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1 Introduction and results
Let Ω ⊂ ℝN be a smooth bounded domain. In 1983, Brezis and Nirenberg, in the seminal paper [3], showed
that the critical growth semi-linear problem

{{{
{{{
{

−∆u = λu + u2∗−1 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

admits a solution provided that λ ∈ (0, λ1) and N ≥ 4, λ1 being the first eigenvalue of −∆ with homogeneous
Dirichlet boundary conditions and 2∗ = 2N/(N − 2) the critical Sobolev exponent. Furthermore, in dimen-
sion N = 3, the same existence result holds provided that μ < λ < λ1, for a suitable μ > 0 (if Ω is a ball, then
μ = λ1/4 is sharp). By Pohožaev identity, if λ ̸∈ (0, λ1) and Ω is a star-shaped domain, then problem (1.1)
admits no solution. Later on, in 1984, Cerami, Fortunato and Struwe obtained in [6] multiplicity results for
the nontrivial solutions of

{
−∆u = λu + u2∗−1 in Ω,
u = 0 on ∂Ω,

(1.2)

when λ belongs to a left neighborhood of an eigenvalue of −∆. In 1985, Capozzi, Fortunato and Palmieri
proved in [5] the existence of a nontrivial solution of (1.2) for all λ > 0 and N ≥ 5 or for N ≥ 4 and λ di�erent
from an eigenvalue of −∆. Let s ∈ (0, 1) and N > 2s. The aim of this paper is to obtain a Brezis–Nirenberg-type
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result for the fractional system

{{{{{{{
{{{{{{{
{

(−∆)su = au + bv + 2p
p + q

|u|p−2u|v|q in Ω,

(−∆)sv = bu + cv + 2q
p + q

|u|p|v|q−2v in Ω,

u = v = 0 inℝN \ Ω,

(1.3)

where (−∆)s is defined, on smooth functions, by

(−∆)su(x) := C(N, s) lim
ε↘0

∫
ℝN\Bε(x)

u(x) − u(y)
|x − y|N+2s

dy, x ∈ ℝN ,

C(N, s) being a suitable positive constant and p, q > 1 are such that p + q is compared to 2∗s := 2N/(N − 2s),
the fractional critical Sobolev exponent [8]. The corresponding system in the local case was studied in [1].
For positive solutions, system (1.3) turns into

{{{{{{{{{{{
{{{{{{{{{{{
{

(−∆)su = au + bv + 2p
p + q

up−1vq in Ω,

(−∆)sv = bu + cv + 2q
p + q

upvq−1 in Ω,

u > 0, v > 0 in Ω,

u = v = 0 inℝN \ Ω.

(1.4)

In the following we shall assume that Ω is a smooth bounded domain ofℝN with N > 2s and we shall denote
by (λi,s) the sequence of eigenvalues of (−∆)s with homogeneous Dirichlet-type boundary condition and by
μ1 and μ2 the real eigenvalues of the matrix

A := (
a b
b c

) , a, b, c ∈ ℝ.

Without loss of generality, we will assume μ1 ≤ μ2. By solution we shall always mean weak solution in the
sense specified in Section 2, where the functional space X(Ω) is fully described. It is known that the first
eigenvalue λ1,s is positive, simple and characterized by

λ1,s = inf
u∈X(Ω)\{0}

∫
ℝN

|(−∆)
s
2 u|2 dx

∫
ℝN

|u|2 dx
. (1.5)

The following are the main results of the paper.

Theorem 1.1 (Existence I). Assume that b ≥ 0, μ2 < λ1,s and

p + q < 2∗s .

Then (1.4) admits a solution.

Theorem 1.2 (Existence II). Assume that b ≥ 0 and

p + q = 2∗s .

Then the following facts hold:
(1) If N ≥ 4s and 0 < μ1 ≤ μ2 < λ1,s, then (1.4) admits a solution.
(2) If 2s < N < 4s, there is μ̄ > 0 such that (1.4) admits a solution if μ̄ < μ1 ≤ μ2 < λ1,s.
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Theorem 1.3 (Nonexistence). Assume that p + q = 2∗s and one of the following facts hold:
(1) Ω is star-shaped with respect to the origin and μ2 < 0.
(2) Ω is star-shaped with respect to the origin and A is the zero matrix.
(3) b ≥ 0 and μ1 ≥ λ1,s − |a − c|.
Then (1.4) does not admit any solution. Furthermore, if μ2 ≤ 0 and

p + q > 2∗s ,

then (1.4) does not admit any bounded solution if Ω is star-shaped with respect to the origin.

Theorem 1.4 (Regularity). Assume that p + q ≤ 2∗s . If (u, v) is a solution to problem (1.3), then u, v ∈ C1,αloc (Ω)
for s ∈ (0, 1/2) and u, v ∈ C2,αloc (Ω) for s ∈ (1/2, 1). In particular, (u, v) solves (1.3) in the classical sense.

The nonexistence result stated in (3) of Theorem 1.3 holds in any bounded domain. For b = 0 it reads as
μ2 ≥ λ1,s, properly complementing the assertions of Theorem 1.2. The above results provide a full extension
of the classical results of Brezis and Nirenberg [3] for the local case s = 1. We point out that we adopt in
the paper the integral definition of the fractional laplacian in a bounded domain and we do not exploit any
localization procedure based upon the Ca�arelli–Silvestre extension [4], as done e.g. in [2]. See [13] for a nice
comparison between these two di�erent notions of fractional laplacian in bounded domains. By choosing
p = q = 2∗s /2, system (1.4) reduces to

{{{{{{
{{{{{{
{

(−∆)su = au + bv + u2s/(N−2s)vN/(N−2s) in Ω,
(−∆)sv = bu + cv + uN/(N−2s)v2s/(N−2s) in Ω,

u > 0, v > 0, in Ω,
u = v = 0 inℝN \ Ω,

(1.6)

which, in the particular case of a = c, setting u = v, boils down to the scalar equation

{{{
{{{
{

(−∆)su = λu + u2∗s −1 in Ω,
u > 0 in Ω,
u = 0 inℝN \ Ω,

(1.7)

which is the natural fractional counterpart for the classical Brezis–Nirenberg problem [3]. For existence
results for this problem, we refer to [12, 14] and to the references therein.

2 Preliminary stu�

2.1 Notations and setting

We refer the reader to [8] for further details about the functional framework that follows. For any measurable
function u : ℝN → ℝ we define the Gagliardo seminorm by setting

[u]s := (
C(N, s)

2 ∫
ℝ2N

|u(x) − u(y)|2

|x − y|N+2s
dx dy)

1
2

= (∫
ℝN

|(−∆)
s
2 u|2 dx)

1
2

.

