¢, = by for k sufficiently large.

Lemma 4.15. Assume that ¢ = by for all k > ky. Then, there exist y > 0 and k > ki
with

bl? < )/]:‘1%1.
Proof. Choose k > k1, e > 0andaA € Ag such that

max f (A(u)) < by + €.
ueUy

Define now A : D4 — H| such that

~ Awu) ifueUg
Mu) = {—)\(—u) ifu e —U;.

Since A, Rigp Wi is continuous and odd, it follows A € I'x 4. Then

bier < max FO)).

UEDg 41

By Lemma 4.3 we have
max 7(i(w) < by +e+ B (Ibe + e/ +1),
ue—Uj
and since Dy 11 = Uy U (=Uy), we get
Ve>0: briq Ebk+8+ﬁ(|bk+5|l/q+1>,

that yields
Vk = kit brar < b + B (|bk|1/‘1 n 1) .

The assertion now follows recursively as in [121, Proposition 10.46]. d

We finally come to the proof of the main result, which extends the theorems of [15, 66,
119, 138] to the quasi-linear case, both scalar and vectorial.
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Proof of Theorem 4.1. Observe that the inequality
gn+(q@—Dmn+2)
qn+(q—1Hn-2)’

l<o<

implies
q_ _ n+2)—on—-2)
q—1 nio—1)
Therefore, combining Lemma 4.12 and Lemma 4.15 we deduce c¢x > by so that we may
apply Lemma 4.14 and obtain that (cx(8)) is a sequence of critical values for f . By
Theorem 4.4 we finally conclude that f has a diverging sequence of critical values. O

4.6. Semi-linear systems with nonhomogeneous data. Since the early seventies, many
authors have widely investigated existence and multiplicity of solutions for semi-linear
elliptic problems with Dirichlet boundary conditions, especially by means of variational
methods (see [137] and references therein). In particular, if ¢ is a real L? function on a
bounded domain 2 C R”, p > 2 and p < 2* if n > 3 (here, 2* = nzTnz)’ the following
model problem (£o,4,1)
—Au=uPu+¢ inQ
u=0 ondQ,

has been extensively studied, even when the nonlinear term is more general.

If ¢ = 0, the problem is symmetric, so multiplicity results have been achieved via the
equivariant Lusternik-Schnirelman theory and the notion of genus for Z,-symmetric sets
(see [121] and references therein).

On the contrary, if ¢ # 0, the problem loses its Z,-symmetry and a natural question is
whether the infinite number of solutions persists under perturbation of the odd equation. In
this case, a detailed analysis was carried on by Rabinowitz in [119], Struwe in [138], Bahri
and Berestycki in [15], Dong and Li in [66] and Tanaka in [140]: the existence of infinitely
many solutions was obtained via techniques of classical critical point theory provided that
a suitable restriction on the growth of the exponent p is assumed.

Furthermore, Bahri and Lions have improved some of such results via a technique based
on Morse theory (see [17, 18]); while, more recently, Paleari and Squassina have extended
some of the above mentioned achievements to the quasi-linear case by means of techniques
of non-smooth critical point theory (see [111]).

Other perturbation results were obtained by Bahri and Berestycki in [15] and by Am-
brosetti in [2] when p > 2 is any but subcritical: in particular, they proved that for each
v € N there exists & > 0 such that ($g,e,1) has at least v distinct solutions provided that
lell2 <e.

The success in looking for solutions of a non-symmetric problem as (£ ,,1) made quite
interesting to study the problem (£ 1)

4.21)

—Au = |u|Pu + in Q
ul ¢ (422)
u=yx ondf

where, in general, the boundary condition y is different from zero. Some multiplicity
results for (4.22) have been proved in [29] provided that

1
1<p<2ttl S cCcOQ.R) NH2OQ,R), e LX(Q.R).
n

The upper bound to p seems to be a natural extension of the assumption 2 < p < 4
considered by Ekeland, Ghoussoub and Tehrani in [67] in order to solve such a problem
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whenn = 1 (in this case, the range p < 2 was covered by Clarke and Ekeland in a previous
paper [47]).

We stress that an improvement of the results in [29, 67] has been reached with a different
technique by Bolle in [24] and Bolle, Ghoussoub and Tehrani in [25]. From one hand, they
prove that if @ C R” is a C? bounded domain and

2 _
2<p< —”1 x € C2(IQ.R), ¢ e C(QR).
—

then (#y,e,1) has infinitely many classical solutions. On the other hand, they show that in
the case n = 1 it suffices to assume p > 2, namely the result becomes optimal.

It remains open, even for x = 0, the problem of whether (£y,¢,1) has an infinite number
of solutions for p all the way up to 2*. For y = 0, the most satisfactory result remains the
one contained in the celebrated paper [18] of Bahri and Lions where they prove that this
fact is true for a subset of ¢ dense in L?(Q, R).

Let us fix N > 1. The purpose of this section is to show the multiplicity of solutions
for the following semi-linear elliptic system (£y 4 )

n N
= 303 D@ ) Din) = b Pk + gx(x) i €
i,j=1h=1 (4.23)
u=yx ondf

k=1,...,N

taken any y € H'/2(3Q,RN). Clearly, (4.23) reduces to the problem (4.22) if N = 1,
af-’jk = (Sf’jk and b(x) = 1.

To the best of our knowledge no other result can be found in the literature about multi-
plicity for systems of semi-linear elliptic equations with non-homogeneous boundary con-
ditions; on the contrary, some multiplicity results are known in the case of Dirichlet bound-
ary conditions (see [46] for the semi-linear case and [111, 134] for some extensions to the
quasi-linear case).

It is well known that the functional f : M, — R associated with (4.23) is given by

1 o X 1
f(u) = —[ Z Z al}.'.]‘(x)DiuhDjuk dx — —/ b(x)|ul? dx —/ @ -udx
2 Ja A / P Ja Q
i,j=1hk=1
where M, = {u e H'(Q,RY):u =y ae. on 89}.
In the next, 2 will denote a Lipschitz bounded domain of ]R_” with n > 3 while we shall
always assume that the coefficients af’jk and b belong to C(£2,R) with af’jk = a}‘ih and
b > 0. Moreover, there exists v > 0 such that

n N
YOSk oggm"nk = vl inl? (4.24)
i,j=1hk=1

for all x €  and (£,7) € R” x RY (Legendre-Hadamard condition).
Here, we state our main results.

Theorem 4.16. Let p €]2, 2”%[ Then for each ¢ in L>(2,RN) and x in the space
H'Y2Q, RN) the system (4.23) admits a sequence (u™), of solutions in My such that
fW™) — 4o0.
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To prove Theorem 4.16, we use some perturbation arguments developed in [15, 119,
138]; so the condition p < 2 ”:1 is quite natural.

An improvement of such a “control” can be obtained by means of the Bolle’s techniques,
but more assumptions need In fact, all the weak solutions must be regular and the system
has to be diagonal, i.e. al ] 8hk

More precisely, we can prove the following theorem.

Theorem 4.17. Let p €]2, 2[, 9Q is of class C2, x in C*(dQ,RY), ¢ in C**(Q,RN)
for some o €]0, 1] and ahk = Shk Then (4.23) has a sequence (u™),, of classical solutions
such that f(u™) — +oo

Clearly, Theorems 4.16 and 4.17 extend the results of [29] and [25] to semilinear elliptic
systems. We underline that (4.24) is weaker than the strong ellipticity condition.

Let us point out that, in general, whereas De Giorgi’s famous example of an unbounded
weak solution of a linear elliptic system shows (cf. [57]), we can not hope to find every-
where regular solutions for coefficients a ke L(Q,R). Anyway, if a ke C(Q,R)and
(4.24) holds we have that if u solves (o, N) then

ue CoQ,RY)
foreach o €]0, 1] (see [76]) but if we look for classical solutions, namely u of class C 2 on

Q, the coefficients a k have to be sufficiently smooth while ¢ € C%*(Q,RN) for some
@ €]0,1[and x € CZ(BQ,]RN) (see [91] and references therein).

4.7. Reduction to homogeneous boundary conditions. As a first step, let us reduce
(4.23) to a Dirichlet type problem. To this aim, let us denote by ¢ € M, the only so-
lution of the linear system

n N
= > ) Dj@f(x)Digp) =0 inQ
i,j=1h=1 (4.25)
¢ =x ondQ

k=1,...,N
Since p < 2%, itresults ¢ € L?(Q,RN).
From now on, we shall assume that » = 1. Taking into account that there exist two
positive constants n1; and M} such that
mp < b(x) < Mp forallx € Q,

the general case can be covered by slight modifies of some lemmas proved in the next
sections.
It is easy to show that the following fact holds.

Proposition 4.18. u € M, is a solution of (Py,o.N) if and only if z € Hg (2, RN) solves

—ZZD(a (X)Dizp) = |z + @172k + ) + o (x)  inQ
i,j=1h=1
z=0 onodf2

k=1,...,N,
where u(x) = z(x) + ¢(x) fora.e. x € Q.



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 71

Therefore, in order to find solutions of our problem it is enough looking for critical
points of the C'-functional f} : H}(2,R") — R given by

1 [ & & 1
Sy(u) = 5/9 Z Z af’jk(x)D,-uhDjukdx—;/Qlu+¢|1’dx—/g<p-udx

i,j=1hk=1
(we refer the reader to [121, 137] for some recalls of classical critical point theory).

Lemma 4.19. There exists A > 0 such that if u € HO1 (2, RN) is a critical point of Jr
then

[ ol dx < pa (s + 1)

Proof. By Young’s inequality, for each & > 0 there exist a, B > 0 such that
U+ @177 Bl < elu+ P +aclpl?,  |u+¢llgl < elu+ |7 + Belol”,  (4.26)

with % + % = 1. Therefore, if u is a critical point of f,, we get
Sx(u)
1
= 1) = 3 £yl

= G=) [uroras—3 [ rortuse)sdr—3 [ gouds

v

p=2 pge_ L =1 _1!
= [ ot =3 [ glriglax =3 [ u+ollol + lollg) dx

v

p—2 1 /
(P2 =e) [t o1 dx = 3 (wulolf + Bl + olzlol).
1

Choosing € such that p —2 —2pe > 0, i.e., ¢ €]0, % — ;[, we get

PM, f (1) > /Q -+ @1 dx — pMeye(p. 6. 0).

where Mg = ﬁ and

1 ,
7e(p.9.9) = 5 (el + Bellelly + lell2llz)

At this point, the assertion follows by 4 > +/2M, max{1, y:(p. ¢, ®)}. U

Now, let n € C*°(R,R) be a cut function such that n(s) = 1 fors < 1, n(s) = 0 for
s > 2 while =2 < 1(s) <Owhen 1 < s < 2. Foreachu € HO1 (2, RV) let us define

/
s =2p4 (Fw+1) "L v =@ [ erordx). @2
Q

where A is as in Lemma 4.19. Finally, we introduce the modified functional f; : H(} (2, RN ) —
R in order to apply the techniques used in [29]:

_ 1 n N 1
fru) = Efg,z > alf (x) DiupDjur dx—;/9|u|p dx—w(u)/g@(x,u)dx,

i,j=1hk=1

with
Clutglr Jul?

p

O(x,u) +o-u
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Let us provide an estimate for the loss of symmetry of f;

Lemma 4.20. There exists 8 > 0 such that
~ ~ ~ =l
@) = Jx-w| = B (15" +1)  forall u € supp(y)

(here, supp(V) is the support of V).

Proof. First of all, let us show that there exist ¢y, ¢, > 0 such that there results

[t o =iy dx] = el 0017 +ea 428)
|[Q<|u—¢|"— ul?) dx| < e1l fx@)| 7 + ca, (4.29)
|| ¢ udx| < el f @7 +e (4.30)

Q

for all u € supp(y). In fact, taken any u € HO1 (2,R) it is easy to see that
llu+ @17 — [ul?| < p2P 72 u + ¢|7 7 o] + p27 2|91, 4.31)
lu = @17 — |ul?| < p2P72|u + ¢|P 7" g| + p22P 3 ||7. (4.32)
Hence, by (4.31) we get

p—1

[+ ol = alryax| < p2r 2o, ([ s 617 ax) T+ p2r 2o,
Q Q

while (4.32) implies

p—1

| [ = w1 dx| = p2r21l ([ 1w glrax) T+ p22 gl
Q Q

Moreover, by Holder and Young’s inequalities it results

p—1

[ [omuaxl < ([rrora)™ +o-a(M) = 4 jopigr,

If, furthermore, we assume u € supp(y), it follows

/Q -+ B1P dx < dpA( f ()] + 1)

which implies (4.28), (4.29) and (4.30). Then, again by Young’s inequality, simple calcu-
lations and (4.28), (4.30) give

| fx )] < ai1| fy ()] + a, (4.33)

for suitable aq,a; > 0. The assertion follows by combining inequalities (4.28), (4.29),
(4.30) and (4.33). O
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Now, we want to link the critical points of f;( to those ones of fy. To this aim we need
more information about f. Taken u € H, 1(Q,RN), by direct computations we get

Fwlu) =+ Tyt | S S ) Duy Dy d

i,j=1hk=1

=y [ dx ~ @+ T [poua G

W) + Tz(“))/ﬂ i+ 72w+ §) - udx

where T4, T : HO1 (2, ]RN) — R are defined by setting
Ty(u) = 4112Az77’(5(14))5@!)((u)_zfx(u)/Q O(x,u) dx,
Tou) = pn/ (B¢ (u)™! /Q O(x,u)dx + Ty(u).

with §(u) = ¢(u) ™" [q |u + ¢|? dx.

Remark 4.21. To point out some properties of the maps 71 and 7, defined above, let us
remark that by (4.28) and (4.30) there exist by, b, > 0 such that for all u € supp(v) it is

T3 )| < byl f )| "7 + bal fy(u)|~" forbothi = 1,2.

Therefore, arguing as in [119] (see also [29, Lemma 2.9]), there exist «g, My > 0 such
that if M > M, then

Ja) = M. uesupp(¥) = fy(u) = aoM:
whence, it results |T;(u)| — 0 as M — +oo fori = 1,2 (trivially, itis T (1) = Tr(u) =
0if u ¢ supp(y)).

Theorem 4.22. There exists M1 > 0 such that if u is a critical point of f~x and f;(u) >
M, then u is a critical point of fy and fy(u) = fy(u).

Proof. Letu € HO1 (2, R™) be a critical point of ]7; By the definition of v it suffices to
show that, if f, («) > M, for a large enough M, then §(u) < 1, 1i.e.,

E(u)_l/ lu+ ¢|Pdx < 1.
Q
By (4.34) we have

fx(“)fo(“)—z(l_‘_—Wf;é(“)[“]
_ 1 P . A »
= p/gz|u+¢| dx fggo udx + —————— /|”| dx

2(l + T1(u))
yw+nhe [ - ¥(u) + Tz(“) S .

= (G =) [l eprax - S0 TZ(”)/| 1 dx
Q

2(1 + Ty (u))
1Y)+ Tou)
+§(1+—Tl(u)—l)/ﬂ(|u+¢|p—|u|p)dx
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YW+ B prr
PO [ gl R+ ) pdx

V() + Ty ()
B (1 T2+ Tiw) ) /Q“"“dx‘

Then, by Remark 4.21 it is possible to choose M; > 0 so large that

-y | _ WW+HW)<
1+Tiw)| ~ 1+Ti(w) |~
WW%+BW)_1<2 WW%+BW)<2.
1+ Ty (u) - 1+ Ti(w) |~

so we deduce that for each & > 0 there exist /¢, Y= (p, ¢, ¢) > 0 such that
- p—2 o | Ta(u) — T1(u) )/ -
uy>|—=——-2\""|———=1—h u+ ¢|? dx — , P,
ft = (2 ) [ o1 dx = 792 0)
where s, — 0 as ¢ — 0. At this point, choosing a priori ¢ and M in such a way that
Tr(u) — T (u)
1+ Ty(u)

L<P=2
4p

p—2

we obtain 5
P— ~
St = 222 [ s gl dx = 7u(p.0.0).
P Ja

which completes the proof if, as in Lemma 4.19, the constant 4 taken in the definition
(4.27) is large enough. O

4.8. The Palais-Smale condition. Let us point out that, in the check of the Palais-Smale
condition for semi-linear elliptic systems under the assumption (4.24), an important role is
played by the so called Garding’s inequality.

Lemma 4.23. Let (u™),;, be a bounded sequence in HO1 (2, RN) and let (w™),, be a
strongly convergent sequence in H~'(Q,RN) such that

n N
[ >0 Y aif(x)Diuf Djv dx = (w™.v) forallv € HY(Q.RV).
Qij=1hk=1

Then (u™)y, has a subsequence (u™k)y. strongly convergent in HO1 (2, RN).

Proof. First of all, in our setting the following Garding type inequality holds: taken v as
in (4.24) for each ¢ €]0, v[ there exists ¢ > 0 such that

n N
[ 303 ateonanDudx = 0 = o) Dul} - o ul?

i,j=1hk=1

forallu € Ho1 (2, RN) (see [106, Theorem 6.5.1]). Therefore, fixed £ > 0, we have

n N
(wh —w™ ul —u™) = /gz Z Z af’jk(x)Di(uZ - uZ”)Dj(ui —uf)dx
i,j=1hk=1

> (v =) Du’ — Du™ |3 — cellu’ —u™|13

for all m,/ € N. Since u™ — u in L*(2,RY), up to subsequences, we can conclude that
Du™ — Duin L2(Q,RV). O



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 75

Now, let d > 0 be such that

n N
V
/Q( > Y aiF(x) DiupDjuy + dlul’) dx > 5 | Du|3 (4.35)
i,j=1hk=1

forallu € H} (2.RM).

Lemma 4.24. There exists My > 0 such that if (u"™)y, is a (PS).-sequence of f;( with
¢ > My, then (u™),, is bounded in HO1 (2, RM).

Proof. Let M, > 0 be fixed and consider (#™),,, a (PS).-sequence of f;( with ¢ > M5,
such that

M, < fyu™) <K,
for a certain K > M.

First of all, let us remark that if there exists a subsequence (u"%); such that u* ¢
supp(y) for all k € N, then it is a Palais-Smale sequence for the symmetric functional

n N
1 1
Jolw) =3 /Q >0 > atf(x) Diuy Djuy dx — ;/Q|u|de

i,j=1hk=1

in Ho1 (2, RN ). Whence, it is easier to prove that such a subsequence is bounded. So, we
can assume u™ € supp(y) for all m € N. For m € N large enough and any ¢ > 0, taken
d asin (4.35) by (4.34) it results

K + o] Du"
> fy@™) — o fru™)[u™

n N
1
=3 (1-20(+ Tl(um)))/g( >0 alf () D Djul + d|u™|?)dx
i,j=1hk=1

d 1
-G a=20 a4 T B+ (o0 -y =2 ) [ as
P Q
o (W™ + To(u™) [Q W™+ B 4 ) - dx
+o (W™ + T1(u™)) /Q @-u"dx — 1p(u’")/Q O(x,u™)dx.

Since itis p > 2, we can fix, a priori, a constant # €]1, £[ such that, taken  €]0, 1 —2%[ ,

o e]%, I_T"[ and 1 €0, 0(1 — %)[ , by Remark 4.21 if M, is large enough for all m € N
we have

1— 1 i
T3 (™) <min{l,?ﬂ -1 DM <12 _%
and then
w<1-=2001+T@™) <1, (4.36)
1
i <o(l+ Thu™)) — > (4.37)

So, by (4.35) and (4.36) we obtain
K + ol Du™|2
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v m|2 d my 2 m 1 m|p
> — 1Du™|3 = S [lu”ll; + | eI = T2 (™)) — — |u™ |7 dx
4 2 P Q

— U+ [T + l)fQ lollu™dx —o (1 + ITz(u”’)I)/S2 u™ + P |g| dx

M)[qum ol — lumP) dx
P Q

Hence, fixed any ¢ > 0, by (4.26), (4.37) and a suitable choice of the positive constants a;
and aj there results

+ (g W™ + Tow™)) -

d
K+ [ Du™l> + 5" 3

ViL _
zZ IDu™ |13 + (& — ear) |u™ |}

+ (Q (W W™) + To(u™) — M) f (Ju™ + ¢|? — |u™|?) dx — 5.
P Q

Let us point out that, as u™ € supp(¥), (4.28) and (4.33) imply

(/ (™ + p|7 — |uM|P)dx)
Q meN

is bounded. Whence, p > 2 and a suitable choice of ¢ small enough allow to complete the
proof. g

Lemma 4.25. Let M, be as in Lemma 4.24 and ¢ > M. Then, taken any (PS).-sequence
(u™)m for fy, the sequence

Fle.u™) = [ P2 g (™) (™) + Y (™) /Q OCx.u™) dx

admits a convergent subsequence in H='(Q,RN).
The proof of the above lemma follows the steps in [111, Lemma 3.3].

Theorem 4.26. The functional f; satisfies the Palais-Smale condition at each level c € R
with ¢ > M,, where M, is as in Lemma 4.24 .

Proof. Let (u™),, be a Palais-Smale sequence for f;( at level ¢ > M,. Therefore, (u™),
is bounded in HO1 (2,RY) and by Lemma 4.25, up to a subsequence, (Z(x,u™)),, is
strongly convergent in H~!(€2, RY). Hence, the assertion follows by Lemma 4.23 applied
to w™ = g(x,u™) + f;(u'") where, by assumption, f;(u'”) —-0in H7Y(Q,RY). O

4.9. Comparison of growths for min-max values. In this section we shall build two min-
max classes for f, and then we compare the growth of the associated min-max values.
Let (A, u'); be a sequence in R x H} (2, R¥) such that

—Aui :)Llufc in Q
ul =0 on 0€2,
k=1,...N,

with (u!); orthonormalized. Let us consider the finite dimensional subspaces

Vo := <u°>; Viep:=V; @ Ru'*! for any / € N.
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Fixed / € N it is easy to check that some constants 81, 82, 83, B4 > 0 exist such that
];;((u) <B ||u||i2 —ﬂ2||u||f,2 — Bsllulli,2 —Ba, forallu e V.
Then, there exists R; > 0 such that
we Vi lulizz R = fw) < f(0) <0.
Definition 4.27. Forany / > 1 we set D; = V; N B(0, R;),
I = {y e C(Dy, HOI(Q,]RN)) :y odd and Viono.rp = Id},

and

b= inf max fi(y(w)
velju

To prove some estimates on the growth of the levels by, a result due to Tanaka (cf. [140])
implies the following lemma.

Lemma 4.28. There exist B > 0 and ly € N such that
by > B l% foralll > I.
Proof. By (4.35) and simple calculations a;, a; > 0 exist such that
fy) > %||Du||§ —ay|ullf —a, forallu € dB(0, Ry) NV,E,.
Then, it is enough to follow the proof of [140, Theorem 1]. O
Now, let us introduce a second class of min-max values to be compared with b;.
Definition 4.29. Taken / € N, define
={E=n" w01 < Ry we BO.Ru) NVi [z < Riga)

and

= {L € C(U;, Hy (2. R")) : Ap, € I7and

)‘|BB(0,R,_H)U((B(O,R,_H)\B(O,R,))ﬂV,) = Id}-
Assume
¢; = inf max fx(k(u))
reA Aju
The following result is the concrete version of Theorem 2.11.
Lemma 4.30. Assume ¢; > by > max{M, M,}. Taken § €]0,c; — b;[, let us set
A1(8) = {h € Ar: fy(Mu)) < by + 8 forall u € Dy},

() = lfff(a) max T ).

Then, ¢;(8) is a critical value for f;(

The proof of the above lemma can be obtained by arguing as in [119, Lemma 1.57].
Now, we prove that the situation ¢; = b; can not occur for all large /.

Lemma 4.31. Assume that ¢c; = by for alll > ;. Then there exists y > 0 withb; < y IP.
Proof. Working as in [119, Lemma 1.64] it is possible to prove that

biy1 < by + ,3(|bl|pli_’1 +1) foralll > 1.
The assertion follows by [15, Lemma 5.3]. Il
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Proof of Theorem 4.16. Observe that the inequality 2 < p < 2

<2

n(p —2)
Therefore, by Lemmas 4.28 and 4.31 it follows that there exists a diverging sequence
(!/n)n C N such that ¢;, > b, for all n € N, then Lemma 4.30 implies that (c;, (8))n
is a sequence of critical values for f;( Whence, by Theorem 4.22 the functional f, has a
diverging sequence of critical values. U

n+1 ; :
— implies

P

Remark 4.32. When p goes all the way up to 2*, in a similar fashion, one can prove that
for each v € N there exists & > 0 such that (P, ¢, n) has at least v distinct solutions in
My . This is possible since there exists B > 0 such that

THOEFHC T (THOTE

for each ¢ > 0 and u € supp(y), where f;f : Ho1 (2,RV) — R is defined by

_ 1 n N
Sfrw) = 5/;2 Z Z al}-’jk(x)D,-uhDjuk dx+

i,j=1hk=1
1
——/ |u|1’dx—wa<u)/ O (x, 1) dx
P Ja Q

with
Outn = I i v = e [t eplr ax)
p p Q

for more details in the scalar case, see [2, 15].

4.10. Bolle’s method for non-symmetric problems. In this section we briefly recall from
[24] the theory devised by Bolle for dealing with problems with broken symmetry.

The idea is to consider a continuous path of functionals starting from the symmetric
functional fp and to prove a preservation result for min-max critical levels in order to get
critical points also for the end-point functional f;.

Let X be a Hilbert space equipped with the norm || - || and f : [0,1] x X — R a
C?-functional. Set fy = f(9,-)if 6 €[0,1].

Assume that X = X_ @ X4+ and let (¢;);>; be an orthonormal base of X such that
we can define an increasing sequence of subspaces as follows:

Xo = X_, Xi+1:=X; ®Rej4qifl € N.
Provided that dim(X_) < 400, let us set
K ={eC(X,X):isodd and ¢ (1) = u if |lu|| > R}
for a fixed R > 0 and
sup fo(§(u)).

¢ = inf
geX ueXy

Assume that

e [ satisfies a kind of Palais-Smale condition in [0, 1] x X: any ((8™,u™));, such
that

(f(0™,u™))m is bounded and ~ fy,, (™) — 0 as m — +o00 (4.38)

converges up to subsequences;
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e for any b > 0 there exists Cp > 0 such that

0
PrEAGEY.

for all (6,u) €0, 1] x X;
e there exist two continuous maps 11,1, : [0,1] x R — R which are Lipschitz
continuous with respect to the second variable and such that n; < 7,. Suppose

0
(0. fo) = =5/ (0.u) = n2(0. fo(u)) (4.39)
at each critical point u of fy;

e fo is even and for each finite dimensional subspace ‘W of X it results

lim sup f(0,u) = —oc0.
lull—>+o00, ueWw 0el0,1]

|fo)| =b = = Gl fg @)l + D(llull + 1)

Taken for i = 1,2, let us denote by ¥; : [0, 1] x R — R the solutions of

ad
g Vi0.-5) =ni(0.9:(6.5))
Yi(0,5) =s.
Note that v; (0, -) are continuous, non-decreasing on R and v¥; < ¥,. Set

() = sup n1(0,s), My(s) = sup na(b,s).
0elo,1] 0€l0,1]

In this framework, the following abstract result can be proved.

Theorem 4.33. There exists C € R such that if | € N then
(a) either f1 has a critical point ¢; with Y2 (1, ¢;) < ¥1(1,¢141) < ¢y,
(b) orwe have iy —c; < C (i (cr41) + Tip(cr) + 1),

For the proof of the above theorem, see [24, Theorem 3] and [25, Theorem 2.2].

4.11. Application to semi-linear elliptic systems. In this section we want to prove The-
orem 4.16 in a simpler fashion by means of the arguments introduced in Section 6.
For 6 € [0, 1], let us consider the functional fj : HO1 (2,RY) — R defined as

1 [ & & 1
fe(u)zzfQ Z Z af’jk(x)D,-uhDjukdx—;/Q|u+9¢|pdx—9/9go-udx.

i,j=1hk=1

It can be proved that all the previous assumptions are satisfied.

Lemma 4.34. Let (6™, u™)), C [0, 1]x HO1 (2, RN) be such that condition (4.38) holds.
Then ((0™,u™))m converges up to subsequences.

Proof. Let (6™, u™)),, be such that (4.38) holds. For a suitable K > 0 and any ¢ > 0 it
is

K +ol|Du" |2 = fomu™) = o fgm™)[u™]

1 n X 1
=5 —Q)/Q Y D aif ) D DjuRdx + (e - ;)/Q u™ + 0" | dx

i,j=1hk=1

- 9’"9/ [u™ 4+ 0™ PP 2 (u™ + 0™ p) - ¢ dx
Q
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for all m large enough. Then, fixed any ¢ > 0 and taken d as in (4.35), (4.26) and simple
computations imply

1 1 v
o 1Du™ 2+ (5 = @)dllu™l3 = (5 = &) 5 I1Du™ 5 +

1
; ; (o1 &) =)~ ac

2p—1

for a certain @, > 0. Hence, if we fix o e]%, %[ and ¢ €]0,1 — #[ , by this last inequality
it follows that (u™),, has to be bounded in HO1 (Q.RN).

So, if we assume w” = f}, (u™) + |u™ + 6™ |P2 (™ + 0™p) + 6™¢ it is easy to
prove that (w™),, strongly converges in H~'(Q2,R"), up to subsequences. Whence,
Lemma 4.23 implies that (4™),,, has a converging subsequence in HO1 (Q,RY). O

Lemma 4.35. For each b > 0 there exists Cp > 0 such that
a
[fow) =b = |%/(9,u)} = Gl fg@ll + Dllulli2 + 1)
forall (8,u) €[0,1] x H} (2, RN).
Proof. Fix b > 0. The condition | fg(u)| < b is equivalent to

n N
1 1
‘/9(5 E Z af-’jk(x)D,-uhDjuk - lu + 0|7 — Qw'u)dx‘ <b (4.40)
ij=1hk=1

which implies that
n N
9/ Q- -udx > £/ Z Z a}.'-’k(x)DiuhDjuk dx
Q 2 Ja .4 Y
i,j=1hk=1 (4.41)
—/ |u+9¢>|pdx—(p—1)0/ @-udx—pb.
Q Q

So, taken d as in (4.35), we have

n N
gyl == [ 373 ke DDy d

i,j=1hk=1

+/ |u+9¢|1’_2(u+9¢)-udx+9/ @ -udx
Q Q

n N
() [ £ o s

i,j=1hk=1
-(£-1)4d ||u||§—/ lu+ 061772 + 09) - 0 dx
Q
—(p—l)Q/gp-udx —pb
Q
v 2 _(2_ 2
> (p=2) 1Dull} — (5 —1)d |ul

—/ |u+9¢|p_2(u+9¢)-9q§dx—(p—1)0/ @-udx— pb.
Q Q
By Holder inequality there exist ¢y, ¢2, ¢3 > 0 such that

‘ / lu 4+ 0|17 (u + 0¢) - 6¢ dx‘ <cillu+ 60977, (4.42)
Q
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‘/ <p~udx‘ <collu+ 0y, +cs; (4.43)
Q

while (4.40) implies
lu+ 6812 < cal Dull3 + cs(b) (4.44)

for suitable ¢4, ¢5(b) > 0. Then, since Young’s inequality yields

cillu+ 091571 < ellu + 09117 + 21 (o).

~ (4.45)
2llu+ 081, < ellu+ 0|7 + (o).

for all ¢ > 0 and certain ¢ (¢), ¢2(g) > 0, it can be proved that cg, c7(¢, b) > 0 exist such
that

/3@l = ((p —2)7 = ece) |1 Dull3 = er(e. ).
So, if ¢ is small enough, some ¢g, ¢7(b) > 0 can be find such that
% | Dully = &1(b) = — fg()lul. (4.46)
On the other hand, since
%f(@,u) = _/g lu + 067> (u + 9¢)-¢dx—/ﬂ<p-udx

by (4.42) and (4.43) it follows

J -
|55/ (6-w)] = csllu+ 60177 + o (4.47)
and then by (4.45)
0
|%f(97 “)| <eéelu+ 9¢||5 + cio(e)

for any & > 0 and cg, 9, c19(¢) > 0 suitable constants. So, for all ¢ > 0 and a certain
c11(e, b) > 0, (4.44) implies

a .
a5/ 00| = eca [ Dull3 + en (e, b). (4.48)
Hence, the proof follows by (4.46), (4.48) and a suitable choice of ¢. Il

Lemma 4.36. Ifu € H(} (2, RN) is a critical point of fy, there exists o > 0 such that

1/2
/ u+ 04| dx <o (f;(u) + 1)
Q
For the proof of the above lemma it suffices to argue as in Lemma 4.19.

Lemma 4.37. At each critical point u of fy the inequality (4.39) holds if n1, 0, are defined
in(0,s) €[0,1] xR as

1

p—
— (0, s) =na(b,5) =C (s2 + 1) ” (4.49)
for a suitable constant C > 0.

For the proof of this lemma, it is sufficient to combine (4.47) and Lemma 4.36.
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New proof of Theorem 4.16. Clearly, f is an even functional. Moreover, by Lemmas 4.34,
4.35 and 4.37 all the hypotheses of the existence theorem are fulfilled. Now, consider (V;);,
the sequence of subspaces of HO1 (22, RY) introduced in the previous sections. Defined the
set of maps K with X = Ho1 (2, RY), assume

¢ = jnf sup Jo€(w)).

uE;

Simple computations allow to prove that, taken any finite dimensional subspace ‘W of H!,
some constants 81, B2, B3 > 0 exist such that

So(u) < Billullf o — Ballullf, — B3 forallu e W.
Then

lim sup fo(u) =
llll1,2—>+o0,ueW gejo,1]

Hence, Theorem 4.33 applies and, by the choice made in (4.49), the condition (b) implies
that there exists C > 0 such that
e —al <€ () +@en'7 +1)., (4.50)

which implies ¢; < 7 [? for some ¥ > 0 in view of [15, Lemma 5.3]. Taking into account
Lemma 4.28 we conclude that (4.50) can not hold provided that

2p
n(p—2)
”ni[. Whence, the assertion follows by (a) of Theorem 4.33. O

> p,

namely p €]2,2

4.12. The diagonal case. Now, we want to prove Theorem 4.17. To this aim let us point
out that we deal with the problem

—Aug = |ulP2up + gr(x) inQ
u=yx ondf 4.51)
k=1,...,N

and want to prove that (4.51) has an infinite number of solutions if p € ]2, n2”1 [

In this case, the functional fy defined in the previous section becomes

1 1
fg(u)z—/|Vu|2dx——/|u+9¢>|pdx—9/go-udx
2 b4 Q

where ¢ solves the system (4.25) with ahk = 5hk .

By the regularity assumptions we made on BQ x and ¢ the following lemma can be
proved.

Lemma 4.38. There exists ¢ > 0 such that if u is a critical point of fg, then

1 0
‘/ <—|Vw|2— |—w|2)da) < c/ (|Vw|2 T wl? + 1) dx
IQ 2 on Q
where w = u + 0¢.
Proof. If u € HO1 (2, RY) is such that Jo(u) = 0, then some regularity theorems imply

that u is a classical solution of the problem
—Aug = |u+ 0|7 (ur + 0¢) + 0p  in Q
u=0 ondQ
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k=1,...,N,
then w = u + O¢p € C2(Q,RY) solves the elliptic system

—Awg = |w|P 2w + g inQ
wy = O¢y  on IQ (4.52)
k=1,...,N.

Taken § > 0, let us consider a cut function 7 € C*°(R,R) such that 7j(s) = 1 fors < 0
and 7j(s) = 0 for s > §. Moreover, taken any x € R, let d(x, 3$2) be the distance of x
from the boundary of Q2. Let us point out that, since 2 is smooth enough, § can be chosen
in such a way that d(-, 9Q2) is of class C? on

QN{xeR":d(x,dQ) <8,

and 71(x) = Vd(x, d) coincides on Q2 with the inner normal. So, defined g : RY — R
as g(x) = 7(d(x,09)), foreach k = 1,..., N let us multiply the k-th equation in (4.52)
by g(x)Vwy - 7(x). Hence, working as in [25, Lemma 4.2] and summing up with respect
to k, we get

N 1 ow
Z/ —Awy g(x)Vwy -ndx = / (z|Vw|* - ‘—
=1 Q I 2 on

2)d0 +0 (||Vw||§) ,

N

_ - or
> [ 1wl u gV ddx = = [ 1917 do+ 0 (i)
/e r Jag

N
gfg&pk(x) g(x)Vwy -ndx = 62 /{;ng ¢ do+ O (|lwllp) -

Whence, the proof follows by putting together these identities. g

With the stronger assumptions we made in this section, the estimates in Lemma 4.37
can be improved.

Lemma 4.39. At each critical point u of fy the inequality (4.39) holds if n1, na are defined
in(0,s) €[0,1] xR as
) 1/4
—n1(0,5) =n200,5) =C (s + 1)
for a suitable constant C > 0.

Proof. Let u be a critical point of fy. Then,

ad ou
G/ G0 =[ Sgdot [ o9 dx:
a0 0 on Q
s0, taking into account Lemma 4.38, it is enough to argue as in [25, Lemma 4.3]. 0

Proof of Theorem 4.17. Arguing as in the proof of Theorem 4.16, we have that the proof
of Theorem 4.17 follows by Theorem 4.33 since also in this case the condition () can not
occur. Let us point out that, by Lemma 4.39, the incompatibility condition is % > 2,

ie. pel2, 2. O

> n—1
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5. PROBLEMS OF JUMPING TYPE

We refer the reader to [80, 81]. Some parts of these publications have been slightly
modified to give this collection a more uniform appearance.

5.1. Fully nonlinear elliptic equation. Let us consider the semi-linear elliptic problem

- Z Dj(a;j(x)Dju) = g(x,u) + @ inQ

e 5.1
u=0 ondf2,
where € is a bounded domain in R”, w € H~'(Q) and g : Q x R — R satisfies
fim S _ o him S g (5.2)
§—>—00 S §—>+00 S

Let us denote by (1p,) the eigenvalues of the linear operator on HO1 ()

n
utr—> — Z Dj(a,-j(x)D,-u).
i,j=1

Since 1972, this jumping problem has been widely investigated in the case when some
eigenvalue u belongs to the interval |8, o[ (see e.g. [99, 101, 125] and references therein),
starting from the pioneering paper [4] of Ambrosetti and Prodi.

On the other hand, since 1994, several efforts have been devoted to study existence of
weak solutions of the quasi-linear problem

n n
1 .
— Z Dij(a;j(x,u)Diu) + 3 Z Dgajj(x,u)DiuDju = g(x,u) + w in Q
i,j=1 i,j=1
u=0 onodf2,

(5.3)

via techniques of non-smooth critical point theory (see e.g. [8, 32, 36, 49, 138]).
In particular, a jumping problem for the previous equation has been treated in [31].
More recently, existence for the Euler’s equations of multiple integrals of calculus of vari-

ations
—div (Ve£(x,u, Vu)) + DgE(x,u,Vu) = g(x,u) + © inQ

5.4
u=0 onodQ2, 5-4)

have also been considered in [6] and in [113, 133] via techniques developed in [36]. In this
section we see how the results of [31] may be extended to the more general elliptic problem
(5.4). We shall approach the problem from a variational point of view, that is looking for
critical points for continuous functionals f : Wol’p (2) — R of type

fu) =/ch(x,u,Vu)dx—/QG(x,u)dx—(w,u).

We point out that, in general, these functionals are not even locally Lipschitzian, so that
classical critical point theory fails. Then we shall refer to non-smooth critical point theory,
In our main result (Theorem 5.1) we shall prove existence of at least two solutions of the
problem by means of a classical min-max theorem in its non-smooth version.