The second equality follows by [8, Proposition 3.6] when the above integrals are finite. Then, we introduce
the fractional Sobolev space

Hs(ℝN) = {u ∈ L2(ℝN) : [u]s < ∞}, ‖u‖Hs = (‖u‖2L2 + [u]2s )
1
2 ,

which is a Hilbert space, and we consider the closed subspace

X(Ω) := {u ∈ Hs(ℝN) : u = 0 a.e. inℝN \ Ω}. (2.1)
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Due to the fractional Sobolev inequality, X(Ω) is a Hilbert space with inner product

⟨u, v⟩X :=
C(N, s)

2 ∫
ℝ2N

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s

dx dy, (2.2)

which induces the norm ‖ ⋅ ‖X = [ ⋅ ]s. Now, we consider the Hilbert space given by the product

Y(Ω) := X(Ω) × X(Ω), (2.3)

equipped with the inner product

⟨(u, v), (φ, ψ)⟩Y := ⟨u, φ⟩X + ⟨v, ψ⟩X (2.4)

and the norm
‖(u, v)‖Y := (‖u‖2X + ‖v‖2X)

1
2 . (2.5)

We shall consider Lm(Ω) × Lm(Ω) (m > 1) equipped with the standard product norm

‖(u, v)‖Lm×Lm := (‖u‖2Lm + ‖v‖2Lm )
1
2 . (2.6)

We recall that we have
μ1|U|2 ≤ (AU, U)ℝ2 ≤ μ2|U|2 for all U := (u, v) ∈ ℝ2. (2.7)

In this paper, we consider the following notation for product space F × F := F2 and set

w+(x) := max{w(x), 0}, w−(x) := min{w(x), 0},

for positive and negative part of a function w. Consequently, we get w = w+ + w−. During chains of inequali-
ties, universal constants will be denoted by the same letter C even if their numerical value may change from
line to line.

2.2 Weak solutions

Consider the system
{{{
{{{
{

(−∆)su = f(u, v) in Ω,
(−∆)sv = g(u, v) in Ω,

u = v = 0 inℝN \ Ω,
(2.8)

where f, g : ℝ ×ℝ→ ℝ are Carathéodory mappings which satisfies, respectively, the growths conditions

|f(z, w)| ≤ C(1 + |z|2∗s −1 + |w|2∗s −1) for all (z, w) ∈ ℝ2, (2.9)
|g(z, w)| ≤ C(1 + |z|2∗s −1 + |w|2∗s −1) for all (z, w) ∈ ℝ2. (2.10)

Definition 2.1. We say that (u, v) ∈ Y(Ω) is a weak solutions of (2.8) if

⟨(u, v), (φ, ψ)⟩Y = ∫
Ω

f(u, v)φ dx + ∫
Ω

g(u, v)ψ dx (2.11)

for all (φ, ψ) ∈ Y(Ω).

2.3 A priori bounds

We introduce some notation: for all t ∈ ℝ and k > 0, we set

tk := sgn(t)min{|t|, k}. (2.12)

From [9, Lemma 3.1] we recall the following lemma.
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Lemma 2.2. For all a, b ∈ ℝ, r ≥ 2, and k > 0 we have

(a − b)(a|a|r−2k − b|b|r−2k ) ≥
4(r − 1)
r2

(a|a|
r
2−1
k − b|b|

r
2−1
k )

2
.

In the following, we prove an L∞-bound on the weak solutions of (2.8) which will be needed in order to get
nonexistence and regularity results.

Lemma 2.3. Assume that f and g satisfy (2.9)–(2.10) and let (u, v) ∈ Y(Ω) be a weak solution to (2.8). Then
we have u, v ∈ L∞(Ω).

Proof. For all r ≥ 2 and k > 0, the map t Ü→ t|t|r−2k is Lipschitz inℝ. Then

(u|u|r−2k , 0) ∈ Y(Ω), (0, v|v|r−2k ) ∈ Y(Ω).

We test equation (2.11) with (u|u|r−2k , 0), we apply the fractional Sobolev inequality, Young’s inequality,
Lemma 2.2, and use (2.9) to end up with

‖u|u|
r
2−1
k ‖2

L2∗s ≤ C‖u|u|
r
2−1
k ‖2X

≤
Cr2

r − 1 ⟨u, u|u|
r−2
k ⟩X

≤ Cr∫
Ω

|f(u, v)||u||u|r−2k dx

≤ Cr∫
Ω

(|u||u|r−2k + |u|2∗s |u|r−2k + |v|2∗s −1|u||u|r−2k ) dx

≤ Cr∫
Ω

(|u|r−1 + |u|2∗s +r−2 + |v|2∗s +r−2) dx (2.13)

for some C > 0 independent of r ≥ 2 and k > 0. Then, Fatou’s lemma, as k → ∞, yields

‖u‖r
Lã2 r ≤ Cr(∫

Ω

(|u|r−1 + |u|2∗s +r−2 + |v|2∗s +r−2) dx), (2.14)

where ã = (2∗s /2)
1
2 (the right-hand side may at this stage be ∞). Now, in a similar way, test (2.11) with

(0, v|v|r−2k ) to obtain for some C > 0 independent of r ≥ 2 that

‖v‖r
Lã2 r ≤ Cr(∫

Ω

(|v|r−1 + |u|2∗s +r−2 + |v|2∗s +r−2) dx) (2.15)

(the right-hand side may be∞). By (2.14) and (2.15) we get

‖u‖r
Lã2 r + ‖v‖r

Lã2 r ≤ Cr(∫
Ω

(|u|r−1 + |v|r−1 + |u|2∗s +r−2 + |v|2∗s +r−2) dx). (2.16)

Our aim is to develop a suitable bootstrap argument to prove that u, v ∈ Lp(Ω) for all p ≥ 1. We start from
(2.16), with r = 2∗s + 1 > 2, and fix σ > 0 such that Crσ < 1

2 . Then there exists a constant K0 > 0 (depending
on u and v) such that

( ∫
{|u|>K0}

|u|2∗s dx)1− 2
2∗s

+ ( ∫
{|v|>K0}

|v|2∗s dx)1− 2
2∗s

≤ σ. (2.17)