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 85

5.2. The main result. We assume that 2 is a bounded domain of R”, 1 < p < n, w €
WP (Q)and £ : @ x R x R” — R is measurable in x for all (s,6) € R x R" and
of class C! in (s, &) a.e. in Q. Moreover, the function £(x, s, -) is strictly convex and
foreacht € R £(x,s,t§) = |t|PL(x,s,&) forae. x € Q and for all (s5,&) € R x R”.
Furthermore, we assume that:

e There exist v > 0 and b; € R such that:
VIEI? < £(x.5.8) < b1[E]P, (5.5)

fora.e. x € Q and forall (s,&) € R xR”;
e there exist by, b3 € R such that:

|DsL(x,5.8)| < ba]”,
fora.e. x € Q and for all (s,&) € R x R" and
|V€$(X,S,§)| = b3|§|p_1, (5-6)

fora.e. x € Q and for all (s,£) € R x R”;
e there exist R > 0 and a bounded Lipschitzian function ¢ : R — [0, +o0[ such
that:

|s| > R = sDs£(x,s,8) >0, 5.7
sDsE(x,5,&) < s0'(s) VeL(x,5.8) - £, (5.3)

fora.e. x € Q and s € R and for all £ € R”. Without loss of generality, we may
take assume that ¥ (s) — ¥ ass — +£00;

e g(x,s) is a Carathéodory function and G(x,s) = fos g(x,t)dt. We assume that
there exist € L"P/@(P=D+P)(Q) and b € L"/P () such that:

g(x,9)] < a(x) +b(x)]s|?7", (5.9)
for a.e. x € Q2 and all s € R. Moreover, there exist @, § € R such that
g9 _ g 869 510

im = im
s—>—o0 |§|P~2s s—+oo |§]P72s
fora.e. x € Q.

Let us now suppose that

lim £(x,s,§) = Er_n L(x,s,8)

s—>+00
(both limits exist by (5.7)) and denote by £.0(x, &) the common value, that we shall as-
sume to be of the form a(x)|&|? with a € L°°(2). Moreover, assume that
$h = 400, En— & = VoL (¥, 51, 84) = VeLoo(x, E). (5.11)
Let

A= min{p/ Lool(x,Vu)dx :u € Wol’p(Q), / |u|? dx = 1}, (5.12)
Q Q

be the first eigenvalue of {u — —div (VgLoo(x, Vu))}.

Observe that by [6, Lemma 1.4] the first eigenfunction ¢; belongs to L°°(2) and by
[143, Theorem 1.1] is strictly positive.

Under the previous assumptions, we consider problem (5.4) in the case w = tqblp Ty

wo, with wg € W12 () and 1 € R. The following is our main result.
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Theorem 5.1. If f < A1 < « then there exist{ € R and t € R such that the problem

—div (V£ (x,u, Vu)) + Dy L(x,u, Vu) = g(x,u) + t¢? ™ + wo  in Q2

5.13
u=0 ondQ2 ( )

has at least two weak solutions in WOI’P () for t > 1 and no solutions fort < t.

This result extends [31, Corollary 2.3] dealing with the case p = 2 and
1 n
£(x.5.8) =5 > aij(x.9)EE — G(x.9)
i,j=1

fora.e. x € Q and for all (s,&) € R x R".

In this particular case, existence of at least three solutions has been recently proved in
[34] assuming 8 < p; and o > W, where 1 and ., are the first and second eigenvalue
of the operator

n
ur- — Z Dj(A,-jDiu).

i,j=1
In our general setting we only have existence of the first eigenvalue A and it is not clear
how to define higher order eigenvalues A,, A3, .... Therefore in our case the comparison

of o and B with such eigenvalues is still not possible.

5.3. The concrete Palais-Smale condition. The following result is one of the main tool
of the section.

Lemma 5.2. Let (uy) be a sequence in Wol’p(Q) and (op) €10, +o0[ with g, — +00 be

such that "
vy = by oin Wol’p(Q).
Qh
Let yp — y in L"P(Q) with |yp(x)| < c(x) for some ¢ € L"P (). Moreover; let
pwn — o in L"7OTPQ) 8, 8 inWP(Q)

be such that for each ¢ € C2°(2):

/Vgéﬁ(x,uh,Vuh)-Vgodx+[ DsE(x,up, Vup)p dx
2 Q@ (5.14)

= [ sl g dx +0f™ [ uap dx + @)
Then, the following facts hold:
(a) (vyp) is strongly convergent to v in Wol’p (RQ);
(b) (yn|va|P~2vy) is strongly convergent to y |v|P~2v in WP (Q);
(c) there exist %, n= € L%°() such that:
) i >0
Jro < [0 {=0) i
exp{ MR} ifv(x) <0,
exp{—0} < nt(x) < exp{MR} ifv(x)=0,
and
_ exp {—19} ifv(x) <0
exp{ MR} ifv(x)>0,
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exp{—0} < n7(x) < exp{MR} ifv(x)=0,
and such that for every ¢ € Wol’p(Q) with ¢ > 0:

/n+Vs$oo(x,Vv)-V<ﬂde/ J/n+|vl”‘2v¢)dX+f un*dx,
Q Q Q

/n*VESCOO(x,Vv)-V(pde/ ynflvlpfzvgodx—i-/ un edx.
Q Q Q

Proof. Arguing as in [31, Lemma 3.1], (») immediately follows. Let us now prove (a). Up
to a subsequence, vy (x) — v(x) for a.e. x € Q. Consider now the function { : R — R
defined by

Ms if0<s <R

MR ifs> R
_ = 5.15
SO = s it —R<s<0 515

MR ifs <—R,
where M € R is such that fora.e. x € 2, eachs e Rand £ ¢ R”
|DyE(x,5,8)| < MVeL(x,s,8)-&. (5.16)

By [133, Proposition 3.1], we may choose in (5.14) the functions ¢ = vy exp{{(up)}
yielding

/QVgéC(x,uh,Vuh)-Vvh exp{l(up)}dx
+ /Q (Do (x.up, Vug) + & (un) Ve LCx . Vaey) - Vuy] v exp(& (up)} dx

= /Q)’h|uh|p_2“hvh exp{¢(up)} dx +Qf_1/9uhvh exp{¢(up)}dx
+ (8, v exp{8(un)}).
Therefore, taking into account conditions (5.7) and (5.16), we have

! /Q Ve (x. tp, Vo) - Vop exple (un)} dx

<! /Q yalval? exp{&up)} dx + o~ /Q svn exp{ (up)} dx
+ (8n, v expiC(up)}) .

After division by Q;; - using the hypotheses on yy, (; and &5, we obtain

lim sup/ Ve (x,up, Vg) - Vopexp{¢(up)} dx
h Q

(5.17)
< exp{MR} (/ y|v|? dx + / Ho dx) .
Q Q
Now, let us consider the function ¢y : R — R given by
v(s) ifs>0
Bi(s) =3 Ms if—R<s=<0 (5.18)

—MR ifs <—R,
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with ¢ satisfying (5.8). Considering in (5.14) the functions (v A k) exp{—1; (u;)} with
k € N, we obtain

f Ve (x,up, Vuy) - V(T Ak)exp{—>91(up)} dx
Q

_I_
—1
o

x (v A k) exp{—D (up)} dx

- /Q ylolP~2un (v A &) expl—t (up)} dx + /Q s (0™ A K) expl—D; (up)} dx

/Q [DsE(x, up, Vup) — 0 (up) Vel (X, up, Vup) - Vuy|

+ Qh% (5;,, Wt Ak) exp{—z?l(u;,)}).

(5.19)
By (5.7), (5.8) and (5.16) it results that for each 7 € N

[DyL(x,up, Vup) — O (up)VeL (X, up, Vup) - Vup | (0F A k) exp{—d (up)} < 0.

Taking into account assumptions (5.11) and (5.6), we may apply [54, Theorem 5] and
deduce that

ae. inQ\{v=0}: Vuu(x) > Vou(x).
Being uy(x) — 400 a.e. in Q \ {v = 0}, again recalling (5.11), we have
ae. inQ\{v=0}: Ve€(x,up(x), Vop(x)) = VeLoo(x, Vo(x)).
By combining this pointwise convergence with (5.6), we obtain
Vet (x,up, Vop) = Veloo(x, Vv)  in L?(Q). (5.20)
Therefore, for each k € N we have
li}rln Ve (x,up, Voy) - VT Ak)exp{—=0(up)}
= VeLoolx, Vv) - V(0 A k) exp{—0} .
strongly in L'(Q),
lizn(er A k) exp{—01(up)} = (v A k)exp{—0},

weakly in W, *? (), using (b)

lim yalonl P op (™ A K) exp{=01(us)} = y[v|?v(F A k) exp{=9},

strongly in L' () and
1

=1 (" A k) exp{=01(up)} =0,
O

lim
h
weakly in Wol’p (R2). Therefore, letting i — 400 in (5.19), for each k € N we get
/ VeLoolx, Vv) - V(v A k) exp{—1} dx
Q

Z/ y|v|p72v(v+Ak)exp{—g}dx+[ u@t A k)exp{—9}dx.
Q Q
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Finally, if we let k — + o0, after division by exp{—1}, we have

/QVg:Coo(x,Vv+)-Vv+ dx Z/Q)/Ivl"’*z(lﬁ)2 a’x+/9;w+ dx. (5.21)
Analogously, if we define a function ¥, : R — R by
d(s) ifs<0
hs) =3 —-Ms if0<s=<R
—MR ifs> R,
and consider in (5.14) the test functions (v~ A k) exp{—D,(u;,)} with k € N, we obtain
/QVEQCOO()C,VU) -VuvTdx < —/Q Y|P 2(w)? dx + /Q uv - dx. (5.22)
Thus, combining (5.21) and (5.22) yields
/QVSCECOO(X,VU) -Vvdx > /Q yv|? dx + /Q uudx. (5.23)

Finally, putting together (5.17) and (5.23), we conclude

limsup/ Ve (x,up, Vop) - Vg expil(up)} dx
h Q

< exp{MR}/ Vel oo(x,Vv) - Vodx.
Q
In particular, by Fatou’s Lemma, it results

exp{MR}/ Vedoo(x, Vv) - Vv dx

Q

< lin}linf/ VeL(x,up, Vop) - Vugexpi¢(up)} dx
Q

< exp{MR}/ VeLoo(x, V) - Vodx;
Q

namely,

Ve (x,up, Voy) - Vopexp{§(up)} — exp{M R} Ve Loo(x, V) - V.
L'(2). Therefore, since v|Vvy|? < VeL(x,up, Vup) - Vv exp{¢(uy)}, again thanks to
Fatou’s Lemma, we conclude that

limsup/ [V, |? dx 5/ |[Vu|? dx,
h Q Q

and the proof of (a) is concluded.
Let us now prove assertion (c¢). Up to a subsequence, exp{—291 (u;,)} weakly* converges
in L°°(R2) to some n*. Of course, we have

9% if >0
i) = exp{ } 1 v(x)
exp{ MR} ifv(x) <0,
exp{—0} < nt(x) < exp{ MR} if v(x) = 0.
Then, let us consider in (5.14) as test functions:

pexp{—t1(up)}, ¢ € CE(RQ), ¢=>0.
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Whence, like in the previous argument, we obtain

/Q Nt VeLoo(x, Vv) - Vo dx > /Q yotvP 2vp dx + /;z untodx,
for any positive ¢ € WOI’IJ (£2). Similarly, by means of the test functions

pexp{—th(un)}. ¢ € CF(RQ). ¢ =0,

we get for any positive ¢ € W, 7 (R2)

/;2 N~ Ve€oo(x, Vv) - Vo dx < /;2 Yo~ |v|P 2 dx + /;2 un- ¢ dx,
where 1~ is the weak™ limit of some subsequence of exp{—1, (uz)}. O

Consider now
go(x,8) = g(x,5) = BIs|” 2T +als|P7257, Golx,s) = /Osgo(X»f)dT.

Of course, gy is a Carathéodory function satisfying for a.e. x € Q2 and forall s € R

go(x.5) _ 0, |2o(x,s)| < a(x)+b(x)|s|P",

m
|s|—o00 |S|p_2S

with b € L"/» (£2). Since we are interested in weak solutions u € WOI’IJ (2) of the equa-
tions
—div (Vgéﬁ(x, u, Vu)) + DyL(x,u,Vu) = g(x,u) + npf—l ¥ wo.

let us define the associated functional f; : Wol’p (R2) — R, by setting

fi(u) = / £(x,u, Vi) dx — é[ Wr)P dx — 3/ W™)? dx

Q P Ja pJe
_/ Go(x,u)dx — |t|p_2t/ ¢f7_1u dx — (wo, u).
Q Q

Lemma 5.3. Let (uj) a sequence in Wol’p () and oy, €0, +o0[ with o5, — +00. Assume
that the sequence (Z—Z) is bounded in Wol’p (). Then

go(x, up) Go(x, up)

np’
M0 in Latr (Q), .
oy ! Qh

—0 in LY(Q).
For the proof of the above lemma, argue as in [31, Lemma 3.3]. We now recall from
[133] a compactness property of (CPS).-sequences.
Theorem 5.4. Let (uy,) be a bounded sequence in WO1 P (Q) and set
(wp, v) = / VeL(x,up, Vuy) - Vodx + / DsE(x,up, Vup)vdx, (5.24)
Q Q
Sforall v € CX(R2). If (wy) is strongly convergent to some w in WP (Q), then (up)
admits a strongly convergent subsequence in WO1 2(Q).
For the proof of the above theorem, see [133, Theorem 3.4].

Lemma 5.5. For each c,t € R the following assertions are equivalent:
(a) f; satisfies the (CPS). condition;
(b) every (CPS).-sequence for f; is bounded in Wol’p ().
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Proof. (a) = (b). Itis trivial. (b) = (a). Let (up) be a (CPS).-sequence for f;. Since
(up,) is bounded in WOI’P (2), and the map

u+— g(x,u) +t<]b]p_1 + wg ,

is completely continuous by (5.9), up to a subsequence (g (x, uy) +t¢f’ ! +wy) is strongly

i

convergent in Lty (), hence in W12 (Q). U
We now come to one of the main tool of this section.

Theorem 5.6. Let c,t € R. Then f; satisfies the (CPS). condition.

Proof. If (up) is a (CPS)-sequence for f;, we have f;(uy) — c and forall v € C§°(2):

/Vgcf(x,uh,Vuh)'Vvdx—l-/ Dy (x,up, Vup)vdx
Q Q

—/3](u;l')p_lvdx—l—a/(u,:)P_lvdx—/ go(x,uh)vdx—|t|p_2t/ ¢rvdx
Q Q Q Q
= <a)0+0hvv)7

where o, — 0in W12 (Q). Taking into account Theorem 5.4, by Lemma 5.5 it suffices
to show that () is bounded in Wol’p (2). Assume by contradiction that, up to a subse-
quence, ||upll1,p — +ooash — +oo and set vy = uh||u;,||l_,1p. By Lemma 5.3, we can
apply Lemma 5.2 choosing

B ifup(x)=0 B
yn(x) = {a if 1 () < 0, on = llunll1,p.

_ golx,up)

p—1’

§n = |t1P21¢1 + wo + 0.
lunlly,

Then, up to a subsequence, (v;) strongly converges to some v in WOI’IJ (2). Moreover,
putting ¢ = vT in (¢) of Lemma 5.2, we get

/ N VeLoolx, Vot) - Vol dx 5/ By~ (wh)P dx,
Q Q
hence, taking into account (5.12), we have
A1 / whH)?dx < / VeLoo(x, Vot) . Vot dx < ,6/ (vH)? dx.
Q Q Q

Since B < Ay, then v™ = 0. By using again the first inequality in (c) of Lemma 5.2, for
each ¢ > 0 we get

/ N VeLoo(x, V) - Vo dx za/ ntv|P2ve dx.
Q Q

namely, since v < 0, we have

/ VeLoo(x, V) - Vo dx za/ [v|?"2vep dx.
Q Q

In a similar way, by the second inequality in (¢) of Lemma 5.2 we get

/V;:ﬁoo(x,Vv)-V(pdxfa/ [v|P2ve dx.
Q Q
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Therefore,
/ Vedoo(x,Vv) - Vo dx = a/ [v|P"2vp dx ,
Q Q
which, in view of [95, Remark 1, pp. 161] is impossible if « differs from A;. O

5.4. Min-Max estimates. Let us introduce the “asymptotic functional” f : Wol’p (RQ) —>
R by setting

= _ﬁ RV VP Jx — =1
foo(u)—/géﬁoo(x,Vu)dx p/;z(u )P dx p/Q(u )P dx /S;d)l udx.

Then consider the functional f; : WOI’P (2) — R given by

7 — _é 2 g % =\P
ft(u)—/géli(x,tu,Vu)dx p/g(u )P dx P/;z(u )P dx

_/ Go(xatu) _/ ¢lp—1udx_ (C!)O,u>.
Q@ tF Q Pl

Theorem 5.7. The following facts hold:
(a) Assume that (1) C]0, +o00[ with t, — +00 and up, — u in Wol’p(Q). Then

1yawm;&w.

(b) Assume that (ty) CJ0, +oo[ with t, — +o00 and up, — u in Wol’p (2). Then
Jooltt) < liminf 7y, (up).
(¢) Assume that (t,) C]0, 400 with t, — 400, up — u in Wol’p(Q) and

limhsup Fonun) < foolu).

Then (uy,) strongly converges to u in Wol’p ().

Proof. (a) It is easy to prove. (b) Since uy — u in LP(S2), it is sufficient to prove that
/ Loolx,Vu)dx < lirr}linf/ E(x, tyup, Vuy) dx.
Q Q

Let us define the Carathéodory function 2 QxRxR" >R by setting

L(x,tan(s), &) if |s] <

f“”fyz{xm@f) it 5| >

(SIERSIE]

Note that £ > 0 and c%(x, s,+) is convex. Up to a subsequence we have
thup, — z ae. in Q\{u =0}, Vup — Vu in L?(Q\{u = 0}),
and
arctan(fpuy) — arctan(z)  in L?(Q\{u = 0}).
Therefore, by [86, Theorem 1] we deduce that
/ f(x, arctan(z), Vu) dx < lim inf/ fé(x, arctan(t,uy), Vuy) dx ,
Q\{u=0} h Q

\{u=0}
that implies

/ Loolx,Vu)dx = / Loolx, Vu) dx
Q Q\{u=0}
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=< liminf/ E(x, thup, Vuy) dx
h Q\{u=0}
= lirr}linf/ E(x, tyuy, Vuy) dx.
Q

Let us now prove (c¢). As above, we obtain

1 1
1iminf/ L\ x, thup, =Vuy + —Vu) dx 2/ Loolx,Vu) dx.
h Q 2 2 Q
Since we have
lim/ E(x, tyup, Vu) dx =/ Loolx, Vu) dx
h Jo Q
and
limsup/ L(x, thup, Vuy) dx S/ Loolx,Vu)dx, (5.25)
h Q Q
we get
limsup/ (£(x, thup, Vup) — £(x, thup, Vu)) dx < 0.
h Q
On the other hand, the strict convexity implies that for each 7 € N
1 1 1 1 1
ch(x,thuh, Vuy) + Ei(x,thuh, Vu) — ch(x,thuh, EVuh + 5Vu> > 0.

Therefore, the previous limits yield

1 1 1 1 1
/;z {Eéﬁ(x,thuh,Vuh) + EéC(x,thuh, Vu) — Eéﬁ(x,thuh, EVuh + EVM)} dx
— 0.

In particular, up to a subsequence, we have
1 1 1 1 1
—L(x, thup, Vuy) + =L(x, thuy, Vu) — —éﬁ(x,thuh, —Vuy, + —Vu) -0,
2 2 2 2 2

a.e. in Q. It easily verified that this can be true only if

Vup(x) - Vu(x) forae. x € Q.

Then we have
1 1
—E(x, thup, Vup(x)) > —Loo(x, Vu(x)) forae. x € Q.
v v

Taking into account (5.25), we deduce

1 1
—/ E(x, thup, Vuy) dx — —/ Loolx, Vu)dx,
v Jo vJa

that by v|Vuy|? < L(x, tyup, Vuy) yields

lim/ |Vuh|1’dx=/ |Vul|? dx,
kJo Q

namely the convergence of uy, to u in Wol’p (). g

Remark 5.8. Assume that 8 < A1 < «. Then the following facts hold:
(@) foo(Pp1)($1) =0;

(b) limg——oo fio(s¢p1) = —00, where we have set ¢ = —n

-
(A —p)r—1
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Proof. (a) It is easy to prove. (b) A direct computation yields that for s < 0

)\' _
foolsgpy) = 2—2

Since & > A1, assertion (b) follows. O

Lemma 5.9. For every M > 0 there exists 0 > 0 such that for each w € Wol”7 () with
lw—1lli,p < 0 we have

/ Loolx,—Vw )dx > M/ (w™)? dx.
Q Q

For the proof of the above lemma, we argue as in [31, Lemma 4.1].

Lemma 5.10. There exists r > 0 such that
(a) foreachw € Wy " (Q), |w = illip <7 = foo(w) = foo(d1)
(b) foreachw € WP (Q), [w—¢1l1,p =7 = foolw) > foo(d1).

Proof. Letusfixau € Wol’p(Q) and define 7, :]0, +00[— R by setting 1,,() = foo(tu).
It is easy to verify that 1, assumes the minimum value:
1

Je.
M) =—(1- ;)(;)"

X

[fQ ¢f1_1u dx]ﬁ
[ o ool Vuydx — & f )P dx — % [ )7 dx]ﬁ

Moreover, a direct computation yields for each u # ¢;

Joo(¢1) < M(u) (5.26)
if and only if
_ . P
p/Qé‘ioo(x,Vu) dx > ,B/Q(qu)p dx + oz/g(u V2 dx + (A —/3)[/9(;5{” ud:cs]z%)

If we now set W = {u e W, ’p(Q) Jo &1 Py dx = 0} we obtain

W, P (2) = span(¢1) & W. (5.28)

Let us now prove that (5.27) is fulfilled in a neighborhood of E Since (5.27) is homoge-
neous of degree p, we may substitute ¢p; with ¢;. Let us first consider the case p > 2 and
B > 0. In view of (5.28), by strict convexity, there exists £, > 0 such that for any w € W

B[ @+ wtyax s Gap) [ of dx
Sﬁ/((dn W) dx 4+ Oy —/3)/ 61+ w|? dx — (i —ﬂ)ep/ wl? dx

< E” / Loole, V(s +w) ) dx + 1 =F ’3 / Loo(x. V(g1 + w)) dx

" —ﬁ)sp/Q wl? dx.
(5.29)
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On the other hand, by Lemma (5.9), for a sufficiently large M we get

aL((% +w) )P dx < %/;ziioo(x,—V(@ +w) ) dx

8 (5.30)
< £ [ ool -V w) ) d.
M Ja
for [|[w||1,, small enough. By combining (5.29) and (5.30) we obtain
B[ @ +whraxra [ @+w s Ga-p [ ofdx
@ & @ (5.31)

< p/ﬂfoo(x, V(g1 + w)dx — (O —ﬂ)ep/Q lw|? dx.

Therefore, (5.27) holds in a neighborhood of a In view of (4.4) of [95, Lemma 4.2], the
case | < p < 2 may be treated in a similar fashion. Let us now note that

/Q|¢1+w|1’dx2/gq§fdx Yw e W.

In the case 8 < 0, we have
p /Q (61 +w) )’ dx +a /ﬂ (1 +w))? dx + (g — B) /Q o7 dx

A A
< —1/ |1 +w|”dx+(ot—ﬂ)/ (1 +w))? dx + (A ——1)/ ¢ dx
2 Ja Q 27 Ja
so that we reduce to (5.31). O

Proposition 5.11. Let r > 0 as in Lemma 5.10. Then there existt € Rt and o > 0 such
that for eacht >t and w € Wol’p (Q)

lw=¢1llip =r = fiw) = fou(d1) + 0.
Proof. By contradiction, let (#;) € R and (wy) € Wol’p (2) such that #;, > h and
_ ~ — 1
lwn = @ilp = o Jo(wn) < foo@1) + 7 (532)

Up to a subsequence we have wy, — w with ||w — EH],], < r. Then, by (5.32) and (a) of
the previous Lemma we get

lim sup Fon i) = foo(@1) < foo(w). (5.33)

In view of (c) of Theorem 5.7, wy, strongly converges to w and then ||w —é;|1., = r. By
combining (5.33) with (b) of Lemma 5.10, we get a contradiction.

O

Proposition 5.12. Let o and t be as in the previous proposition. Then there exists T >
such that for each t > T there exist v;, w; € WOI’P (2) with

e —illip <r felvr) < % + foo@1), (5.34)

lwe=@illip >re fiw) <3+ foo@): (5.35)

Moreover, supgepg 17 f1(svr + (1 —s)w;) < +o0.
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Proof. We argue by contradiction. Set 7 = 7 + / and suppose that there exists (f;,) € R
with #, > 7 such that for every vy, and wy, in WOI’P(Q),

lvn, = 91llip <7 fun(0) > 5 + fool@1).
lwe, = @ilp > 1o fo(wn) > 5+ foo(@0):

Take now (z;) going strongly to ¢; in Wol’p (2). By (@) of Theorem 5.7 we have f~',h (zp) —
foo(¢1). On the other hand eventually ||z, —EHLP <rand f;,(zx) <5+ foo(h1), that
contradicts our assumptions. Recalling (b) of Remark 5.8, by arguing as in the previous
step, it is easy to prove (5.35). The last statement is straightforward. U

5.5. Proof of the main result. We now come to the proof of the main result of the section.

Proof of Theorem 5.1. From Theorem 5.6 we know that f; satisfies the (CPS), condition
for any ¢ € R. By Proposition 5.11 and Proposition 5.12 we may apply Theorem 2.9 with
uo = ¢; and obtain existence of at least two weak solutions u € Wol’p (2) of problem
(5.13) for ¢ > 7 for a suitable 7.

Let us now prove that there exists ¢ such that (5.13) has no solutions for ¢ < t. If the
assertion was false, then we could find a sequence (#;) € R with #;, — —oo and a sequence
(up) in Wy P () such that for every v € C2°(S),

[Vgé(i(x,uh,Vuh)-Vvdx—i—/ DL (x,up, Vup)vdx

Q Q

:ﬂ/(u;[)”*lvdx—a/(u;)”flvdx-l-/ go(x,up)vdx
Q Q Q

+ Ithlp_zth/ ¢>f’_1vdx + (wo, V)
Q

Let us first consider the case when, up to a subsequence, W — Oandset v, = W
WD D
By applying Lemma 5.2 with g, = |lupl|1,p, 6p = wo and
B ifup(x) =0 golx.up)  |h|P 7ty pey
)/h(x) = . = P*l P*l 1
o ifup(x) <0, lunll?,' lual?,

up to a subsequence, (vj) converges strongly to some v in Wol’p (2). Then using the same
argument as in the proof of Theorem 5.6 we get a contradiction.

Assume now that there exists M > 0 such that |uy||;,, < —Mt,. Then setting wy, =
—upt;,", wy weakly converges to some w € W, P (). By applying Lemma 5.2 with
on = —tp, 8 = wo and

B ifup(x)=0 go(x,up)  p—
X) = = —_-— R
e {a ity <0, T Ty
we have that wy, strongly converges to w in Wol’p (2). The choice of the test function
¢ = w7 gives, as in the first case, wt = 0. Arguing as in the end of the proof of
Theorem 5.6 we obtain a contradiction. 0

Remark 5.13. Even though we have only considered existence of weak solutions of (5.13),
by [6, Lemma 1.4] the weak solutions u € Wol’p (2) of (5.4) belong to L°°(£2). Then some
nice regularity results can be found in [91].
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5.6. Fully nonlinear variational inequalities. Starting from the pioneering paper of Am-
brosetti and Prodi [4], jumping problems for semi-linear elliptic equations of the type

n
— Y Dj(aij(x)Dju) = g(x.u) inQ
i,j=1
u=0 ondQ,
have been extensively studied; see e.g. [85, 99, 101, 125]. Also the case of semi-linear

variational inequalities with a situation of jumping type has been discussed in [79, 100].
Very recently, quasi-linear inequalities of the form

/;2 { i aij(x,u)DiuD;(v —u)

i,j=1

1 n
+ 7 Z Dya;j(x,u)DiuDju(v — u)} dx — / glx,u)(v—u)dx
< Q
i,j=1
> (w,v—u) Vve fg,
uekKy,
where Ky = {u € HI () : u >0 ae. inQ}, Ky = {ve Ky : (v—u) € L)} and
Ve HO1 (£2), have been considered in [78].
When # = —o0o, namely we have no obstacle and the variational inequality becomes
an equation, the problem has been also studied in [31, 34] by A. Canino and has been
extended in [80] to the case of fully nonlinear operators.

The purpose of this section is to study the more general class of nonlinear variational
inequalities of the type

/ {Vgi’,(x, u,Vu) - V(v —u) + Dy L(x,u, Vu)(v — u)} dx
Q

—/Qg(x,u)(v—u)dx (5.36)

> (w,v—u) Vv€K~,;,
ueKy.

In the main result we shall prove the existence of at least two solutions of (5.36). The
framework is the same of [80], but technical difficulties arise, mainly in the verification
of the Palais-Smale condition. This is due to the fact that such condition is proved in
[80] using in a crucial way test functions of exponential type. Such test functions are
not admissible for the variational inequality, so that a certain number of modifications is
required in particular in the proofs of Theorem 5.18 and Theorem 5.21.

5.7. The main result. In the following, €2 will denote a bounded domain of R”, 1 < p <
n, o € Wy P(Q) with 9~ € L®(Q), w € W17'(Q) and
L QxRxR" >R

is measurable in x for all (s,£) € R x R” and of class C! in (s,£) a.e. in Q. We shall
assume that £(x, s, -) is strictly convex and for each r € R

L(x,s,t&) = |t|PL(x,s,8) (5.37)

fora.e. x € Q and for all (s,&) € R x R". Furthermore, we assume that:
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e there exist v > 0 and b; € R such that
VIEIP < £(x.5.8) < b1[E]P, (5.38)

fora.e. x € Q and for all (s,£) € R xR”;
e there exist b,, b3 € R such that

|DS$(X’S’S)| E b2|§|p7 (539)
fora.e. x € Q and for all (s,&) € R x R"” and
|VeL(x,s,6)| < balg|P7", (5.40)

fora.e. x € Q and forall (s,£) e R xR”;
e there exist R > 0 and a bounded Lipschitzian function v : [R, +o0[— [0, +o00[
such that

s> R= D;£(x,5,6) >0, (5.41)
$ > R= DsL(x,5,6) <VY'(s) VeL(x,5,8) - &, (5.42)
fora.e. x €  and for all &€ € R”. We denote by ¥ the limit of ¥ (s) as s — +o0.

e g(x,s) is a Carathéodory function and G(x, s) = fos g(x, 1) dt. We assume that
there exist @ € L#-D¥p (R)and b € L (£2) such that

lg(x.9)| < alx) + b(x)|s|”~", (5.43)
for a.e. x € 2 and all s € R. Moreover, there exists @ € R such that
lim £X) _ g (5.44)

s—>4oo gP~1
forae. x € Q.

Set now
lim £(x,s,&) = £oo(x,§)
s—>—+oo

(this limit exists by (5.41)). We also assume that £, (x, -) is strictly convex for a.e. x € €.
Let us remark that we are not assuming the strict convexity uniformly in x so that such &£
is pretty general. Moreover, assume that

sp —> +00, & — & = VeL(x,sp,8p) — VeLoo(x,§), (5.45)
fora.e. x € Q. Let now
A = min {p/ Loolx, V) dx - u € WHP(Q), / |u|? dx = 1}, (5.46)
Q Q

be the first (nonlinear) eigenvalue of
u > —div (Vgéﬁoo(x, Vu)) .

Observe that by [6, Lemma 1.4] the first eigenfunction ¢ belongs to L°°(€2) and by [143,
Theorem 1.1] is strictly positive.
Our purpose is to study (5.36) when v = —t? _1¢f - namely the family of problems

/ {V,géli(x, u, Vi) - V(v — ) + DsL(x,u, Vi) (v — u)} dx
Q

—/Qg(x,u)(v—u)dx+t1’_1/9¢{’_1(v_u)dx >0 VuveKy, (5.47)

u e Ky,
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where Ky = {u € Wol’p(Q) ‘u > ae. in Q} and
Ky ={veKy:(v—u)e L®RQ))}.
Under the above assumptions, the following is our main result.

Theorem 5.14. Assume that a > Ay. Then there exists t € R such that for all t > [ the
problem (5.47) has at least two solutions.

This result extends [78, Theorem 2.1] dealing with Lagrangians of the type

n

1
L(x5.8) =5 D ay(x. )k — G(x.5)
ij=1
fora.e. x € Q and for all (s,£&) € R x R”.

In this particular case, existence of at least three solutions has been proved in [78]
assuming o > [y where ju, is the second eigenvalue of the operator

n
Ut — Z Dj(AijDiu).
i,j=1
In our general setting, since &£ is not quadratic with respect to £, we only have the
existence of the first eigenvalue A and it is not clear how to define higher order eigenvalues
A2,A3,.... Therefore in our case the comparison of @ with higher eigenvalues has no
obvious formulation.

5.8. The bounded Palais-Smale condition. In this section we shall consider the more
general variational inequalities (5.36). To this aim let us now introduce the functional
I WP () — R U {400}

Jo £Ce,u, Vu)dx — [o G(x,u)dx — (w,u) ue€ Ky

Sy = {+OO uégKy.

Definition 5.15. Let ¢ € R. A sequence (1) in Ky is said to be a concrete Palais-Smale
sequence at level ¢, ((CPS),.-sequence, for short) for f, if f(up) — ¢ and there exists a
sequence (¢p,) in W17 () such that ¢}, — 0 and

/V,;I(x,uh,Vuh)-V(v—uh)dx+/ DsE(x,up, Vup)(v—uyp) dx
Q Q

— /Q glx,up)(v—up)dx — {(w,v—uy)

> (op.v —up) Vv € Ky.

We say that [ satisfies the concrete Palais-Smale condition at level ¢, ((CPS)., for short),
if every (CPS).-sequence for f admits a strongly convergent subsequence in Wol’p ().

Theorem 5.16. Let u in Ky be such that |df |(u) < +oc. Then there exists ¢ in W 1" ()
such that ||¢||-1,p = |df|(u) and

/Vgéﬁ(x,u,Vu)-V(v—u)dx+/ DsE(x,u,Vu)(v —u)dx
Q Q

—/ gx,u)(v—u)dx — (w,v —u)
Q

> (p,v—u) VYve Kg.
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For the proof of the above theorem, we argue as in [78, Theorem 4.6].

Proposition 5.17. Let ¢ € R and assume that f satisfies the (CPS), condition. Then f
satisfies the (PS). condition.

The above result is an easy consequence of Theorem 5.16.
Let us note that by combining (5.38) with the convexity of £(x, s, -), we get

VelL(x,s, &) &> v|EF (5.48)
fora.e. x € Q and for all (s, &) € R x R". Moreover, there exists M > 0 such that
|Ds£(x,5,8)| < MVeL(x,s,8)-& (5.49)

for a.e. x € Q and for all (s, &) € R x R”.
We point out that assumption (5.41) may be strengthened without loss of generality.
Suppose that #(x) > —R for a.e. x € Q and define

£(x,s,&) s> —R

L0x.5,8) = {é@(x,—R,S) s < —R.

Such & satisfy our assumptions. On the other hand, if u satisfies
/ {Vgéz(x, u,Vu) - V(v —u) + Dsz(x, u, Vu)(v — u)} dx
Q

_/Qg(x,u)(v—u)dx+[P_1L¢f—l(v_u)dx S0 veeR, 60

u € Ky,

then u satisfies (5.47). Therefore, up to substituting &£ with é~€, we can assume that £
satisfies (5.41) for any s € R with |s] > R. (Actually £ is only locally Lipschitz in s but
one might always define fé(x, s,&) = L(x,0(s), &) for a suitable smooth function o).
Now, we want to provide in Theorem 5.19 a very useful criterion for the verification of
(CPS), condition. Let us first prove a local compactness property for (C P.S).-sequences.

Theorem 5.18. Let (uy) be a sequence in Ky and (¢p) a sequence in WP (Q) such
that (up) is bounded in Wol’p(Q), on — ¢ and

/Vgéﬁ(x,uh,Vuh)-V(v—uh)dx+[ D& (x,up, Vup)(v —uyp) dx
2 Q (5.51)

> (pp,v—uy) Vve K~,9.
Then it is possible to extract a subsequence (uy, ) strongly convergent in Wol’p ().

Proof. Up to a subsequence, (1) converges to some u weakly in Wol’p (R2), strongly in
L?(2) and a.e. in 2. Moreover, arguing as in step I of [78, Theorem 4.18] it follows that
Vup(x) > Vu(x) for ae. xeQ.

We divide the proof into several steps.
I) Let us prove that
lim sup / VeL(x, up, Vuy) - V(—uy e MU= gy
hoJ9 (5.52)
< / Vel (x,u, Vu) - V(—u")e ME=R" gy
2
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where M > 0 is defined in (5.49) and R > 0 has been introduced in hypothesis (5.41).

Consider the test functions

v=uy + é‘e_M(”"+R)+

in (5.51) where ¢ € W,"”(Q) N L*(R) and { > 0. Then
/ VS;C(X,M;,,VW,)-V;e—M(uh+R)+ dx
2

+ / (D (x. up, Vi) — MVeL(x up, Vup) - Vg + R)T|e=M@ntRT gy
> <<fh, gem MU tRT),
From (5.41) and (5.49) we deduce that
[Ds2(x, up, Vup) — MVeL(x, up, Vi) - Vi + R g M@ntRT <
so that by the Fatou’s Lemma we get
/9 Ve (x,u, Vu) - V{e_M(”+R)+ dx
+ /Q[sz(x, u, V) — MVeL(x.u, V) - V(u + R)Fee™M@HRT gy (5.53)

> (p, e MEROTY ye e WP (Q) N L¥(Q), ¢ > 0.
Now, let us consider the functions
e = neMEERT g ),
where 1 € Wol’p(Q) N L% (2) with n > 0 and ¥ € C*°(R) is such that 0 < F(s) < 1,

U = 1 on[~k, k], ¥ = 0 outside [-2k, 2k] and [}, | < ¢/k for some ¢ > 0.
Putting them in (5.53), for each kK > 1 we obtain

/ VeL(x,u, Vu) - V(i (u)) dx + / DL (x,u, Vu)ndy (u) dx
Q2 Q2

= (@) V€ Wy (@) N LP(R). 12 0.
Passing to the limit as k — +o00 we obtain

/ Vgcf(x,u,Vu)-Vndx—}-/ DL (x,u, Vu)ndx > (@, n) (5.54)
2 2

forall n € Wy*?(Q) N L%(R), n > 0. Taking n = (¥~ —u)e ME=B" e w7(Q) n
L*°(2) in (5.54) we get

/ Ve (x,u, V) -V~ —u")e MU=R" gy

2

> —/ [Dséﬁ(x,u,Vu)—MVgéﬁ(x,u,Vu).v(u_R)—] (5.55)
Q

x (07 —u)e MU gy 4 (9, (97 —uT)eMU=RT),
On the other hand, taking

v=up— (O —uy)e MR >y, 97 —uy) = u — 9~
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in (5.51) we obtain
/ Véi()ﬂ up, Vup) - V(@ — u;)e_M(”h—R)_ dx
2

+ /gz [DsE(x,up, Vup) — MVeL(x,up, Vuy) - V(uy — R)™] (5.56)
x (07 — uy e MR g
=< {gn. (07 —uy)e” M=k,
From (5.41) and (5.49) we deduce that
Dy (x,up, Vup) — MVeL(x,up, Vuy) - V(up — R)™ > 0.