By Hölder’s inequality and (2.17) we have

∫
Ω

|u|2∗s +r−2 dx ≤ K2
∗
s +r−2

0 |{|u| ≤ K0}| + ∫
{|u|>K0}

|u|2∗s +r−2 dx
≤ K2

∗
s +r−2

0 |Ω| + (∫
Ω

(ur)
2∗s
2 dx)

2
2∗s
( ∫
{|u|>K0}

|u|2∗s dx)1− 2
2∗s

≤ K2
∗
s +r−2

0 |Ω| + σ‖u‖r
Lã2 r (2.18)
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and
∫
Ω

|v|2∗s +r−2 dx ≤ K2
∗
s +r−2

0 |Ω| + σ‖v‖r
Lã2 r . (2.19)

By (2.16), (2.18) and (2.19), we have
1
2 (‖u‖

r
Lã2 r + ‖v‖r

Lã2 r ) ≤ Cr(∫
Ω

(|u|r−1 + |v|r−1) dx + K2
∗
s +r−2

0 ). (2.20)

Since r = 2∗s + 1, we get u, v ∈ L
2∗s (2∗s +1)

2 (Ω). We define a sequence {rn} with

r0 = 2∗s + 1, rn+1 = ã2rn − 2∗s + 2.

Since
2∗s + r0 − 2 <

2∗s (2∗s + 1)
2 ,

we get
‖u‖L2∗s +r0−2 + ‖v‖L2∗s +r0−2 < +∞.

Hence, we aim to begin an iteration in order to get the L∞-bounds of u and v. Using formula (2.16) and the
Hölder inequality, we obtain

‖u‖Lã2 r + ‖v‖Lã2 r ≤ (Cr)
1
r (|Ω|

2∗s −1
2∗s +r−2 (‖u‖r−1

L2∗s +r−2 + ‖v‖r−1
L2∗s +r−2) + (‖u‖2

∗
s +r−2
L2∗s +r−2 + ‖v‖2

∗
s +r−2
L2∗s +r−2 )) 1

r

≤ (Cr)
1
r ((1 + |Ω|

2∗s −1
2∗s )(‖u‖L2∗s +r−2 + ‖v‖L2∗s +r−2)r−1 + (‖u‖L2∗s +r−2 + ‖v‖L2∗s +r−2)2∗s +r−2) 1

r .

Substituting rn+1 for r, since ã2rn = 2∗s + rn+1 − 2, we get

‖u‖Lã2 rn+1 + ‖v‖Lã2 rn+1 ≤ (Crn+1)
1

rn+1 (C(‖u‖Lã2 rn + ‖v‖Lã2 rn )rn+1−1 + (‖u‖Lã2 rn + ‖v‖Lã2 rn )ã2rn) 1
rn+1 . (2.21)

Denote
Tn := max{1, ‖u‖Lã2 rn + ‖v‖Lã2 rn }.

Then (2.21) can be written as
Tn+1 ≤ (1 + C)

1
rn+1 rn+1 1

rn+1 Tn ã2 rn
rn+1 . (2.22)

Since rn+1 = ã2rn − 2∗s + 2, by induction it is possible to prove that
rn+1
ã2n+2 = 2∗s − 1 + 2ã−2n−2, n ∈ ℕ.

If n = 0, the assertion follows by a direct calculation. Assume now that the assertion holds for a given n ≥ 1
and let us prove it for n + 1. We get

rn+2
ã2n+4 =

rn+1
ã2n+2 −

2∗s − 2
ã2n+4

= 2∗s − 1 + 2ã−2n−2 − 2∗s − 2
ã2n+4

= 2∗s − 1 + 2ã−2n−4,

which proves the claim. In particular, rn+1
ã2n+2 ≈ 2∗s − 1. From (2.22), we also have

Tn+1 ≤ (1 + C)
1

rn+1 rn+1 1
rn+1 Tn ã2 rn

rn+1
≤ (1 + C)

1
rn+1 rn+1 1

rn+1 ((1 + C)
1
rn rn

1
rn Tn−1

ã2 rn−1
rn )

ã2 rn
rn+1

= (1 + C)
1+ã2
rn+1 rn+1 1

rn+1 rn ã2
rn+1 Tn−1 ã4 rn−1

rn+1
≤ ⋅ ⋅ ⋅ ≤ (1 + C)

1+ã2+ã4+⋅⋅⋅+ã2n
rn+1 (rn+1

1
rn+1 rn ã2

rn+1 rn−1 ã4
rn+1 ⋅ ⋅ ⋅ r1

ã2n
rn+1 )T0 ã2n+2 r0

rn+1
= (1 + C)

ã2n+2−1(ã2−1)rn+1 ( n
∏
i=0
rã

2(n−i)
i+1 )

1
rn+1

T0
ã2n+2 r0
rn+1 .
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We can easily compute that

ã2n+2 − 1
(ã2 − 1)rn+1

≈
2

(2∗s − 1)(2∗s − 2) ,
ã2n+2r0
rn+1

≈
2∗s + 1
2∗s − 1 .

Moreover, ri+1 < r0ã2i+2 for every i ∈ ℕ, since

ri+1
ã2i+2

=
ri
ã2i

−
2∗s − 2
ã2i+2

<
ri
ã2i

< ⋅ ⋅ ⋅ < r0,

and rn+1 > ã2n+2 eventually for n large since rn+1
ã2n+2 ≈ 2∗s − 1 > 1, so that

(
n
∏
i=0
rã

2(n−i)
i+1 )

1
rn+1

< (
n
∏
i=0

(r0ã2i+2)ã
2(n−i)

)
1ã2n+2

≤ r0∑
∞
i=0 ã−2i−2ã∑∞i=0 2i+2ã2i+2 < +∞.

Hence (Tn) remains uniformly bounded and the assertion follows. Notice that the L∞-bound depends on T0
which depends on u (and not only on ‖u‖2∗s ) through the presence of K0 > 0 in estimate (2.20).

3 Pohǒzaev identity and nonexistence
The purpose of this section is to prove Theorem 1.3, for this we need the following auxiliary result known as
Pohǒzaev identity for systems involving the Laplacian fractional operator.