From (5.56), using Fatou’s Lemma and (5.55) we obtain

lim Sup/ Ve (x, up, Vuy) - VO~ — u;)e_M(””_R)_ dx
! g (5.57)
< / Vgé@(x, u,Vu) - V@~ — uf)efM(”fR)i dx.
2

Since

lizn/ Ve (x,up, Vuy) - Ve Mun=R" g
2
= / Vel (x,u, Vu) - V9 ~e MU=B" gy

2

then from (5.57) we deduce (5.52).
IT) Let us now prove that

lim sup/ Vel (x,up, Vuy) - vu;e—M(uh—R)’dx
Q

h (5.58)

S/ Vgi(x,u,Vu)-Vu+e_M(”_R)_dx.
Q
We consider the test functions
v=uy— [(u —9F) Ak] e Mun=R" >y 4 (97 — uy)

in (5.51). By Fatou’s Lemma, we get
/ Ve(x,up, Vuy) - V(u; — ﬂ+)e—M(uh—R)— dx
Q

+ /gz [Dsii(x, up, Vup) — MVeL(x,up, Vup) - V(uy — R)_] (5.59)
X (u;:r —9F)e Mun=R" gy
= {gn. (uff — D)™ M=RT)

from which we deduce that

[DsL(x up, Vup) — MVL(x,up, Vuy) - V(uy — R | —9+)e Mn=R"
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belongs to L!(R). Using Fatou’s Lemma in (5.59) we obtain

. —M(up—R)™

hmhsup /;2 Vel (x,up, Vuy) - V(u; —9)e Mn=R" gy

= —/ [Ds&E(x,u, Vu) — MVe£(x,u,Vu)-V(u— R)~] (5.60)
Q

x (u-i- _ 19+)€_M(”_R)_dx + (w’ (u+ _ 19+)e—M(u—R)_)7
from which we also deduce that
[DsL(x,u, Vi) — MVeL(x,u,Vu) - V(u — R)™] ('t —9T)e ™ Me=R"  (561)

belongs to L!(§2). Now, taking ng = [(ut — 9+) Ak]e™™M@=B in (5.54), we have
f Ve (x,u, Vu) - V[t —9%) Ak]eME=B7 gx
2

+ /Q [Ds (x4, Vi) = MVeL(x,u, Vi) - V(u = )] (5.62)
x [ —9F) Ak] e ME=R" gy

> <<p, [t —9F) A k] e_M(”_R)7>.
Using (5.61) and passing to the limit as k — 400 in (5.62), it results

/ Ve (x.u, Vu) - V(u™ — 9 MER g
2

+ / [DsL(x,u, Vi) — MVeL(x,u,Vu) - V(u — R)™ |t — 9 )e MR~ gy
Q
> (g, (u-i- _ 19+)e—M(u—R)_).

(5.63)
Combining (5.63) with (5.60) we obtain

limsup/ Ve (x,up, Vuy) - V(u;‘ — 9T Mun=R)" gy
"o (5.64)
< / Vel (x,u, Vu) - V(u™ — 9T)e Mu=B" gy
2

Since
li}fn/ VeL(x,up, Vuy) - Vte Mun=R" gy
Q
= / VelL(x,u, Vu) - Vte Mu—R)~ gy
2

from (5.64) we deduce (5.58).
IIT) Let us prove that uy — u strongly in Wol’p (£2). We claim that

limsup/ Ve (x,up, Vuy) - Vupe Mun=R" gy
h 2

< / VeL(x,u, Vu) - Vue ME=R™ gy,
2
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In fact using (5.52) and (5.58) we get

limsup/ Ve (x,up, Vuy) - Vuye MR~ gy
2

h
<Ilim sup/ VeL(x, up, Vup) - Vu;e—M(uh—R)’ dx
hooarim= (5.65)
+ limsup/ Ve (x, up, Vuy) - V(_u;)e—M(uh_R)_ dx
h Qn{u, <0}
< / VeL(x,u, Vu) - Vue ME=R™ g
Q
From (5.65) using Fatou’s Lemma we get
li}lﬂ/ VeL(x, up, Vup) - Vupe MR dx
Q
= / Vel (x,u,Vu) - Vue Mu=R)™ gy
Q
Therefore, since by (5.48) we have
vexp{—M (R + [0 loo)}|Vun|? < Ve (x,up, Vuy) - Vupe Mun—R~
It follows that
lim/ |[Vuy|? dx = / |Vul|? dx,
h Jo o
namely the strong convergence of () to u in Wol’p (). O

Theorem 5.19. For every ¢ € R the following assertions are equivalent:
(a) f satisfies the (CPS). condition;
(b) every (CPS).-sequence for f is bounded in Wol’p (R2).

Proof. Since the map {u — g(x,u)} is completely continuous from Wol’f’J (Q)to L nt (),
the proof goes like [78, Theorem 4.37]. O

5.9. The Palais-Smale condition. Let us now set
S
f0(x.5) = g(x.) ~aGHP ™ Golx.s) = [ g0
0

Of course, gy is a Carathéodory function satisfying

golx.9) _ lgo(x.9)| < a(x) + b(x)|s|”~",

lim

s—>+oo sP~1

forae x € Qandall s € R where ¢ € L7175 (Q2) and b € L7 (). Then (5.47) is
equivalent to finding u € Ky such that

/Vgéﬁ(x,u,Vu)-V(v—u)dx—k/ Dy E(x,u, Vu)(v —u) dx
Q 2

—oe/ @hHP v —u)dx — / go(x,u)(v —u)dx + 1P~} / ¢f771(v —u)dx >0
Q2 2 Q2
forall v € K. Let us define the functional f : Wol’p(Q) — R U {400} by setting

Jo £(x,u, Vu) — %fg ut? — [ Go(x,u) + P71 [o lp_lu ifue Ky

Jy = {+oo ifud Kp.
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In view of Theorem 5.16, any critical point of f is a weak solutions of (P;). Let us
introduce a new functional f; : Wol’p () - R U {400} by setting for each 1 > 0

fwy = VetV =5 o wt? — L[ Golx,tu) + o 87 u ifu e K,
too ifud K,

where we have set
K, = {u € Wol’p(Q) ttu>19 ae.in Q}
From Theorem 5.16 it follows that if u is a critical point of f; then fu satisfies (5.47).

Lemma 5.20. Let (uy) a sequence in Wol’p (R) and g5, <J0, +o0[ with o), — +00. As-

sume that the sequence (Z—”z) is bounded in Wol’p (R2). Then

_np’_ G
go(x,up) S0 in LA (@), o(x, up)
p—1 p

oy oy

— 0 in LY(R).

To prove the above lemma, we argue as in [31, Lemma 3.3]. In view of (5.48) and (5.39),
we can extend ¥ to [N, +oo[ where N is such that |9~ |looc < N, so that assumption
(5.42) becomes

s> =N = Dg&(x,5,8) < Y'(s) Ve L(x,s,£) - &. (5.66)
Theorem 5.21. Leta > Ay, ¢ € R and let (uy) in Ky be a (CPS)-sequence for f. Then
(up) is bounded in Wol’p(Q).

Proof. By Definition 5.15, there exists a sequence (¢y) in WL (Q) with o — 0 and
/ VeL(x,up, Vup) - V(v —uy) dx + / DsE(x,up, Vup)(v —up) dx
2 2

—aL(u;)p_l(v—uh)dx—fggo(x,uh)(v—uh)dx—i—tp_l/gqbf’_l(v—uh)dx

> (pn,v—uy) VYve Ky :(v—uy) € L®(Q).
(5.67)
We set now 0, = |lup|1,p, and suppose by contradiction that o, — +oo. If we set

zj = 0}, 'up, up to a subsequence, zj converges to some z weakly in Wy P (Q), strongly
in LP(€2) and a.e. in 2. Note that z > 0 a.e. in Q.

We shall divide the proof into several steps.
I) We firstly prove that

/ Vedloo(x,Vz) - Vzdx > a/ zP dx. (5.68)
2 2

Consider the test functions v = uy + (z A k) exp{—y¥(up)}, where v is the function
defined in (5.42). Putting such v in (5.67) and dividing by Q}’; -1 , we obtain

/ Ve (x,up, Vzp) - V(z ANk)exp{—v(up)} dx
2

+

- /Q [Dy£0x, wn, Vi) — ' (un)VeLx, un, Viay) - Vg
Oy

X (z A k) exp{—=v (up)ydx
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> o f (57 (2 A k) exp =y (up)} dix + / S008 1) (- ey exp 1 (un)} dx
2 Q

h

T 1

=0t [ B AR exp =g )} i+l AR exp -y )
2 Qh Qh

Observe now that the first term

/ Ve (x,up, Vzp) - V(z Ak)exp{—y(up)} dx
2

passes to the limit, yielding

/g Vedoo(x,Vz) - V(z Ak)exp {(—y}dx.
Indeed, by taking into account assumptions (5.45) and (5.40), we may apply [54, Theorem
5] and deduce that, up to a subsequence,
ae. inQ\{z=0}: Vz;(x) > Vz(x).
Since of course u;(x) — +oo a.e. in Q \ {z = 0}, again recalling (5.45), we have
ae. inQ\{z=0}: VeL(x,up(x), Vzp(x)) = VeLoo(x, Vz(x)).
Since by (5.40) the sequence (VeL(x, up(x), Vz(x))) is bounded in L?' (), the asser-

tion follows. Note also that the term

—=1{@n, (2 A k) exp =y (un)}) ,
Oy
goesto 0 evenif | < p < 2. Indeed, in this case, one could use the Cerami-Palais-Smale
condition, which yields os¢, — 0 in Wo_l’p/(Q).
Now, by (5.66) we have

Dy (x,up, Vup) — ¥ (up)VeL(x,up, Vuy) - Vuy <0,

then, passing to the limit as # — 400, we get

/ VeLoo(x,Vz) - V(z Ak)exp {(—y)dx > a / 2PNz A k) exp{—y} dx.
2 2

Passing to the limit as k — +o00, we obtain (5.68).

II) Let us prove that z; — z strongly in Wol’p (£2), so that of course ||z||1,, = 1. Consider
the function ¢ : [ R, +00[— R defined by

MR ifs >R
= - 5.69
¢(s) { Ms if|s| <R ( )
where M € R is such that for a.e. x € 2, eachs € Rand § € R”
|DsE(x,5,8)| < MVe&L(x,s,§)-&.

If we choose the test functions

v =y~ % exp( (up))

in (5.67), we have

| Ve, ) s = ) expls )}
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+ /Q [Dy (e tn. Vien) + & ) Ve (e un. Vien) - V] (up — 9) exple up)} dx
<q [Q ()P (wp — 9) exp{E (up)} dix + /ﬂ 20(r. ) (up — B) expiE (up)} dx

=77 [ 9 = 9) explE ) dx + (gn. (= 9) explE )
Note that
[Dséﬁ(x, up, Vup) + ' (up) Ve L (x, up, Vuy) - Vuh] (up, — ) > 0.

Therefore, after division by QZ we get
s
/gz Ve (x,up, Vzp) - V(zh — Q_h) exp{l(up)}dx

s
<q /Q 7™ e = =) expli () d

s
s | o) = ) expieunyax
! U
/ o7 e o) explE )} + = (o0 (21— ) expigunn)
h
which ylelds

lim sup/ Vel (x,up, Vzp) - Vzpexp{l(up)tdx < o exp{MR}/ zPdx.  (5.70)
h Q Q
By combining (5.70) with (5.68) we get

limsup/ VeL(x,up, Vzp) - Vzyexp{l(up)} dx
h Q

< exp{MR}/ Veloo(x,Vz) - Vzdx
Q
In particular, by Fatou’s Lemma, it results
exp{MR}/ Veloo(x,Vz) - Vzdx
Q

< lirr;linf/ Ve (x,up, Vzp) - Vzyexp{l(up)} dx
Q

<lim sup/ VeL(x,up, Vzp) - Vzyexpi(up)} dx
h Q

< exp{MR}/ VeLoo(x,Vz) - Vzdx,
Q
namely, we get
/ Ve (x,up, Vzp) - Vzpexp{C(up)} dx — [ exp{M R} Ve L oo(x,Vz) - Vz dx.
Q Q

Therefore, since

vexp{—MR}|Vzy|? < Ve (x,up, Vzp) - Vzpexp{C(up)},
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thanks to the generalized Lebesgue’s theorem, we conclude that

lim/ |Vz;,|1’dx=/ |Vz|? dx,
ko Jo Q

and z;, converges to z in Wol’p ().

IIT) Let us consider the test functions v = uy + @ exp {—y¥ (u;)} such that ¢ in Wol’p N
L*°(2) and ¢ > 0. Taking such v in (5.67) and dividing by Qf_l we obtain

|| Ve Va0 - Vexp i} d

1
p—1

+ [Q [Ds£(x.up. Vup) — ' (up) Ve L (x, up, Vup) - Vup | @ exp {— (up)} dx

9y
> o /ﬂ ()P g oxp =y (up)} dx + /Q %«)exp{—w(umdx

h
p—1 1
— /9 B exp =y )} dx + — (gn 0 exp (= (un)}):

— —1
o o

Note that, since by step Il we have z;, — z in Wol’p (R2), the term

/g Ve (x,up, Vzp) - Vo exp{—y(up)} dx

passes to the limit, yielding

/ VeLoo(x, Vz) - Vg exp {—y} dx.
2
By means of (5.66), we have
DyE(x,up, Vup) — ' (up) Ve (x, up, Vuy) - Vuy, <0,

then passing to the limit as i1 — +00, we obtain
/9 VedLoo(x,Vz) - Voexp {(—yldx —a /9 P pexp{—ytdx >0,
for each ¢ € Wol’p N L°°(2) with ¢ > 0 which yields
/Q VeLoolx,Vz) - Vo dx > a /9 2P~y dx (5.71)

for each ¢ € W, *?(Q) with ¢ > 0.
In a similar fashion, considering in (5.67) the admissible test functions
zpn —V/on

V=up— ((p A W) exp(¥ (un))

with ¢ € Wol’p N L°°(2) and ¢ > 0 and dividing by Q,f_l , recalling that z;, — z strongly,
we get

/Vgcfoo(x,Vz)-V[gp/\ Z_]dxfot/ z”_l[go/\
Q exp ¥ Q

z

exXp J

] dx,
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foreach ¢ € Wol’p N L*°(2) with ¢ > 0. Actually this holds for any ¢ € Wol’p (2) with
¢ > 0. By substituting ¢ with ¢ with > 0 we obtain

/ Vefool(x,Vz) - V[p A : —]dx < a/ 27 o A : —|dx.
Q texpy 2 texpy
Letting t — 400, and taking into account (5.71), it results
/ Vedoo(x,Vz) - Vodx = oc/ 2Py dx (5.72)
Q Q

for each ¢ € Wol’p(Q) with ¢ > 0. Clearly (5.72) holds for any ¢ € Wol’p(SZ), so that
z is a positive eigenfunction related to «. This is a contradiction by [95, Remark 1, pp.
161]. O

Theorem 5.22. Letc € R, @ > Ay and t > 0. Then f; satisfies the (PS).-condition.

Proof. Since f;(u) = ! 't(i,”), it is sufficient to combine Theorem 5.21, Theorem 5.19 and
Proposition 5.17. 0

5.10. Min-Max estimates. Let us first introduce the “asymptotic functional” f : Wol’p (Q) —

R U {+o0} by setting

Foott) = {fgcfoo(x,vu)dx—%fgul’dwrfg Pludx ifu e Koo
o0 -
—+00

ifud Koo

where
Koo = {u € Wol’p(Q) cu>0 ae. in Q}

Proposition 5.23. There exist r > 0, o > 0 such that
(a) foreveryu € Wol’p(Q) with 0 < ||u|l1,p < r then foo(u) > 0;
(b) foreveryu € Wol’p(Q) with ||ull1,p = r then foo(u) > o > 0.

Proof. Let us consider the weakly closed set
1
K* ={u € Koo :/ Loo(x, Vi) dx — ﬁ/ uf dx < —/ Loo(x, Vu)dx}.
Q rJe 2 Ja

In K \ K* the statements are evident. On the other hand, it is easy to see that

inf{/ vpPNdx v e K*, vl = 1} =e>0
Q
arguing by contradiction. Therefore for each u € K* we have

foow)=/onou,vmdx—%[Qupdwfggbf”udxzc||u||f,,,+s||u||1,,,

where ¢ € R is a suitable constant. Thus the statements follow. O

Proposition 5.24. Let r > 0 be as in the Proposition 5.23. Then there existt > 0, ¢/ > 0
such that for every t > t and for every u € Wol’p(Q) with ||u||1,p = r, then fi(u) > o’.

Proof. By contradiction, we can find two sequences (f;) C R and (up) C WOI’P (2) such
that #, > hforeach h € N, |luy|1,p = r and f;, (up) < % Up to a subsequence, (i)
weakly converges in Wol’p (2) to some u € K. Using (b) of [80, Theorem 5], it follows
that

Soolta) = Timinf /i, (up) < 0.
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By (@) of Proposition 5.23, we have u = 0. On the other hand, since
limsup fz, (up) <0 = foolu),
h

using (c) of [80, Theorem 5] we deduce that (uj) strongly converges to u in Wol’p (),
namely ||u||1,, = r. This is impossible. O
Proposition 5.25. Let o', as in Proposition 5.24. Then there exists T > { such that
for every t > T there exist v;,w; € Wol’p(Q) such that ||ve|l1,p < 1, llwell1,p > 7,
fr(vy) < "7/ and fy(wy) < "7/ Moreover we have
sup{ fr (1 —s)vs +swy) : 0 <5 <1} < 400.

Proof. We argue by contradiction. We set 7 = 7 + / and suppose that there exists (¢;) such
that 7, > h+7 and such that for every vy, , wy, in Wy 2 (@) with [|vg, [l1,p < 7, e, 1,5 >
ritresults fz, (vs,) > "7/ and f;, (wy,) > "7/ It is easy to prove that there exists a sequence
(up) in Ky, which strongly converges to 0 in Wol’p (2) and therefore |luy||;,, < r and
S, (Ug,) = "7/ eventually as i1 — 4-o00. This contradicts our assumptions. In a similar way
one can prove the statement for w;, while the last statement is straightforward. O

5.11. Proof of the main result.

Proof of Theorem 5.14. By combining Theorem 5.22, propositions 5.24 and 5.25 we can
apply Theorem 2.9 and deduce the assertion. d
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6. PROBLEMS WITH LOSS OF COMPACTNESS

The material in this section comes from [128, 131, 73, 108], to which refer the reader.
Some parts of these publications have been slightly modified to give this collection a more
uniform appearance.

6.1. Positive entire solutions for fully nonlinear problems. In the last few years there
has been a growing interest in the study of positive solutions to variational quasi-linear
equations in unbounded domains of R”, since these problems are involved in various
branches of mathematical physics (see [20]). Since 1988, quasi-linear elliptic equations
of the form

—div(p(Vu)) = g(x,u) inR", (6.1)

have been extensively treated, among the others, in [14, 45, 69, 94, 145] by means of a
combination of topological and variational techniques. Moreover, existence of a positive
solution u € H'(R") for the more general equation

n n
1
— Z Dij(a;j(x,u)Dju) + 3 Z Dgaij(x,u)DiuDju + b(x)u = g(x,u) inR”",
i,j=1 i,j=1

behaving asymptotically (|x| — 4o00) like the problem
—Au+ru=u?"" inR",

for some suitable A > 0 and ¢ > 2, has been firstly studied in 1996 in [48] via techniques
of non-smooth critical point theory. On the other hand, more recently, in a bounded domain
Q of R” some existence results for fully nonlinear problems of the type

—div (VeL(x,u, Vu)) + Ds£(x,u, Vu) = g(x,u) inQ

6.2
u=0 onoaf2, 6.2)

have been established in [6, 113, 133]. The goal of this section is to prove existence of a
nontrivial positive solution in W17 (R") for the nonlinear elliptic equation

—div (VgL (x,u, Vu)) + Dy L(x,u, Vu) + b(x)|ulP2u = g(x,u) inR", (6.3)

behaving asymptotically like the p-Laplacian problem
—div (|Vu|P_2Vu) + Au|P?u =ud"! inR”,

for some suitable A > 0 and ¢ > p. In other words, equation (6.3) tends to regularize as
|x| — +oo0 together with its associated functional f : W1-?(R") — R

f(u) =/ L(x,u,Vu)dx + l/ b(x)|ul? dx—/ G(x,u)dx. (6.4)
R” D Jrn R"

Since in general f is continuous but not even locally Lipschitzian, unless &£ does not
depend on u or the growth conditions on £ are very restrictive, we shall refer to the non-
smooth critical point theory developed in [36, 50, 58, 87, 88] and we shall follow the
approach of [48].

We assume that 1 < p < n, the function £ : R” x R x R” — R is measurable in x for
all (s5,£) € R x R”, of class C! in (s, &) for a.e. x € R” and £(x, s, -) is strictly convex
and homogeneous of degree p. Take b € L>®(R") with b < b(x) < b for a.e. x € R” for
some b, b > 0. We shall assume the following:
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e There exists v > 0 such that
1
v[E]P <= £(x,5.8) < ;ISI”, (6.5)
fora.e. x € R” and for all (s,£) e R x R”;
e there exists ¢; > 0 such that:
|DyL(x,5.8)| < c1l€]”, (6.6)
fora.e. x € R” and for all (s,£&) € R x R”.
Moreover, there exist ¢; > 0 and @ € L?' (R") such that
p*
Vet (x,5.8)] < ax) + eals| 7 + 21771, 6.7)

fora.e. x € R” and for all (s,£) € R x R”;
e there exists R > 0 such that

s> R = D;£(x,s5,8)s >0, (6.8)

for a.e. x € R” and for all (s,£&) € R x R”.
e uniformlyins € Rand £, 7 € R” with |§] < 1and |n| <1

lim VeL(x,s5,8)-n= |E|P2%E -y, (6.9)
|x]—+o00
lim Dyf(x,s,&)s =0, (6.10)
[x]|—=>+o00
lim b(x) =4, (6.11)
[x|—>+o00

for some A > 0 and with b(x) < A fora.e. x € R".
e G :R" xR — R is a Carathéodory function, G(x, s) = fos g(x,t)dt and there
exist § > 0 and ¢ > p such that

s>0=0<qgG(x,s) < g(x,s)s, (6.12)
(¢ — p)L(x,s,8) — DsL(x,5,8)s = BIE|”, (6.13)

for a.e. x € R” and for all (s, &) € R x R”. Moreover there exist o € |p, p*[ and
¢ > 0 such that:

lg(x, )] < d(x) +cls|”", (6.14)
fora.e. x € R" and all s > 0, where d € L”(R") withr € [%, p/[.
e Also
ghes) (6.15)
|x|>+o0 971
uniformly in s > 0 and
G )
x5) _ o, (6.16)
|s|—0 |S|p

uniformly in x € R” and g(x,s) > s¢~! foreach s > 0.

Under the above assumptions, the following is our main result.
Theorem 6.1. The Euler’s equation of f
—div (Vgéﬁ(x, u, Vu)) + DyL(x,u,Vu) + blu|P>u = g(x,u) inR" 6.17)

admits at least one nontrivial positive solution u € W7 (R").
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This result extends to a more general setting [48, Theorem 2] dealing with the case

n

E(x,s,§) = % Z ajj(x, )&,

ij=1

and Theorem 2.1 of [45] involving integrands of the type:

£(x.8) = %a(x)w,

where a € L®(R) and 1 < p < n. Let us remark that we assume (6.8) for large values of
s, while in [48] it was supposed that for a.e. x € R” and all £ € R”

n
VseR: Z sDsa;j(x,5)&& > 0.
ij=1
This assumption has been widely considered in literature, not only in studying existence
but also to ensure local boundedness of weak solutions (see e.g. [6]).

Condition (6.13) has been already used in [6, 113, 133] and seems to be a natural ex-
tension of what happens in the quasi-linear case [36].

‘We point out that in a bounded domain, conditions (6.12) and (6.13) may be assumed for
large values of s (see e.g. [133]). Finally (6.9), (6.10), (6.11) and (6.15) fix the asymptotic
behavior of (6.3). By (6.9) and (6.10) there exist two maps €1 : R” x R x R” x R” — R
and &, : R” x R x R” — R such that

Ved(x,5,6)-n=[E]P 26 - n+er(x.s,EIEP | (6.18)
Dy£(x,5,E)s = ex(x,5,6)[£] (6.19)

where g1(x,s,&,n) — 0 and &;(x,s,&) — 0 as |x| - 400 uniformly in s € R and
& neR™

6.2. The concrete Palais-Smale condition. Let us now set for a.e. x € R” and for all
(s,6) e R xR™:

~ _JE(x,s,8) ifs=0 _Jelx,s) ifs=0
Lx.5.8) = {;@(x,o,g) ifs <o S0 = {o ifs <0. (6:20)

We define a modified functional f : WLP(R™) — R by setting
- ~ 1 -
fu) = / E(x,u,Vu)dx + —/ b(x)|ul? dx —/ G(x,u)dx. (6.21)
R D Jrn R”?

Then the Euler’s equation of f is given by :
—div (ngé(x, u, Vu)) 4 DyE(x,u, Vi) + b()|ulP"2u = (x,u) inR". (6.22)

Lemma 6.2. If u € WLP(R") is a solution of (6.22), then u is a positive solution of
(6.17).
Proof. Let Q : R — R the Lipschitz map defined by:
0 ifs>0
O@s)=1qs if —1=<s=<0
-1 ifs <—I.
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Testing f’(u) with Q(u) € WP N L>°(R") and taking into account (6.20) we have:
0= /" w)(Qw))
= / ng(x, u,Vu) -VQ(u) dx
Ril

+/ Dsfé(x,u,Vu)Q(u)dx+/ b(x)|u|p_2uQ(u)dx—[ glx,u)Qu) dx
R7 R” R”

:/ VeL(x,0,Vu) - Vudx +/ Dsfé(x,u,Vu)Q(u) dx
{—1<u<0} {u<0}

72 _
+/Rnb(x)|u|p uQ(u)dx /u

{u<

o g(x,u)Q(u)dx
:/ péC(x,O,Vu)dx—}—/ b(x)|ulP"2uQu) dx
{—1<u<0} {u<0}

> b/ [u|P2uQ(u) dx > 0.
RrR"
In particular, it results Q(u#) = 0, namely u > 0. O
Therefore, without loss of generality we shall suppose that
Vs <0: g(x,5) =0, XL(x,58 =L(x,0,§)
fora.e. x € R” and all £ € R”.
Lemma 6.3. Let ¢ € R. Then each (CPS).-sequence for f is bounded in W'-? (R").

Proof. If (up) is a (CPS).-sequence for f, arguing as in [48, Lemma 2], since
. 1 .
S (un) — C—]f’(uh)(uh) =c+o(l)
as h — +o0, by (6.12) and (6.13) we get:
P -7 )4
B |Vuy|? dx + —=b lup|? dx < C
R” P R~
for some C > 0, hence the assertion. O
Let us note that there exists M > 0 such that:

|DS$(X»S’E)| fMVScf(X,S,S)S (6.23)

for a.e. x € R” and for all (s, &) € R x R”.
We now prove a local compactness property for (CPS).-sequences. In the following,
Q € R” will always denote an open and bounded subset of R”.

Theorem 6.4. Let (1) be a bounded sequence in W1-?(R") and for each v € CZ°(R")
set

(wp, v) =/ Vsi(x,uh,Vuh)-Vvdx—i—/ DL (x,up, Vup)vdx. (6.24)
RH R"

If (wy,) is strongly convergent to some w in W12 (Q) for each 2 € R”, then (uy) admits
a strongly convergent subsequence in WP (Q) for each Q € R”.
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Proof. Since (uy) is bounded in W12 (R"), we find a u in W#(R") such that, up to a
subsequence, u; — u in W# (R"). Moreover, for each Q € R” we have:

up —u in L?(Q), wup(x) - u(x) forae. x € R".

By a natural extension of [22, Theorem 2.1] to unbounded domains, we have Vuy(x) —
Vu(x) for a.e. x € R”. Then, following the blueprint of [133, Theorem 3.2] we obtain for
each v € C°(R")

(w,v) = / Ve(x,u, Vu) - Vv dx +/ DyL(x,u, Vu)vdx. (6.25)
Ril Rn

Choose now 2 € R” and fix a positive smooth cut-off function n on R” with n = 1 on 2.
Moreover, let ¢ : R — R be the function defined by

Ms if0<s <R

MR ifs >R

9 (s) = Y= (6.26)
—-Ms if —R<s<0
MR ifs <—R,

where M is as in (6.23). Since by [133, Proposition 3.1] v, = nuy exp{d (up)} are admis-
sible test functions for (6.24), we get

/R VR, Vag) - Vi expld ()} dx — (wn qun exptd wp))
+/ Ve (x,up, Vuy) - Vuy exp{d (uy)} dx
Rn

b [ s Vi) + 0" ) Ve et Vi) - Vg sy expt )}
R}‘l
= 0.
Let us observe that
Ve (x,up, Vuy) - Vup — Ve (x,u, Vu) - Vu fora.e. x € R".
Since for each 1 € N we have
[—DsE(x.up, Vup) — ' (up) Ve L (x, up, Vuy) - Vup | nuj exp{d(up)} < 0,
Fatou’s Lemma yields
limsup/ [=DsL(x, up, Vug) — ¥ (up) Ve L (x, up, Vuy) - Vuy|
h R”
X nuy exp{d (uy)} dx
< / [—Dséli(x, u, Vu) — ' (u)VeL(x,u, Vu) - Vu] nuexp{d(u)} dx.
Rn

Therefore, we conclude that

limsup/ Ve (x,up, Vuy) - Vupnexp{®(up)} dx
h Rl‘l

< lim sup {/ [—Dscf(x, up, Vup) — 0 (up) Ve L (x, up, Vup) - Vuh]
h R”
x nup exp{d (un)} dx + (wn, nup exp{d (up)})

—/ Ve (x,up, Vup) - Vuy exp{d(upy)} dx}
Rn
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= {/ [—Dscf(x, u, Vu) — ' (u)Ve £ (x,u, Vu) - Vu] nu exp{d(u)} dx
R”

+ (w, nuexp{¥(u)}) — /R" Ve&(x,u,Vu)-Vnu exp{z?(u)}dx}

= /]R" Ve (x,u, Vu) - Vunexp{t(u)} dx,
where we used (6.25) with v = nu exp{®¥(u)}. In particular, we have
fRn VeL(x,u, Vu) - Vunexp{d(u)} dx
< lirr}linf/;w VeL(x,up, Vup) - Vupnexp{d(up)} dx

< lim sup/ Ve (x,up, Vup) - Vupnexp{®(up)} dx
h Rll

< /R" Ve (x,u, Vu) - Vunexp{d(u)} dx,
namely
li}tn /Rn Ve (x,up, Vup) - Vupnexp{®(up)} dx
= /]R" Ve (x,u, Vu) - Vunexp{d(u)} dx.
Since £(x, s, ) is p-homogeneous, by (6.5) for each & € N we have
vnp|Vuy|? < nexp{d (up)}VeL (x, up. Vup) - Vuy,,
by the generalized Lebesgue’s theorem we deduce that:
li}{n/;{n n|Vuy|? dx = /1;«" n|Vul|? dx.

Up to substituting n with n?, we get:

lim/ |r]Vuh|pdx=f [nVul|? dx ,
h Jrn R”

which implies that
nVup — nVu in L(R"),
namely Vuy, — Vu in L? ().

O

Let us remark that, in general, since the imbedding W ?(R”) < LP(R") is not com-
pact, we cannot have strong convergence of (CPS). sequences on unbounded domains of

R”". Nevertheless, we have the following result.

Lemma 6.5. Let (uy,) be a (CPS) -sequence for f. Then there exists u in WP (R") such

that, up to a subsequence, the following facts hold:

(@) (up) converges to u weakly in WP (R") ;
(b) (up) converges to u strongly in WP (Q) for each Q € R”;
(¢) u is a positive weak solution to (6.3).
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Proof. Since by Lemma 6.3 the sequence (u;) is bounded in W -2 (R"), of course (a)
holds. Now, fixed 2 € R”, if we set

wi = v + g up) = bluplup e WHQ), yy >0 inWTH(Q),

(b) follows by Theorem 6.4 with w = g(x,u) — b|u|?~2u. Finally by Lemma 6.2, (c) is
a consequence of equation (6.25). g

Let us now prove a technical Lemma that we shall use later.

Lemma 6.6. Let ¢ € R and (uy,) be a bounded (CPS).-sequence for f. Then for each
& > 0 there exists 0 > 0 such that

/ [Vup|? dx < ¢
{lunl=<o}

Proof. Let ¢, 0 > 0 and define for § €]0, 1[ the function ¥5 : R — R by setting

for each h € N.

s if[s| <o
do—96 if g
Pyls) = {0707 Me=v=et; 6.27)
0
—0—80—3ds if —o—§5<s<-0
0 if |s| > 0+ ¢.

Since ¥5(uy) € WHP(R™) N L®(R"), we get
(on, Dsun)) = [ VeECe,un. Vi) - V0s(up)dx
+ /Rn D& (x, up, Vup)ds(up) dx + /Rn blup|P2up 95 (up)
- [ etrundstun ax.
Then condition (6.8), b(x) > 0 and |9#5(up)| < ¢ yield

/ Ve (x,up, Vuy) - Vis(uy) dx
]Rn

1 ’
e L1 Loy T PAL

< /R O unds(un) dx + ollunl], +

p'prér
Since (uy) is bounded in W12 (R"), there exists § > 0 such that 5||uh||fp <ev/8and
5/ Ve (x,up. Vuy) - Vuy dx < % (6.28)
]Rn
uniformly with /4 € N so large that pl, 7 lws? /1 o = £ . Now, since
PP ’

/ g (v, un)Dsug) dx < / g (v, up)up dx
R” lupl<o+$§}

’ 1/r
<11l ( | il ax)" e [ unl” dx.
{lunl<o+%} {lunl<o+%}

we can find ¢ > 0 such that

f (e up)Os(up) dx < 22
o 8
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P < & Therefore we obtain

andQH”h”l,p =3

/ Vgéﬁ(x,uh,Vuh)-Vz?(g(uh)dx < 2,
{lun<o+§} 2
namely, taking into account (6.28)
/ VeL(x,up, Vuy) - Vup dx < ev.
{lunl=o}

By (6.5) the proof is complete. U

Let us now introduce the “asymptotic functional” fio : W17 (R") — R by setting

1 A 1
foo(u)z—/ |Vu|1’dx+—/ |u|pdx——[ lu™|? dx
P Jrr P Jrn q JRr"
and consider the associated p-Laplacian problem
—div (|Vu|p_2Vu) + AMulP?u =u?"! inR™.

(See [45] for the case p > 2 and [19] for the case p = 2).
We now investigate the behavior of the functional f over its (CPS).-sequences.

Lemma 6.7. Let (up) be a (CPS).-sequence for f and u its weak limit. Then
Sflup) =~ f(u) + foolup —u), (6.29)
S up)up) = f/@) @) + foo(up —u)(up —u) (6.30)

as h — +oo, where the notation Ay ~ By means Ay — By, — 0.

Proof. By [37, Lemma 2.2] we have the splitting:

/ G(x,up)dx —/ G(x,u)dx — l/ |(up —u) T2 dx = o(1),
R~ R”7 q JRn

as h — +o00. Moreover, we easily get:

/b|uh|1’dx—/ b|u|pdx—A/ lup — ul? dx = o(1),
Rn Rn Rn

as i — +o00. Observe now that thanks to (6.18) we have

/ Ve (x,up, Vup) - Vuy, dx—/ |Vuy|? dx — 0, as ¢ — +o0,
{lx|>0} {Ix|>0}
uniformly in 4 € N and
/ Vgcf(x,u,Vu)-Vudx—/ |Vu|? dx — 0, as ¢ — +o0.
{Ix|>o0} {lx|>0}
Therefore, taking into account that for each o > 0 there exists ¢, > 0 with
[Vup|? < co|Vul? + (1 + 0)|Vuy, — Vul?,
we deduce that for each & > 0 there exists ¢ > 0 such that for each 4 € N

[ Ve (x,up, Vuy) - Vuy, dx—/ Ve&(x,u,Vu)-Vudx
{|x|>0} {Ix|>0}

—/ |V(up —u)|? dx < Ce,
{Ix|>o0}
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for some ¢ > 0. On the other hand, since by Lemma 6.5 we have
Vu, — Vu in L?(B(0,0),R"),

we deduce

/ Vel (x,up, Vup) - Vup dx = / VeL(x,u, Vu) - Vudx + o(1),
{Ix|<o} {Ix|<o}
as i — +o00. Then, for each ¢ > 0 there exists h € N such that

[ Ve (x,up, Vuy) - Vuy, dx—/ Ve (x,u,Vu)-Vudx
{lx|<a} {Ix|=0}

—/ |V(up —u)|? dx < ce,
{lx|=e}
for each i > h, for some ¢ > 0. Putting the previous inequalities together, we have
/ Ve (x,up, Vuy) - Vuy dx
R

= / Vel (x,u,Vu) - Vu dx + / [V(up —u)|? dx + o(1)
R7 R”

as h — +o0. Taking into account that £(x, s, -) is homogeneous of degree p, (6.29) is
proved. To prove (6.30), by the previous step and condition (6.15), it suffices to show that

/ DsE(x,up, Vup)uy dxz/
Rn

DsE(x,u, Vu)udx + o(1), (6.31)
Rn

as h — +4o00. By (6.19), we find by, b, > 0 such that for each ¢ > 0 there exists 0 > 0
with
[ DsE(x,up, Vup)up dx < be, / DsE(x,u, Vu)udx < bye,
{Ix|>o} {Ix|>0}

uniformly in # € N. On the other hand, combining (b) of Lemma 6.5 with (6.13), the
generalized Lebesgue’s Theorem yields

/ Dyt (x,up, Vup)uy dx = / Dy L(x,u, Vu)udx + o(1),
{Ix|=o} {Ix|=eo}

as h — +oo. Then, (6.30) follows by the arbitrariness of ¢. O

Let us recall from [98, Lemma I.1] the following result.

Lemma 6.8. Let 1 < p < occand 1 < g < oo with q # p*. Assume that (up) is a
bounded sequence in L1(R"™) with (Vuy) bounded in L? (R") and there exists R > 0 such
that:

sup / upl? dx = o(1).
yeR” Jy+Bpr

as h — +oo. Then up — 0in L*(R") for each a €]q, p*|.
Let (uy,) denote a concrete Palais-Smale sequence for f* and let us assume that its weak

limit & is 0. If n"_i_—pl;, < r < p’, recalling that by (6.31) it results

D& (x,up, Vup)uy dx = o(1),
Rl’l
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as h — +o0, we get

pe= pf ) = £/ @nun) +0() = [ ey, dit
+00) = Idl gl + el + ().

Hence, either ||uy ||, or |up||o does not converge strongly to 0. If we now apply Lemma 6.8
with p = ¢ (note also that p < r’,0 < p*), taking into account that (u) is bounded in
W LP(R") we find C > 0 and a sequence (y;) C R” with |yj,| — o0 such that

/ lup|? dx = C,
Yn+BR

for some R > 0. In particular, if tpuy(x) = up(x — yp), we have
/ |tpup|? dx = C
Br

and there exists # # 0 such that:

tpup — u in WHP(R?). (6.32)
Ifr = n’_’if’;, , the same can be obtained in a similar fashion since for each ¢ > 0 there exist
! n ’
diee L'R") (]2 p[ dyeeLitr R
n+ p
such that

d= dl,e + dz,e» ”dz,s” np! = €.
n+p’

‘We now show that u is a weak solution of

— div (|vu|P—2vu) S AulPu = u?"! inR™. (6.33)

Lemma 6.9. Let (uy) a (CPS).-sequence for f with uy — 0. Then u is a weak solution
of (6.33). Moreover u > 0.