Lemma 3.1. LetΩ be a bounded C1,1 domain and let F ∈ C1(ℝ+ ×ℝ+) be such that Fu and Fv satisfy the growth
conditions (2.9) and (2.10). Let (u, v) ∈ Y(Ω) be a solution to the system

{{{
{{{
{

(−∆)su = Fu(u, v) in Ω,
(−∆)sv = Fv(u, v) in Ω,

u = v = 0 inℝN \ Ω.
(3.1)

Then u, v ∈ Cs(ℝN), u, v ∈ C1,αloc (Ω) for s ∈ (0, 12 ), u, v ∈ C
2,α
loc (Ω) for s ∈ (12 , 1) and

u
δs

!!!!!!Ω ,
v
δs

!!!!!!Ω ∈ Cα(Ω) for some α ∈ (0, 1), (3.2)

where δ(x) := dist(x, ∂Ω), meaning that u
δs |Ω and v

δs |Ω admit a continuous extension to Ω which is Cα(Ω). More-
over, the following identity holds:

∫
ℝN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2) dx − 2∗s ∫

Ω

F(u, v) dx + Γ(1 + s)2

N − 2s ∫
∂Ω

[(
u
δs )

2
+ (

v
δs )

2
](x, ν)ℝN dσ = 0, (3.3)

where Γ is the Gamma function.

Proof. In light of Lemma 2.3, we learn that u, v ∈ L∞(Ω). Then, Fu(u, v) and Fv(u, v) belong to L∞(Ω) too.
In turn, by [10, Theorem 1.2 and Corollary 1.6], we have that u and v satisfy the regularity conclusions
stated in (3.2). In particular, the system is satisfied in the classical sense. Whence, we are allowed to apply
[11, Proposition 1.6] to both components u and v, obtaining

∫
Ω

(x ⋅ ∇u)(−∆)su dx =
2s − N

2 ∫
Ω

u(−∆)su dx − Γ(1 + s)2

2 ∫
∂Ω

(
u
δs )

2
(x, ν)ℝN dσ,

∫
Ω

(x ⋅ ∇v)(−∆)sv dx =
2s − N

2 ∫
Ω

v(−∆)sv dx − Γ(1 + s)2

2 ∫
∂Ω

(
v
δs )

2
(x, ν)ℝN dσ.

Then, since (−∆)su = Fu(u, v) and (−∆)sv = Fv(u, v) weakly in Ω and recalling that

∫
Ω

u(−∆)su dx = ∫
ℝN

|(−∆)
s
2 u|2 dx, ∫

Ω

v(−∆)sv dx = ∫
ℝN

|(−∆)
s
2 v|2 dx,
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we get

∫
Ω

(x ⋅ ∇u)Fu(u, v) dx =
2s − N

2 ∫
ℝN

|(−∆)s/2u|2 dx − Γ(1 + s)2

2 ∫
∂Ω

(
u
δs )

2
(x, ν)ℝN dσ,

∫
Ω

(x ⋅ ∇v)Fv(u, v) dx =
2s − N

2 ∫
ℝN

|(−∆)s/2v|2 dx − Γ(1 + s)2

2 ∫
∂Ω

(
v
δs )

2
(x, ν)ℝN dσ.

Observing that ∇F(u, v) ⋅ x = Fu(u, v)∇u ⋅ x + Fv(u, v)∇v ⋅ x, integrating by parts we get

(2s − N) ∫
ℝN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2) dx + 2N ∫

Ω

F(u, v) dx = Γ(1 + s)2 ∫
∂Ω

[(
u
δs )

2
+ (

v
δs )

2
](x, ν)ℝN dσ,

which concludes the proof.

3.1 Proof of nonexistence

Consider first the case p + q = 2∗s with assumption (1) and assume by contradiction that (1.4) admits a posi-
tive solution (u, v) ∈ Y(Ω). Consider the functions f, g : ℝ+ ×ℝ+ → ℝ defined by

f(z, w) = az + bw +
2p
p + q

zp−1wq , g(z, w) = bz + cw +
2q
p + q

zpwq−1.

Then, setting

F(z, w) = a
2 z

2 + bzw +
c
2w

2 +
2

p + q
zpwq =

1
2 (A(z, w), (z, w))ℝ

2 +
2

p + q
zpwq ,

we obtain that F ∈ C1(ℝ+ ×ℝ+), Fz = f and Fw = g satisfy the growth conditions (2.9) and (2.10) and (u, v)
is a weak solution to (2.8). Then, the components u, v enjoy the regularity (3.2) stated in Lemma 3.1 and
identity (3.3) holds. Testing (2.11) with (φ, ψ) = (u, v), yields

∫
ℝN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2) dx = ∫

Ω

f(u, v)u dx + ∫
Ω

g(u, v)u dx

= ∫
Ω

(AU, U)ℝ2 dx + 2∫
Ω

upvq dx,

which substituted in (3.3), yields, recalling that p + q = 2∗s ,

(1 −
2∗s
2 )∫

Ω

(AU, U)ℝ2 dx +
Γ(1 + s)2

N − 2s ∫
∂Ω

[(
u
δs )

2
+ (

v
δs )

2
](x, ν)ℝN dσ = 0.

Since Ω is star-shaped with respect to the origin, the equation above yields

∫
Ω

(AU, U)ℝ2 dx ≥ 0.

This is a contradiction with (2.7), because μ2 < 0 and u, v > 0.
Now we cover case (2). If A is the zero matrix, we get

∫
∂Ω

[(
u
δs )

2
+ (

v
δs )

2
](x, ν)ℝN dσ = 0,

which contradicts the fractional version ofHopf’s lemma, see [9, Lemma2.7], since (−∆)su ≥ 0 and (−∆)sv ≥ 0
weakly yield u

δs ≥ ω and v
δs ≥ ω

�, for some positive constants ω, ω�.
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Let us turn to case (3). If φ1 > 0 is the first eigenfunction corresponding to λ1,s and we assume that
a solution of (1.4) exists, by choosing (φ1, 0) and (0, φ1) respectively in (2.11), we get

λ1,s ∫
Ω

uφ1 dx = ∫
ℝN

(−∆)
s
2 u(−∆)

s
2 φ1 dx = ∫

Ω

(auφ1 + bvφ1 +
2p
p + q

up−1vqφ1) dx,

λ1,s ∫
Ω

vφ1 dx = ∫
ℝN

(−∆)
s
2 v(−∆)

s
2 φ1 dx = ∫

Ω

(buφ1 + cvφ1 +
2q
p + q

upvq−1φ1) dx.