Proof. Forall ¢ € C(R") and & € N we set

Vx eR": ("9)(x) := o(x + ).
Since (u) is a (CPS).-sequence for f, we have that

Vo e CPR") 1 f/(up)(c"p) = o(1),
namely, as 1 — +00

/ Vgé@(x,uh,Vuh)-Vth(pdx—F/ DyE(x, up, Vup)the dx
. R”

+/ b(xX)|up|?2upt" o dx —/ g(x,up)t e dx = o(1).
Rl’l ]R”
Of course, as h — +o0o we have

/ b(x)|up " upt"p dx =/ b(x — yu)lthun? > thupe dx
R7 supp @

—>k[ [7|P 2w @ dx,
R~

/ g(x.up) o dx = / g — yprpun)pdx — | [T g dx.
R” supp @ R”
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Next, we have
[ Vel (x.up. Vuy) - Ve dx
]Rn
=/ Ve (x — yn. then, Vpup) - Vo dx
supp ¢

— |Vu|P~2Viu - Vo dx.
Rl’l

Now, for each ¢ > 0, Lemma 6.6 gives a o > 0 such that

/ DyE(x,up, Vup)the dx < Ce + / DyE(x,up, Vuy)t" e dx.
n {lun|>o}

On the other hand, by (6.10) we have

/ DsE(x,up, Vuh)rhgo dx
{lun|>o}

= / Dy&(x — yp. thup, Vpup)p dx = o(1),
supp @N{|tpup|>o0}

as h — +o00o. By arbitrariness of ¢ we conclude the proof. Finally u > 0 follows by
Lemma 6.2 and # > 0 follows by [143, Theorem 1.1]. O

Lemma 6.10. Let (uy) be a (CPS)-sequence for [ withuy — 0. Then
Joo(u) = lin}linfféo(fhw)-

Proof. Since (uy) weakly goes to 0, Lemma 6.7 gives fo (up)(up) — 0as h — 400, so
that

Soo(Thun)(Thup) — 0 as h — o0,

namely
/ |Vtpup|? dx + k/ |[thup|? dx —/ (t;,u;[)q dx — 0
R"l RH Rn

as h — +o00. Therefore

1 1

Soo(Tntn) = (= — —)/ (thu} )% dx — 0.

P g Jre

Similarly, Lemma 6.9 yields
_ 1 1 —q
Joo@) = (= —~) | [al?dx,
P 49 Jrn

and the assertion follows by Fatou’s Lemma. g
Lemma 6.11. If (up) is a (CPS).-sequence for f withup — 0, then foo(u) < c.

Proof. Since Lemma 6.7 yields
fup) ~ foo(tpup), as h — 400,

by the previous Lemma we conclude the proof. U

We finally come to the proof of the main result of this section.
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Proof of Theorem 6.1. Since G is super-linear at 400, (6.12), for all « in the space W -2 (R")\ {0},
u>0 = lim f(tu)=—
t—>+o00

Let v € C°(R") positive be such that for all # > 1 : f(fv) < 0, and define the min-max
class

r={yec@..w®):y©® =0, y(1)=0v|,
and the min-max value

¢ = inf max f(y(t)).
yerl te€[0,1]

Let us remark that for each u € W1-?(R")

b
S@) = v[Vullg + —uly —/ G(x,u)dx.
p R"
Then, since by (6.16) it results
ke Jlwgll

Lp

for each (wy,) that goes to 0 in W1-7(R"), f has a mountain pass geometry, and by the
deformation Lemma of [36] there exists a (CPS).-sequence (u;) C WP (R") for f. By
Lemma 6.5 it results that (u;) converges weakly to a positive weak solution u of (6.3).
Therefore, if u # 0, we are done. On the other hand, if # = 0 let us consider u. We now
prove that  is a weak solution to our problem. Since we have for each u € W17 (R")\{0}

u>0= t—1>i—in:1<>o Joo(tu) = —o0,
we find R > 0 so large that
Ya,b>0: a+b=R= fxlau+ bv) <0.
Define the path y : [0, 1] — W :2(R") by
3Rtu ift e
y@)=3@Bt—1DRv+ (2—-31)Ru ifte
(B3R + 3t — 3Rt —2)v ift €

j=}
— Wl W=

W W=

Of course we have y € T', foo(y(¢)) < 0 for each ¢ e]%, 1] and by [45, Lemma 2.4]
max _foo(y (1)) = foo(u).
tefo. 5]

Hence, by Lemma (6.11) and the assumptions on £ and g, we have

¢ = max fy() = max foo(V(t)) = Joo(t) < c.

€[0,1]

Therefore, since y is an optimal pathin I, by the non-smooth deformation Lemma of [36],
there exists 7 €]0, 1] such that y (7) is a critical point of f at level ¢. Moreover y(¢) = u,
otherwise

J (D) = fooly (@) < Joolt) =c,

in contradiction with f'(y(f)) = ¢. Then u is a positive solution to (6.3). O
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Remark 6.12. Let1 < p <n,q > p and A > 0. As a by-product of Theorem 6.1, taking
1 A 1
£L(x,5.8) = —[§7 + —Is|” — —[s]7,
p p q
we deduce that the problem
— div (|vu|1'—2vu) S ulP2u = |u7%u inR", (6.34)

has at least one nontrivial positive solution u € W12 (R"). (see also [45, 145]).
In some sense, Theorem 6.1 implies that the e-perturbed problem

—div ((1 te(xu, Vu))|vu|1’—2vu) FMulP 2 = w72 inR",  (6.35)

has at least one nontrivial positive solution u € W -7 (R").

Remark 6.13. By [6, Lemma 1.4] we have a local boundedness property for solutions of
problem (6.3), namely for each Q € R” each weak solution u € W17 () of (6.3) belongs
to L*°(2) provided that in (6.14) is d € L*(S2) for a sufficiently large s. (see [6, 36]).

6.3. Fully nonlinear problems at critical growth. Let 2 C R” be a bounded domain,
l<p<nand p <gq < p* = %. In this section we are concerned with the existence

of two nontrivial solutions in Wol’p (2) of the problem (6.36),

—div (Vgcf(x, u, Vu)) + Dy&£(x,u,Vu) = |u|1’*_2u + AMul?u+¢eh inQ

6.36
u=0 onadQ2 ( )

with i € L? (Q), h # 0, provided that & > 0 is small and A > 0 is large.

Motivations for investigating problems as (6.36) come from various situations in geom-
etry and physics which present lack of compactness (see e.g. [28]). A typical example is
Yamabe’s problem, i.e. find # > 0 such that

—1
! ZAMu = Ru*+D/=2 _ R(x)u on M,

—4
for some constant R’, where M is an n-dimensional Riemannian manifold, R(x) its scalar
curvature and —Ajy is the Laplace-Beltrami operator on M. Since p* is the critical
Sobolev exponent for which the embedding Wol’p (Q) — Lr” (R2) fails to be compact,
as known, one encounters serious difficulties in applying variational methods to (6.36). As
known, in general, if # = 0 and A = 0, to obtain a solution of

—Apu = lul” 2u  inQ
u=0 onads,
one has to consider in detail the geometry of 2 (see e.g. [16]) or has to replace the critical
term u?"~! with u?"~1=¢ and then investigate the limits of u, as ¢ — 0 (nearly critical

growth, see [72] and references therein). Let us now assume that 7 = 0 and A # 0. As we
showed in Corollary 9.21 by the general Pohozdev identity of Pucci and Serrin [117], if

PV E(x,5.8) - x —nDsL(x,s,€)s >0,

a.e. in 2 and for all (s, &) € R x R”, then (6.36) admits no nontrivial smooth solution for
each A < 0 when the domain 2 is star-shaped and £ is sufficiently smooth. Therefore, in
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this case we are reduced to consider positive A. Let us briefly recall the historical back-
ground of existence results for problems at critical growth with lower-order perturbations.
In 1983, in a pioneering paper [28], Brézis and Nirenberg proved that the problem
—Au =y L ay inQ
u>0 inQ
u=0 ondQ

has at least one solution u € HO1 (2) provided that

) e (0,A1) ifn =>4,
(A1/4, Ay) ifn=3and Q = B(0, R),
where A is the first eigenvalue of —A in 2. The extension to the p-Laplacian was achieved
by Garcia Azorero and Peral Alonso in [70, 71] (see also [11]). Namely, they proved the
existence of a nontrivial solution of:
—Apu = lul?" 2u + Mul9%u inQ
u=0 ondQ

provided that
(0,A;) ifl<p=gq<p*andp?<n;
i e (ho.o0) ifl < p<gq< p*and p?>>n;
(0,00) ifl<p<gqg< p*andp?<n;
(0.00) if max{p. p* — 7} <g < p*.
where A; is the first eigenvalue of —A, and A¢ is a suitable positive real number. Finally,
for bifurcation and multiplicity results in the semi-linear case (p = 2), we refer to the
paper of Cerami, Fortunato and Struwe [38].
Let us now assume /2 # 0. Then, a natural question is whether inhomogeneous prob-
lems like (6.36) have more than one solution. For bounded domains one of the first answers
was given in 1992 by Tarantello in [141], where it is shown that the problem

—Au = |u|2*_2u + h(x) inQ
u=0 ondQ

admits two distinct solutions u,u; € HO1 (2) if ||i||2 is small. The existence of two
nontrivial solutions for the p-Laplacian problem

—Apu = |ul? "2u 4+ MulT2u + h(x) inQ
u=0 ondQ
for1 < p < g < p*, A large and |h||,» small enough, has been proven in 1995 by
Chabrowski in [41]. This achievement has been recently extended by Zhou in [150] to the
equation:
—Apu + clulP"?u = [ul” 2u + f(x,u) + h(x)

on the entire R”, where f(x,u) is a lower-order perturbation of |u|?"~2u. This case
involves a double loss of compactness, one due to the unboundedness of the domain and

the other due to the critical Sobolev exponent. Now, more recently, some results for the
more general problem

—div (Vgéﬁ(x,u, Vu)) + DyL(x,u,Vu) = g(x,u) inQ
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u=0 ondQ

with g subcritical and super-linear have been considered in [6, 113] and [133]. It is there-
fore natural to see what happens when g has a critical growth.

A first answer was given in 1998 by Arioli and Gazzola in [10], where they proved the
existence of a nontrivial solution u € HO1 (R2) for a class of quasi-linear equations of the

type

n n
— 3 Dy e D) + 5 Y Deayg ) Dy = [l P+ ha, (637)
i,j=1 Lj=1
where the coefficients (a;;(x,s)) satisfy some suitable assumptions, including a semi-
linear asymptotic behavior as s — 400 (see remark 6.15).
Now, in view of the above mentioned results for —A, —A,, we expect that problems
(P,1) admits at least two nontrivial solutions for & small and A large. To prove this, we

shall argue on the functional f; ) : Wol’p (2) — R given by

1 x A
fg,)h(u)z/ cf(x,u,Vu)a’x——*[ |u|? dx——/ |u|qu—8/ hudx, (6.38)

where Wol’p(Q) will be endowed with the norm ||u||;,, = (fQ |Vu|? dx)l/p.

The first solution is obtained via a local minimization argument while the second so-
lution will follow by the mountain pass theorem without Palais-Smale condition in its
non-smooth version (see [36]).

In general, under reasonable assumptions on &£, f; ) is continuous but not even locally
Lipschitzian unless &£ does not depend on u or is subjected to some very restrictive growth
conditions. Then, we shall refer to the non-smooth critical point theory developed in [36,
50, 58].

We assume that £(x,s,&) : 2 x R x R” — R is measurable in x for all (s,£) €
R x R”, of class C! in s and of class C? in £ and that £(x, s, ) is strictly convex and
p-homogeneous with £(x, s,0) = 0. Moreover, we shall assume that:

e There exists v > 0 such that
v
L(x,s,8) > ;I«‘EI”

a.e.in  and for all (s,&) € R x R";
e there exists ¢, ¢; € R such that
IDS:C(Xvs»%_N = c1|§|17
a.e. in  and for all (s,&) € R x R” and
VieL(x,5.6)| < eal§|P72 (6.39)

a.e. in  and for all (s,&) € R x R";
e there exist R > 0 and y €]0, g — p[ such that

|s| > R = Ds&£(x,s,6)s >0 (6.40)
a.e. in  and for all (s,&) € R x R” and
DsE(x,s,8)s < yL(x,s,§) (6.41)

a.e. in 2 and for all (s,&) € R x R".

Assumptions (6.40) and (6.41) have already been considered in literature (see [6, 113,
133]). Under the previous assumptions, the following is our main result:
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Theorem 6.14. There exists Lo > 0 such that for all A > A there exists g9 > 0 such that
(6.36) has at least two nontrivial solutions in Wol’p () foreach 0 < & < ¢&.

This result extends the achievements of [41, 141] to a more general class of elliptic
boundary value problems. We stress that, unlike in [41], we proved our result without
any use of concentration-compactness techniques. Indeed, to prove the existence of the
first solution as a local minimum of f; ;, we showed that our functional is weakly lower
semi-continuous on small balls of Wol’p (€2). From this point of view, our approach seems
to be simpler and more direct. Furthermore, we gave in Theorem 6.25 a precise range
of compactness for f; ;. This, to our knowledge, has not been previously stated for fully
nonlinear elliptic problems and not even for the quasi-linear elliptic equation (6.37). In
fact, in [10] it was only found a “nontrivial energy range” for the functional, inside which
weak limits of Palais-Smale sequences are nontrivial and are solutions of (6.37).

Remark 6.15. Note that no asymptotic behavior has been assumed on £(x,s, &) and
Ds£(x,s,&)s when s goes to +o00, while in [10], to prove that problem (6.37) has a
solution, it was assumed that

lim a;;(x,s) = 6, lim sDsa;j(x,5) =0, (G, j=1,....n)
§—>+00 §—>—+00

uniformly with respect to x € €2, namely problem (6.37) converges “in some sense” to the
semi-linear equation —Au = |u|?" ~2u + Au.

Remark 6.16. We point out that we assumed (6.40) just for |s| > R, while in [10], for
problem (6.37), it was assumed that:

n
Vs eR: Z sDsa;j(x,5)&& >0
i,j=1
fora.e. x € Q and each & € R”.

6.4. The first solution. Let us note that by combining £(x,s,0) = 0 and (6.39), one
finds by, b, > 0 such that:

£(x,s,E) < b|§]P, (6.42)
fora.e. x € Q and each (s,£) € R x R” and
VeL(x,5.8)] < b7~ (6.43)

for a.e. x € @ and each (s5,£) € R x R". We now prove a weakly lower semi-continuity
property for f;».

Theorem 6.17. There exists 0 > 0 such that the functional f, ) is weakly lower semi-
continuous on {u € Wol’p(Q) ulle,p < Q},for each . € R and ¢ > 0.

Proof. Let (up) C Wol’p(Q) and u with up, — u in Wol’p(Q) and [lup|l1,p < o. Taking
into account that up to a subsequence we have

up —>u in L?(Q), Vup — Vu inL?(Q), (6.44)
and uy(x) — u(x) for a.e. x € Q, by the growth condition (6.42), it results:

/i(x,uh,Vu)dx=/ E(x,u, Vu)dx + o(1),
Q Q

as i — +o00. Also note that

/|uh|qu=/ [u|? dx + o(1),
Q Q
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/huhdx:/ hudx + o(1),
Q Q

as h — +oo. In particular, it suffices to show that for ¢ small:

liminf{/ é(i(x,uh,Vu;,)dx—/ L(x,up, Vu) dx
h Q Q

1 * 1 *
——*/ lup|? dx+—*/ |u|? dx}ZO
P Je J 2 K o)

Let us now consider for each & > 1 the function 7} : R — R given by

-k ifs <-k
Tr(s) =4 if —k<s<k
k ifs >k

and let Ry : R — R be the map defined by Ry = Id — T, namely

s+k ifs <—-k
Ri(s) =40 if —k<s<k
s—k ifs>k.

It is easily seen that

127

(6.45)

/ £ (x.up, Vug) dx = / £ (e, p. Vi) dx + / 2 (., V Reup)) dx.
Q Q Q

for each k € N. Of course, we also have

(6.46)

/éﬁ(x,uh,Vu)dx:/ éﬁ(x,uh,VTk(u))dx—i—/ E(x,up, VR (u))dx, (6.47)
Q Q Q

for each £ € N. Now, taking into account that

/ ||y, — uldx = o(1)
Q

as h — 400, and that for any k € N

/Q T Cun) = Te@)|?” dx = o(1)

as h — 400, there exist ¢y, ¢2, ¢3 > 0 such that

1 * 1 *
— | |upl? dx —— | |ul? dx
* *
P Ja P Ja

<o [ (lanl? = 4 Jul? )y~ ul dx
Q

< 02/ lup —ul?” dx + o(1)
Q

<c fg | Te () — T )] ”” dx + c3 /Q | Ry (up) — Ric(u)|?” dx + o(1)

¢ /Q | RicCun) — Rie@)|?” dx + o(1)

for any k fixed, as & — +o0. For each /1, k € N we have

/ L0, up, VR (uy)) dx > 3/ IV Ry (up)|? dx.
Q P Ja

(6.48)
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On the other hand, by the definition of R; we have
/Qéﬁ(x,uh,VRk(u)) dx < cl/ VR w)|P dx < < ;/ VR, (w)|? dx + o(1),
as k — 400, uniformly in /2 € N. In particular, since for each k € N it holds
limhinf{/géﬁ(x,uh, Th (Vuy)) dx — /Q £(x, up, T (Vir)) dx} >0,

by (6.46), (6.47) and (6.48) there exists ¢, > 0 such that:

11m1nf{/ E(x, up, Vuh)dx—/ EL(x,up, Vu) dx

——/ up?” dx—i——/ u|P” dx

Zlin}linf{/ éﬁ(x,uh,VRk(uh))dx—/ E(x,up, VR (u)) dx
Q Q

—er [ 1R = Ruwl?” dx|
@ (6.49)

znminf{K/ |VRk(u,,)|de—3/ IV Ry (u)|? dx
h P Jo pJa
~n [ 1Ruw) = Ruwl?” dxf = o(1) =

zlimhinf{cp/ IV Ry (up) — V Ry (u)|? dx
Q

— e [ 1Rutn) = Rl dx} = o(1)
as k — +o00. Now, by Sobolev inequality, we find by, b, > 0 with
timinf / [V Ry (1) = VR ()] dx — ¢ / | Re(un) = Ric)|?” x|
2 Q
Z liminf || Ry (ug) — Rk(u)“l]:*{bl — by || Ry (up) — Rk(u)||5:—p} >0

provided that ||u||1,, < o with g sufficiently small and independent of ¢ and A. In partic-
ular, (6.45) follows by (6.49) by the arbitrariness of k. Il

Lemma 6.18. For each A € R there exist ¢ > 0 and ¢, n > 0 such that
Vu e Wy (@) : llullip = 0= forlw) > 1.

Proof. Since

1 . A
Sea(w) = K/ |Vu|1’dx——*/ |u|? dx——/ |u|qu—8/ hu dx,
P Jg P Je qJa Q

arguing as in [41, Lemma 2], one gets

Jea(u) = |lullr,p {Ilull o (lull,p) —Sllhllp/cé‘f"(ﬂ) ¥

=3 } (6.50)

where @), : [0, +00[— R is given by

STPT e, A )
0(1) =~ = Tt @) T e
p q
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for some ¢ > 0. The assertion now follows. [l
Proposition 6.19. For each A € R there exists g9 > 0 such that (6.36) admits at least one

nontrivial solution u; € Wol’p () for each & < g9. Moreover f;; (u1) < 0.

Proof. Let us choose ¢ € Wol’p (2) in such a way that: fg h¢ dx > 0. Therefore, since
for each ¢ > 0 it results

P . Nz
Jea(tp) = 11’/ L(x,tp,Vo)dx — —*/ |p|? dx — —/ |p|? dx — st/ he dx,
Q P Ja q Ja Q
there exists z, 3 > 0 such that f; ; (t¢) < 0 for each ¢ €]0, ¢, 3[. In particular,
inf  fo.(u) <0,

lelli,p=<e
for each o > 0 sufficiently small. Now, by Theorem 6.17 there exist o > 0 and u; €
Wol’p(Q) with |uy]]1,p < o such that:

fea(ur) = min Qf“(”) <0.

lellv,p=

Moreover, up to reducing g, it has to be ||u1]|1,, < o0 if € > 0 is small enough, otherwise
by Lemma 6.18 we would get f;; (1) > 0. In particular, u, is a solution of (6.36). 0

Remark 6.20. Note that by (6.50), one can get a weak solution of (6.36) for each ¢ > 0
on domains € with £"(£2) sufficiently small.

Remark 6.21. Following Lemmas 3 and 4 in [41], one obtains existence of a weak solution
also in the case p > ¢. On the other hand we remark that if p > g and A > 0 one has to
require that £"(2) is sufficiently small.

6.5. The concrete Palais-Smale condition. In this section we prove that f; ; satisfies the
concrete Palais-Smale condition at levels ¢ within a suitable range of values.

Lemma 6.22. Let ¢ € R. Then each (CPS).-sequence for [ is bounded.
Proof. Let ¢ € R and let (1) be a (CPS).-sequence for f; ;. Set:

(wp, @) :/ Vgéﬁ(x,uh,Vuh)-Vgodx—i—/ Dy L(x,up, Vup)p dx
Q Q

_/ gg,k(x,uh)wdx—/ |u},|p*_2uh(p dx
Q Q
for all ¢ € C°(2) where ||wp|-1,pr = 0 as h — +o0 and

e (x,8) = Als|972s + eh(x).

for a.e. x € Q and all s € R. It is easily verified that for each o € [p, p*[ there exists
by € L'(R) such that:

e (x.5)s + [s[” = a{;lSlq + FISI” + eh(x)s} — ba(x)

Soup)up)

a.e. in  and for each s € R. Now, from oy = o(1) as h — 400, one deduces

that
/pcf(x,uh,Vuh)dx—F/ D& (x,up, Vup)uy dx
Q Q

=/Qgs,x(xvuh)uh dx+/g|uh|1’* dx + (wp, up)
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A 1 *
20{{—/ |uh|qu+—*/ lup)? dx—}—s/ huhdx}
qJQ P Ja Q

—/ b () dx + (wp, 1)
Q

Zot/géli(x,u;,,Vuh)dx—a]’s,k(uh)—/szba(x)dx+(wh,uh).

On the other hand, by (6.41) one obtains
Sa—y-p) [ Vo dx <@y - p) [ 20w Vi) ds
P Q Q

< afun ) + [ buCo)dx + sl sl
Choosing now o > p in such a way that @ — y — p > 0, one obtains the assertion. O

Remark 6.23. By exploiting the proof of Lemma 6.22 one notes that
sup {’/ hu dx| : u is a critical point of f; ; atlevel c € R} <o
Q

for some o > 0 independent on ¢ > 0 and A > 0.

Remark 6.24. Let | < p < oo. It is readily seen that the following proposition holds:
assume that u#; — wu strongly in L?(2) and v, — v weakly in L?' () and a.e. in .
Then ujv, — uv strongly in L(Q).

Let now S denote the best Sobolev constant (cf. [139])
S =inf {|Vul? :u e Wy P(Q). lull = 1}.
The next result is the main technical tool of this section.

Theorem 6.25. There exist K > 0 and gy > 0 such that f ) satisfies (CPS). with

*_ J—
0<c< 2 V7P gyir _ ke (6.51)

p*(y +p)

for each € < gy and A > 0.

Proof. Let (up) be a concrete Palais-Smale sequence for f;; at level c. Since (up) is
bounded in Wol’p (2) by Lemma 6.22, up to a subsequence we have

up —u in L?(Q), Vu, — Vu in L?(Q).
Moreover, as shown in [22], we also have:
for ae. x € Q:Vuu(x) = Vu(x).

Arguing as in [133, Theorem 3.2] we get
(wen, u) + ||M||11,7;k = f Ve&(x,u,Vu)-Vudx +/ D& (x,u, Vu)udx,
Q Q
where w, ) € W12 (Q) is defined by

(we, V) =)~/ |u|‘1_2uvdx+8/ hvdx.
Q Q
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This, following again [133, Theorem 3.2], yields the existence of d € R with

lim sup {/ Vgi(x,uh,vuh).Vuh—[ |uh|p* dx}
h Q Q@ (6.52)

<d< {/Qvgx(x,u,w)-vu —/Q u?” dx}.
Of course, we have
{Ve (., V) = Ve (., Viup = )| = Ve (x,u, Va)
in L?'(£2). Let us note that it actually holds the strong limit
{Vgéﬁ(x, up, Vup) — Ve (x, up, V(uy — u))} — Ved(x,u, Vu)
in L7 (), since by (6.39) there exist 7 €]0, 1[ and ¢ > 0 with
|Vgcf(x, up, Vup) — Ve (x, up, V(up — u))|
< ‘Vééﬁ(x,uh, Vup + (7 — I)Vu)‘ [Vul
< ¢|Vuy|?~2|Vu| + ¢|Vu|P™L.
Therefore, by Remark 6.24, we have
Ve (x,up, Vuy) - Vuy,
= VeL(x,up, V(up —u)) - Vuy + Ve (x,u, Vu) - Vuy + o(1)
= VeL(x,up, V(up —u)) - V(up —u) + VL (x,u,Vu) - Vu + o(1) in L'(Q),
as h — +o0, namely
VeL(x,up, Vup) - Vup — Ve (x,u, Vu) - Vu (6.53)
= VeL(x,up, V(up —u)) - V(up —u) +o(l) in LY(Q), (6.54)
as h — +oo. In a similar way, since there exists ¢ > 0 with
[ L P L e | P L (P LR P L

one obtains
{ual?” = unl?" =Pl —ul?} — ul”"in L'(9). (6.55)

In particular, by combining (6.52), (6.53) and (6.55), it results:
limsup/ [Vgéﬁ(x, up, Vi(up —u)) - Vup —u) — lup|? =P luy — u|”] dx <0. (6.56)
h Q

On the other hand, by Holder and Sobolev inequalities, we get

/ [Vgéfi(x, up, Vup —u)) - V(uy, —u) — |uh|p*_1’|uh - u|p] dx (6.57)
Q
1 *_
= vlIVun =l = < lually:"" 1V @n —wll (6.58)
1 *_
= v = Sllunlly "3V @r —wlF (6.59)

which turns out to be coercive if

limsup [luy |22 < (vS)"?. (6.60)
h
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Now, from f;  (up) — ¢ we deduce

1 A
/ éﬁ(x,uh,Vuh)dx——*lluhllf,’* = —|uli? —l—e/ hudx + ¢ +o(1),
Q p q Q

as 1 = +o00. On the other hand, by using (6.41), from fg/,x (up)(up) — 0 we obtain

y+pr

p
as h — +oo. Multiplying (6.61) by HTP, we obtain

1 « A €
/ éﬁ(x,uh,Vuh)dx——HuhH;’* > —|ulld + —/ hudx + o(1),
Q p p pJa

y+r

y+p *
— | L(x,up, Vup) dx — —|lus .
Q pp

V4
+ + +

=YL e + ua/ hu+ Y2 4001,
pq V4 Q V4

as h — +o0o. Therefore, by combining (6.63) with (6.62), one gets
*
oy — . . n
p—y*plluhllﬁ* < —wkllullg + c’e/ hudx + L2220 4o
pq Q p

y+p

Ec’sf hu dx + c+o(1),
Q

as h — +o00. Now, taking into account Remark 6.23, we deduce
L e+ Ke+ o(1),
pT—yv—pr

as h — +oo for some K > 0. In particular, condition (6.60) is fulfilled if

r*(y + p)

p* —y—pc + Ke < (vS)"/»

6.61)

(6.62)

(6.63)

(6.64)

(6.65)

(6.66)

which yields range (6.51) for ¢ small and a suitable K > 0. By combining (6.56) and

(6.57) we conclude that uy goes to u strongly in Wol’p ().
Remark 6.26. We observe that for the equation
—Apu = [ul” 2u + Mu|T2u+eh inQ,

being y = 0 and v = 1, our range of compactness (6.51) reduces to:
sn/p

0<c< — Ke.
See also the results of [41].
6.6. The second solution. Let us finally come to the proof of Theorem 6.14.

Proof. Let us choose ¢ € W, ¥ N L*() such that

¢l =1 and /h¢dx < 0.
Q

It is easily seen that
lim foa(t¢) = —o0,
t—>4o00

so that there exists 7 , > 0 with

Jea(tre®) = sup Jea(tg) > 0.

O

(6.67)
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Taking into account (6.41), the value #, , must satisfy
/ he = ! z“ [jgzpcf(x,tk,sgﬁ,ng) dx
+/ DyL(x.1h.00. V)13 o dx] —zf’;‘q—xf |¢|qu}
<d] t“qM/ IVo|? dx — 1], T A/ |¢|qu
for some M > 0. Now, being

lim {z{’;‘q Jr)\/gZ 6| dx} = +oo

A—>+o00

ithastobe #; , — 0 as A — +o0. In particular, by (6.67) we obtain

lim sup f;,(t¢) =0,

A—=>+00 >0

so that there exists Ao > 0 such that:

0 < sup fus(t¢) < =YL (ysyn/r _ ke (6.68)

>0 *( +p)

foreach A > Ao and € < g¢. Let w = t¢ with ¢ so large that f; 3 (w) < 0 and set

@ ={yeC(0.1,Wy?(Q):y(0) =0, yp(l)=w}
and
Bes = ;22 t?[fi’i] Jer(y (1))

Taking into account Lemma 6.18, by Theorem 2.10 one finds (u;) C Wol’p (2) with:
Jeaun) = Ben.  |dfeal(un) -0,
0<n=Per= inf max fo5(y(t)) < sup fer(t9). (6.69)
y€D tel0,1] >0
By Theorem 6.25 f ; satisfies (CPS)g, , , since by (6.68) and (6.69)

p*—v—p

(wS)"P — Ke
p*(y +p)

A=A =>0<Ben <

for each ¢ < 9. Therefore there exist a subsequence of (1) C W 1P (Q) strongly con-
vergent to some u, which solves (6.36). Since f; (1) < 0and f; 3 (u2) > 0, of course
uq 7'é Ujs. O

Remark 6.27. Inthe case 1 < ¢ < p < p*, in general, our method is inconclusive since
it may happen that

JJim sup fe2(1¢) # 0.

© >0

See section 4 of [41] where this is discussed for the p-Laplacian.



134 MARCO SQUASSINA EJDE-2006/MON. 07

6.7. One solution for a more general nonlinearity. Assume that £(x,s,£) : Q x R x
R” — R is measurable in x for all (s, £) € R xR”, of class C! in (s, £) and that £(x, s, )
is strictly convex and p—homogeneous with £(x, s, 0) = 0. Moreover:

e there exist v > 0 and ¢y, ¢ > 0 such that:

£(x.5.8) > 5|5|P, Dy (x,5.8)] < cil€]”, (6.70)

a.e. in 2 and for all (s,£) € R x R” and
[VeL(x,5.6)| < cal€[P7, (6.71)

a.e. in Q and for all (s,£) €e R xR”;
e there exist R, R" > 0 and y € (0, p* — p) such that:

|s] > R = DsL(x,s,&)s =0, (6.72)

s| = R' = DyL(x.s.6)s < yL(x.5.8), (6.73)

a.e. in  and for all (s,£) €e R xR”";
e Let A be the first eigenvalue of —A, with homogeneous boundary conditions.

Let g : 2 x R — R be a Carathéodory function such that

Ve>0 3a, € Li- D55 (Q) : |g(x,s)] < ae(x) + e]s]? 1, (6.74)
G(x, A

fimsup 2008 < YA G g >0, (6.75)
s—0 |S|p V4

uniformly for a.e. x € Q and each s € R. Moreover, we assume that there exists a
nonempty open set 2o C €2 such that

e if n < p? (critical dimensions),

G )
lim (x. ) = 400 (6.76)
§—>+o00 Sp(np+p—2n)/(p—1)(n—p)
uniformly for a.e. x € Q.
o ifn = p2 :du > 0, there exist i, a > 0 such that
Vs €[0,a]: G(x,s) = u|s|? or Vs=>a:G(x,s)> u(s|? —a?), 6.77)
fora.e. x € Q.
o ifn > pz, there exists i > 0 and b > a such that
Vs €la,b]l: G(x,s) = (6.78)

fora.e. x € Q.

Conditions (6.70), (6.71), (6.72) and (6.73) have already been considered in [6, 133], while
assumptions (6.74), (6.75), (6.76), (6.77) and (6.78) can be found in [11]. Note that g (x, u)
is neither assumed to be positive nor homogeneous in u.

Under additional assumptions (6.81) and (6.82), that will be stated in the next sections,
we have the following result.

Theorem 6.28. €, admits at least one nontrivial solution.

This result extends the achievements of [10, 11] to a more general class of elliptic
boundary value problems. We remark that we assume (6.72) and (6.73) for |s| > R,
while in [10] these assumptions are requested for each s € R.



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 135

6.8. Existence of one nontrivial solution. Let us first prove that the concrete Palais-
Smale sequences of

f(u):/ :E(x,u,Vu)dx—i*/ |u|p* dx—/ G(x,u)dx (6.79)
Q P Q Q

are bounded. We will make a new choice of test function, which also removes some of the
technicalities involved in [133].

Lemma 6.29. Let ¢ € R. Then each (CPS).-sequence for f is bounded.

Proof. Let ¢ € R and let (uy) be a (CPS).-sequence for f. In the usual notations, one
has |wp||-1,pr = 0 as h — +oo. It is easily verified that for each & € [p, p*| there exists
by € L'(RQ) with

* 1 *
g(x.9)s + Is|? = a{G(x.s) + Flslp } = bo(x)

a.e.in Q and foreachs € R. Letnow M > 0,k > land J; : R —> R,

s ifs > kM
s — 2k ifk<s<kM
Pi(s) =40 if —k<s<k

M _poif —kM <s<—k
ifs < —kM

Since for each k € N we have f”/(up) (O (up)) = o(1) as h — +oo0, there exists Cg pr >
0 such that

M
/ P, Vi) +
{lup|=kM}

M — 1 Jik<jup <k M}

pL(x,up, Vuy)

+/ Dy L(x,up, Vup)uy
{lup|=kM}
M
M —1
M
= g(x,up)up dx + glx,up)(up £ k)
{up|=kM} M =1 Jge<iu, <k

* M *__
+/ lupl? + / lunl? “2up(up £ k) + (wp, O (up))
{lup| 2k M} M — 1 Jike<juy|<kmy

Z/g(x,uh)uh—kM/ lg(x, up)|
Q {lup|<kM}

M "
4 / g Ceoun)up £ ) + / upl?” dx
M — 1 Jig<iu,1<km Q

* M *
—kM/ lup|? 1 + lunl? ~2up(up + k) dx
(| <k M} M =1 Jige<iu,|<kmy

+ (wp, Ok (un))

za[/g G(x,u;,)+#/ﬂ|uh|p* dx]/ﬂba(x)

M
kM [ lg(xup)| dx + / g (o) £ K
up|<kM} M =1 Jige<iuy|<kmy

/ Dy, wp, V) (g = k)
{k<|up|<kM}




136 MARCO SQUASSINA EJDE-2006/MON. 07

* M *
—kM / upl?" ™+ / ual?" 2wy £ )
up<kM} M —1 Jik<iuy 1<k}

+ (wp, Ox (up))

= o [ £0x V) = afn) = [ Bult) = Coons + (. D).
On the other hand, by (6.73) and (6.72) one obtains

/  DyE(x,up, Vup)updx < y/  L(x,up, Vuy) dx, (6.80)
{lup|=k} {lup|=k}
and
—k D& (x,up, Vup)dx <0,
{k<up<kM}
k D& (x,up, Vup)dx <0,

{—kM<u,<—k}

for some k > 1 so that k > max{R, R’}. Therefore, we find 5;’ ar > 0 with

M M
Y o — y — p /|Vuh|pdx
» M1 m-17) ),

M M
< (oc—M_ly—M_lp)/Qi(x,uh,Vuh)dx

< af(up) + /Q b () dx + G py + Nwnll -1y 196 1,

To conclude, choose « €]p, p*[ and M > 0 so that o« — %y - %p > 0. 0

Remark 6.30. It has to be pointed out that with the choice of test function ¥ there is no
need of using [133, Lemma 3.3], which involves lots of very technical computations.

Lemma 6.31. Let ¢ € R and let (uy) be a (CPS).-sequence for [ such that up, — 0.
Then for each ¢ > 0 and o > 0 we have

/ E(x,up, Vuy) dx 58[ E(x,up, Vuy) dx + o(1),
{lun|=<c} {lun|>o0}

uniformly as h — +o0.

Proof. Tt is a consequence of [133, Lemma 3.3], taking into account that

/sz(g(x,uh) + |up|?”" ") D5 (up) dx — 0
as h — +oo (where ¥ is the bounded test function defined in the proof). U

Assume now furthermore that (asymptotic behavior):

1
lim £(x,s.&) = —|&|7, (6.81)
§—>—+00 p
lim Dy (x,s,&)s =0, (6.82)
s—>—+o0o

uniformly with respect to x € Q and to & € R” with |£] < 1. This means that there exist
g1 : QxR XxR" > Randeg, : @ x R x R” — R such that

L(x,5.8) = %IEI” +e1(x.5.§)[E]”
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DS:E(X,S,S)S = 82(x75»5)|§|p

where €1 2(x,s,&) — 0ass — oo uniformly in x € Q and £ € R”. Let S denote the
best Sobolev constant

S = inf{||vu||;; ue WHPQ),  full,s = 1}.
Lemma 6.32. Let (uy) C Wol’p (R2) be a concrete Palais-Smale sequence for [ at level ¢
with
1 n/
0<c<-—8S"P,
n
Assume that up, — u. Then u # 0.

Proof. Assume by contradiction that # = 0. In particular, # — 0 in L*(2) for each
1 < s < p*. Therefore, taking into account (6.74) and the p-homogeneity of &£ with
respect to &, from f/(up)(u) — 0 we obtain

/ px(x,u,,,vu,,)der/ DyE(x, up, Vuy)up dx—/ lup|?” dx = o(1), (6.83)
Q Q Q

as h — +o0. Let us now prove that for each o > 0
"

lim‘/ Dy (x, up, Vi )y dx‘ <= (6.84)
b Hlup <o} 0

for some C” > 0. Indeed, since u;, — 0, by Lemma 6.31 and (6.70), one has

’/ Dyt (x,up, Vup)uy dx) < CQ/ E(x,up, Vuy) dx
{lupl<e} {

lun|=o}

< CQ8/ EL(x,up, Vup) dx + o(1)
{lunl>o}

< C/QS/ [Vuu|? dx + o(1) < C"0e + 0(1),
Q

for each ¢ > 0 and ¢ > 0 uniformly as # — +oc0. Then (6.84) follows by choosing
e = 1/0?. In particular, since condition (6.82) yields

lim DyE(x,up, Vup)up dx = 0, (6.85)
0=+ Hlup|>0}

uniformly in 4 € N, by combining (6.84) with (6.85), one gets
lilrln/ Dy X (x,up, Vup)updx = 0. (6.86)
Q
In a similar way, by (6.81), one shows that, as # — 400,

1
/ L(x,up, Vuy) dx = —/ [Vup|? dx + o(1). (6.87)
Q pJa
Therefore, by (6.83) one gets
lunll? , = lunllZe = o(1),
as 1 — +oo. In particular, from the definition of .S, it holds
lunll? , (1= S22 a1 777) < 0(1),
as h — +oo. Since ¢ > 0 it has to be

lunll? , = S"7 +o(1). |ualZe = S™7 +o(1).
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as h — +o0o. Hence, by (6.86) and (6.87) one deduces that
1 1 * 1
fup) = ;Iluhllf,p + F(Iluhllf,p + [lunll ) +o(1) = - s,
contradicting the assumption. g
Proof of Theorem 6.28. Let us consider the min-max class
r={yec(o,1, WP (@) :y0) =0, y()=uw)
with f(zw) < 0 for ¢ large and
B = inf max f(y(2)).
yed tel0,1]

Then, by the mountain pass theorem in its non-smooth version (see [36]), one finds a
Palais-Smale sequence for f at level . We have to prove that

1
0<pf<-S"P,
n
Consider the family of maps on R”
n—p
¢y O P(p—1)
TIS,XO (x) = » ‘ » n—p
(BF +Ix —x0|ﬁ) ?

with § > 0 and xo € R". T} , is a solution of —A,u = u?"~! on R”. Taking a function
¢ € CX(2) with0 < ¢ < 1 and ¢ = 1 in a neighborhood of x¢ and setting vs = ¢ T x,,
it results

losl?, = S"/7 4 0 (8(n—p>/<p—1)), ||vs||f,’: =SP4y <8n/(p—1>> (6.88)
as 6 — 0, so that, as § — 0,
p p* 1

t t * e
Tlvslly = sl < 2877 + o (smP/ D). (6.89)

Assume by contradiction that for each § > 0 there exists 5 > 0 with

t? 1
ftsvs) = %llvsllf,p + l{'/ﬂ {£(x. tsvs, Vvs) — ;IVval”}dx (6.90)

e L1
- [ Gt = Bl = s (691)
Q P n
In particular, there exist M, M, > 0 with M| < ts < M,. Moreover, as proved in [11,
Lemma 5], there exists 7 : [0, 1] - R with t(¢) — +o0 and
[ G(x, 15v5) dx > 7(g)e=P)/(P=1, (6.92)
Q
as ¢ — 0. By (6.72) and (6.81) one also has
1
/ {é’i(x, tsvg, Vug) — ;|Vv5|1’} dx <0 (6.93)
Q
for each § > 0. By putting together (6.89), (6.90), (6.92), (6.93), one concludes
1
S (tv5) = —~S™P 4 (C — 1(e))e= 7D
n

which contradict (6.90) for ¢ sufficiently small. Il
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6.9. Problems with nearly critical growth. Let Q2 be a bounded domain of R”, 1 < p <
nand p* = %. In 1989 Guedda and Veron [82] proved that the p-Laplacian problem at
critical growth

—Apu=uP""" inQ
u>0 inQ (6.94)
u=0 onoaS2,

has no non-trivial solution u € Wol’p (R2) if the domain €2 is star-shaped. As known, this
non-existence result is due to the failure of compactness for the critical Sobolev embed-
ding Wol’p (Q) <= LP" (), which causes a loss of global Palais-Smale condition for the
functional associated with (6.94). On the other hand, if for instance one considers annular
domains

Qo ={xeR":0 <1 <|x| <12},

then the radial embedding
Wol,;lz)zd (2r1,r,) = LI, r,)

is compact for each ¢ < +o00 and one can find a non-trivial radial solution of (6.94) (see
[89]). Therefore, we see how the existence of non-trivial solutions of (6.94) is related to
the shape of the domain and not just to the topology. In the case p = 2, the problem

Ay = yWt2/@=2) L0
u>0 inQ (6.95)
u=0 onodS2,

has been deeply studied and existence results have been obtained provided that €2 satisfies
suitable assumptions. In a striking paper [16], Bahri and Coron have proved that if €2 has a
non-trivial topology, i.e. if €2 has a non-trivial homology in some positive dimension, then
(6.95) always admits a non-trivial solution. Moreover, Dancer [56] constructed for each
n > 3 a contractible domain €2,,, homeomorphic to a ball, for which (6.95) has a non-trivial
solution. See also [112] and references therein for more recent existence and multiplicity
results.

We remark that, to our knowledge, this type of achievements are not known when p #
2. In our opinion, one of the main difficulties is the fact, that differently from the case
p = 2, it is not proven that all positive solutions of —A,u = u?" =1 in R” are Talenti’s
radial functions, which attain the best Sobolev constant (see Proposition 6.37).

Now, there is a second approach in the study of problem (6.94), which in general does
not require any geometrical or topological assumption on €2, namely to investigate the
asymptotic behavior of solutions u, of problems with nearly critical growth

—Apu = [ul” 72"*u  inQ

6.96
u=0 onodS2, ( )

as € goes to 0. If 2 is a ball and p = 2, Atkinson and Peletier [12] showed in 1987 the
blow-up of a sequence of radial solutions. The extension to the case p # 2 was achieved
by Knaap and Peletier [90] in 1989. On a general bounded domain, instead, the study
of limits of solutions of (6.96) was performed by Garcia Azorero and Peral Alonso [72]
around 1992.
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Let now ¢ > 0 and consider the following general class of Euler-Lagrange equations
with nearly critical growth

—div (Vgéﬁ(x,u, Vu)) + Dy&£(x,u,Vu) = |u|p*_2_8u in Q

6.97
u=0 onadL2, ( )

associated with the functional f; : Wol’p (2) — R given by

Je(u) =/ éC(x,u,Vu)dx—%/‘ lu|?" ¢ dx. (6.98)
Q P —¢Jg

As noted in [133], in general these functionals are not even locally Lipschitzian under
natural growth assumptions. Nevertheless, via techniques of non-smooth critical point
theory (see [133] and references therein) it can be shown that (6.97) admits a non-trivial
solution u, € Wol’p(Q).

Let (u¢)e>0 denote a sequence of solutions of (6.97). The main goal of this section is
to prove that if the weak limit of (|Vug|?)s~0 has no blow-up points in €2, then the limit
problem

—div (Ve£(x,u, Vi) 4+ DsZ(x,u, Vu) = |u|” "2u  in Q

6.99
u=0 onodf2. ( )
has a non-trivial solution (the weak limit of (#¢)¢>0), provided that f;(u,) — ¢ with
* _ * _
PPV ysytr <o < 22— L2V (ygyntr, (6.100)
pp pp

where v > 0 and y € (0, p* — p) will be defined later. In our framework (6.100) plays the
role of a generalized second critical energy range (if y = 0 and v = 1, one finds the usual
range S’;i <c< 2334 for problem (6.96)).

The plan is as follows: in Section 6.10 we shall state our main results ; in Section 6.11
we shall collect the main tools, namely the lower bounds on the non-vanishing Dirac
masses and on the non-trivial weak limits ; in Section 6.12 we shall prove our main results ;
finally, in Section 6.13 we shall see that at the mountain pass levels the sequence (u¢)¢>0
blows up. Moreover, we shall state a non-existence results obtained via the Pucci-Serrin
variational identity.

In the following, we shall always consider the space Wol’p (£2) endowed with the stan-
dard norm ||u||1p’p = [q IVu|? dx and we shall denote by || - ||, the usual norm of L? ().

6.10. The main results. Let 2 be any bounded domain of R” and assume that £ :  x
R x R” — R is measurable in x for all (s,£) € R x R”, of class Clin (s,€) ae. in Q,
that £(x, s, -) is strictly convex and p-homogeneous with £(x, s,0) = 0. Moreover:

e There exist by > 0 and v > 0 such that
v
;|§|p < £(x,5,&) < bols|? + bolE|” (6.101)
fora.e. x € Q and forall (s,&) e R xR”;
e there exists b; > 0 such that for each § > 0 there exists as € L!() with
| Dy (x,s.8)| < as(x) + 8ls” + b &) (6.102)
fora.e. x € Q and for all (s,&) € R x R”, and
*
|VeL(x,5.6)| < ai(x) + bils|? + by|g|P! (6.103)
fora.e. x € Q and for all (s, £) € R x R”, where a; € L?' (Q);
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e fora.e. x € Q and for all (s,&) € R x R”,

D;L(x,s,&)s >0 (6.104)
and there exists y € (0, p* — p) such that:
DsE(x,s,8)s < yL(x,s,§) (6.105)

fora.e. x € Q and for all (s,£) € R x R”.

The previous assumptions are natural in the quasi-linear setting and were considered in
[133] and in a stronger form in [6].
We stress that although as noted in the introduction f, fails to be differentiable on

Wol’p (€2), one may compute the derivatives along the L °°-directions; namely Vu € WO1 P(Q),
Vo € Wy P N L=(Q):

FLu)(e)
= / Ve (x,u,Vu) - Vo dx + / DsL£(x,u, Vu)p dx — / lu|?"~2"fug dx.
Q Q Q
By combining the following proposition with (3.25), one can also compute f (1) (u).

Proposition 6.33. Let u,v € Wol’p () be such that Dy L(x,u, Vu)v > 0 and
(w, @) =/ VeL(x,u,Vu) - Vo dx +/ DsE(x,u,Vu)p dx. (6.106)
Q Q

forall p € C°(2) and with w € W_I’P/(Q). Then Dg&(x,u, Vu)v € L'(Q) and one
can take ¢ = v in (6.1006).

For the proof of the above proposition, see [133, Proposition 3.1].

Under the preceding assumptions, by [133, Theorem 1.1], for each ¢ > 0 one deduces
that (6.97) admits at least one non-trivial solution u, € Wol’p (€2) (by solution we shall
always mean weak solution, namely f/(u,) = 0 in the sense of distributions). We point
out that the technical aspects in the verification of the Palais-Smale condition are, in our
opinion, interesting and not trivial. As a starting point, let us show that (u.) is bounded in

ARA(9))

Lemma 6.34. Let (t15)e>0 C Wol’p(Q) be a sequence of solutions of (6.97) such that
lim fe(ue) < +o0.

Then (ug)e>o is bounded in WO1 P(Q).

Proof. If u, is a solution of (6.97), we have f/(u;)(¢) = 0 for each ¢ € C°(2). On
the other hand, taking into account (6.104), by Proposition 6.33 one can choose ¢ = u,.
Therefore, in view of (6.105) and the p-homogeneity of £(x, s, -), one obtains

811_212) Je(ue) hm (fs(us) - fs (”6)(u8))

lim(/ E(x,us, Vug)dx — *p /:ﬁ(x,us,Vus)dx
p Q

e—>0

p _8/ DL (x, ug,Vug)ude)

> fim 2P eV
e—0 p*—8

/ E(x,us, Vug) dx
Q
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* — j—
> P 2PV, im |Vue|? dx.
pp* s=0Jq
In particular, (#¢)¢>0 is bounded in Wol’p (2). O

As a consequence, one may apply P.L. Lions’ concentration-compactness principle (see
[96, 97]) and obtain a subsequence of (#g)g>0, U € Wol’p (£2) and two bounded positive
measures (4 and o such that:

ue —u Wy P(Q), wue—u inLI(RQ), 1<gq<p*, (6.107)
|Vue|” = i, |uegl”” — o (in the sense of measures) , (6.108)

o0
= |Vul? +3 b, 1 =0, (6.109)

j=1

o0
o=ul” + 0. 0720, (6.110)

j=1

2

i = So”, (6.111)

where §; denotes the Dirac measure at x; € € and S denotes the best Sobolev constant
for the embedding Wol’p (Q) — LP" () (see e.g. [139]).
The following is our main result.
Theorem 6.35. Let (ug).~0 be any sequence of solutions of (6.97) with f¢(ug) — ¢ and
* _ * _
p—pry p* y(vS)”/p <e<2P TPV p* v
pp pp
Then pj = 0 for j > 2 and the following alternative holds:

(s>,

(a) n1 = 0and u is a non-trivial solution of (6.99);
(b) w1 #0andu = 0.

This result extends [72, Theorem 9] to fully nonlinear elliptic problems.
Theorem 6.36. Let (u;)q~0 be any sequence of solutions of (6.97) with
* _ J—
lim fi(ue) = Z—L Y (wsy/».
e—>0 pp
Thenu = 0.

As we shall see in section (6.13), this is also the behavior when one considers critical
levels of mountain-pass type.

6.11. The weak limit. Let us briefly summarize the main properties of the best Sobolev
constant.

Proposition 6.37. Let 1 < p < n and S be the best Sobolev constant, i.e.

S = inf{/ [Vul? dx :u € Wol’p(Q), / lul?" dx = 1}. (6.112)
Q Q

Then, the following facts hold:

(a) S is independent on Q C R"; it depends only on the dimension n ;
(b) the infimum (6.112) is never achieved on bounded domains 2 C R”" ;
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(¢) the infimum (6.112) is achieved if 2 = R" by the family of functions on R"
n—p e
Tsxg (6) = (n8(-—0)""") 77 (6 4 b = xol 1)~ 7" (6.113)
p—
with 8§ > 0 and xo € R". Moreover for each § > 0 and xo € R", Ty, is a
solution of the equation —Apu = u?" =1 on R

For the proof of the above proposition, see [139]. The next result establishes uniform
lower bounds for the Dirac masses.

Lemma 6.38. Ifo; # 0, theno; > vo S and i > vr* S7.

Proof. Let x; € Q the point which supports the Dirac measure of coefficient o; # 0.
Denoting with B(x;,d) the open ball of center x; and radius § > 0, we can consider a
function ¥5 € C°(R") such that 0 < y5 < 1, |Vifs| < %, Ys(x) = lif x € B(x;,6) and
Ys(x) = 0if x & B(x;,26).

By Proposition 6.33 and the p-homogeneity of £(x, s, -), we have

0= fs/(us)(lr//éus)

= uVéﬁ(x,u,Vu)-Vw(gdx—i—p/l//gcf(x,u,Vu)dx
/Q °re e Ve o e Vile 6.114)

—+—/ w,gDS:(i(x,us,Vus)usdx—/ |us|p*_8w5dx
Q Q

Applying Holder inequality and (6.103) to the first term of the decomposition and keeping
into account that (u,).>¢ is bounded in Wol’p(Q) and u, — u in L4(Q2) for every g < p*,
one find ¢; > 0 and ¢, > 0 with

lim|[ ug Ve (x,ug, Vug) - Vi dx\
Q

e—>0

p—1 1 1
< (/ lay |71 dx) g (f u|?* dx)” (/ Wk dx)”
B(x;,26) B(x; ,26) B(x; ,26)

n—1

n—1 1
+b1(/B(Xj,25) ul? dx) (/B(xjaza) Vs dx)
+bi (/;;(xj,zzs) l?” dx)pl*</3(xj,25) Vysl” dx)%

n—1

1 n—1
< cl(/ u|?P" dx)” +c2(/ u|P* dx) T By
B(Xj,25) B(Xj,25)

with 85 — 0 as § — 0. Then, taking into account (6.104) and (6.101) one has

(6.115)

s

£

0> —Bs + lim v/ |[Vue|P s dx — lim £*(Q) »* (/ lug|?” Vs dx) '
e—0 Jo e—=>0 Q

Z—ﬁ8+1}/ﬂlﬂ5du—/ﬂwd0-

Letting 6 — 0, it results vu; < ;. By means of (6.111) one concludes the proof. 0
Next result establishes uniform lower bounds for the non-zero weak limits.

Lemma 6.39. Ifu # 0, then [, |Vu|? dx > vP* S"P and Jq lulP” dx > vi/PSnip,
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Proof. By Lemma 6.38, we may assume that p has at most r Dirac masses iy, ...

M

at xi,...,x,. Letnow 0 < § < %mini¢j |x; — x;| and ¥5 € C°(R") be such that
0<vs <1,|Vys| <%, ¥s(x) = 1if x € B(x;,8) and ¥5(x) = 0if x ¢ B(x;,25).

Taking into account (6.104), for each €, > 0 we have
/ D& (x,us, Vug)u (1 —yg)dx > 0.
Q

Then, since one can choose (1 — ¥g)u, as test, one obtains

0= £ (1 - Ys)ue)
= / PEX ue, Vi) (1 — Yi5) dx — / Ve (X, us, Vite) - Vsuis dx
Q Q
[ Dot Vo1 = ) dx = [ Jud?" 41 = ) d
Q Q

> v/ |Vus|p(l—1ﬁ5)dx—[ Ve L (x,ug, Vug) - Visug dx
Q Q

p*—¢
*

— @ ([ 1l -y a)
Q
On the other hand, arguing as for (6.115), one gets

lim |/ ug Ve (x,ug, Vug) - Vi dx| < Bs
Q

e—>0

for each § > 0. Now, it results

3i_r)1})/QIVus|”(1—%)dx=/Q(1—%’)dﬂ

> /Q Vul? (1= ) dx + 3 (1 = ¥s(x7))

j=1
= / [Vul? dx + o(1)
Q
as § — 0 and

tim [ el (1 =y dx = [ (1= s) do
=/Q|u|f’*(1—ws)dx+Zoj(1—wa(xj>)
j=1

:/ lul?" dx + o(1)
Q

(6.116)

(6.117)

(6.118)

(6.119)

as § — 0. Therefore, in view of (6.117), (6.118) and (6.119), by letting § — 0 and ¢ — 0

in (6.116), one concludes that

v/ |Vu|? dx < / lul?” dx.
Q Q
As Q is bounded, by (b) of Proposition 6.37 one has

* /p*
/|Vu|”dx>S(/ u|? dx)”,
Q Q

which combined with (6.120) yields the assertion.

(6.120)
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In the next result we show that weak limits of (u,).~¢ are indeed solutions of (6.99).

Lemma 6.40. Let (tig)e>0 C Wol’p(Q) be a sequence of solutions of (6.97) and let u be
its weak limit. Then u is a solution of (6.99).

Proof. For each ¢ > 0 one has for all ¢ € C°(Q2):
/ Ve (x,ug, Vug) - Vo dx + / DsE(x,us, Vug)p dx
@ Q@ 6.121)
= / lug|? "> Pupp dx.
Q
Since (#¢)e>0 is bounded in Wol’p (2), up to a subsequence, as ¢ — 0, u satisfies
Vu, =~ Vu in L?(Q), wu,—>u in L?(Q), wu.(x)— u(x) for ae. x € Q.

Moreover, by [22, Theorem 1], up to a subsequence, we have Vu.(x) — Vu(x) for a.e.
x € Q. Therefore, in view of (6.103) one deduces that

VeL(x, ue, Vtg) — VeL(x,u, Vu) in LP (2, R"). (6.122)
By (6.101) and (6.102) one finds M > 0 such that for each § > 0
|DsE(x,5,8)| < MVeL(x,5,8) - £ + as(x) + 8|s|” (6.123)

fora.e. x € Q and for all (s, &) € R x R”. If we test equation (6.121) with the functions
e = gpexp{—Mu;"}, @€ Wol’p NL®Q), ¢=>0

for each ¢ > 0 we obtain
/ Ve (x, e, Vug) - Vo exp{—Mu } dx — / ue” "2 Cup exp{—Mu} dx
Q Q
+ / [DyL(x,us, Vug) — MVeL(x,ug, Vug) - Vul | pexp{—Mu} } dx = 0.
Q

Since by inequalities (6.104) and (6.123) for each ¢ > 0 and § > 0 we have
[DsL(x.us, Vug) = MVeL(x,ue, Vus) - Vu | g expl=Mut} < as(x) + 8lusl ",

arguing as in [133, Theorem 3.4], one obtains

limsup/ [DyL(x,us, Vug) — MV L (x,ug, Vug) - Vui | g exp{—Muj } dx
Q

e—>0

= / [Dsl’,(x, u,Vu) = MVeL(x,u,Vu) - Vu+] pexp{—Mu™t}dx.
Q
Therefore, taking into account (6.122) and since as ¢ — 0,
/ lug|? "> Fupp dx — / [ul? 2ug dx
Q Q
for each ¢ € Wol’p N L°°(£2) positive, one may conclude that
/ VeL(x,u, Vu) - Voexp{—Mu™t}dx — / |u|p*_2u<p exp{—Mut}dx
Q Q

+ / [DsL(x,u, Vu) — MVe&E(x,u,Vu) - Vu™ | pexp{—Mu™} dx > 0.
Q
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for each ¢ € WOI’P N L°°(2) positive. Testing now (6.121) with
u
ok =P (D) exptMu}, ¢ e CX(Q), 920,

where ¥ is smooth, ¥ = 1 in [—% %] and ¥ = 0in]— oo, —1] UL, +oc], it follows that

[ Vet Vi Voexpiodutydx = [l up o ey ax
Q Q

+ / [DsL(x,u, Vu) — MVeE(x,u,Vu) - Vul] g 19(%) dx > 0.
Q
which, arguing again as [133, Theorem 3.4], yields as k — 400

/Vgéﬁ(x,u,Vu)-Vgodx—i-/ Dséﬁ(x,u,Vu)<pdx2/ lul?”" 2ugp dx.
Q Q Q

for each ¢ € C2°(R2) positive. Working analogously with ¢, = @ exp{—Mu_ }, one
obtains the opposite inequality, i.e. u is a solution of (6.99). g

6.12. Proof of the main results. Let us now consider a sequence (u.)¢~¢ of solutions of
(6.97) with fz(u,) — ¢ and
rr-p—v
pp*

Then, there exist a subsequence of (u;).>0 and two bounded positive measures y and o
verifying (6.107), (6.108), (6.109), (6.110) and (6.111).

p*—p

WS)"P < ¢ <2 Y wsy», (6.124)

Proof of Theorem 6.35. Let us first show that there exists at most one j such that p; # 0.
Suppose that p1; # 0 for every j = 1,...r; in view of Lemma 6.38 one has that p1; >

VP*SP. Following the proof of Lemma 6.34, we obtain

* — J—
¢ =1lim fiw) = 2LV him [ Vu|? dx
e—>0 pp e—>0 Jqo
* — —_
> P P* VU/ du
pp Q
P-p—v ¥
>V ) Uj
pp* j; !
2 M(US) D,
rp*
Taking into account (6.124) one has
* p— —
ZW(US)”/I’ >c > rw(vs)p
pp P*
hence r < 1. Now, arguing as in Lemma 6.34 one obtains
ZMQ)S)”“’ >c= hm Se(ug)
rr*
= hm |:f£(us) fg(ua)(”s)j|
= PPV i [ VP dx

pp* e=0 Jo
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*_ —
> %( [ |vu|pdx+vm).

If both summands were non-zero, by Lemma 6.38 and Lemma 6.39 we would obtain
v/ |Vul? dx > WS)?, v, > (vS)%
Q

and thus a contradiction. Viceversa, let us assume thatu = 0 and u; = 0. Let ¥ € C}(Q)
with ¢ > 0. By testing our equation with ¥ u, and using Holder inequality, one gets

/ ugVe(x,ug, Vug) - Vi dx + p/ v (x, ug, Vue) dx
Q Q

+ / D& (x,us, Vug)Yue dx
Q

6.125
- / |us|P" 2y dx @1
Q

p*—

< (/Q el 7"y dx) @)

Since (u¢)e>0 is bounded in Wol’p(Q), by (6.103) there exists C > 0 such that

‘/ Ve (x,ug, Vug) - Vi dx| < C |lugllp ,
Q
which, by u, — 0in L?(R2), yields

lim [ u,VeE(x,ug, Vug) - Vipdx = 0.

e—>0 JQ
Moreover, since by (6.104) we get

/ DsE(x,us, Vug)Yu.dx >0
Q
taking into account (6.101) and passing to the limit in (6.125), we get
VweCc(Q):w20=>v/Wd,u§/wdo. (6.126)
Q Q

On the other hand ©y = 0 and ¥ = 0 imply 0 = 0. Then, since & > 0, by (6.126), we get
@ = 0. In particular, one gets

¢ = lim fo(ug)
e—>0

*
= lim [p—/ L(x,us, Vug) dx Vug)u, dx]
e—>0 p — &
b
< Q lim (/ lue|? dx +/ Vg | dx)
e—0
b
_P 0[ i =0
which is not possible. Therefore, either t; = 0 and u % 0, or 4y # 0 and u = 0. d

Remark 6.41. If (6.124) is replaced by the (k + 1)-th critical energy range

pr—p—vy — PV
pr* pr*

k WS)"? < ¢ < (k + 1)L (vS)"/»
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for k € N, k > 1, in a similar way one can prove that ; = 0 forany j > k 4+ 1 and

(a) if p; = 0 forevery j > 1, then u is a non-trivial solution of (6.99) ;

(b) if uj #0forevery 1 < j <k, thenu = 0.
Remark 6.42. Let f; : Wol’p () — R be the functional associated with (6.99) and
ue Wol’p(Q), u # 0, a solution of (6.99) (obtained as weak limit of (¢¢)e~0). Then

* J— —
fowy > 2L  ygynie, (6.127)
pp
Indeed,

ﬁw=ﬁw—%ﬁww

* — —
LA f 14 / L(x,u, Vu) dx
p Q

* — J—

= DL E [ vule ax,
pp Q

which yields (6.127) in view of Lemma 6.39. This, in some sense, explains why one

chooses ¢ greater than £ *p_pﬁ_y (vS8)™? in Theorem 6.35.

>

Let now (u¢).>0 be a sequence of solutions of (6.97) with f;(u;) — ¢ and

*

lim fi(ue) = Z— LY (usym/e.
e—>0 pp
Proof of Theorem 6.36. Let us first note that

. 1
Solw) < lim f(ug) + > X;oj. (6.128)
]:
Indeed, taking into account that by [53, Theorem 3.4]

/ L(x,u,Vu)dx < lim/ L(x,us, Vug) dx,
Q e—>0 JQ

(6.128) follows by combining Holder inequality with (6.110).
Now assume by contradiction that u # 0. Then, there exists jo € N such that p;, # 0
and o, # 0 otherwise, by Remark 6.42 and (6.128) we would get

* _ * _
p plf* y(vS)"/p < folu) < eh—rﬂ) Folug) = %(VS)WP.

Then, arguing as in Lemma 6.34 and applying Lemma 6.38, we obtain

*_ f—
PPV sy = tim f(ue)
pp e—>0
*_ J—
> % (v/ |[Vul|? dx + vp,jo)
Q
* _ * _
> p—p*)/v/ |Vul? dx + p—p*y(vg)n/p’
pPp Q pPp

which implies # = 0, a contradiction. O
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6.13. Mountain-pass critical values. In this section, we shall investigate the asymptotics
of (ug) in the case of critical levels of min-max type. We assume that £ satisfies a stronger
assumption, i.e.

1
L(x,s,8) < —|€|P (6.129)
P
fora.e. x € Q and for all (s,£) € R x R”. In particular, it results that v < 1. Let u, be a
critical point of f, associated with the mountain pass level

ce = inf max f.(n(?)), (6.130)
n€€, t€l0,1]

where
= {n e C(0, 1], W,"P(Q)) : n(0) =0, n(1) = we}

and w, € Wol’p (2) is chosen in such a way that f.(w,) < 0. If u is the weak limit of
(ug)e>0, as before one can apply P.L. Lions’ concentration-compactness principle.

Lemma 6.43. lim f;(u,) < 1S"/?.
e—>0

Proof. Let xo € Q and § > 0 and consider the functions T ., as in (6.113). By (c) of
Proposition 6.37, one has:

* n
IV 500 12 g = 1 Ts 12 g = S5

Moreover, taking a function ¢ € C°(2) with 0 < ¢ < 1 and ¢ = 1 in a neighborhood of
Xo and setting vs = ¢ T 4, it results

IVuslly = S7 +o(1),  JluslZs = % +o(1). (6.131)
as § — 0 (see [82, Lemma 3.2]). We want to prove that, for any ¢ > 0,
1 n
lim fe(tvs) < —S7 +o0(1)
g—>0 n

as § — 0. By (6.129) one has

*

tP ¢ *
lim fy(tvs) = t”[ £(x, tvsg, Vug) dx — lim " / lvs|? ~¢dx
e—>0 opT—¢&Jg

<—/ |Vv5|pdx——f |vs|?” dx.

s

tP

1
Keeping into account (6.131) and the fact that L - p* < ,, forevery 7 > 0, one gets

t n t n 1 n
lim fe(tvg) < —S»r — —*SF +o0(l) < =S7r +0(1)
£—0 P P n
as § — 0. Now choose 79 > 0 such that f;(fovs) < 0; by (6 130) we have that

hm Je(ug) < hn}) max fg(stov(g) < SP +o(1)
SE
and conclude the proof letting § — 0. O

Theorem 6.44. Suppose that the number of non-zero Dirac masses is
*

r—

(p* —p—ynvr
where [x] denotes the integer part of x. Then u = 0.
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Proof. Taking into account the previous lemma and arguing as in Lemma 6.34, one obtains

1 »n
—Sr > lim fo(ue)
n e—0

= u(9|vu| dx+;u,)

* - - * - - n
> wv/ |Vul? dx + rWV"U’Si ,
pp Q pp
where r denotes the number of non-vanishing masses. Hence it must be

pp*
(p*—p—yvr
In particular, if 7 is maximum and u # 0, by virtue of Lemma 6.39 one obtains
* _ n * _ * _ n
WV”/I’SP > w\,[ |Vul? dx > WV”/PSF,
pp pp Q pp
which is a contradiction. O

0=<r=
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7. THE SINGULARLY PERTURBED CASE, I

Let  be a possibly unbounded smooth domain of R with N > 3. Since the pioneer-
ing work of Floer and Einstein [68] in the one space dimension, much interest has been
directed in the last decade to singularly perturbed elliptic problems of the form

—&?Au+V(x)u= f(u) inQ
u>0 1in 7.1
u=0 ondf2

for a super-linear and subcritical nonlinearity f with f(s)/s nondecreasing.

Typically, there exists a family of solutions (u.).~o Which exhibits a spike shape around
the local minima (possibly degenerate) of the function V(x) and decade elsewhere as &
goes to zero (see e.g. [3, 62, 63, 64, 84, 109, 110, 120, 126, 127, 147] and references
therein). A natural question is now whether these concentration phenomena are a special
feature of the semi-linear case or we can expect a similar behavior to hold for more general
elliptic equations which possess a variational structure.

In this section we will give a positive answer to this question for the following class of
singularly perturbed quasi-linear elliptic problems

N 5 N
&
—&? Y Dj(aij(x.u) Diu) + 5 > Dsaij(x.u)DiuDju + V(x)u = f(u) inQ
i,j=1 i,j=1
u>0 inQ
u=0 ondf2

(7.2)
under suitable assumptions on the functions a;;, V' and f. Notice that if a;; (x,s) = §;;
then equation (7.2) reduces to (7.1), in which case the problem originates from different
physical and biological models and, in particular, in the study of the so called standing
waves for the nonlinear Schrodinger equation.

Existence and multiplicity results for equations like (7.2) have been object of a very
careful analysis since 1994 (see e.g. [6, 7, 33, 36, 133] for the case where €2 is bounded
and [48, 131] for €2 unbounded). On the other hand, to the author’s knowledge, no result on
the asymptotic behavior of the solutions (as € vanishes) of (7.2) can be found in literature.
In particular no achievement is known so far concerning the concentration phenomena for
the solutions u, of (7.2) around the local minima, not necessarily non-degenerate, of V.

We stress that various difficulties arise in comparison with the study of the semi-linear
equation (7.1) (see Section 7.4 for a list of properties which are not known to hold in our
framework).

A crucial step in proving our main result is to show that the Mountain-Pass energy level
of the functional J associated with the autonomous limiting equation

N N
~ 1 ~ ~ .
= Dj (aij (%, u) Diu)+ 5 > Dyaij (R u)DiuDju+V@u = f() inRY (7.3)
i,j=1 i,j=1

with ¥ € R¥, is the least among other nontrivial critical values (Lemma 7.10). Notice
that, no uniqueness result is available, to our knowledge, for this general equation (on the
contrary in the semi-linear case some uniqueness theorems for ground state solutions have
been obtained by performing an ODE analysis in radial coordinates, see e.g. [44]). The
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least energy problem for (7.3) is also related to the fact:

u € H'(RY), u > 0 and u solution of (7.3) implies that J (1) = max J(tu) 74)
>0

Unfortunately, as remarked in [48, section 3], if one assumes that condition (7.10) holds,
then property (7.4) cannot hold true even if the map s — f'(s)/s is nondecreasing.

To show the minimality property for the Mountain-Pass level and to study the uniform
limit of u, on dA, inspired by the recent work of Jeanjean and Tanaka [83], we make a
repeated use of the Pucci-Serrin identity [117], which has turned out to be a very powerful
tool (Lemmas 7.10 and 7.11).

Notice that the functional associated with (7.2) (see (7.16)) is not even locally Lipschitz
and tools of non-smooth critical point theory will be employed (see [50, 58] and references
therein). Also the proof of a suitable Palais-Smale type condition for a modification of the
functional I, becomes more involved.

We assume that / € C'(R™) and there exist 1 < p < £*2 and 2 < & < p + 1 with

/) _ /) _

lim 0, lim 0, (7.5)
s—>+oo §P s—>0t+t 8
0 <OF(s) < f(s)s foreveryseR™, (7.6)

where F(s) = [y f(t)dt forevery s € RT.
Furthermore, let V : RV — R be a locally Hélder continuous function bounded below
away from zero, that is, there exists « > 0 with

V(x) >a forevery x € RV, 1.7
The functions a;;(x,s) :  x RT — R are continuous in x and of class C! with respect
tos, aij(x,s) = aj;(x,s) forevery i, j = 1,..., N and there exists a positive constant C
with

|Cll‘j(X,S)| =C, |Dsajj(X,S)| <C
forevery x € Q and s € R™. Finally,let R,v > 0and 0 < ¥ < © — 2 be such that

N
D aij(x.9)EE = v]E, (7.8)
i,j=1
N N
D sDsaij(x,9)&& <y Y aij(x, )&, (7.9)
i,j=1 i,j=1
N
s=ZR = Y Daj(x.8)&E >0 (7.10)
ij=1

forevery x € Q,s € R* and £ € RV,

Hypothesis (7.5), (7.6) and (7.7) on f and V are standard. Observe that neither mono-
tonicity assumptions on the function f(s)/s nor uniqueness conditions on the limiting
equation (7.3) are considered. Finally, (7.9) and (7.10) have already been used, for in-
stance in [6, 7, 33, 36, 48], in order to tackle these general equations.

Let Hy (2) be the weighted Hilbert space defined by

Hy(Q) = {u € H)(Q): /9 V(ix)u? < —I—oo},
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endowed with the scalar product (u, v)y = [ DuDv+ V(x)uv and denote by | - || 7, ()
the corresponding norm.
Let A be a compact subset of €2 such that there exists xo € A with

V(xo) =minV < minV, (7.11)
A A
N N
> aij(x0.9)EE; = min > aij(x. 9k (7.12)
i,j=1 i,j=1

forevery s € Rt and £ € RV, Let us set
o:=sup{s>0: f(r) < tV(xo) forevery € [0,s]}, (7.13)
M:={x € A:V(x)=V(x)}. (7.14)
The following is the main result of the section.

Theorem 7.1. Assume that conditions (7.5), (7.6), (7.7), (7.8), (7.9), (7.10), (7.11), (7.12)
hold. Then there exists €9 > 0 such that, for every ¢ € (0, &), there exist us € Hy (2) N
C(Q) and x, € A satisfying the following properties:

(a) ug is a weak solution of the problem

N 2 N
e , )
—g? Z Dij(a;j(x,u)D;u) + ) Z Dgajj(x,u)DiuDju + V(x)u = f(u) inQ
ij=1 ij=1
u>0 inQ
u=0 ondQ;

(7.15)
(b) there exists o’ > 0 such that

ug(xe) = supue, 0 <ug(x;) <o, lirr(l)d(xg, M) =0
Q E—>

where o is as in (7.13) and M is as in (7.14) ;
(c) for every o > 0 we have

Lim i [l oo @\ By (xe)) = 0

(d) we have

lim [|ug | gy, (@) = 0

e—0

and, as a consequence, lim |ug||pa(q) = 0 for every 2 < g < +o00.
e—0
The proof of the theorem is variational and in the spirit of a well-known paper by del
Pino and Felmer [62], where it was successfully developed into a local setting the global

approach initiated by Rabinowitz [120].
We will consider the functional I, : Hy (2) — R associated with the problem (7.15),

> N
1
I.(u) := g Z f aij(x,u)DiuDju + — f V(x)u* — / F(u) (7.16)
2 2 e 2 Ja Q
and construct a new functional J, which satisfies the Palais-Smale condition (in a suitable
sense) at every level (I, does not, in general) and to which the (non-smooth) Mountain-Pass
Theorem can be directly applied to get a critical point u, with precise energy estimates.
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Then we will prove that u, goes to zero uniformly on dA as & goes to zero (this is the
hardest step, here we repeatedly use the Pucci-Serrin identity in a suitable form) and show
that u, is actually a solution of the original problem with all of the stated properties.

Remark 7.2. We do not know whether the solutions of problem (7.15) obey to the follow-
ing exponential decay

Ug(x) < aexp{ — E|x —x€|} for every x € , for some o, € R, (7.17)
€

which is a typical feature in the semi-linear case. This fact would follow if we had a
suitable Gidas-Ni-Nirenberg [77] type result for the equation (7.3) to be combined with
some results by Rabier and Stuart [118] on the exponential decay of second order elliptic
equations.

As pointed out in [64], the concentration around the minima of the potential is, in some
sense, a model situation for other phenomena such as concentration around the maxima of
d(x, d92). Furthermore it seems to be the technically simplest case, thus suitable for a first
investigation in the quasi-linear case.

7.1. The del Pino-Felmer penalization scheme. We now define a suitable modification
of the functional 7, in order to regain the (concrete) Palais-Smale condition at any level
and apply the Mountain Pass Theorem. Let us consider the positive constant

S@) _«o
c— . < — < <
L sup{s >0: R foreveryO_t_s}
for some k > 9/( — 2). We define the function f: R* — R by setting
~ o if
Jio)i= (RS M=t
f(s) ifo<s<¢
and the maps g, G : @ x Rt — R,
- N
g(x,5) == xa(x) f(s) + (1 = xa(x)) f(5), G(x,s) = /0 glx,r)dr

for every x € Q. Then the function g(x,s) is measurable in x, of class C! in s and it
satisfies the following assumptions:

ges) _ o gty

lim 0, li =0 uniformly in x € Q, (7.18)
s—>+oo §P s—0t S
0 <9G(x,s) < g(x,s)s foreveryx € Aands e RT, (7.19)

1
0 <2G(x,s) < g(x,s)s < EV(X)SZ forevery x € Q \ Aands e R, (7.20)

Without loss of generality, we may assume that
g(x,s) =0 foreveryx € Qands <0,
aij(x,s) = a;j(x,0) foreveryx € Q,s <0Oandi,j=1,...,N.
Let J, : Hy(2) — R be the functional

s N
1
Je(u) := % Z /Qa,-j(x,u)D,-uDju—i— 5/5:2 V(x)u2_/QG(x,u)-
i,j=1

The next result provides the link between the critical points of the modified functional
J¢ and the solutions of the original problem.
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Proposition 7.3. Assume that u, € Hy (2) is a critical point of J, and that there exists a
positive number &gy such that

ug(x) <€ foreverye e (0,80)and x € Q\ A.
Then u is a solution of (7.15).

Proof. By assertion (a) of Corollary 2.25, it results that u, is a solution of the penalized
problem. Since u, < £ on Q2 \ A, we have

G(x,us(x)) = F(ug(x)) foreveryx € Q.

Moreover, by arguing as in the proof of [131, Lemma 1], one gets u, > 0 in 2. Then u, is
a solution of (7.15). O

The next Lemma - which is nontrivial - provides a local compactness property for
bounded concrete Palais-Smale sequences of J,. For the proof, we refer the reader to [131,
Theorem 2 and Lemma 3].

Lemma 7.4. Assume that conditions (7.5), (7.6), (7.7), (7.8), (7.9), (7.10) hold. Let ¢ > 0.
Assume that (u;,) C H'(RN) is a bounded sequence and

(wp, @) = &2 Z / a;j(x,up)D; uhD](p—}—— / Dsa;j(x,up)Diup Djupp
i,j=1 i,j=1

foreveryp € CX° (RN), where (wy,) is strongly convergent in H™! (Q)for a given bounded
domain of RV,

Then (uy,) admits a strongly convergent subsequence in H' (fi). In particular, if (uy) is
a bounded concrete Palais-Smale condition for Jg at level ¢ and u is its weak limit, then,
up to a subsequence, Duy — Du in Lz(ﬁ, RN) for every bounded subset Q of Q.