Then, since b ≥ 0 and u, v > 0, we get

λ1,s ∫
Ω

uφ1 dx > a∫
Ω

uφ1 dx, λ1,s ∫
Ω

vφ1 dx > c∫
Ω

vφ1 dx,

that is max{a, c} < λ1,s. On the other hand, by assumption and a direct calculation

λ1,s − |a − c| ≤ μ1 =
(a + c) −√(a − c)2 + 4b2

2 ≤
(a + c) − |a − c|

2 = min{a, c},

which yields max{a, c} ≥ λ1,s, namely a contradiction.
Finally,weprove the last assertion. In the case p + q > 2∗s , anybounded solution of system (1.4) is smooth

according to Lemma 3.1 and arguing as above yields the identity

(1 −
2∗s
2 )∫

Ω

(AU, U)ℝ2 dx + 2(1 −
2∗s
p + q)∫

Ω

upvq dx + Γ(1 + s)2

N − 2s ∫
∂Ω

[(
u
δs )

2
+ (

v
δs )

2
](x, ν)ℝN dσ = 0.

This yields ∫Ω(AU, U)ℝ2 dx > 0, contradicting μ2 ≤ 0 via (2.7). This concludes the proof.

Proof of Theorem 1.4. The assertion follows as a particular case of Lemma 3.1.

4 Existence I, subcritical case
In this section, we will prove Theorem 1.1 which guarantees the existence of solutions for problem (1.4)
involving subcritical nonlinearity.

4.1 Proof of existence I

Let Ω be a bounded domain and suppose that

b ≥ 0, (4.1)
μ2 < λ1,s , (4.2)

p + q < 2∗s . (4.3)

Consider the functional I : Y(Ω) → ℝ defined by

I(U) := 1
2 ‖U‖

2
Y −

1
2 ∫
Ω

(AU, U)ℝ2 dx.

We shall minimize the functional I restricted to the set

M := {U = (u, v) ∈ Y(Ω) : ∫
Ω

(u+)p(v+)q dx = 1}.

By virtue of (4.2) the embedding X(Ω) í→ L2(Ω) (with the sharp constant λ1,s), we have

I(U) ≥ 1
2 min{1, (1 −

μ2
λ1,s

)}‖U‖2Y ≥ 0. (4.4)
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So define
I0 := inf

M
I,

and let (Un) = (un , vn) ⊂ M be a minimizing sequence for I0. Then I(Un) = I0 + on(1) ≤ C for some C > 0
(where on(1) → 0, as n → ∞) and consequently by (4.4), we get

[un]2s + [vn]2s = ‖un‖2X + ‖vn‖2X = ‖Un‖2Y ≤ C�. (4.5)

Hence, there are two subsequences of (un) ⊂ X(Ω) and (vn) ⊂ X(Ω) (that we will still label as un and vn) such
that Un = (un , vn) converges to some U = (u, v) in Y(Ω) weakly and

[u]2s ≤ lim inf
n

C(N, s)
2 ∫
ℝ2N

|un(x) − un(y)|2

|x − y|N+2s
dx dy, (4.6)

[v]2s ≤ lim inf
n

C(N, s)
2 ∫
ℝ2N

|vn(x) − vn(y)|2

|x − y|N+2s
dx dy. (4.7)

Furthermore, in view of the compact embedding X(Ω) í→ Lσ(Ω) for all σ < 2∗s (cf. [8, Corollary 7.2]), we
get that Un = (un , vn) converges to (u, v) strongly in (Lp+q(Ω))2, as n → ∞. Of course, up to a further
subsequence, we have that (un(x), vn(x)) converges to (u(x), v(x)) for a.e. x ∈ ℝN . Now we will show that
U := (u, v) ∈ M. Indeed, since (Un) ⊂ M, we have

∫
Ω

(u+n)p(v+n)q dx = 1. (4.8)

Since
lim
n

∫
Ω

|un|p+q dx = ∫
Ω

|u|p+q dx, lim
n

∫
Ω

|vn|p+q dx = ∫
Ω

|v|p+q dx,

we have in particular |un|p+q ≤ η1 and |vn|p+q ≤ η2, for some ηi ∈ L1(Ω) and any n ∈ ℕ. Then

(u+n)p(x)(v+n)q(x) ≤
p

p + q
|un(x)|p+q +

q
p + q

|vn(x)|p+q ≤ η1(x) + η2(x) for a.e. in Ω.

In turn, by the Dominated Convergence Theorem, passing to the limit in (4.8), we obtain

∫
Ω

(u+)p(v+)q dx = 1,

and, consequently U = (u, v) ∈ M with u, v ̸= 0. We now show that U = (u, v) is, indeed, a minimizer for I
on M and both the components u, v are nonnegative. By passing to the limit in I(Un) = I0 + on(1), where
on(1) → 0 as n → ∞, using (4.6) and (4.7) and the strong convergence of (un , vn) to (u, v) in (L2(Ω))2, as
n → ∞, we conclude that I(U) ≤ I0. Moreover, since U ∈ M and I0 = infM I ≤ I(U), we achieve that I(U) = I0.
This proves the minimality of U ∈ M. On the other hand, let

G(U) = ∫
Ω

(u+)p(v+)q dx − 1,

where U = (u, v) ∈ Y(Ω). Note that G ∈ C1 and since U ∈ M,

G�(U)U = (p + q)∫
Ω

(u+)p(v+)q dx = p + q ̸= 0,

hence, by the Lagrange Multiplier Theorem, there exists a multiplier μ ∈ ℝ such that

I�(U)(φ, ψ) = μG�(U)(φ, ψ) for all (φ, ψ) ∈ Y(Ω). (4.9)

Taking (φ, ψ) = (u−, v−) := U− in (4.9), we get

‖U−‖2Y =
C(N, s)

2 ∫
ℝ2N

u+(x)u−(y) + u−(x)u+(y)
|x − y|N+2s

dx dy

+
C(N, s)

2 ∫
ℝ2N

v+(x)v−(y) + v−(x)v+(y)
|x − y|N+2s

dx dy + ∫
Ω

(AU, U−)ℝ2 dx.
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Dropping this formula into the expression of I(U−), we have

I(U−) = b
2 ∫
Ω

(v+u− + u+v−) dx + C(N, s)4 ∫
ℝ2N

u+(x)u−(y) + u−(x)u+(y)
|x − y|N+2s

dx dy

+
C(N, s)

4 ∫
ℝ2N

v+(x)v−(y) + v−(x)v+(y)
|x − y|N+2s

dx dy ≤ 0, (4.10)

since b ≥ 0, w− ≤ 0 and w+ ≥ 0. Furthermore,

I(U−) ≥ min{1, (1 −
μ2
λ1

)}‖U−‖2Y ≥ 0

andusing (4.10),we getU− = (u−, v−) = (0, 0) and therefore u, v ≥ 0.Wenowprove the existence of a positive
solution to (1.3). Using again (4.9), we see that

‖U‖2Y − ∫
Ω

(AU, U)ℝ2 dx − μ(p + q)∫
Ω

upvq dx = 0,

and since U ∈ M, we conclude that
I0 = I(U) = μ(p + q)

2 > 0,

since I0 is positive, via (4.2). Then, by (4.9), U satisfies the following system, weakly:

{{{{{{{
{{{{{{{
{

(−∆)su = au + bv + 2pI0
p + q

up−1vq in Ω,

(−∆)sv = bu + cv + 2qI0
p + q

upvq−1 in Ω,

u = v = 0 inℝN\Ω.