Since 2 may be unbounded, in general, the original functional /. does not satisfy the
concrete Palais-Smale condition. In the following Lemma we prove that, instead, the func-
tional J, satisfies it for every ¢ > 0 at every level ¢ € R.

Lemma 7.5. Assume that conditions (7.5), (7.6), (7.7), (7.8), (7.9), (7.10) hold. Let ¢ > 0.
Then J. satisfies the concrete Palais-Smale condition at every level ¢ € R.

Proof. Let (uy) C Hy(S2) be a concrete Palais-Smale sequence for J, at level ¢. We
divide the proof into two steps:

Step 1. Let us prove that () is bounded in Hy (2). Since J.(uy) — ¢, from inequalities
(7.19) and (7.20), we get

Z / aij (x,up) Diup Djuy + i/ V(x)ui

ij=1 (7.21)

)
/ g(x,up)uy + ﬁ V(x)u,zl 4+ dc+o(1)

as h — +o0. Moreover, we have J.(up)(up) = 0(||uh||HV(Q)) as h — +4o00. Then, again
by virtue of (7.20), we deduce

e’ Z / aij (x,up) DiupDjuy ~|— - Z / Dga;j(x, up)upDiupDjuy ~|—/ V(x)us

i,j=1 11—1
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> /A g Ceoun)un + olunl e @)-

as h — +o0, which, by (7.9), yields

N
(g +1)e? Z / aij(x,up)Diup Djuy, +[ V(x)uz
ij=1"% @ (7.22)

> /A g e up)un + o(lunll 1y @)

as h — +o0. Then, in view of (7.8), by combining inequalities (7.21) and (7.22) one gets

min {(% — % — 1)1)52’ % e 1} /Q (|Duh|2 + V(x)ui) (7.23)
= vc+o(lunlmy ) +o(l)
as h — +o0, which implies the boundedness of (1) in Hy (2).
Step II. By virtue of Step I, there exists u € Hy (£2) such that, up to a subsequence, (u)
weakly converges to u in Hy (£2).
Let us now prove that actually (uj,) converges strongly to u in Hy (£2). By taking into

account Lemma 7.4 (applied with = B,(0) for every ¢ > 0), it suffices to prove that for
every § > 0 there exists o > 0 such that

lim sup/ (|Duh|2 + V(x)ui) < 6. (7.24)
h Q\B,(0)

We may assume that A C B/, (0). Consider a cut-off function ¥, € C*°(2) with 7, = 0
on B,/>(0), ¥, = L on Q\ B,(0), |[Dy,| < ¢/ on Q for some positive constant c. Let
M be a positive number such that

N N
‘% > Dsaij(xvs)giéj‘ <M Y ai(x.)Ei (7.25)
i,j=1 L,j=1
forevery x € Q,s € R*, £ e RV and let { : R — R be the map defined by
0 ifs <0
{(s):=4Ms if0<s<R (7.26)
MR ifs > R,

being R > 0 the constant defined in (7.10). Notice that

N
Z [%Dsaij (x,8) + &' (s)ayj (X,S)]giéj >0, (7.27)

i,j=1

forevery x € Q,s € R, £ € RV, Of course Ji(up)(Youp exp{¢(up)}) can be computed.
Since (1) is bounded in Hy (2) and (7.27) holds, we get

o(1) = J{(un)(Youn exp{t (un)})

N
= Z /Qaij(xv“h)DiuhDjuh‘/fg expil(up)}

i,j=1

N
1
e Z /QI:EDsa,-j(x,uh) +g’(uh)a,-j(x,uh)]D,-uhDjuhu;,t/erxp{{(uh)}
i,j=1
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N
+e2 Y /Q aiy (x, up)un Dy, Dy g expit (un)y + /Q V(e )ul g exp{t (un)}

i,j=1

_ /Q g (v, up) o expit (un))
= [ (1D + Vo) o expleuny

N
+e Z /Q aij(x,up)up DiupDj o exp{s(un)}

i,j=1
— /Q g(x, up)upro exp{l(up)}.

Therefore, in view of (7.20), it results

o) = [ (2v1Dusl + VeonE) v espis )

N
+e Z /Q“ij (x,up)upDiup Djpo exp{l(un)}

i,j=1
1
1 [ Ve veepicuny
Q
as 0 — +oo. Taking into account that

exp{MR}é
——— | Dupll2llunll2.

N
| 3 [ s ooundun Dia Dy i expic ] <

i,j=1
there exists C’ > 0 (which depends only on ¢, v and k) such that, as ¢ — +o00,

C/
1imsup/ (|Duh|2 + V(x)u,zl) < —,
ho JQ\By(0) e

which yields (7.24). Therefore u;, — u strongly in Hy (£2) and the proof is complete. [J

7.2. Energy estimates and concentration. Let us now introduce the functional Jy :
H'(RV) — R defined by

N
Jo(u) := % Z /RN aij(xo,u)DjuDju + %AN V(xo) u? _/]RN F(u)

ij=1
where x¢ is asin (7.11). Let us set

¢:= inf sup Jo(y(1)),

Y€Po refo,1]
where P is the family defined by
Poi={y € CO. 1L Hy®R) : y(0) =0, Jo(y(1)) <0}, (7.28)
Let us also set
Pe =y € C((0.1]. Hy(2)) : ¥(0) =0,  Je(y(1)) <0}. (7.29)

In the following, if necessary, we will assume that, for every y € &, for every ¢t € [0, 1]
the map y (¢) is extended to zero outside 2.
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In the next Lemma we get a critical point u, of J, with a precise energy upper bound.

Lemma 7.6. For ¢ > 0 sufficiently small J, admits a critical point u, € Hy (2) such that
Jo(ug) < Ve + o(eN). (7.30)

Proof. Let ¢ > 0. By Lemma 7.5 the functional J, satisfies the concrete Palais-Smale
condition at every level ¢ € R. Moreover, since g(x,s) = o(s) as s — 0 uniformly in
X, it is readily seen that J, verifies the Mountain-Pass geometry. Finally, if z is a positive
function in Hy (2) \ {0} such that supt(z) C A, by (7.6) it results J,(tz) — —o0 as
t — +oo. Therefore, by minimaxing over the family (7.29), the functional J, admits a
nontrivial critical point u, € Hy (2) such that
Je(ug) = 1nf sup Je(y(2)).
Y€Pe te0,1]

Since ¢ is the Mountain-Pass value of the limiting functional Jy, for every § > 0 there
exists a continuous path y : [0, 1] = Hy (RV) such that

¢ < sup Jo(y(®) =c+38. y(0)=0, Jo(y(1) <0. (7.31)

t€l0,1]

Let ¢ € C>°(RY) be a cut-off function with { = 1 in a neighborhood U of xo in A. We
define the continuous path I’ : [0, 1] — Hy () by setting I3 (1)(x) := {(x)y(r)(*2)
for every 7 € [0, 1] and x € Q. Then, for every 7 € [0, 1], after extension to zero outside
2, we have

T(Tu(0)
:—Z/ ai (3. £y (O (2)) DDy Y0 ()
i,j=1
T2 Z/ aij (v E@ @ (7)) Py () D@ () ¢
11 1
te Z/ ai (x.£C O () LD O(—")tr (0 ()
i,j=1

“))

+3 [ veseror _x") - [, 6 (xcommf

Then, after the change of coordinates, for every T € [0, 1], we get

N
Je(Ie(7)) =

. dij (ey + x0,(ey + x0)y (v)(»)) Di(ey + xo)
i,j=1

x Dj¢(ey + xo) VZ(T)(J’)

MY [ e+ 0. 86ey + 30y () Distey + 30

i,j=1
X Dj)/(f)(y)é(ey + x0)y (D) (»)

+ 2 Z / aij (9 + X0, £ (63 + X)7 () (1)) Dy (D) ()

i,j=1
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N
< Dy OWEEy +x0)+ 5 [ View +0)i e+ xr 00

—eN/ G(ey + x0,8(ey + x0)y (D) (»)).
RN

Taking into account that for every t € [0, 1],

tim [ Vey + 508 ey + 30 00 = [ VEr@o)

e—>0 JRN
lirr(l) G(ey + x0,8(ey + x0)y (D) (¥) = / F(y(®)(»)),
£—> RN RN

and

lim Z / aij(ey + x0, ¢ (ey + x0)y (D) (1) Diy (1) (1) Djy (1) (1)5* (€y + x0)

s—>0

_5 [ @ Gor @0 Dy 0Dy @)

i,j=1

we obtain

Jo(Io(m) = eV Z / aij (xo. (D) (1)) Diy (D) (1) Dy () ()

i,j=1
1
+ E/RN V(XO)VZ(T)(y)—AN F(]/(‘L')(y))} +0(8N)
as ¢ — 0, namely
Je(I()) = ¥ Jo(y (1) + o(e™) (7.32)

as ¢ — 0, where o(&"V) is independent of 7 (by a compactness argument). Then, by (7.31)
and (7.32), it follows that I, € P, for every ¢ > 0 sufficiently small and,

Je(ue) = inf sup Je(y(t)) = sup Je(Ie(?))
1]

YE€Pe tef0,1] teo,
=N sup Jo(y (1) + o(e")
t€f0,1]

< eV +o(eN) + 8¢V forevery § > 0.
By the arbitrariness of § one concludes the proof. g

In the following result we get some priori estimates for the rescalings of u.

Corollary 7.7. Let (¢) C R*, (x4) C A and assume that (ug,) C Hy(Q) is as in
Lemma 7.6. Let us set

v € Hy(Qp), Q=6 (2 —xp).  vp(x) := ug, (xp + 4x)

and put vy, = 0 outside Q2y. Then there exists a positive constant C such that for every
heN,

vl i wyy = C- (7.33)



160 MARCO SQUASSINA EJDE-2006/MON. 07

Proof. We consider the functional Jy : Hy (25) — R given by

N
1
Jh(v) = 3 Z /Q aij(xp + epx,v)DjvDjv (7.34)
i,j=1%%h

1
+ —/ V(xp + enx)v? —[ G(xp + epx,v). (7.35)
2 Q Q2

Since Jy(vp) = eh_NJsh (ug,), by virtue of Lemma 7.6 we have Jj(vy) < ¢ 4 o(1) as
h — +00. Therefore, if we set Ay, = 8;1(A — Xp,), from inequalities (7.19) and (7.20),
we get

N
D D
_ Z / ajj (xh + epx, vh)Dithjvh + —/ V(x;, + shx)v,f
2 £ RN 2 JrN
i,j=1 (7.36)

v
= / g(Xn + enx. vp)vh + o V(xp + enx)vj + 8¢ + o(1)
Ap RN\Ay,

as h — +o0. Moreover, since it results J; (v,)(v;) = 0 for every 1 € N, again by (7.20),
we get

N
Z/ aij(xp + epx,vp) Divy Djvp
ij=1/RY

N
1
+ = Z / Dsa,-j (xh + epx, Uh)UhDithjU}, + / Vixp + th)vi
2 ij=1 RN RN

Z/ g(xp + epx, vp)vp,
Ah

which, in view of (7.9), yields

N
(Z + 1) Z [ aij(xp + epx, vp)Divy Djvy —+—/ Vi(xp + shx)vi
2 S~ RN RN
i,j=1 (737)
Z/ g(xn + epx, vi)vp.
Ap
Then, recalling (7.7) and (7.8), by combining inequality (7.36) and (7.37) one gets
. vy ) s 2 2 _
— L _ - _ <
m1n{(2 5 1)v,(2 % l)a} /]RN (|Dvh| + Uh) <d%c+o(l) (7.38)
as h — +o00, which yields the assertion. 0

Corollary 7.8. Assume that (ug)e=o C Hy(2) is as in Lemma 7.6. Then
lim ||M8||HV(Q) = 0.
e—>0

Proof. We may argue as in Step I of Lemma 7.5 with uj, replaced by u, and ¢ replaced by
Je(ug). Thus, from inequality (7.23), for every ¢ > 0 we get

/;2 (|Du8|2 + V(x)u?) = v Je(ug).

- 4 P 4
mm{(i—%—l)vez,i—ﬁ—l}
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By virtue of Lemma 7.6, this yields

219(? N— N—
/s; (|Du€|2 + V(x)u?) = m eN72 4 o(e 2)
for every ¢ sufficiently small, which implies the assertion. d

Let £ : RY xR x RY — R be a function of class C! such that the function Ve & is of
class C! and let ¢ € L,"OOC(RN ). We now recall the Pucci-Serrin variational identity [117].
Lemma 7.9. Let u : RV — R be a C? solution of

—div (Dg£L(x,u, Du)) + Dy&(x,u, Du) = ¢ in D'(RN).

Then for every h € C} RN, RN),

N
Zf Dithgiéﬁ(x,u,Du)Dju
ij=1/RY (7.39)

—f [(divh)ii(x,u,Du)+h-Dx$(x,u,Du)] =/ (h- Du)p.
RN RN

We refer the reader to [59], where the above variational relation is proved for C 1 solu-
tions. We now derive an important consequence of the previous identity which will play
an important role in the proof of Lemma 7.11.

Lemma 7.10. Let it > 0 and h, H : R™ — R be the continuous functions defined by
s
h(s) =—us+ f(s), H(s)= / h(t) dt,
0

where [ satisfies (1.5) and (7.6). Moreover, let bjj € C'(R*) N L®RY) with bj; €
L>®(R™) and assume that there exist v/ > 0 and R’ > 0 with

N N
D bi)&EE = VIER, s= R = ) bli(9)EE 20 (7.40)
i,j=1 i,j=1

foreverys € RT and € e RN, Let u € H'(RN) be any nontrivial positive solution of the
equation

N N
1 , .
— § : D; (b (u)Dju) + 3 § ' bj;(u)DuDju = h(u) inRN. (7.41)
i,j=1 i,j=1

We denote by J the associated functional

N
~ 1
J(Wu) == bij(u)DiuDju — H(u). 7.42
() 2,.,2,.;/@ s Dby [ Ha (.42)

Then it results J (u) = b, where

b:= inf sup Ty (1)),
yep telo,1]

P o= {y e (0,1, H'®RM)) : y(0) =0, T(y(1)) < o}.
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Proof. By condition (7.40),

~ 1
J(v) > 5 min {v’,u} ||U||§{1(RN) _/B‘RN F(v) foreveryv e H'(RV).
Then, since for every ¢ > 0 there exists C; > 0 with
0< F(s) <es’ 4+ C; |S|% for every s € R,

it is readily seen that there ex1st 0o > 0 and 69 > 0 such that J (v) > §g for every v with
lvll1,2 = ©o- In particular J has a Mountain-Pass geometry. As we will see, P # 0, so
that b is well defined. Let u be a nontrivial positive solution of (7.41) and consider the
dilation path

u(y) ift>0

yx) = {0 i = 0.

Notice that ||y(t)||12q, = tN72| Dul|? + ¢V ||u|3 for every ¢ € R*, which implies that the
curve y belongs to C([0, +oo[ H'(RM)). For every t € RY it results that

T(r() —Z / bij (v () Diy () Dy (1) — / Hy ()

i,j=1
tN 2

Z/ bij(u)DijuDju —tV / H(u)

i,j=1
which yields, for every t € R™

%f(y(t))z NT N=3 Z/ bij(u)DiuDju — Nt~ 1/ Hu). (7.43)

i,j=1
By (7.40), arguing like at the end of Step I of Lemma 7.11 (namely using the local Serrin
estimates) it results that u € L (R™). Hence by the regularity results of [91], it follows
that u is of class C2. Then we can use Lemma 7.9 by choosing ¢ = 0,

N
1
£(s,&) = E Z bij(s)&& — H(s) foreverys e RT and £ e RV, (7.44)
ij=1

h(x) := hy(x) = T(;—C)x forevery x € RN and k > 1, (7.45)

being T € C!(RV) such that T'(x) = 1if |x| < 1 and T(x) = 0 if |x| > 2. In particular,
it results that /ix € CH(@RN,RY) for every k > 1 and

D,-hi(x) = D,‘T(%)% + T(%)(Sij forevery x e RN andi, j =1,...,N
(div i) (x) = DT(;{—C) . % + NT(%) for every x € RV,

Then, since Dy £ (u, Du) = 0, it follows by (7.39) that for every k > 1

n
X Xj X
> fRN D,-T(%)?]DjuDgii(u,Du)—i—/RN T(%)Dgéﬁ(u,Du)-Du

X X X
—/RN DT(%)-%éﬁ(u,Du)—/RN NT(;)2£(u. Du) = 0.
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Since there exists C > 0 with
DiT(;—C)% < C forevery x eRN k> landi,j =1,...,N,
by the Dominated Convergence Theorem, letting k — 400, we obtain
/ [Néti(u, Du) — Dg£(u, Du) - Du] — 0,
RN

namely, by (7.44),

Ei/ DDy = N [ Hw
3 . ij(u)DiuDju = . u).

i,j=1

By plugging this formula into (7.43), we obtain
d ~
STy =Na-m [
dt RN
which yields %f(y(l)) > 0 fort < 1and %f(y(t)) <Ofort > 1,ie.

sup J(y(@)) = J(y(1) = J(u).
t€[0,L]
Moreover, observe that

y(0) = 0 and f(y(T)) < 0 for T > 0 sufficiently large.

Then, after a suitable scale change in ¢, ¥ € & and the assertion follows.
The following is one of the main tools of the section.

Lemma 7.11. Assume that (ug)e~0 C Hy(2) is as in Lemma 7.6. Then

lim max u, = 0.
e—>0 0A

163

(7.46)

(7.47)

Proof. The following auxiliary fact is sufficient to prove assertion (7.47): if &, — 0 and

(xx) C A are such that u,, (x;) > c for some ¢ > 0, then

lim V(x;,) = min V.
im () = min

(7.48)

Indeed, assume by contradiction that there exist (¢;,) C R™ with &, — 0 and (x;) C A
such that ug, (x;) > ¢ for some ¢ > 0. Up to a subsequence, we have x;, — X € dA. Then

by (7.48) it results
inV <V(x)=1limV =minV
rgl}\n <V(x) 1}Iln (xp) HRH

which contradicts assumption (7.11).
We divide the proof of (7.48) into four steps:

Step L. Up to a subsequence, x;, — X for some X € A. By contradiction, we assume that

V(X) > n}in V = V(xg).
Since for every i € N the function u,, solves (P, ), the sequence

v € Hy(Qp), Qi =¢,"(Q—xp), vi(xX) = e, (xp + &)

satisfies

N N
1
— Z Dj(a;j(xp + enx,vp)Divy) + 3 Z Dya;j(xp + epx, vp) Divy Djvy, = wy,

i,j=1 i,j=1
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in Qy, vy > 0in Q4 and v, = 0 on 02y, where we have set
wy = g(xp + epx,vy) — V(xy + epx)vy  forevery h € N.

Setting vy = 0 outside RV, by Corollary 7.7, up to a subsequence, v, — v weakly in
H'(RY). Notice that the sequence (xa (x; + £,x)) converges weak* in L to a measur-
able function 0 < x =< 1. In particular, taking into account that |wy| < c1|vp| + c2val?,
(wp,) is strongly convergent in H~ 1(Q) for every bounded subset Q of RV, Therefore,
by a simple variant of Lemma 7.4, we conclude that (vy) is strongly convergent to v in
H! (Q) for every bounded subset Q Cc RN (actually, as we will see, v, — v uniformly
over compacts). Then it follows that the limit v is a solution of the equation

N
— Z Dj(aij(X,v)Div) + = Z Dsa;ij(X,v)DivDjv + V(X)v = go(x,v) inRY
i,j=1 i,j=1

~ (7.49)
where go(x,s) 1= x(x) f(s) + (I — x(x)) f(s) forevery x € RN and s € R*.
We now prove that v # 0. Let us set
{V(x;, + epx) — EXVOD gy () £ 0

v (x)

)=, if vy (x) = 0,

z

Aj(x,s,8) = Z aij(xp +epx,s)§ forj=1,...,N,

B(x s, &) = dp(x)s,
N
1
C(x,s):= 3 Z Dgaij(xp + epx, s)Divy(x)Djvp(x)
i,j=1
for every x € RV, s € Rt and £ € RY. Taking into account the assumptions on the
coefficients a;; (x, 5), it results that

A(x.5.6)-E = v[E]?, |A(x.5.8)] <clél. |B(x,s5.8)] < dp(x)ls].
Moreover, by (7.10) we have
s>R = C(x,s)s >0

for every x € RY and s € R*. By the growth condition on g, dj, € LZL—B(BZQ(O)) for
every o > 0 and

S = sup il %5 . oy = Do sup lvnll L2 (3,00 < +00

for some § > 0 sufficiently small. Since div(A(x, vy, Dvy)) = B(x, vy, Dvy) + C(x, vp)
for every i € N, by virtue of [123, Theorem 1 and Remark at p.261] there exists a positive
constant M (8, N, ¢, 0°S) and a radius ¢ > 0, sufficiently small, such that

sup max [vp(x)] < M8, N.e.0"$)(20) ™% sup [[vnll 2 o) < +o0

heN x€B,(0)
so that (vp) is uniformly bounded in B,(0). Then, by [123, Theorem 8], (vj) is bounded
in some C%(B,/,(0)). Up to a subsequence this implies that (vj,) converges uniformly to
vin B,/,(0). This yields v(0) = limy, v;(0) = limy, u,, (xz) = ¢ > 0.

In a similar fashion one shows that v, — v uniformly over compacts.
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Step II. We prove that v actually solves the following equation

N N
~ 1 ~ ~ .
— Y Dj(ai;(X.v)Div) + 3 > Dyaij(X.v)DivDjv + V(X)v = f(v) inRV.
i,j=1 i,j=1

(7.50)

In general the function x of Step I is given by y = where T4 (X) is the tangent

XA Ry
cone of A at X. On the other hand, since we may assume without loss of generality that
A is smooth, it results (up to a rotation) that x(x) = x{x,<o}(x) for every x € RY. In

particular, v is a solution of the problem

N N
~ 1 ~ ~
- Z Dj(a;j(x,v)D;jv) + = Z Dsa;j(x,v)DivDjv + V(X)v
=1 255 (7.51)

= X{xy<03(x) f(v) + X{x1>0}(X)]7(v) inRY.

Let us first show that v(x) < £ on {x; = 0}. To this aim, let us use again Lemma 7.9, by
choosing this time

P(X) 1= Xpx, <03 (X) f(V(X)) + Xpx,>03(¥) f(v(x)) for every x € RY
N A~
L(s.£) = % > @R 9)EE + V(zx)ﬁ for every s € R and £ € RV,
i,j=1

h(x) = hi(x) = (T(%),O,...,O) for every x € RY and k > 1.

Then hy € C/ (RN, RN) and, since D £ (v, Dv) = 0, for every k > 1, it results
/ [liD-T(f)D wDs, £(v, Dv) — D1 T~ 2 (v D)
RN k P 1 k 1 S,’ s 1 k k )
x
= / T(—)e(x,v)Dyv.
RN k

Again by the Dominated Convergence Theorem, letting k& — +o00, it results

/ ¢(x,v)Dyv =0,
RN

that is, after integration by parts,
/ [F(v(O,x/)) - F(v(o,x/))] dx' = 0.
RN-1

Taking into account that F(s) > F (s) with equality only if s < £, we get v(0, x’) < £ for
every x’ € RN=!. To prove that actually v(x;,x’) < £ for every x; > 0 and x’ € RVN~1,
we test (7.51) with

o [0 it x; <0
M) = (v(x1,x") — )T exp{t(v(x1,x))} ifx; >0

where ¢(s) is as in (7.26) and then we argue as in Section 7.3 (see the computations in
formula (7.58)). In particular,

o(x,v(x)) = f(v(x)) forevery x € RY, (7.52)

so that v is a nontrivial solution of (7.50).
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Step L If J;, : Hy(2,) — R is as in (7.34), the function vy, is a critical point of J; and

Jp(op) = e~V Jey, (ug,,) forevery h € N. Letus consider the functional J5 : H'RN) -
R defined as

N
1 ~ 1 ~ 2
Jo(u) = 5 ‘Zl /]RN aij (X, u)DjuDju + EAN V(X)u —/];w F(u).
i,j=

We now want to prove that

J) = lirr}linf Jn(vp). (7.53)
Let us set for every 1 € N and x €
1 O 1
En(x) = 3 Z aij(xp + epx,vp)Divy Djvy + EV(xh + 8hx)v,zl — G(xp + epx,vp).
ij=1

(7.54)
Since v, — v in H! over compact sets, in view of (7.52), for every o > 0 one gets

1 N
lim En(x) = _/1; o ( Z a,-j(f, v)D;vDjv + V(SC\)U2> _/ F(v).

hJB,(0) 2 i B,(0)

Moreover, as v belongs to H 1 (]RN ),

1
> oo

as 0 — +oo. Therefore, it suffices to show that for every § > 0 there exists o > 0 with

N

g;amawnwmv+wa#)—ﬁwmnw=Jﬁw—an

liminf/ En(x) = 6. (7.55)
h JQ,\B,(0)

Consider a function 7, € C%(RY) such that 0 < Mo < 1,n,=00nB,_1(0),n, =10n
RN\ B,(0) and | Dn,| < c. Let us set for every h € N,

N
Br(@) =) / aij(xn + enx, vp) Divi Dj(novn)
521 IBoonB, 1)
LN
+ —_

2 ,»,,Zzzl /BQ<0)\BQ_1 ©

Dsa;j(xp + epx, vp)novp Divy Djvy

+ / V(xXp + enx)vjno —[ g(xp + epx, vp)Noup.
By (0)\B,—1(0) By (0)\By—1(0)

After some computations, in view of (7.9) and (7.54), one gets

— Br(o) + Jj(vp)(novn)

4
o+ aw-L[ oo +an
Q,\Bo(0) @\ B, (0)

+(y+2) G(xp + epx,vp) —/ g(xp + epx, vp)vp
Q,\ By (0) Qp\Bp(0)
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Notice that, by virtue of (7.19), for g large enough, setting Ay = s;l (A — xp), we get

Y / Vi + en)v} + (v +2) G + enx, vn)
2 JAp\Bo(0) Ap\Bo(0)
—/ g(xp + epx, vp) vy
Ap\Bg(0)
<—@0-2-y) G(xp + epx,vp) < 0.
Ap\By(0)
Analogously, in view of (7.20), we obtain
- / Vi + en)v? + (v +2) Gxn + enx. vg)
2 Ja,\(Bo(0)UAR) Q4 \(Bo(0)UA,)
—/ g(xp + epx, vp)vp
Qp\(Bg(0)UAR)

4

S__

/ Vixp + 8;,)6)1)2 +
2 JQ,\(Bo(0)UAR)

— Vixy + £hx)v2 <0.
2k JQ,\(Bo(0)UAL)

Therefore, since J; (vy)(novy) = 0 for every 4 € N and
limsup B4 (0) = o(1) as o — +o0,
h

inequality (7.55) follows and thus (7.53) holds true.

Step IV. In this step we get the desired contradiction. By combining Lemma 7.6 with the
inequality (7.53), one immediately gets

Je(w) =¢ = inf sup Jo(y(1)). (7.56)

Y€Po tef0,1]
Since v is a nontrivial solution of (7.50), by applying Lemma 7.10 with
w=V(E), vV=v, R =R, bij(s)=aiX,s),
being P C Po, V() > V(xo) and, by (7.12),

N N
D ay(R.9)EE = Y aij(xo.9)E& foreverys e RT and & € RV,
ij=1 i.j=1

it follows that

J(v) = inf sup Jo(y(@)) > 1nf sup Jo(y(?)) =c, (7.57)
yeg)te[o 1] Y€Po tef0,1]

which contradicts (7.56). O

7.3. Proof of the main result. We are now ready to prove Theorem 7.1.
Step 1. We prove that (a) holds. By Lemma 7.11 there exists &9 > 0 such that

ug(x) <€ foreverye € (0,g9) and x € dA.

Then, since u, € Hy (2), for every ¢ € (0, &9), if ¢ is defined as in (7.26), the function

0 ifx e A
ve(x) 1= .
{(ue(x) — Ot exp{C(us(x))} ifxeQ\A
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belongs to Ho1 (f2) and it is an admissible test for the equation

N 2 N
e
—g? Z Dj(a;j(x,ug)Diug) + ) Z Dsa;j(x,ug) DiugDjue + V(X)us = g(x, ug).
i,j=1 i,j=1

After some computations, one obtains

N
2 3 . A1 A ex 8
e Z /Q\Aau(x,ue)Dl[(ue 0) ]D,[(ue 0) ]e plE(up)}

ij=1

N
+ &2 UX:I /Q\A [%Dsaij (x ug) + & (ue)aij(x, us)i| DjucDjug(ue — )T exp{(ug)}

+ [ () (te — OF ] explt o)} + / () (s — O)F expll(us)} = 0,
Q\A Q\A

(7.58)
where @, : Q2 — R is the function given by

g(x, ug(x))
ug(x)
Notice that, by virtue of condition (7.20), one has
d.(x) >0 forevery x € Q\ A.

D, (x) :=V(x)—

Therefore, taking into account (7.27), all the terms in (7.58) must be equal to zero. We
conclude that (u; — £)T = 0 on  \ A, namely,

ug(x) <€ foreverye € (0,g9) and x € 2\ A. (7.59)

Hence, by Proposition 7.3, u, is a positive solution of the original problem (7.15). More-
over, by virtue of (7.10), using again the argument at the end of Step I of Lemma 7.11
it results that u, € L2 (2), which, by the regularity results of [91], yields u, € C Q).
Notice that by arguing in a similar fashion testing with

0 ifx € A
vé‘(x) = + .
(ue(x) —supyp ue) ™ expilue(x))} ifx € Q\A

it results #, — 0 uniformly outside A.

Step II. We prove that () holds. If x, denotes the maximum of u, in A, since u, — 0
uniformly outside A, it results that u.(x;) = supg u.. By arguing as at the end of Step I of
Lemma 7.11, setting vg(x) = u(x, +&x) it results that the sequence (v¢(0)) is bounded in
R. Then there exists 6’ > 0 such that u.(x;) = v.(0) < o’. Assume now by contradiction
that u.(x.) < o for some ¢ € (0, &p). Then, taking into account the definition of o and
that u, — 0 uniformly outside A, it holds (with strict inequality in some subset of £2)

V(x)— M >0 forevery x € Q. (7.60)

ug(x)

Let ¢ : RT — R be the map defined in (7.26). Then the function u, exp{{(u¢)} can be
chosen as an admissible test in the equation

N 2 N
&
—e? Z Dj(aij(x,ug)Diug) + 7 Z Dsaij(x,ug) Diug Djug + V(xX)u, = Sue).
ij=1 i,j=1



EJDE-2006/MON. 07 ON A CLASS OF QUASI-LINEAR ELLIPTIC PROBLEMS 169

After some computations, one obtains

S | s o) Dy Dy extg e

,1—1

+e Z / [ Dyaij (x.ug) + & (ue)ay (x, ua)] Diug Djusugexpit(ug)y (70D

i,j=1

+ (v<x) S (”8)) u2 expL (i)} = 0.
Q u

&

Then, by (7.8), (7.27) and (7.60) all the terms in equation (7.61) must be equal to zero,
namely u#, = 0, which is not possible. Then u.(x,) > o for every ¢ € (0,&9) and by
(7.48) we also get d(xg, M) — 0 as e — 0.

Step III. We prove that (¢) holds. Assume by contradiction that there exists ¢ > 0, § > 0,
en — 0and y, € A\ By(xs,) such that

limsup ug, (yn) > 6. (7.62)
h
Then, arguing as in Lemma 7.11, we can assume that y;, — , X;, — ¥ and vy () =

Ug, (Yh + €1y) = v, Up(y) := ug, (Xg, + €4y) — U strongly in 1OC(RN) where v is a
solution of

N
- Z Dj(a;j(y,v)Div) + = Z Dsa;j(y,v)DivDjv + V(y)v = f(v) inRY
i,j=1 lj—]

and 7 is a solution of

— Z Dj(a;j(y,v)Dijv) + = Z Dsa;j(y,v)DivDjv+ V(¥)v = f(v) in RV,
i,j=1 z]—l

Observe that v # 0 and v # 0. Indeed, arguing as in Step I of Lemma 7.11 it results

that (v;) and (vj) converge uniformly in a neighborhood of zero, so that from (7.62) and

Ug, (xg,) = 0 we get v(0) > § and U(0) > o. Now, setting zj, := % and

N
1 1
En(y) =3 > aij(yn + eny. vi) Divy Djvy + SVOn+ eny)Vj; — G(yn + eny, vn),
i,j=1
if y € C*°R),0<¢ <1,¢¥(s) =0fors <1and ¢¥(s) = 1fors > 2, arguing as in
Lemma 7.11 by testing the equation satisfied by vy with

|y ly — Zh|
onr(y) = wO[V (5) + v (=)~ 1].
taking into account that
iim| [ 60| = o)
h 1 J By r(0)UB2 g (zp)\(BR(0)UBR (zp))
as R — o0, it turns out that for every § > 0 there exists R > 0 with

lim inf

| £() > 5.
b JQu\(BR(O)UBR(z))
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Moreover, for every R > 0, we have

lim inf E(y) = 11m1nf Z aij(yn + eny,vn) Divy Djvy,

h /BR(O)UBR(zh BR(0) 2 et

1
+ EV(J/h + eny)vi — G(yn + eny, vp)

+11m1nf/ Z aij (X, +€py,0p) DV D; vy
Br (0) i,j=1

1 ~ ~
+ 5V (xey + EnV)T — Glxe, + 47, T1)

/BR(O) Z aij(y,v)DjvDjv + = V(y)v — F(v)

i,j=1

N
1 e L
+/ = Z aij (7, D) D;vD; v + =V (5)7* — F(D).
Br) 2,52, 2
Therefore, we deduce that

limhinfs;,_N Je, (tg,) = lirr;inf / £,.(0) = J,(v) + J5(@).
Qh

Let by, and b5 be the Mountain-Pass values of J,, and J3. By Lemma 7.10, (7.11) and
(7.12) we have J,, (v) = b, > ¢ and J5(vV) > by > c. Therefore we conclude that

lim infe, N Jg, (ue,) > 28,

which contradicts Lemma 7.6.

Step IV. We prove that (¢) holds. By Corollary 7.8, we have |lu.|| &, (@) — 0. In particu-
lar, u; — 0in L9(2) for every 2 < ¢ < 2*. As a consequence ug — 0 in L9(£2) also for
every ¢ > 2*. Indeed, if ¢ > 2*, we have

_nk * —* *
/|ua|q=/ e g2 < 07 /|ua|2 -0
Q Q Q

as ¢ — 0. The proof is now complete. O

7.4. A few related open problems. We quote here a few (open) problems related to the
main result.

Problem 7.12. Under suitable assumptions, does a Gidas-Ni-Nirenberg [77] type result
(radial symmetry) hold for the solutions of autonomous equations of the type

- Z Dj(bij (u) Diu) + = Z bj;)DiuDju = h(u) inRN? (7.63)
i,j=1 11—1
Problem 7.13. Under suitable assumptions on b;; and £, is it possible to prove, as in the
semi-linear case, a uniqueness result for the solutions of equation (7.63)?

Problem 7.14. Is it true that for each ¢ > 0 the solution u, of problem (7.15) admits a
unique maximum point inside A?

Problem 7.15. Is it true that the solutions u, of problem (7.15) decay exponentially as for
the semi-linear case (see formula (7.17))?
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8. THE SINGULARLY PERTURBED CASE, 11

In this section we turn to a more delicate situation, namely the study of the multi-peak
case, also for possibly degenerate operators. We refer the reader to [75]. Some parts of this
publication has been slightly modified to give this collection a more uniform appearance.

Assume that V : RN — R is a C! function and there exists a positive constant o such
that

V(x) > a forevery x € RV, &.D
Moreover let Aq,..., Ag be k disjoint compact subsets of 2 and x; € A; with
V(x;j))=minV <minV, i=1,... k. 8.2)
A; dA;
Letussetforalli =1,...,k
M= {x € Ai 1 V(x) = V(x)}. (8.3)
Np

Letl < p <N, p* = and let Wy (2) be the weighted Banach space

N-p
Wi (Q) := {u € WP (Q): / V(x)|ul? < +oo}
Q

endowed with the natural norm ||u||;,V = [q |Du|? + [ V(x)|u|?. Forall A, B C RV,
let us denote their distance by dist(4, B).
The following is the first of our main results.

Theorem 8.1. Assume that (8.1) and (8.2) hold and let 1 < p <2, p < q < p*.
Then there exists ¢y > 0 such that, for every ¢ € (0, &g), there exist u, in Wy (2) N
Cl(l);ﬁ (R2) and k points x.; € A\; satisfying the following properties:
(a) ug is a weak solution of the problem
—ePApu +V(x)uP ' =ui™! inQ
u>0 inQ 8.4)
u=0 onodQ;
(b) there exist 6,0’ €]0, +00[ such that for everyi = 1,...,k we have

Ug(Xgi) =SUpUe, 0 <uUg(Xg;) < o', lim dist(xg;, M;) =0
A; e—0
where M; is as in (8.3);
(c) forevery r < min{dist(M;, M;) 11 # j} we have

sh—IE}) ””*’"”L"O(SZ\ULI Br(xei) 0;

(d) it results
lim [|ug|lw; = 0.
e—0
Moreover, if k = 1 the assertions hold for every 1 < p < N.

Actually, this result will follow by a more general achievement involving a larger class
of quasi-linear operators. Before stating it, we make a few assumptions. Assume that
l<p<N,feCYR")and there exist p < ¢ < p*and p < ¥ < ¢ with

SO e O

lim
1 s—>+o0 41

s—0+ §P7
0 <VF(s) < f(s)s foreveryseR™, (8.6)

0, (8.5)
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where F(s) = [, f(t)dt forevery s € RT.

The function j(x,s,£) : @ x R* x RV — R is continuous in x and of class C'! with
respect to s and &, the function {£ — j(x,s, &)} is strictly convex and p-homogeneous
and there exist two positive constants ¢y, c; with

ljs(x.5.6)| < ctl€l?,  |je(x,5.6)] < c2|€]77! (8.7)

forae. x € Q andevery s € RT, £ € RV (j; and Jg¢ denote the derivatives of j with
respect of s and & respectively). Let R,v > 0and 0 < y < ¥ — p with

J(x.5.8) Z vig|”, (8.8)
Js(x.5.86)s < yj(x.5.8) (8.9)
a.e.in 2, for every s € Rt and £ € R¥, and

Js(x,s,6) >0 foreverys > R (8.10)

a.e. in Q and for every £ € RV, For every fixed X € , the limiting equation
— div(je (%, u, Du)) + js(%,u, Du) + V(X)u?™' = f(u) inRY (8.11)

admits a unique positive solution (up to translations). Finally, we assume that
J(xi,8,8) =;IeliAnij(x,s,§), i=1,...,k (8.12)

for every s € RT and £ € RY, where the x;s are as in (8.2).
We point out that assumptions (8.1), (8.2), (8.5) and (8.6) are the same as in [62, 63].
Conditions (8.7)-(8.10) are natural assumption, already used, throughout this monograph.
The following result is an extension of Theorem 8.1.