Now using the homogeneity of system, we get τ > 0 such that W = (I0)τU is a solution of (1.4). Since b ≥ 0
and u, v ≥ 0, we get, in the weak sense,

{{{{{{
{{{{{{
{

(−∆)su ≥ au in Ω,
(−∆)sv ≥ cv in Ω,

u ≥ 0, v ≥ 0 in Ω,
u = v = 0 inℝN\Ω.

By the strong maximum principle (cf. [9, Theorem 2.5]), we conclude u, v > 0 in Ω.

5 Existence II, critical case
Next we turn to Theorem 1.2, for the critical case p + q = 2∗s . The variational tool used is the Mountain Pass
Theorem. The embedding X(Ω) í→ L2∗s (Ω) is not compact, but we will show that, below a certain level c, the
associated functional satisfies the Palais–Smale condition.

5.1 Preliminary results

We will make use of the definition
Ss := inf

u∈X(Ω)\{0}
Ss(u), (5.1)

where

Ss(u) := (∫
ℝN

|(−∆)
s
2 u|2 dx)(∫

ℝN

|u(x)|2∗s dx)− 2
2∗s

(5.2)
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is the associated Rayleigh quotient. We also define the following related minimizing problems:

Sp+q(Ω) := inf
u∈X(Ω)\{0}

((∫
ℝN

|(−∆)
s
2 u|2 dx)(∫

ℝN

|u(x)|p+q dx)
− 2
p+q

) (5.3)

and

S̃p,q(Ω) := inf
u,v∈X(Ω)\{0}

((∫
ℝN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2) dx)(∫

ℝN

|u(x)|p|v(x)|q dx)
− 2
p+q

). (5.4)

We shall also agree that
Ss = Sp+q(Ω), S̃s := S̃p,q(Ω), if p + q = 2∗s .

The following result, in the local case, was proved in [1]. The proof follows by arguing as it was made in [1],
but, for the sake of completeness, we present its proof.

Lemma 5.1. Let Ω be a domain, not necessarily bounded, and p + q ≤ 2∗s . Then

S̃p,q(Ω) = [(
p
q)

q
p+q

+ (
p
q)

−p
p+q

]Sp+q(Ω). (5.5)

Moreover, if w0 realizes Sp+q(Ω) then (Bw0, Cw0) realizes S̃p,q(Ω), for all positive constants B and C such that
B/C = √p/q.

Proof. Let {wn} ⊂ X(Ω) \ {0} be a minimizing sequence for Sp+q(Ω). Define un := swn and vn := twn, where
s, t > 0 will be chosen later on. By definition (5.4), we get

g( st )(∫
ℝN

|(−∆)
s
2wn|2 dx)(∫

ℝN

|wn(x)|p+q dx)
− 2
p+q

≥ S̃p,q(Ω), (5.6)

where g : ℝ+ → ℝ+ is defined by
g(x) := x

2q
p+q + x− 2p

p+q , x > 0.

The minimum value is assumed by g at the point x = √p/q, and it is given by

g(√ pq)
= ((

p
q)

q
p+q

+ (
p
q)
− p
p+q

).

Whence, by choosing s, t in (5.6) so that s/t = √p/q, and passing to the limit, we obtain

S̃p,q(Ω) ≤ g(√
p
q)

Sp+q(Ω).

In order to prove the reverse inequality, let {(un , vn)} ⊂ (X(Ω) \ {0})2 be a minimizing sequence for S̃p,q(Ω)
and define zn := snvn for some sn > 0 such that

∫
ℝN

|un|p+q dx = ∫
ℝN

|zn|p+q dx.

Then, by Young’s inequality, we obtain

∫
ℝN

|un|p|zn|q dx ≤
p

p + q ∫
ℝN

|un|p+q dx +
q

p + q ∫
ℝN

|zn|p+q dx

= ∫
ℝN

|un|p+q dx

= ∫
ℝN

|zn|p+q dx. (5.7)
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Thus, using (5.7), we obtain

(∫
ℝN

(|(−∆)
s
2 un|2 + |(−∆)

s
2 vn|2) dx)(∫

ℝN

|un(x)|p|vn(x)|q dx)
− 2
p+q

= s
2q
p+q
n (∫
ℝN

(|(−∆)
s
2 un|2 + |(−∆)

s
2 vn|2) dx)(∫

ℝN

|un(x)|p|zn(x)|q dx)
− 2
p+q

≥ s
2q
p+q
n (∫
ℝN

|(−∆)
s
2 un|2 dx)(∫

ℝN

|un(x)|p+q dx)
− 2
p+q

+ s
− 2p
p+q

n (∫
ℝN

|(−∆)
s
2 zn|2 dx)(∫

ℝN

|zn(x)|p+q dx)
− 2
p+q

≥ g(sn)Sp+q(Ω)

≥ g(√ pq)
Sp+q(Ω).

Therefore, letting n → ∞ in the above inequality, we get the reverse inequality, as desired. From (5.5), the
last assertion immediately follows and the proof is concluded.

From [7, Theorem 1.1], we learn that Ss is attained. Precisely Ss = Ss(ũ), where

ũ(x) = k
(μ2 + |x − x0|2)

N−2s
2
, x ∈ ℝN , k ∈ ℝ \ {0}, μ > 0, x0 ∈ ℝN . (5.8)

Equivalently,
Ss = inf

u∈X(Ω)\{0}
‖u‖

L2
∗
s =1

∫
ℝN

|(−∆)
s
2 u|2 dx = ∫

ℝN

|(−∆)
s
2 u|2 dx,

where
u(x) = ũ(x)

‖ũ‖L2∗s .
In what follows, we suppose that, up to a translation, x0 = 0 in (5.8). The function

u∗(x) := u( x

S
1
2s
s

), x ∈ ℝN ,

is a solution to the problem
(−∆)su = |u|2∗s −2u inℝN , (5.9)

verifying the property
‖u∗‖2

∗
s

L2∗s (ℝN ) = S
N
2s
s . (5.10)

Define the family of functions
Uε(x) = ε−

N−2s
2 u∗( xε )

, x ∈ ℝN .

Then Uε is a solution of (5.9) and verifies, for all ε > 0,

∫
ℝN

|(−∆)
s
2 Uε|2 dx = ∫

ℝN

|Uε(x)|2
∗
s dx = S

N
2s
s . (5.11)

Fix δ > 0 such that B4δ ⊂ Ω and η ∈ C∞(ℝN) a cut-o� function such that0 ≤ η ≤ 1 inℝN , η = 1 in Bδ and η = 0
in Bc2δ = ℝ

N \ B2δ, where Br = Br(0) is the ball centered at origin with radius r > 0. Now define the family of
nonnegative truncated functions

uε(x) = η(x)Uε(x), x ∈ ℝN , (5.12)

and note that uε ∈ X(Ω). The following result was proved in [14] and it constitutes the natural fractional
counterpart of those proved for the local case in [3].
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Proposition 5.2. Let s ∈ (0, 1) and N > 2s. Then the following facts hold:
(a) As ε → 0,

∫
ℝN

|(−∆)
s
2 uε|2 dx ≤ S

N
2s
s + O(εN−2s).

(b) As ε → 0,

∫
ℝN

|uε(x)|2 dx ≥
{{{
{{{
{

Csε2s + O(εN−2s) if N > 4s,
Csε2s|log ε| + O(ε2s) if N = 4s,
CsεN−2s + O(ε2s) if 2s < N < 4s.

Here Cs is a positive constant depending only on s.
(c) As ε → 0,

∫
ℝN

|uε(x)|2
∗
s dx = S

N
2s
s + O(εN).

Consider now, for any λ ≥ 0, the minimization problem

Ss,λ := inf
v∈X(Ω)\{0}

Ss,λ(v),

where

Ss,λ(v) := (∫
ℝN

|(−∆)
s
2 v|2 dx − λ ∫

ℝN

|v(x)|2 dx)(∫
ℝN

|v(x)|2∗s dx)− 2
2∗s
.

The following result was proved in [14, Propositions 21–22] for the first assertion, and in [12, Corollary 8]
for the second assertion.

Proposition 5.3. Let s ∈ (0, 1) and N > 2s. Then the following facts hold:
(a) For N ≥ 4s,

Ss,λ(uε) < Ss for all λ > 0 and any ε > 0 su�ciently small.

(b) For 2s < N < 4s, there exists λs > 0 such that

Ss,λ(uε) < Ss for all λ > λs and any ε > 0 su�ciently small.

Proof. For the sake of the completeness, we sketch the proof.

Case: N > 4s. By Proposition 5.2, we infer

Ss,λ(uε) ≤
S

N
2s
s + O(εN−2s) − λCsε2s

(S
N
2s
s + O(εN))

2
2∗s ≤ Ss + O(εN−2s) − λC̃sε2s ≤ Ss + ε2s(O(εN−4s) − λC̃s) < Ss

for all λ > 0 and ε > 0 small enough and some C̃s > 0.

Case: N = 4s. We have

Ss,λ(uε) ≤
S

N
2s
s + O(εN−2s) − λCsε2s|log ε| + O(ε2s)

(S
N
2s
s + O(εN))

2
2∗s ≤ Ss + O(ε2s) − λC̃sε2s|log ε|

≤ Ss + ε2s(O(1) − λC̃s|log ε|) < Ss

for all λ > 0 and ε > 0 small enough and some C̃s > 0.

Case: 2s < N < 4s. We have

Ss,λ(uε) ≤
S

N
2s
s + O(εN−2s) − λCsεN−2s + O(ε2s)

(S
N
2s
s + O(εN))

2
2∗s ≤ Ss + εN−2s(O(1) − λC̃s) + O(ε2s) < Ss

for all λ > 0 large enough (λ ≥ λs), ε su�ciently small and some C̃s > 0.
This concludes the sketch.
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Even if it is not strictly necessary for the proof of our main result, we state the following corollary for possible
future usage.

Corollary 5.4. Suppose that μ1 given in (2.7) is positive and let

S̃s,A = inf
u,v ∈X(Ω)\{0}

Ss,A(u, v),

where

Ss,A(u, v) = (∫
ℝN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2) dx − ∫

ℝN

(A(u(x), v(x)), (u(x), v(x)))ℝ2 dx)(∫
ℝN

|u(x)|p|v(x)|q dx)
− 2
2∗s
,

where p + q = 2∗s . Then the following facts holds:
(a) If N ≥ 4s, then

S̃s,A < S̃s .
(b) For 2s < N < 4s, there exists μ1,s > 0, such that if μ1 > μ1,s, we have

S̃s,A < S̃s .

Proof. From Proposition 5.3, we have:
(a) For N ≥ 4s, we have

Ss,μ1 (uε) < Ss , if μ1 > 0 and provided ε > 0 is su�ciently small.

(b) For 2s < N < 4s, there exists μ1,s > 0, such that if μ1 > μ1,s, we have

Ss,μ1 (uε) < Ss , provided ε > 0 is su�ciently small.

Let B, C > 0 be such that BC = √ p
q . From (2.7) and the above inequalities, we infer that

S̃s,A ≤ Ss,A(Buε , Cuε)

≤ (B2 + C2)(∫
ℝN

|(−∆)
s
2 uε|2 dx − μ1 ∫

ℝN

|uε(x)|2 dx)(BpCq)
− 2
2∗s (∫
ℝN

|uε(x)|2
∗
s dx)

− 2
2∗s

= [(
p
q)

q
p+q

+ (
p
q)
− p
p+q

]Ss,μ1 (uε)

< [(
p
q)

q
p+q

+ (
p
q)
− p
p+q

]Ss = S̃s .

This concludes the proof.