Theorem 8.2. Assume that (8.1), (8.2), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10), (8.11), (8.12)
hold. Then there exists g9 > 0 such that, for every ¢ € (0, &y), there exist u, in Wy () N
Ckl)éﬁ () and k points x.; € A; satisfying the following properties:
(a) ug is a weak solution of the problem
—&? div(je(x, u, Du)) + &P js(x,u, Du) + V(x)u?™' = f(u) inQ
u>0 inQ (8.13)
u=0 ono2;
(b) there exist 0,0’ €]0, +00[ such that for everyi = 1,...,k we have
Ug(Xei) =supug, 0 <ug(xg;) <o, lin}) dist(xg,;, M;) =0
A; e—>
where M; is as in (8.3);
(c) forevery r < min{dist(M;, M;) :i # j} we have

m 0;

lim letell oo @\UK_, By xey) =
(d) it results
lim [lue |, = 0.
e—>0

Notice that if k& = 1 assumption (8.11) can be dropped: in fact following the argu-
ments of [132] it is possible to prove that the previous result holds without any uniqueness
assumption, which instead, as in the semi-linear case, seems to be necessary for the case
k > 1. This holds true for the p-Laplacian problem (8.4) and for more general situation
we refer the reader to [124].
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Various difficulties arise in comparison with the semi-linear framework (see also Sec-
tion 5 of [132]). To study the concentration properties of u, inside the A;s (see Sec-
tion 8.3), inspired by the recent work of Jeanjean and Tanaka [83], we make a repeated use
of a Pucci-Serrin type identity [59] which has turned out to be a very powerful tool (see
Section 8.2). It has to be pointed out that, in our possibly degenerate setting, we cannot
hope to have C 2 solutions, but at most C!# solutions (see [65, 142]). Therefore, the clas-
sical Pucci-Serrin identity [117] is not applicable in our framework. On the other hand, it
has been recently shown in [59] that, under minimal regularity assumptions, the identity
holds for locally Lipschitz solutions, provided that the operator is strictly convex in the
gradient, which, from our viewpoint, is a very natural requirement (see Theorem 8.6). Un-
der uniqueness assumptions this identity has also turned out to be useful in characterizing
the exact energy level of the solution of (8.11). More precisely, we prove that (8.11) admits
a least energy solution having the Mountain-Pass energy level (see Theorem 8.7).

8.1. Penalization and compactness. In this section, following the approach of del Pino
and Felmer [63], we define a suitable penalization of the functional I, : Wy (2) - R
associated with the problem (8.13),

I (u) := ep/;zj(x,u,Du)—i—%./QV(X)MP—/QF(M).

By the growth condition on j, it is easily seen that /; is a continuous functional.
Let o > 0 be as in (8.1) and consider the positive constant

t
{ = sup{s>0:lj;L_?§g foreveryOEtfs} (8.14)

for some fixed k > ©/(¢ — p). We define the function f~ :R* — R by setting

%sl’_l ifs > ¢

S) = {f(s) ifo<s=<¢

and themap g : @ x RT — R as
k
g(x.8) == 1a(™) f() + (1 = 1A f(). A=[]JAs
i=1

fora.e. x € Q and every s € RT. The function g(x, s) is measurable in x, of class C! in
s and it satisfies the following properties:

im £ o im XY o uniformly in x, (8.15)
s—>+oo s971 s—>o0+t sP1
0<09G(x,s) < g(x,s)s forxeAandseR™, (8.16)
1
0<pG(x,s) < g(x,s)s < —V(x)s? forxe Q\AandscRT, 8.17)
K
where we have set G(x, s) := fos gx,7)dr.
Without loss of generality, we may assume that
g(x,5) =0 forae.x € Qandevery s <0, (8.18)

J(x,5,8) = j(x,0,§) foreveryx € Q,s <0and& e RV, (8.19)
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Let now J, : Wi (2) — R be the functional defined as
1
Je(u) ;= ¢&? [ j(x,u, Du) + —/ V()|ul? — [ G(x,u).
Q P Ja Q
If ¥ is in one of the A;s, we also consider the “limit” functionals on W 1-? (]RN ),
1
Iz (u) = / j(i,u,Du)—k—/ V()"c)lu|1’—/ F(u) (8.20)
RN P JRN RN

whose positive critical points solve equation (8.11). We denote by cxz the Mountain-Pass
value of /5, namely

cx = inf sup Ix(y(?)), (8.21)
YE€P% ref0,1]
Pri={y € COILWP@RY) 1 y(0) =0, L:(y(1) <0f.  (822)
We set ¢; := cx; forevery i = 1,..., k. Considering o; > 0 such that

k 1
Zoi<§min{c,-:i=1,...,k},

i=1
we claim that, up to making A;s smaller, we may assume that
¢i <cx <ci+o; foralxeA;. (8.23)

In fact ¢; < c¢x follows because x; is a minimum of V in A; and (8.12) holds. On the other
hand, let us consider X; — x; such that lim;, ¢z, = limsupg Sx; Cx- Let y € #5x be such
that maxefo,1] Ix; (¥ (7)) < ¢; 4+ 0. Since Iz, — I, uniformly on y, we have that for /4
large enough, y € $%, and there exists 5 € [0, 1] such that

cxy = Az, (v () = Ly (v () + 0(1) = ¢i + 0i + o(1).

We deduce that limsups;_, .. ¢z =< ¢; + 0; so that the claim is proved.

It /A\,- denote mutually disjoint open sets compactly containing A;, we introduce the
functionals Jg; : W17 (A;) — R as

Jei(u) := ep/i j(x,u, Du) + l/A V(x)|u|1’—/A G(x,u) (8.24)
A; D JA; i

1

foreveryi =1,...,k.
Finally, let us define the penalized functional E. : Wj(2) — R by setting
Ee(u) := Je(u) + Pe(u), (8.25)
k
2
Palu) i= MY (i)' = N2 + 00)'2) (8.26)
i=1
where M > 0 is chosen so that
Mo e+ ok .
ming—y. x {(2¢)V/2 = (¢; + 01)'/?}

The functionals J, J;; and E, are merely continuous.
The next result provides the link between the critical points of E, and the weak solutions
of the original problem.
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Proposition 8.3. Let u, € Wy (Q2) be any critical point of E. and assume that there exists
a positive number g such that the following conditions hold

ug(x) <€ foreverye e (0,g9)andx € Q\ A, (8.27)
e N Joi(ug) < ci+o0; foreveryse (0,e0)andi =1,... k. (8.28)
Then, for every ¢ € (0, &g), u, is a solution of (8.13).

Proof. Let ¢ € (0,¢p). By condition (8.28) and the definition of P (i), u, is actually a
critical point of J,. In view of (a) of Proposition 2.25, u, is a weak solution of

—&? div(js (x, u, Du)) + ? js(x,u, Du) + V(x)|u|?*u = G(x,u).

Moreover, by (8.27) and the definition of f it results G(x,u.(x)) = F(u.(x)) for a.e.
x € Q. By (8.18) and (8.19) and arguing as in the proof of [131, Lemma 1], one gets
ug > 01in 2. Thus u, is a solution of (8.13). Il

The next Lemma is a variant of a local compactness property for bounded concrete
Palais-Smale sequences (cf. [131, Theorem 2 and Lemma 3]; see also [48]).

Lemma 8.4. Assume that (8.7), (8.8), (8.10) hold and let (yr) C L®(RY) bounded with
Yn(x) = A > 0. Let ¢ > 0 and assume that (u) C WP (RN) is a bounded sequence
such that

(wnog) =2 [ nCejeCeoun D Do+ e [y irn. Dune

for every ¢ € CCOO(RN), where (wy) is strongly convergent in W_l’p/(fl) for a given
bounded domain Q2 of RN . Then (u},) admits a strongly convergent subsequence in WP ().

Since 2 may be unbounded, in general the original functional I, does not satisfy the
concrete Palais-Smale condition. In the following Lemma we prove that, instead, for every
¢ > 0 the functional E, satisfies it at every level ¢ € R.

Lemma 8.5. Assume that conditions (8.1), (8.5), (8.6), (8.7), (8.8), (8.9), (8.10) hold. Let
e>0.
Then E, satisfies the concrete Palais-Smale condition at every level ¢ € R.

Proof. Let (up) C Wy (K2) be a concrete Palais-Smale sequence for E, at level c. We
divide the proof into two steps:

Step I. We prove that (1) is bounded in Wy (2). From (8.16) and (8.17), we get

er [ JCeottn. Dug) + [ Vet
@ s P (8.29)

< / g (e upun + - [ Ve ual? + 9Js(up)
A pr Jaa

for every i € N. Moreover, for every # € N we can compute J/(uy)(uy); in view of
(8.17) we obtain

/A (e + T ()]

<P / Je (s un. Dup) - Dup + &7 [ s (6, Dup)in + / Ve lunl?
Q Q Q
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for every 1 € N. Notice that by (8.9) and the p-homogeneity of the map {& — j(x,s,§)},
it results

Js(X,up, Dup)up < yj(x,up, Duy),
Je(x.up, Dup) - Duy = pj(x,up, Duy)
for every i € N. Therefore,

/ e un)un + Tl < (v + p)e” / J(xoun. Dug) + / VElusl?  (830)
A Q Q

for every 4 € N. In view of (8.8), by combining inequalities (8.29) and (8.30) one gets

VA
mln{(ﬁ —y — p)ve?, ; — E — 1}[Q <|Duh|p + V(x)|uh|p) ®31)
< We(up) — J(un)un]
for every 4 € N. In a similar fashion, arguing on the functionals J, ;, it results
. AN
min {9 =y = pyve?, = — -~ 1} /Ki (1Dul? + Veolunl”) .
< OJei(up) — Jg ;(up)up] foreveryh e Nandi =1,....k.
In particular, notice that one obtains
O Jei(up) — J.i(up)lup] >0 foreveryh e Nandi =1,....k
and every y + p < © < ©. Then, after some computations, one gets
O Pe(un) — Pi(un)[un]
k
2 DM Y e o' (Veatun) ) =2 +0)')
> —CeN2 Palu)'/?
which implies, by Young’s inequality, the existence of a constant d > 0 such that
O Pe(up) — PL(up)[un] = —de™ (8.33)
for every 4 € N. By combining (8.31) with (8.33), since
Ee(up) = c +o(l),  E(up)lun] = o(llunllw,)
as i — 400, one obtains
[ (1Dusl? + v )
<Q e+ deN (8.34)

: s + o(llunllwy,) + o(1)
mln{(ﬁ—y—p)vsl’,;—ﬁ— l}
as h — +o00, which yields the boundedness of (u) in Wy (2).

Step II. By virtue of Step I, there exists u € Wy (€2) such that, up to a subsequence, (1)
weakly converges to u in Wy (2). Let us now prove that actually () converges strongly
to u in Wy (2). If we define for every i € N the weights

Oni = M[(Jei(un))"? = N2 (i + 0)'?], Jeiwn) )™V i=1....k
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and put 0,(x) = Zf;l Qh,ilﬁ,- (x) with 0 < 6;; < M. After a few computations, one
gets

(wh, @) = 81’]9(1 + 0n) jg(x,up, Duy) - Do + &” /9(1 + 6n) js(x, up, Dup)e
for every ¢ € C°(S2), where
wy = (14 60,)g(x, up) — (1 + 6) V) unlPup + &,
with &, — 0 strongly in Wfl’f’/ (£2). Since, up to a subsequence, (wy) strongly converges
tow := (14+0)g(x,u)—(1+0)V(x)|u|?"%uin W_I’P/(BQ) for every o > 0, by applying

Lemma 8.4 with Q = B, N © and ¥,(x) = 1 + 04(x), it suffices to show that, for every
8 > 0, there exists 0 > 0 such that

limsup/ (|Du,,|1’ + V(x)|uh|p> <. (8.35)
h Q\ By

Consider a cut-off function x, € C®(RY) with0 < x, < 1, xo = 00on By2, xo = 1 on
RN\ B, and | Dy,| < a/o for some a > 0. By taking o large enough, we have

k

|LJ Ai Nsupt(xo) = 0. (8.36)

i=1

Let now ¢ : R — R be the map defined by

0 ifs <0
l(s):=4Ms if0<s<R (8.37)
MR ifs >R,

being R > 0 the constant defined in (8.10) and M a positive number (which exists by the
growths (8.7) and (8.8)) such that

| js(x.5.6)| < pM j(x.s.€) (8.38)

for every x € Q, s € R and &£ € RV. Notice that, by combining (8.10) and (8.38), we
obtain

Js(x,8,6) + pl'(s)j(x,s5,&) >0 forevery x € Q,s € Rand £ € RV. (8.39)

By (8.36) it is easily proved that Ps’(uh)()(guhef(”h)) = 0 for every h. Therefore, since
the sequence (Xguheg(”h)) is bounded in Wy (2), taking into account (8.39) and (8.19) we
obtain

o(1) = JL(up)(xoune™“n)

= sp/;zjé(x»”thuh)'Dutheé(uh)
+81’/Qj§(x,uh,1)uh).nguhet(uh)
+ gP/Q[js(x,uh,Duh) + pg"(uh)j(x,uh,Duh)]uhxget(uh)
+/;2V(X)Iuhlpxge“”h)—[Qg(x,uh)uhxgeé(uh)

= [ (pe? s un. D) + Vlua|?) e
Q
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e /sz Je(x.up. Dup) - Dyoupet ™ /Q g(x, up)upxoet™n

as i — +o00. Therefore, in view of (8.17) and (8.36), it results
o) = [ (perIDunl? + VElunl? ) xpe 0
Q

1
b eP / Je (e up, Dup) - Dyoupe® @ — [ V) upl? et
Q K JQ

as h — +oo for g large enough. Since by (8.7) we have

, C _ C
[ deCun. D) Dagunet | < S Duplg gl =
Q 0 0
there exists a positive constant C” such that
C/
limsup/ (|Duh|p + V(x)|uh|1’> < —
h Q\B, o
which yields (8.35). The proof is now complete. d

8.2. Two consequences of the Pucci-Serrin identity. Let £ : RY x R x RY — R be
a function of class C! such that the function {& > £(x, s, £)} is strictly convex for every
(x,5) e RN xR, and let ¢ € L2 (RN).

loc
We now recall a Pucci-Serrin variational identity for locally Lipschitz continuous so-

Iutions of a general class of Euler equations, recently obtained in [59]. Notice that the
classical identity [117] is not applicable here, since it requires the C? regularity of the

solutions while in our degenerate setting the maximal regularity is Clé;’g (see [65, 142]).
Theorem 8.6. Let 1 : RN — R be a locally Lipschitz solution of

—div (D L(x,u, Du)) + DyL(x,u, Du) = ¢ in D'R").
Then for every h € C}H(RN ,RN),

N
Z[ D,-thgl.éC(x,u,Du)Dju
ij=1 IRY (8.40)

—f [(divh)éﬁ(x,u,Du)+h-Dx$(x,u,Du)] =/ (h- Du)ep.
RN RN

We want to derive two important consequences of the previous variational identity. In
the first we show that the Mountain-Pass value associated with a large class of elliptic
autonomous equations is the minimal among other nontrivial critical values.

Theorem 8.7. Let X € RN and assume that conditions (8.1), (8.5), (8.6), (8.7), (8.8),
(8.9), (8.10) hold. Then the equation

— div(je(%, u, Du)) + js(X,u, Du) + V(X)uP™' = f(u) inRV (8.41)
admits a least energy solution u € WP (RN), that is
Ix(u) = inf{[;(w) cw e WHP@RN)\ {0} is a solution of (8.41)},

where 15 is as in (8.20). Moreover, 15z(u) = cx, that is u is at the Mountain-Pass level.
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Proof. We divide the proof into two steps. Step I. Let u be any nontrivial solution of
(8.41), and let us prove that Iz (1) > cz. By the assumptions on V and f, it is readily seen
that there exist oo > 0 and 8§y > 0 such that Iz(v) > & for every v € W1Z(R¥) with
lvlli,p = 0o. In particular /5 has a Mountain-Pass geometry. As we will see, Pz # @, so
that cx is well defined. Let now u be a positive solution of (8.41) and consider the dilation
path

u(x/t) ift>0

y)x) = {0 i =0.

Notice that ||y(t)||f’p = tN=P|Du|f + tV|u|} for every t € R, which implies that

the curve y belongs to C(R*, W-?(R¥)). For the sake of simplicity, we consider the
continuous function H : Rt — R defined by

N
H(s) = / h(t)dt, where h(s) = =V (%)s?™! + £(s).
0
For every t € R it results that

KGO = [ iGy0.0yo) = [ Heo)

:tN_”/ j()'c,u,Du)—tN/ H(u)
RN RN
which yields, for every t € R™

d
Elg(y(t)) = (N — pyN-p71 /RNj(sc,u,Du)—NzN—lfRN H(u). (8.42)

By virtue of (8.8) and (8.10), a standard argument yields u € L (RN ) (see [123, Theorem

loc

1]); by the regularity results of [65, 142], it follows that u € C, LA (]RN ) for some 0 < B <

loc
1. Then, since {& + j(x,s, &)} is strictly convex, we can use Theorem 8.6 by choosing in

(8.40) ¢ = 0 and

£(s,&) = j(X.5.6) — H(s) foreverys e RT and & e RV,
N (8.43)
h(x) = hp(x) := T(E)x forevery x e RN and k > 1,

being T € C}(RY) such that T'(x) = 1if |x| < 1 and T(x) = 0 if |x| > 2. In particular,
for every k we have that i, € C}(RN,R") and

Dihi (x) = DiT(%)% n T(%)SU forevery x e RN, i, j=1,....N,
(div ) (x) = DT(;{—C) : ;{—C + NT(;C—C) for every x € RV,

Then, since Dy £(u, Du) = 0, it follows by (8.40) that
- X Xj X
> DiT(7)=L DjuDg, £(u, Du) + T(=)De£(u, Du) - Du
i) T k™ k RN k
—/ DT(f).f:tz(u,Du)—/ NT(Z)E(u, Du) = 0
RN k' k RN k

for every k > 1. Since there exists C > 0 with

DiT(%)%fc forevery x e RV, k > landi,j =1,... N,
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by the Dominated Convergence Theorem, letting k& — 400, we obtain
/ [Néﬁ(u, Du) — Dg£(u, Du) - Du] — 0,
RN
namely, by (8.43) and the p-homogeneity of {£ — j(x,s,&)},
(N —p)/ j(x,u, Du) = N/ H(u). (8.44)
RN RN

In particular notice that fR ~ H(u) > 0. By plugging this formula into (8.42), we obtain
d
S0 = Na= N [
dt RN

which yields %I;(y(r)) > 0for0 <t < 1and %I)‘((}/(l‘)) < 0 fort > 1, namely

sup Iz (y (1)) = Iz(y(1)) = Iz(u).
t€[0,+o00[

Moreover, observe that y(0) = 0 and I53(y(T)) < 0 for T > 0 sufficiently large. Then,
after a suitable scale change in z, y € P5 and the assertion follows.

Step IT Let us now prove that (8.41) has a nontrivial solution # € W1?(R¥) such that
¢z > Iz(u). Let (up) be a Palais-Smale sequence for /5 at the level cz. Since (uy) is
bounded in W1-?(RY), considering the test u,e®n) with ¢ as in (8.37), and recalling
(8.39), we have

pes +o(1) = plz(up) — Ly (up)upe“m]
=/‘Pa—ﬂmﬁﬁﬂmmw+/jﬂ—éwa@WV
RN RN
B /RN (P8 () j (%, up, Dup) + js (5. up, Duy)] upe @
—/ NWM+/ S (et
RN RN
s—/ pﬂw)+/ Flunyupet@
RN RN
sc/ unl? + lupl?
]RN

for some C > 0. By [98, Lemma I.1], we conclude that (z;) may not vanish in L7, that is
there exists x;, € RY, R > 0and A > 0 such that for / large

/ lupl? = A. (8.45)
xp+BRr

Let vy(x) = up(xp + x) and let u € WHP(RYN) be such that v, — u weakly in
WLP(RN). Since vy, is a Palais-Smale sequence for I5 at level cz, by Lemma 8.4, we

have that vy, — u strongly in w,l-p (RN). By (8.45), we deduce that u is a nontrivial

loc

solution of (8.41). Let § > 0; we claim that there exists ¢ > 0 such that

|
liminf[ [j(fc, v, Dup) + —V(F)|val? — F(v;,)] > _§. (8.46)
h RN\B, p
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In fact, let ¢ > 0, and let ), be a smooth function such that 0 < n, < 1,17, = 0 on By,
ne = lon RN \ B, and || D1, lleo < 2. Testing with 1,vy,, we get
wnongun) = [ e D) Dngon)
BQ\BQ—]

+ Jjs (X, v, Dop)ngun + V(X)|valPno — f(vi)van,]

f [je(X, v, Dvp) - D(novp) + Jjs(X, va, Dvp)moup
RN\B,
+ V() valPng — f (i) vame]

where w;, — 0 strongly in W~1#"(R™N). For the right hand side we have

/ [je(X. vn. Dvy) - D(ngup) + Jjs(X, v, Dvp)nevp
RN\B,

+ V(®)|valPng — f (n)vane]

fo . (P70 Dos) 4 vk D+ V@Iunl? = fanyva].
Q
and by (8.9) we have

/]I;N\B [pj (X, vh, Dvp) + js(X,vp, Dvp)vy + V(Z)|val? — f(vn)va]
Q

=0t [, G w [ V@O~ S

1
=49 [, D Do)+ V©ll? — Fo)

p+y _ _
_rty V(@) oal? + / V(@) oal?
P  JrRN\B, RN\B

+ fonep, L+ PFED — S
<(p+y) / [ % vp. Dog) + V@ lal? — Fup)]
RN\B, D

T A g, L2+ PIF©R) = DF ()

o 1
=G0 [ UG Dw + V@Il — )
RN\B, p
We conclude that
- 1
4 [ Lo Do)+ V@lul? — Flup)
RN\B, p
> (wp, MoU) —/ [je(X. vn. Dvy) - D(noup) + Jjs(X, v, Dvp)nevs
BQ\Bgfl
+ VE)|val? 1o = f(n)vatle]-
Since by Lemma 8.4 we have vj, — u strongly in W17 (B,), we get
lim

[je(X. vn. Dvy) - D(ngup) + Jjs(X, va, Dvp)ngv
h JBo\B,—,
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+ V(®)valPng — fn)vane]

— [ L Du) DOy + ot Duyign + Va1~ f ]
BQ\Bgfl
and so we deduce that for every § > 0 there exists ¢ > 0 such that for all o > ¢ we have

1
liminf[ [j()_c, vp, Dvp) + —V(X)|va|? — F(U},)] > —4.
h RN\B, P

Furthermore we have
. o |
hlllrl/ [j(x,vh,Dvh) + ;V(x)|vh|p - F(vh)] = Iz(u, By).
B,

where
I:(u, By) := / [j(*,u, Du) + %V()_c)luV’ — F(u)],

BQ
and so we conclude that for all o > 0

cx > Izx(u, By) — 6.

Letting o — +o0 and since § is arbitrary, we get cx > Ix(u), and the proof is complete.
O

The second result can be considered as an extension (also with a different proof) of [63,
Lemma 2.3] to a general class of elliptic equations. Again we stress that, in this degenerate
setting, Theorem 8.6 plays an important role.

Lemma 8.8. Let u € WP (RN) be a positive solution of the equation

— div(je (X, u, Du)) + js(X,u, Du) + V(X)u?~!

~ N (8.47)
=l <oy () S (W) + lix >0 (x) f () inRT.
Then u is actually a solution of the equation
—div(jeg(X,u, Du)) + js(x,u, Du) + VEuP' = f(u) inRN. (8.48)

Proof. Let us first show that u(x) < £ on the set {x; = 0}. As in the proof of Theorem 8.7
it follows that u € C'# (RN) for some 0 < B < 1. Then we can apply again Theorem 8.6

loc

by choosing this time in (8.40):

V()

£(s,8) = j(x,s5,6) + s? foreverys € RT and & e RV,

O(x) 1= Lz, <03 (%) S (U(x)) + L, 505 (¥) f(u(x))  forevery x e RV,
h(x) = hi(x) = (T(%),O,...,O) for every x € RN and k > 1

being T € C}(RYN) such that T(x) = 1if |x|] < 1 and T(x) = 0if |x| > 2. Then
hy € Ccl (RN, RN) and, taking into account that D, £(u, Du) = 0, we have

1 N X x 1
L 2 DiT () DuueDg £ Du) = DaT Gy ge £ Dw)

- /R _TCe D
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for every k > 1. Again by the Dominated Convergence Theorem, letting k& — 400, it
follows [pn ¢(x)Dx,u = 0, that is, after integration by parts,

/RM [ Fw(©.x) = Fu(.x) ] dx' =o.

Taking into account that F(s) > F(s) with equality only if s < £, we get
u(0,x") < forevery x’ e RN7!. (8.49)
To prove that actually
u(xy,x’) <€ forevery x; > 0and x’ € RN™!, (8.50)
let us test equation (8.47) with the function
ifx; <0
n) = {(u(xl,x’) — ) Teb@xXDif x) > 0,

where ¢ : Rt — R is the map defined in (8.37). Notice that, in view of (8.49), the function
n belongs to W17 (RY). After some computations, one obtains

| b D= e

{x1>0}

+/ [Js (%, u, Du) + p¢' (1) j (%, u, Du)] (u — £)Tet®@ (8.51)
{x1>0}

+ [ [V =2 |ur = -0t et®@ <o,
{x1>0} K

By (8.1) and (8.39) all the terms in (8.51) must be equal to zero. We conclude that (v —
)T = 0on {x; > 0}, namely (8.50) holds. In particular ¢(x) = f(u(x)) for every
x € RY, 50 that u is a solution of (8.48). O

8.3. Energy estimates. Let d,; be the Mountain-Pass critical value which corresponds to
the functional J, ; defined in (8.24). More precisely,

dej:= inf sup Jg;(yi(?)) (8.52)

Yi€li tef0,1]
where
Ti = {yi € C(O. 1L WP (A1) : :(0) = 0, Jei(i(1)) < 0}.
Then the following result holds.

Lemma 8.9. Fori =1,...,k, we have
1. —-N i = Cj .
s—lf(?Jrg e x
Proof. The inequality
dei < eVei +o(eV) (8.53)

can be easily derived (see the first part of the proof of Lemma 8.10). Let us prove the
opposite inequality, which is harder. To this aim, we divide the proof into two steps.
Step I. Let w, be a Mountain-Pass critical point for J, ;. We have w, > 0, and by regularity

results wy € L®(A;) N C1%(A;). Let us define

loc

M := sup we(x) < 400,

X€EAN;
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and for all § > 0 define the set
Us :={x € Ai  we(x) > M, —8}.
‘We may use the following nontrivial test for the equation satisfied by w,
@5 = [we — (Mg — 8)] et ™),
where the map ¢ : RT — R is defined as in (8.37). We have
Dy = @) Dw, 1y, + ¢5¢' (we) Dwe,

and so we obtain

8”/ pj(x,we,Dws)e“wE)JrsI’f [P (we) j (x, we, Dwy) + Jjis(x, we, Dwe) | s
Us

Us
= f [—V(X)wé’_1 + g(x, ws)] @s-
Us
Then, by (8.39), it results

/ (VW™ + gewe) [ g5 = e / P (x,we, Dwe)eb @ > 0. (8.54)
Us Us

Suppose that Us N A; = @ for some § > 0; we have that g(x, w,) = f(w,) on Ug, so that
/ [V + Fwo)]es > o. (8.55)
Us

On the other hand, we note that by construction f (we) < %V(x)wf ~! with strict inequal-
ity on an open subset of Us. We deduce that (8.55) cannot hold, and so Us N A; # @ for all
8. Since A; is compact, we conclude that w, admits a maximum point x, in A;. Moreover,
we have wq(x,) > £, where £ is as in (8.14), since otherwise (8.54) cannot hold.

Let us now consider the functions vg(y) := we(x; + &y) and let ; — 0. We have that,
up to a subsequence, x;; — X € A;. Since w, is a Mountain-Pass critical point of J;,
arguing as in Step I of Lemma 8.5 there exists C > 0 such that

[ (e1Dwel? + Veluel?) = Cd.s.

RN

which, by (8.53) implies, up to subsequences, ve; — v weakly in WLP(RN). We now
prove that v # 0. Let us set

g(xe; +ejyve; () .
V(xg, iy)— —L—J "= ifu,. 0
dj(y) = (xsj +¢&jy) vgj_l(y) 1T Vg; () #

0 if vg; (y) = 0,
A(p,s,8) = je(xe; +j,5,6),
B(y,s,§) :=d;j(y)s",
C(y,s) = js(xe; +€j1,s, Dvg; ()

for every y € RV, s € Rt and £ € RV. Taking into account the growth of condition on
Je» the strict convexity of j in £ and condition (8.8), we get

A(p.5.8)-E = v[g]”. AW 5.8 < cals|P7" [B(r.s. O] < |d;j(»)ls|P.
Moreover, by condition (8.10) we have

s>R = C(y,s) =0
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for every y € RN and s € RT. By the growth of conditions on g, we have that for §
N
sufficiently small d; € L »=3 (B,,) for every o > 0 and

S = sup ||d;
jpll J”L%B

< D(1 + sup ||v,. * < 400
(B2p) ( jeII\)I ” K ”Lp (BZQ))

for some D = D, > 0. Since we have div(A(y, ve;, Dve;)) = B(p,ve;, Dvg;) +
C(y,ve;) for every j € N, by virtue of [123, Theorem 1 and Remark at p.261] there
exists a radius ¢ > 0 and a positive constant M = M (v, ¢2, So®) such that

sup max [ve, ()| < M (20)™™7 sup ||ve, | Lr(B,,) < +00
jeNY€Bo jeN

so that (vsj) is uniformly bounded in B,. Then, by [123, Theorem 8], up to a sub-
sequence (vg;) converges uniformly to v in a small neighborhood of zero. This yields
v(0) = lim; vg; (0) = lim; we; (xg;) = L.
Up to a rotations and translation, it is easily seen that v is a positive solution of
— div(je(%. v, DV)) + s (0. D) + VW™ = Ly <01/ (©0) + Lpx 00/ ().
By Lemma 8.8 it follows that v is actually a nontrivial solution of
—div(jz(X, v, Dv)) + js(X,v, Dv) + V()P = f(v).

Then, by Theorem 8.7 and (8.23), we have I3(v) = ¢z > ¢;. To conclude the proof, it is
sufficient to prove that

lim infe; Ndy, i = lim infe; N T, i(we;) = Iz (v). (8.56)
Step I1. We prove (8.56). It results

&N Jg; i(we;) = [7\ J(Xe; + €y, v, D))
6‘]' 5L

1
+ » /K V(xe; +€jy)vf — /&j’i G(Xe; + &, Ve;)

where Kej,,- ={yeRVN: Xe; +&jy € /A\,} By Lemma 8.4, we have vg; — v strongly

in Wlic’p (R™). Following the same computations of Theorem 8.7, Step II, we deduce that
for all § > 0 there exists ¢ > 0 such that for all o > o we have

. . 1
11m.1nf/A [] (xe; +€j 1, Ve, Dug; ) +—V(xe, +£jy)v£_ —G(xg; +€j ), vgj)] > 4.
i R, i\Bp P

Furthermore,
. . 1
hjm/ [/ (xXe; + &7, ve;. Dvg;) + ;V(XEJ + )V = G(xe; + 613, vs)]
BQ
- I)?f(v» BQ)?

where .
Iz(v, By) := / [j(x,v, Dv) + ;V()"c)v” - F(v)].

B,

We conclude that for all o > o

lirr}infstJgj,i(ng) > Iz (v, Bp) — 6,

and (8.56) follows letting 0 — +o00 and § — 0. O
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Let us now consider the class
Iy := {y e C(Jo, l]k, Wy (2)) : y satisfies conditions (a), (b), (¢), (d)},

where:
(@) y(t) = Y, 7i(6) for every 1 € 3[0, 1, with ; € C([0, 1], Wy () ;
(b) supt(yi(#;)) C Aj foreveryt; € [0,1]andi =1,...,k;
(¢) yi(0) =0and J:(y;(1)) < 0 foreveryi = 1,...,k,
(d) e NE.(y(t)) < Zf;l ¢i + o forevery t € 9]0, 1]¥,
where 0 < 0 < %min{ci i =1,...,k}. Weset

ce ;= inf sup E(y(?)). (8.57)
Y€le tef0,1]¢

Lemma 8.10. For ¢ small enough I'y # @ and

k
lim e Ne, = ¢ (8.58)

e—>0T

Proof. Firstly, let us prove that for ¢ small I'; # @ and

k
ce <&V Z ¢i +o(eN). (8.59)
By definition of ¢;, for all § > 0 there exists y; € $; with
8
¢ = H%a’x]l (vi(@) =i+ by (8.60)

where the x;s are as in (8.2) and
Pi = {yi € C(0. 1, WHPRM)) 1 15(0) = 0. Iy, (yi(1)) < 0}.
We choose § so that § < min{o, ko;}. Let us set
~ X —
Pi(0)(x) = ni(x)yi(0)(
where n; € CCO"(RN), 0<n; <1,suppn; C A;,and x; € int({n; = 1}). We have
~ N ~ 1 ~ ~
1) = [ 700500 + - [ Vel - [ G picon. son
Q PJg Q
Since it results
~ X —
D) = D)y (0 () + m (x)Dyi(o)(
and for all £, &, € RY there exists ¢ € [0, l] with

J(x,8,81+ &) = j(x,5,8) + je(x,s,t81 + &) - &1,

taking into account the p-homogeneity of j, the term

EP/Qj(x,fi(z),Dﬁ(r))

x,') for every t € [0, 1] and x € €,

X — x,)
b

has the same behavior of

i (xemeom(*

Xi), Ui(X)D)/i(x ;xi)> (8.62)
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up to an error given by

o [ (s, () + B0 - () (8.63)
where we have set
$(0) = PO ),
£1(x) = Dni(x)yi (o) (2

8)’

1 — X;
£2() = o) DY@ (=),

and #(x) is a function with 0 < 7(x) < 1 for every x € Q. We proceed in the estimation
of (8.63). We obtain

o7 [ e s (06106 + E20) -1 )

&

EEzS"’fQIél(X)lp+5281’/Q|52(X)I1’_1|51(X)I~

x—
&

Making the change of variable y = *=*._we obtain

o] [ Jetes (o108 ) + £2(0) 610
=&Y [ D+ e P 0P
RN

+ GV ! /RN Ini (xi + en)P Dy () (W)IP~ [ Dni(xi + )|y (D) (1)
=o(eV)

where o(¢") is independent of 7, since y; has compact values in W2 (R¥). Changing
the variable also in (8.62) yields

/ J (e mGn @ (=), (0 Dy (1))
Q

& &

=&V /]RN Jxi 4+ ey ni(xi + ey)yi(0)(¥), i (xi + €y) Dyi(T)(y)).

By the Dominated Convergence Theorem we get

lim | Gt eyamiCei + en)y @) mixi 4 e7) Dyi(®) (7))
_ /ﬂ‘{ @) Dy ()

uniformly with respect to 7. Reasoning in a similar fashion for the other terms in (8.61),
we conclude that for ¢ small enough

Je(Di(0) = eV I, (v (1) + o(eN) (8.64)

for every t € [0, 1] with o(¢"V) independent of 7. Let us now set

k
(T ... ) = Y pi(T).
i=1
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Since supp 7;(tr) C A; for every t, we have that J,;(3i(¢)) = J:(¥i(t)); then, by the
choice of §, we get for ¢ small
~ 1 N 1 ~ 1 N 1
[Vei Vi(D)+]2 —e2 (i +0i)2 = [Je(Vi(T)+]2 — €2 (ci +04)2
N 1 N 1
= &2 Ly (yi(r)) + o(D)]2 —e2 (¢ +0)2
8 1
< 8%[61‘ + 7 +0(1)]? —5%(0,- +0,~)% <0,
and
k
Ec(yo(ti.....t)) = Je(po(ti..... 7)) = Y Je(Pi(m).

i=1
By (8.60) and (8.64) we obtain that for & small enough

Ee(yo(r)) <&V Z i + (Zc, +0)

so that the class I'; is not empty. Moreover we have

hmsup—a < ch +34

8
e—0t i=1

and, by the arbitrariness of §, we have conclude that (8.59) holds. Let us now prove that

k
ce >V Zci +o(e™). (8.65)

i=1

Given y € T, by a variant of [51, Proposition 3.4] there exists 7 € [0, 1]* such that
Je,i(y(a) = ds,i

foralli =1,...,k, where the d, ;s are as in (8.52). Then we have by Lemma 8.9

sup Je(y(2)) = sup stt(y(t)) = stt =& ch + O(SN)

tefo,1]% ref0,1]%

which implies the assertion. O

Corollary 8.11. For every ¢ > 0 there exists a critical point u, € Wy (2) of the functional
E; such that ¢, = E;(ug). Moreover ||ug|lw;, — 0ase — 0.

Proof. By Lemma 8.5 it results that E; satisfies the Palais-Smale condition for every ¢ € R
(see Definition 2.15). Then, by Lemma 8.10, for every € > 0 the (non-smooth) Mountain-
Pass Theorem (see [50]) for the class I'; provides the desired critical point u, of E,. To
prove the second assertion we may argue as in Step I of Lemma 8.5 with uj, replaced by
ue and c replaced by E.(u.). Thus, from inequality (8.34), for every ¢ > 0 we get

OE(ug) + de
| (1Duc? + Veoluel?) = o(te) :
Q min{(ﬂ—y—p)vel’,%—%—l}

(8.66)

By virtue of Lemma 8.10, this yields

/ (1Dul? + Ve luel?) < {ﬂ(cl +oota)+d } NP 4 o(eNP),
Q @ —y—ph

as ¢ — 0, which implies the assertion. O
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Let us now set
Qo i={yeRY ey e}, v:(y):=usley) € WH(Q),
Aei=1{yeRN:eyel;}, Ar:i={reRV:epeAl
Lemma 8.12. The function v, is a solution of the equation
—div (1 + Be(e) (6. v. DV)) + (1 + 6u(e2)) js(ey. v, Dv)
+ (14 G () V(ey)o?™!
= (1 + Oc(ey)g(ey,v) in e,

where for every ¢ > 0
k
Oc(x) := D 0eil} (), Oei €0, M],
i=1

Osi = M[(Jei(us))'"* = V2 (ci + 00)' 2], (Jei(ue) )72
Proof. Tt suffices to expand E.(u.)(p) = 0 for every ¢ € C°(2).
Corollary 8.13. The sequence (vg) is bounded in WP (RN).

Proof. Tt suffices to combine Lemma 8.10 with the inequality
OeNe, +d

(1Dvel” + V(0)luel?) < —
/RN mln{(ﬂ—y—p)v,%—%—l}
which follows by (8.66).

The following lemma “’kills” the second penalization term of E,.

Lemma 8.14. Fori = 1,...,k, we have

lim S_Njg,i(ua) =¢j.
e—>0

Proof. Let us first prove that, as o — +o00,

limsup/ <|Dv8|p + |vg|p) = o(1),
e—>0t JQA\Np(Ag)

189

(8.67)

(8.68)

(8.69)

(8.70)

where Ny(Ag) 1= {y € RY : dist(y, As) < o). We can test equation (8.67) with

Ve, 00se ) where s p = 1 — Y5_ Yl ¥l € C¥RY),

gl = 1 i dist(y Asp) < 0/2,
2010 if dist(y, Agi) > 0

and the function ¢ is defined as in (8.37). By virtue of (8.1), (8.7), the boundedness of (v,)

in W2 (RN) and (8.39) there exist C, C’ > 0 such that
c| (1Dvel? + 1o.1?)
Qe\Np(Ae)

< / (14 Ou(ex)[ 2 (€9 ve. Due) + {V(ey) —
Qe\Ag

S (ve)

—1
4

}vf] 1//e,gef(vs)

=— /Q L+ 0c(e1) [ s (9. Ve, D) + pT' (v) j (€1, Ve, D) |Vetfe, 00t V)
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—/Q N (1 4 Oc(ep)) je(ey, ve, Dvg) - Dre pueeb o)

i

y ) C B C
zgw”f  IDVsgllie(ey.ve. Due)lve = Z1DvAE ol = -

which implies (8.70). Now, to prove (8.69), we adapt the argument of [63, Lemma 2.1] to
our context. It is sufficient to prove that

lim 6™V J, i (us) < ¢ + 0 (8.71)

e—>0

forevery i = 1,..., k. Then (8.69) follows by arguing exactly as in [63, Lemma 2.4]. By
contradiction, let us suppose that for some £; — 0 we have

limsupsj_NJsj,i(usj) > ¢; + 0j. (8.72)
J

Then there exists A > 0 with

[ (1Dug 7+ loy17) = .

Ej.l

and so by (8.70) there exists o > 0 such that for j large enough

A
[ (1pug 1) = 5
No(Ae; i) 2

Following [63, Lemma 2.1], PL. Lions’ concentration compactness argument [98] yields
the existence of S > 0, p > 0 and a sequence y; € Ag; ; such that for j large enough

/ vfj = p. (8.73)
Bs(yj)

Let us set vj(y) := ve; (y; + »), and let ¢;y; — X € A;. By Corollary 8.13, we may
assume that v; weakly converges to some v in W!?(R"). By Lemma 8.4, we have that
v; — v strongly in WléC’p(RN); note that v # 0 by (8.73). In the case dist(y;, dA¢; ;) —

+00, since v; satisfies in —y; + A,; ; the equation
—div(je(ej yj € y.vj. DV;)) + js(€j v+ 3. vj. Dv) + V(e yj +&; )P~ = f(v)),
v satisfies on R the equation

—div(je (X, v, Dv)) + js(x,v, Dv) + VEWT = f(v). (8.74)

If dist(pj, dA¢; ;) = C < +00, we deduce that v satisfies an equation of the form (8.47),
and by Lemma 8.8, we conclude that v satisfies equation (8.74). Since v is a nontrivial
critical point for I/, by (8.11) and Theorem 8.7, recalling that ¢; < ¢z < ¢; + 0;, we get
¢i < Iz(v) < ¢; + 0;. Then we can find a sequence R; — o0 such that

. . 1
hm ](gjys vz‘,‘j’DvS,‘) + _V(gjy)|v8j|p _G(gjyv UEj) = I)_C(U) =¢ +o0;.
1 JBR; () p

Then by (8.72) we deduce that for j large enough

[ (1Dve; 17 + v, 17) = 3 > 0.
A&j ,i\BRj (J’j)
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Reasoning as above, there exist S, p > 0 and a sequence y; € A, ; \ Bg;(y;) such that

/ v? > p>0. (8.75)
Bz ()

&j

Let ¢;y; — X € A;; then we have v;(y) := vg; (J; + y) — U weakly in whp(RN),
where v is a nontrivial solution of the equation

—div(je(X. v, Dv)) + js(X, v, Dv) + V(EWP™' = f(v).
As before we get I3(V) > ¢;. We are now in a position to deduce that

limj infe; N T, i(us) > Iz (v) + Ix(D) = 2.

In fact, Vg; satisfies in A &j i the equation
- dlv(]§(81y7 vé‘j ’ Dvé‘j )) + jS(‘c"].yv Usj ) Dvé‘j) + V(Sjy)vg-_l = g(81y7 Ué‘j ) (876)

Since yj, Jj € Ag; i, for j large enough B; g := B(y;, R) U B(J;, R) C /A\gj,i, and so
we can test (8.76) with

o) = [ 4w (B2 - 1o 00

where y € CP°R) with0 < ¢ < I, ¥(s) = Ofors < l and ¢ (s) = 1 fors = 2.
Reasoging as in Lemma 8.9, we have that for all § > 0 there exists R such that for all
R > R we have

) 1
/; [](gjy’ vsj?DUSj) + _V(gjy)|v8j|p - G(Sjy, Ué‘j)] z -4
Ag; i\Bj.R P

so that

lirr}infS;NJaj,,-(ugj) > Iz (v, BR) + Iz(¥, Bg) — 6.

Letting R — 400 and § — 0, we get

lin} infe; N T, i(ue;) > 2¢;. (8.77)

The same arguments apply to the functional J,: we have that
1in} infe; N T, (ug;) > 2¢;. (8.78)
Then by combining (8.77) and (8.78) we obtain
2
timinf eV E, (ue,) = 2 + M [(2ci)1/2 (e + a,~)1/2]+ .

By Lemma 8.10, we have
5 k
M[@e)"? = (e +0)' ] =< e
=

against the choice of M. U
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8.4. Proofs of the main results. We are now ready to prove the main results of the section.

Proof of Theorem 8.2. Let us consider the sequence (u,) of critical points of E, given by
Corollary 8.11. We have that ||u.||w;, — 0. Since u, satisfies

—div (1 4 0:(x)) je (x, v, DV)) + (1 + 0(x)) js(x, v, DV) + (1 + O(x) V(x)v? ™!
= (14 6:(x))g(x,v) in&,

with 6, defined as in (8.68), by the regularity results of [91] u, is locally Holder continuous
in . We claim that there exists o > 0 such that

Ug(Xgi) =supugs >0 >0 (8.79)
for every ¢ sufficiently small and i = 1,..., k: moreover
lim dist(x;,;, M;) =0 (8.80)
e—0
fori = 1,...,k, where the M;s are the sets of minima of V in A;. In fact, let us assume
that there exists ip € {1,...,k} such that u.(x,;,) — 0 as ¢ — 0. Therefore, u; — 0
uniformly on A;, as ¢ — 0, which implies that
sup ve(y) >0 ase— 0, (8.81)
yeAé“iO

where v, () := ug(ey). On the other hand, since by (8.69) we have

lim e_NJg,iO(ug) =ci, >0,

e—>0
considering K,-O relatively compact in A;,, following the proof of Lemma 8.14, we find
S > 0 and ¢ > 0 such that

w [z
y€Re iy I Bs()

for every ¢ € (0, &g), which contradicts (8.81). We conclude that (8.79) holds. To prove
(8.80), it is sufficient to prove that

lim V(x;;) = min V
e—0 A;
foreveryi = 1,..., k. Assume by contradiction that for some iy

lim V(xg;,) > min V = b;,.

e—0 io
Then, up to a subsequence, X, i, — Xi, € Aj, and V(x;,) > bj,. Then, arguing as in the
proof of Lemma 8.14 and using Theorem 8.7, we would get

liminfe; N g (tey) = Ly () = exy > ciy

which is impossible, in view of (8.69).
We now prove that
k
limu, =0 uniformly on  \ U int(A;). (8.82)
e—>0 iz
Let us first prove that

limsupu, =0 fori =1,...,k.
8—)03Ai
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By contradiction, let ip € {1,...,k} and 0 > 0 with ug; (x;) = o for (x;) C dA;,. Up
to a subsequence, x; — xo € dA;,. Therefore, taking into account Lemma 8.8 and the
local regularity estimates of [123] (see also the end of Step I of Lemma 8.9), the sequence
Vi (¥) 1= ug; (x; + € y) converges weakly to a nontrivial solution v € WP (RN) of

— div(jie (xo0, v, DV)) + js(x0,v, Dv) 4+ V(xo)v?™' = f(v) inRV.
As V(xo) > V(xj,), we have

lin}infsj_NJsj,,-O (ue;) = Ixy(v) > cigs

which violates (8.69). Testing the equation with
(ue — maxsupue)™ lg\AeC(“f),
LA
as in Lemma 8.8, this yields that u,(x) < max; supyy, u, for every x € Q2 \ A, so that
(8.82) holds.
By Proposition 8.3, u, is actually a solution of the original problem (8.13) because the
penalization terms are neutralized by the facts J; ; (1) < ¢; +0; and u, < £ on Q2 \ A for

¢ small. By regularity results, it follows u, € Chl);ﬁ (2), and so point (a) is proved. Taking
into account (8.79) and (8.82), we get that u, has a maximum X, € 2 which coincides

with one of the x, ;s. Considering vs(y) := us(X,,; + €)), since v, is uniformly bounded
in W2 (RN), by the local regularity estimates [123], there exists ¢’ with

loc
ue(xs,i) =< o’

foralli = 1,...,k. In view of (8.79), (8.80) and Corollary 8.11, we conclude that points
(b) and (d) are proved. Let us now come to point (c¢). Let us assume by contradiction that
there exists 7, J, ig and £; — 0 such that there exists y; € Aj, \ Br(xg; iy) With
limsup ug; (y;) = 4.
J

We may assume that y; — y, X, i, — X, and 0;(p) := ug; (yj + &y) = v, v;(y) =
ug; (Xe; iy + €jy) — v strongly in Wkl)c’p (RN): then, arguing as in Lemma 8.14, it turns
out that

1in} infe; N T, iy () = Iz(v) + I5(D) = 2¢4,
which is against (8.69). We conclude that point (¢) holds, and the proof is concluded. [J

Proof of Theorem 8.1. If 1 < p <2and p < g < p*, the equation
—Apu + V(EuP ' =u?! inRY (8.83)

admits a unique positive C! solution (up to translations). Indeed, a solution u € C'(R")
of (8.83) exists by Theorem 8.7. By [94, Theorem 1] we have u(x) — 0 as |x| — oo.
Moreover, by [55, Theorem 1.1], the solution u is radially symmetric about some point
Xo € R¥ and radially decreasing. Then u is a radial ground state solution of (8.83).
By [124, Theorem 1], u is unique (up to translations). Then (8.11) is satisfied and the
assertions follow by Theorem 8.2 applied to the functions j(x, s, £) = %|§|1’ and f(s) =

g9 1 U
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9. NONEXISTENCE RESULTS

Some parts in this section have been slightly modified to give this collection a more
uniform appearance. We refer the reader to source in [59].

9.1. A general Pucci-Serrin type identity. In 1965 Pohozdev discovered a very impor-
tant identity for solutions of the problem

Au+gu)=0 inQ
u=0 ondQ.

This variational identity enabled him to show that the above problem has no nontrivial
solution provided that €2 is a bounded star-shaped domain of R” and g satisfies

VseR: s #A0= (n—2)sg(s) —2nG(s) >0

where G is the primitive of g with G(0) = 0.

Let Q2 be a bounded open subset of R” with smooth boundary and outer normal v.
Assume that £ is a function of class C! on € x R x R” with £(x,0,0) = 0 and that the
vector valued function

oL ad
Vsi(xvs,g) = (E(X»S’S)"” »g(xv&s))

is of class C! in © x R x R”. Moreover, let € be a continuous function in  x R x R”.
Consider the problem
—div (Ve£(x,u, Vu)) + DyE(x,u, Vu) = §(x,u, Vu) inQ
u=0 ondQ.

g

0.1

Let us recall the celebrated identity proved by Pucci and Serrin [117].

Theorem 9.1. Assume that u € C*(Q) N CY(Q) is a solution of (9.1). Then

/ [£(x.0,Vu) — Ve£(x,0,Vu) - Vulh-vdF"!
Q2

= / [£(x,u, Vu) div h+ h- Vi (x,u, Vu)]dx
Q

n
- § /[DjuDihj + uDja|Dg £(x, u, Vu) dx 9.2)
— Ja
i,j=1

—/ a[VeL(x,u,Vu) - Vu + uDyE(x, u, Vu)] dx
Q

+ /[h-Vu+au]§(x,u,Vu)dx
Q

foreacha € C'(Q) and h € C'(Q,R").

Remark 9.2. Identity (9.2) follows by testing the equation with /2 - Vu + au. More gen-
erally, it is satisfied by solutions u € C'(Q) N WZ’Z(Q).

loc

Theorem 9.1 generalizes a well-known identity of PohoZaev [116] which has turned out
to be a powerful tool in proving non-existence of solutions of problem (9.1). On the other
hand, in some cases the requirement that u is of class C2(2) seems too restrictive, while
C'(R) is not (cf. [142]). See e.g. problems in which the p-Laplacian operator is involved
[82].
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The aim of this section is to remove the C2(£2) assumption on u, by imposing the strict
convexity of £(x, s, -). The main result is the following:

Theorem 9.3. Assume that u € C'(Q) is a solution of (9.1) and that the map

£ £(x,s,8)
is strictly convex for each (x,s) € Q x R. Then (9.2) holds for all a € C'(Q), h €
C'(Q,R").

Let us observe that the strict convexity of £(x, s, -) is indeed usually assumed in the
applications and it is also natural if one expects the solution u to be of class C'(R). In
some particular situations (see Section 9.3), we are also able to assume only the convexity
of £(x,s,-). This is the case, for instance, if one takes

£(x.5.8) = a(x,9)BE) + y(x.9).
Note that if the test functions a and /s have compact support in €2, we obtain the variational
identity also when u is only locally Lipschitz in 2. This seems to be useful in particular
when £ (x, s, -) is merely convex, as a C! regularity of u cannot be expected.
Finally, we refer the reader to [117] for various applications of the previous result to
non-existence theorems.

9.2. The approximation argument. Let Q2 be an open subset of R”, _not necessarily
bounded. Assume that & > £(x, s, £) is strictly convex for each (x,s) € Q@ x R.

Lemma 9.4. Letu : Q2 — R be a locally Lipschitz solution of
—div (VeL(x,u, Vu)) + Dy L(x,u, Vu) = §(x,u,Vu) inQ. 9.3)
Then
/Q (I(x, u,Vu) divh + h-VyL(x,u, Vu)) dx

n 9.4)
= Z / D,-thgich(x,u,Vu)Djudx—/ G(x,u,Vu)h-Vudx
Q Q

i,j=1
for every h € CH(Q,R").

Proof. Since h has compact support, without loss of generality we may assume that 2 is
bounded. Let R > 0 with [Vu(x)| < R for every x € supt/ and let # € C*°(R) be such
that 9 = 1 on[—R, R]and ¥ = 0 outside [-R — 1, R + 1]. Define now £(x, s, £) by

L(x,5,8) = L(x,5,9(1E)E)

for each (x,s,£) € @ x R x R”. Then there exists @ > 0 such that

n
Y Vig Z(xs, Hmin; > —wlnl?

ij=1
for each (x,s,£) € Q@ x R x R” and 5 € R”. Let us now introduce A € C'([0, +o0[) by
0 if0<t=<R
Alr) =1, , .
o'(t—R)? ift >R,

where »’ > . Moreover, let £ : @ x R” — R be given by

E(x, &) = L(x,u(x),&) + A(E]) 9.5)
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for each (x, &) € @ x R”. Then z(x, -) is strictly convex and there are v, ¢ > 0 with
Z(x.6) Z vlE —c

for each (x, &) € Q xR”. In particular, since u solves (9.3), then it is the unique minimum
of the functional f : H; () — R given by

f(w) = / L(x,Vw)dx + / [Dy(x,u, Vi) —§(x,u, Vu)|w dx.
Q Q
On the other hand, if u € Ho1 (£2) denotes the minimum of the modified functional
1
fiw) = £+ [ Vulax,

by standard regularity arguments, u; € C'(Q) N WIZH’CZ(Q). Since f(ux) — f(u) as
k — 400, we get uy — u in Ho1 (2) and

/Eé(x,Vuk)dxe/ Eé(x,Vu)dx,
Q Q

which by [146, Theorem 3] implies uy — u in HO1 (2). In particular, Vug(x) — Vu(x)
a.e. in €2, up to a subsequence. Put now

206 = E0n8) + el
Since uy satisfies the Euler’s equation of fx
div(Ve£ (x, Vug)) = Dy (x,u, Vi) — §(x,u, Vi),
by (9.2) it results

[ (2()6 Vup) divh +h- sz(x, Vuk)> dx
Q

n
= E /D,-thgiEE(x,Vuk)Djukdx
“ Q
i,j=1

+ / [Ds:(i(x, u,Vu) —§(x, u, Vu)]h - Vuy dx,
Q
namely

/ L, u(x), (|Vug|)Vuy) div h dx +/ A(|Vug|) div h dx
Q Q

1 ~
+ —/ [Vug|* divhdx +/ h-VyZL(x,Vuy)dx
k Ja Q

n n
-y f Dihj D, & (x. u(x). Vug) Djug dx — / Dihj D, A(|Vug|) Djuy dx
i,j=1 i,j=1

2 n
- > / Dithiuijukdx—/ [DsE(x,u, Vu) =8 (x,u, Vu)|h - Vuy dx
Q Q
j=1

=0.
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Notice that

1 2 o

—/ [Vug|* divhdx — 0, = Z / DihjDijug Djuy dx — 0

kJa ke
as k — +oo. Moreover, since Djuy — Dju and Dg A(|Vug|) — Dg A(|Vul) in
L*(Q),

n n
> / Dihj D, A(|Vug|) Djug dx — ) / Dihj D, A(|Vul)Djudx =0
ij=1Y% ij=1Y%
as k — +o0 and

[ A(|Vug|)divh dx — f A(|Vul)divhdx =0
Q Q
as k — +o00. Since

/h-fo(x,Vuk)dxz/ h-VyZL(x,u(x),0(|Vug|)Vuy) dx
Q Q

+/ DsE(x,u(x),?(|Vur|)Vur)h - Vudx
Q

and being
IVad (x, u(x), 9 (|Vur DVur)| < er. [ DsL(x,u(x), F(|Vur)Vug)| < ¢

for some ¢1, ¢ > 0, one obtains
/ h- foé(x, Vug)dx — / h-VyL(x,u,Vu)dx + / DsE(x,u,Vu)h-Vudx.
Furzlermore, since there exists Z > 0 with |£(x, u(x), 19(|V9uk|)Vuk)| < c¢3, one gets
/ E(x,u, (| Vug|)Vuy) divhdx — / L(x,u,Vu) divhdx.
Taking into a(?count that there exists ¢4 > 0 with i

=4

, DiuiVuy
D4 205,051 0¥ ) V) [ ) P 3 (e

and that Djuy — Dju in L?(Q), one deduces
n n
Z / DithEiz(x, u, Vug)Djuy dx — Z [ Dih; Dg, £(x,u,Vu)Dju dx
ij=179 ij=179
as k — +o00. Noting that, of course
f [Dsjﬁ(x, u,Vu) —§(x,u, Vu)]h -Vupdx
Q
converges to
/ [DyE(x,u, Vu) —§(x,u, Vu)|h - Vudx
Q
as k — oo, the proof is complete. |

Remark 9.5. Let us observe that a (different) approximation technique was also used by
Guedda and Véron [82] to deal with the particular case £(x, s, &) = %|§ |7.

Let us now assume that €2 is bounded with Lipschitz boundary and let v(x) denote the
outer normal to 92 at x (which exists for #" !-a.e. x € 9Q).
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Lemma 9.6. Let u € C'(Q) be a weak solution of (9.1). Then

/ (L(x,u,Vu) divh + h- Vi L(x,u, Vu)) dx
Q

n
= Z / DithgiéC(x,u,Vu)Djudx—/ G(x,u,Vu)h-Vudx
Q Q

i,j=1
+ [ [£(x,0,Vu) — Ve£(x,0,Vu) - Vu] (h-v)d Fe"!
0Q

for every h € C'(Q,R").
Proof. Letk > 1 and ¢ : R — [0, 1] be given by

0 ifs < ¢
or(s)=qks—1 ifL <s<% (9.6)
1 ifs > 2,

and define the Lipschitz map ¥ : R" — [0, 1] by setting

Vi (x) = g (d(x. R" \ Q)).
Applying Lemma 9.4 on R” with ¥/ in place of /1, one deduces

/ YL (x,u, Vu) div h dx +/ L(x,u, Vu) Vg - hdx
. R

+ | Yrh-ViE(x,u, Vu)dx
R”

= Z /];&n hj Diyry Dg, £(x,u, Vu)Dju dx
i,j=1

n
+ > f i Dihj D, £(x,u, Vi) Dju dx — / G(x,u, Vu)yih - Vu dx.
. R” R”
i,j=1
Taking into account that (1) is bounded in BV (R") and

VnGC(]R”,]R”):/ Vwk-ndx%—/ n-vdH" !,
R” Q2
one has
/ éﬁ(x,u,Vu)Vwk~hdx—>—/ £(x,0,Vu)(h-v)dH"!
R~ Q

as k — 400 and

n n

Z / hj Dirye Dg, £(x,u, Vu)Dju dx — — Z / vihj Dg; £(x,0,Vu)Dju dx.
o R” L 0Q
i,j=1 i,j=1

As observed in [117], clearly one has

> vihj Dg, £(x.0, Vi) Dju = V&L (x.0,Vu) - Vu (h-v) ondQ.
i,j=1

Since of course ¥ (x) — xq(x) for each x € R”, the proof is complete. O
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Proof of Theorem 9.3. Clearly, if u € C' () is a solution of (9.1) one has

/ a[VeL(x,u, Vu) - Vu + uDgE(x,u, Vu) —u§(x,u, Vu)| dx

Q

©.7

+/ uVa - Vel (x,u,Vu)dx =0
Q

for each @ € C'(2). The assertion follows by combining (9.7) with Lemma 9.6. g

Remark 9.7. Let N > 2. Itis easily seen that Theorem 9.3 has a vectorial counterpart for
solutions # € C'(Q,RY) of the system

—div (Vg, £(x.u, Vu)) + Dy £(x,u, Vu) = Gg(x,u,Vu) inQ
u=0 ond
k=1,...,N.
See also [117, Proposition 3].

9.3. Non-strict convexity in some particular cases. In this section we will see that, in
some particular cases, the assumption of strict convexity of &£(x, s, -) can be relaxed to the
weaker assumption of convexity. Let € be a bounded open subset of R” with Lipschitz
boundary.

Lemma 9.8. Let ¥ : Q x R" — R be a function with ¥ (x,-) convex and C' and F (-, §)
measurable. Assume that there exist ag € L'(Q), ay € L? (Q), 1 < p < +o0, and
b,d > 0 with

Ve (x,6)] < ai(x) + blg|"", ©.8)
F(x,8) = dIg|” —ao(x) 9.9)
forae x € Qandall £ € R™. Let (wy) C L?(Q2,R") and w be such that

wr =~ w in LP(Q,R"), /Q?'(x,wk)dx — /Q F(x,w)dx
as k — +o0. Then
F(x,wg) = F(x,w) in LY (Q), 9.10)
VeF (x, wi) — VeF (x,w) in LP (Q) 9.11)
as k — +oo. Moreover; up to a subsequence, |w|? < ¥ for some ¥ € L'(Q).
Proof. Let us define F:QxR" >R by setting
F(x,8) = F(x,wx) + &) — F(x, w(x) - Ve F (x,w(x)) - £.
Note that > 0, ¥ (x,0) = 0, Ve (x,0) = 0 and
/;Zﬁ(x,wk—w)dxeo as k — +oo. (9.12)
Therefore, since for each ¢ € L*°(Q2)
/Q(pvsfi"(x,w)-(wk —w)dx -0 ask — +oo,

one has
/ (p[?(x, wy) — S‘f'(x,w)] dx -0 ask — o0,
Q
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which proves (9.10).

Note that, in view of (9.12), up to a subsequence one has ¥ (x, wg(x) —w(x)) — 0 for
a.e. x € Q. Fix now such an x; then by (9.9) up to a subsequence wi (x) — y for some
y € R”, which yields ¥ (x,y —w(x)) = 0. In particular, y — w(x) is a local minimum
for 3’1()6, -), so that Vg%(x, y —w(x)) = 0. Hence we conclude

Ve F (x, wi(x)) = VeF (x, w(x)). 9.13)

Now, since by (9.12) there exists 1/~/ € L'(R) such that
F(x,wg) — F(x, w) — VeF (x,w) - (wg —w) <9,
by (9.9) and Young’s inequality one finds ¢y, ¢, > 0 such that
crlwil? < ap+ F(x.w) — VeF (x.w) - w + ¥ + ca| Ve F (x, w)|”’
In particular, in view of (9.8) one deduces |V F (x, wi)| < g forsome g € LP?'(2), which
combined with (9.13) yields the second assertion. O
9.4. The splitting case. In this subsection we shall deal with the case when £(x, s, £) is
of the form «(x, 5)B(§) + y(x,s).
Lemma9.9. Leto,y € WI(Q) witha > 0 and B € C'(R") convex such that
F(x,8) = a(x)BE) + y(x)

withd|E]P —b < B(E) <b(1 + |£]P), | < p < 400, for some b,d > 0. Let (wy) and w
with

wry =~ w in LP(Q2,R"), / ?(x,wk)dx—>/ F(x,w)dx
as k — +oo. Then Q "
B(wr)Va(x) = B(w)Va(x) in L'(Q), 9.14)
as k — +oo0.

Proof. If Q denotes the set where « = 0, one may argue on

+o0
1
Q\szozhglszh, Qh:{er:a(x)>Z}.

By Lemma 9.8 there exists ¢ € L!(2) such that
xe\e, () B(wr (X)) Va(x) < ¥ (x)
up to a subsequence; hence for each ¢ > 0 one finds /¢ > 1 such that

/ Bwr (x)Va(x)dx < ¢
Q\Qp

0

uniformly with respect to k. On the other hand, again by Lemma 9.8 one knows that
Fx,wg) =~ F(x,w) in LI(Q;,O)
as k — 400, which implies
a(x)B(wg) = a(x)B(w) in L' ().

Then since 1/a € L>®(Qy,) one gets f(wg) — B(w) in L' (Qy,), which yields (9.14).
O
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Theorem 9.10. Let u : Q2 — R be a locally Lipschitz solution of (9.3). Assume that there
exista,y € C1(Q x R) and B € C2(R") convex such that > 0, B(0) = 0 and

L(x,5,8) = a(x,s)BE) + y(x,s).
Then

> / [DjuDih; + uD;a]|Dg, £(x,u, Vu) dx
Q

ij=1

+ / a[VeL(x,u, Vu) - Vu + uDyL(x, u, Vu)| dx
o 9.15)

= / [£(x,u, Vu) div h + h- Vi (x,u, Vu)]dx
Q
= / [h -Vu + au]ﬁ(x, u,Vu) dx
Q
holds for each a € C}(2) and h € C}1(Q,R").

Proof. Let 6, A, £ and (ug) C Ho1 (2) be as in Lemma 9.4. We apply Lemma 9.8
choosing

we = Vug,  F(x,§) =A(§]) or F(x.§) = BOEDE).
By (9.11) one has

n n
E / Dithgl.A(|Vuk|)Djuk dx — E / D,‘thgiA(|vu|)Dju dx =0,
i,j=1 i,j=1

and the term

n

> /QDihja(x,u)Dgi,B(ﬂ(Wukl)Vuk)Djukdx
i,j=1

goes to

n
Z / D;hja(x,u)Dg, B(Vu)Dju dx
ij=17%
as k — +o00. Moreover, by (9.10) one obtains

/ A(|Vug) div hdx — [ A(|Vul) div hdx =0,
Q Q

/Qa(x,u)ﬁ(ﬁ(Wukl)Vuk) divhdx — /Qa(x,u),B(Vu) div & dx
as k — +o0. Finally, by (9.14) of Lemma 9.9 one gets
/Qh . Vxéz(x, Vug)dx — /gz [h - Vya(x,u) + Dsa(x,u)h - Vu],B(Vu) dx
+ /;Z[ny(x, u) + Dgy(x,u)lh-Vudx

as k — 4o00. Then (9.15) follows by exploiting the proof of Lemma 9.4. U

At this point, arguing as in Lemma 9.6 and taking into account (9.7), we obtain the
following result.
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Theorem 9.11. Let u € C'(Q) be a weak solution of (9.1). Let .y € C'( x R) and
B € C2(R") convex such that @ > 0, B(0) = 0 and

L(x,5,8) = a(x,)BE) + y(x,s).
Then (9.2) holds for each a € C'(Q) and h € C'(Q,R™).

9.5. The_ one-dimensional case. In this subsection we assume that €2 is an interval in R
and £ : Q@ xR xR — Ris of class C! with £(x, s, -) convex and D¢ & of class C'.

Theorem 9.12. Letu : 2 — R be a locally Lipschitz solution of (9.3). Then (9.15) holds
foreacha € CH(Q2) and h € C}(Q).

Theorem 9.13. Letu € C Y(Q) be a weak solution of (9.1). Then (9.2) holds for each
aeCYQ)andh e C1(Q).

Taking into account next result, the above theorems follow arguing as in the proof of
Lemmas 9.4 and 9.6.

Lemma 9.14. Let ¥ : Q x R — R be a C! function with ¥ (x,-) convex. Let (wy) C
L?(R2) and w be such that

wr =~ w in LP(Q), / F(x,wg) dx — / F(x,w)dx
Q Q

as k — 400 and assume that (DxF (x, wy)) is bounded in L4 for some q > 1. Then

D, F (x,wg) = Dy F(x,w) in LY (Q) 9.16)
as k — +o0.
Proof. Let us set, for each x € €2,

w(x) = limkinf wi(x),  yp(x) = limsup wg (x).
k
Notice that one has
W(x) = w(x) = yy(x) 9.17)

for a.e. x € Q. Without loss of generality, one can replace wy (x) by its projection onto
[y (x), y4(x)]; in particular

W(x) < wr(x) = py(x) (9.18)
for a.e. x € Q. Arguing as in the proof of Lemma 9.8 one obtains
Foo () —w@) =0, Flx,p(x) —w(x) =0
for a.e. x € Q. Then, by % > 0 and the convexity of i:'(x, -) one has
F e, (1= 0)p(x) + 0y3(x) = w(x)) = 0

for every 6 € [0, 1] and a.e. x € Q. This yields

F(x, (1= p(x) +2pp(x)) = (1 = N F (x, pp(x)) + 9F (x, pp(x))  (9.19)
for a.e. x € Q2. For each m > 1 let us set

1
Qm = {x € Q:yy(x) — y(x) = E}

By Lusin’s theorem, for each & > 0 there exists a closed subset Cy,  C 2, such that

. 1
yb|Cm,g’ yﬂ|cm,€ are continuous, £ (R \ G e) < &,
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where £! denotes the one-dimensional Lebesgue measure. We also cut off from Cy, . the
negligible set of isolated points. Let us now take x € Cy, ¢ and (x) C Cp o With Xz — Xx.
If § > 0 is sufficiently small, by continuity one has

W(Xk) = p(x) + 68 < py(x) — 8 = py(xx) (9:20)
for each k& € N large enough. By (9.19), for each ¥ € [0, 1] one obtains
F e, (1 =0)((x) +6) + 7 (yg(x) — )
=1 =9)F (x, w(x) +8) +0F (x, yy(x) = 9).
Moreover, (9.20) implies
F (xp, (1 =) (x) + 8)+ D (yg(x) —6))
= (1 =9)F (X, yp(x) + 8) + FF (. yy(x) — 6).
Therefore, combining the previous identities yields
Dy ¥ (x. (1 =9)(m(x) + 8+ P (yg(x) —6))
=1 =)D F (x, yp(x) +8) + D F (x, yg(x) — 0)
for each ¢ € [0, 1]. Letting § — 0 one obtains
Dx ¥ (x, (1 =) (x)+0yp(x)) = (1 =) D F (x, pp(x)) + FDx F (x, yy(x))
for each ¢ € [0, 1]. By (9.17) and (9.18) we can choose
w(x) — pp(x) wi (x) — pp(x)

ForW @ 5 |
= T ) -
Then one gets
DyF (row(x)) = 72D e ey + LTI b g o)

1) = 7o) 1500 = 7o)

and

D7 (eowg(x)) = 22D g + DT o).

ya(x) — mp(x) y(x) — yp(x)

In particular, one concludes
Dy F (x, wi(x))
Dy F (x, yg(x)) — Dx F (x, pp(x))
yi(x) = yp(x)

= Dy ¥ (x, w(x)) + (wi (x) — w(x))
for all x € Cp, ¢, which implies that
Vo € L®(Ce) : Dy F (x,wi)p dx — Dy ¥ (x,w)e dx

Cmn.e Cin.e

as k — 4o00. On the other hand, since (D,¥ (x, wg)) is bounded in L9(2), for any
¢ € L*°(Cyy,¢) there exists ¢ > 0 such that

‘[ Dx?(x,wk)wdx‘ < ¢ £1(Qum \ Cme) < ce.
Ql‘)‘l\Cm,S
Letting ¢ — 0, one gets

Yo € L®(Qm) : /slz Dy ¥ (x,wg)p dx — /Q D, F (x,w)p dx
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for each m > 1. Moreover, since on the set
Qoo = {x € Q1 p3(x) = »(x)}

one has wy — w pointwise, then
Vo € L*(Qo0) : / D, F (x,wy)pdx — / D, F(x,w)pdx
Qoo Qoo

which concludes the proof. d

9.6. Non-existence results. In the following we want to recall from [117] a general vari-
ational identity that holds both for scalar-valued and vector-valued extremals of multiple
integrals of calculus of variations that will allow us to get non-existence results for various
classes of problems.

Let Q be a bounded open subset of R”, n > 3 and k > 1. For each « € N” we set
loc!
L fee e == o L= .
% =& &, Cu: al!”.an!s $$ . CaD&...k‘f'

Let now f : Wok’f’J (2) — R be the k-th order functional of calculus of variations

f(u):/Qx(x,u,vu,...,vku)dx.

By direct calculation, the Euler-Lagrange’s equation of f is given by

k
> DD (xou, . VR =0 inQ. 9.21)
la|=0

It u € WP (Q) is a weak solution to (9.21) and A € CK(Q), v € CK(Q,R"), we set
n

9r=v-Vu+iu, &= Mg 9% =[D*(w-D+1)—(v-D)D%].
i=1

We now recall the following Pohozdev-type identity for general lagrangians.

Proposition 9.15. Assume that u € C k (R2) is a weak solution to (9.21). Then

k—1
c,C
div{vi(x,u,...,vku)— Z (—l)lﬁlé—ﬁD“ﬁDﬂéﬁgv(x,u,...,Vku)}

la+B|=0 4
=div(v)L(x,u,..., Vku) +v-VE(x,u,..., Vku)

k
- Z Bi’vu-éﬁga(x,u,...,vku)
la|=0

fora.e. x € Q and for each v € C*(Q,R™).

The proof of the above identity follows by direct computation. See [117, section 5].
We now come to the main non-existence result for first order scalar-valued extremals.

Theorem 9.16. Assume that Q2 is star-shaped with respect to 0. Suppose also that
£-VeL(x,0,8) —£(x,0,6) >0 (9.22)
fora.e. x € Q and all £ € R" and that there exists . € R such that
nd(x,s,&) +x-ViL(x,s,8) —AsDsL(x,5,8) — (A + DE - Vel(x,5,§) >0 (9.23)
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fora.e. x € Q and each (s,£) € R xR". Let s = 0 or § = 0 whenever equality holds in
(8.65). Then the elliptic boundary value problem

—div (Vgéﬁ(x, u, Vu)) + D (x,u,Vu) =0 inQ (9.24)
has no weak solution u € C'(Q).

Proof. Letu € C'(R) be a weak solution of (9.21). By applying the divergence Theorem
to identity of Proposition 9.15 choosing v(x) = x and k = 1, since u = 0 on 92, we get

/ [£(x,0,Vu) — Ve£(x,0,Vu) - Vu] (x -v) d F""
Q

/ {néﬁ(x,u,Vu)+x~Vx$(x,u,Vu)

Q

—AuDgE(x,u, Vu) — (A + 1)Vu - Ve L(x, u, Vu)} dx.

Taking into account that on 92 it is (x - v) > 0, conditions (9.22) and (9.23) yield a
contradiction. O

Corollary 9.17. Assume that there exists A € R such that

n

Z ((n —2A —2)a;jj(x,5) + x - Vya;j(x,s) — AsDsa;j(x, S))E,-Ej >0
i,j=1

fora.e. x € Q and each (s,§) € R x R” and
Asg(x,s) —nG(x,s) —x - VyG(x,s) >0
and for a.e. x € Q and each s € R\{0}. Then the quasi-linear problem
n n
— Z Dj(a;j(x,u)D;u) —i—% Z Dsa;j(x,u)DijuDju = g(x,u) inQ (9.25)
ij=1 ij=1
has no weak solution u € C'(Q).

Proof. 1t comes straightforward from the previous result taking

n

£(x,s5,8) = % Z ajj(x, $)&&;

ij=1
fora.e. x € Q and each (s,£) € R x R”. O
We now come to the main non-existence result for first order vector-valued extremals.
Theorem 9.18. Assume that Q2 is star-shaped with respect to 0. Suppose also that
E-VeL(x,0,8) — £(x,0,€) >0, (9.26)
fora.e. x € Q and each & € R™ and that there exists ) € R such that
nL(x,s,&) +x-Vil(x,s,8) —Au-ViL(x,s,&) — (A + 1E- VeL(x,s5,6) >0 (9.27)

fora.e. x € Q and each (s, &) € RN xR"N . Assume further that equality holds only when
either s = 0 or & = 0. Then the nonlinear elliptic system

div(VeL(x,u, Vu)) + Vo (x,u, Vu) =0 (9.28)
has no weak solution u € C*(,R¥N)n C'(Q,RN).
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Proof. Arguing as in the scalar case we obtain the following variational identity
D; {v,-é(i(x, u,Vu) — (ijjuk + kuk) Dski(x, u, Vu)}
= Djv;E€(x,u, Vu) + v; Dy, £(x,u, Vu) — (DjukDin + ukDik) Dsk E(x,u, Vu)
) (Diuszlg“f(x, w, Vi) + uk Dy, £ (x. 1, Vu))

where 7, j are understood to be summed from 1 to n and k from 1 to N. Therefore, it
suffices to argue as in Theorem 9.16. g

Corollary 9.19. Assume that there exists . € R such that

Z Z (n—2x— 2)a K(x,s) +x- an” (x,8) — As - Dahk(x S))§l§k>0
i,j=1hk=1

fora.e. x € Q and each (s,£) € RN xR"N and
As-g(x,s) —nG(x,s) —x-VyG(x,s) > 0.
and for a.e. x € Q and each s € ]RN\{O}. Then the quasi-linear system (£ =1,...,N)
— Z ZD (al] (x,u)Djup) + = Z Z Dse ij k(x,u)DjupDjux = gq(x, u)
i,j=1h=1 ,]—lhk 1

. (9.29)
has no weak solution u € C*(Q,RVM) N C'(Q,RM).

Proof. 1t follows by Theorem (9.18) choosing
n N
¢ _ 1 hk hek _
(os.6) =2 D0 D alf (L EE —Glx.s)
i,j=1hk=1
for a.e. x €  and each (s,£) € R” x R"V, d
Theorem 9.20. Let Q be star-shaped with respect to the origin and

ViL(x.5.8) % — = DyE(x.s.E)s + { o — SIS0 Z 0, (930)
p p q

fora.e. x € Qandall (s,&) € RxR"™. Then (P ,.) has no nontrivial solutionu € C' (Q).
Proof. If we define ¥ : Q x R x R” — R by setting
A 1 .
V(x,5,6) € QxR xR": F(x,5,8) = L(x,5,8) — —[s|T — —Is|”,
q P
the first assertion follows, after some computations, by the inequality
nF + V¥ -x—aDsFs—(a+1)VeF -£>0
where we have chosen a = (n — p)/p (see [117, Theorem 1]). Il

Corollary 9.21. Let Q2 be star-shaped with respect to the origin, A < 0 and

PV E(x,5,8) - x —nDsL(x,s,6)s >0, 9.31)
forae x € Qand all (s,§) € R xR". Then ($y,,) admits no nontrivial solution
ueCY(Q).
Proof. Since ¢ < p* and A < 0, condition (9.31) implies condition (9.30). O
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Assume that A < 0 and £ does not depend on x. Then, by the previous result, the
non-existence condition becomes Dy £ (s, &)s < 0. Note that this is precisely the contrary
of our assumption (6.40). Then, from this point of view (6.40) seems to be natural.
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