5.2 Proof of existence II

In order to get weak solutions to system (1.4), we now define the functional J : Y(Ω) → ℝ by setting

J(u, v) = 1
2 ∫
ℝN

(|(−∆)
s
2 u|2 + |(−∆)

s
2 v|2) dx − 1

2 ∫
ℝN

(A(u, v), (u, v))ℝ2 dx −
2
2∗s

∫
ℝN

(u+)p(v+)q dx,

whose Gateaux derivative is given by

J�(u, v)(φ, ψ) = C(N, s)
2 ∫
ℝ2N

(u(x) − u(y))(φ(x) − φ(y)) + (v(x) − v(y))(ψ(x) − ψ(y))
|x − y|N+2s

dx dy

− ∫
Ω

(A(u, v), (φ, ψ))ℝ2 dx −
2p
2∗s

∫
Ω

(u+)p−1(v+)qφ dx − 2q
2∗s

∫
Ω

(v+)q−1(u+)pψ dx (5.13)

for every (φ, ψ) ∈ Y(Ω). We shall observe that the weak solutions of problem (1.4) correspond to the critical
points of the functional J. Under hypothesis 0 < μ1 ≤ μ2 < λ1,s, our goal is to prove Theorem 1.2. We first
show that J satisfies the Mountain Pass Geometry.
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Proposition 5.5. Suppose μ2 < λ1,s. The functional J satisfies the following:
(a) there exist β, ρ > 0 such that J(u, v) ≥ β if ‖(u, v)‖Y = ρ,
(b) there exists (e1, e2) ∈ Y(Ω)\{(0, 0)} with ‖(e1, e2)‖Y > ρ such that J(e1, e2) ≤ 0.

Proof. (a) By means of (2.7), using

(u+)p(v+)q ≤ |u|p+q + |v|p+q = |u|2∗s + |v|2∗s
and the Poincaré inequality, we have

J(u, v) ≥ 1
2(1 −

μ2
λ1,s

)‖(u, v)‖2Y − C‖(u, v)‖2
∗
s
Y ,

where C > 0 is a constant.
(b) Choose (ũ0, ṽ0) ∈ Y(Ω) \ {(0, 0)} with ũ0 ≥ 0, ṽ0 ≥ 0 a.e. and ũ0 ṽ0 ̸= 0. Then

J(tũ0, tṽ0) =
t2

2 ∫
ℝN

(|(−∆)
s
2 ũ0|2 + |(−∆)

s
2 ṽ0|2) dx −

t2

2 ∫
ℝN

(A(ũ0, ṽ0), (ũ0, ṽ0)) dx −
2t2∗s
2∗s

∫
ℝN

ũp0 ṽ
q
0 dx,

by choosing t > 0 su�ciently large, the assertion follows. This concludes the proof.

Therefore, by the previous facts, from the Mountain Pass Theorem it follows that there exists a sequence
{(un , vn)} ⊂ Y(Ω), called (PS)c-Palais–Smale sequence at level c, such that

J(un , vn) → c, ‖J�(un , vn)‖ → 0, (5.14)

where c is given by
c = inf

ã∈Γ
max
t∈[0,1]

J(ã(t)),

with
Γ = {ã ∈ C([0, 1], Y(Ω)) : ã(0) = (0, 0) and J(ã(1)) ≤ 0}.

Next we turn to the boundedness of {(un , vn)} in Y(Ω).

Lemma 5.6 (Boundedness). The (PS) sequence {(un , vn)} ⊂ Y(Ω) is bounded.

Proof. We have for every n ∈ ℕ,

C + C‖(un , vn)‖Y ≥ J(un , vn) −
1
2∗s
J�(un , vn)(un , vn)

= (
1
2 −

1
2∗s

)‖(un , vn)‖2Y − (
1
2 −

1
2∗s

) ∫
ℝN

(A(un , vn), (un , vn))ℝ2 dx

≥ (
1
2 −

1
2∗s

)(1 −
μ2
λ1,s

)‖(un , vn)‖2Y .

Since μ2 < λ1,s, the assertion follows.

The next result is useful to get nonnegative solutions as weak limits of Palais–Smale sequences. The same
argument shows that a critical point of J corresponds to a nonnegative solution to (1.3).

Lemma 5.7. Assume that b ≥ 0 and μ2 < λ1,s. Let {(un , vn)} ⊂ Y(Ω) be a Palais–Smale sequence for the func-
tional J. Then

lim
n

‖(u−n , v−n)‖Y = 0.

In particular, the weak limit (u, v) of the Palais–Smale sequence {(un , vn)} has nonnegative components.

Proof. By choosing φ := u− ∈ X(Ω) and ψ := v− ∈ X(Ω) as test functions in (5.13) and using the elementary
inequality

(a − b)(a− − b−) ≥ (a− − b−)2 for all a, b ∈ ℝ,
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we obtain
∫
ℝ2N

(u(x) − u(y))(u−(x) − u−(y)) + (v(x) − v(y))(v−(x) − v−(y))
|x − y|N+2s

dx dy

≥ ∫
ℝ2N

(u−(x) − u−(y))2 + (v−(x) − v−(y))2

|x − y|N+2s
dx dy.

Now, note that, since b ≥ 0 and w− ≤ 0 and w+ ≥ 0, it holds

∫
ℝN

(A(u, v), (u−, v−))ℝ2 dx ≤ ∫
ℝN

(A(u−, v−), (u−, v−))ℝ2 dx.

In fact, we have

(A(u, v), (u−, v−))ℝ2 = (A(u−, v−), (u−, v−))ℝ2 + b((v+)u− + (u+)v−) ≤ (A(u−, v−), (u−, v−))ℝ2 .

In turn, from the formula for J�(u, v)(u−, v−), it follows that

J�(u, v)(u−, v−) ≥ C(N, s)
2 ∫
ℝ2N

(u−(x) − u−(y))2 + (v−(x) − v−(y))2

|x − y|N+2s
dx dy − ∫

Ω

(A(u−, v−), (u−, v−))ℝ2 dx

≥ I(u−) + I(v−),

where we have set

I(w) := C(N, s)
2 ∫
ℝ2N

(w(x) − w(y))2

|x − y|N+2s
dx dy − μ2 ∫

Ω

|w|2 dx = [w]2s − μ2‖w‖2L2(Ω).

On the other hand, by the definition of λ1,s, we have

I(w) ≥ (1 −
μ2
λ1,s

)[w]2s ,

which finally yields the inequality

J�(u, v)(u−, v−) ≥ (1 −
μ2
λ1,s

)([u−]2s + [v−]2s ).

Since {(un , vn)} ⊂ Y(Ω) is a Palais–Smale sequence, we get J�(un , vn)(u−n , v−n) = on(1), from which that asser-
tion immediately follows.

From the boundedness of Palais–Smale sequences (see Lemma 5.6) and compact embedding theorems,
passing to a subsequence if necessary, there exists (u0, v0) ∈ Y(Ω)which, by Lemma 5.7, satisfies u0, v0 ≥ 0,
such that (un , vn) ⇀ (u0, v0) weakly in Y(Ω) as n → ∞, (un , vn) → (u0, v0) a.e. in Ω and strongly in Lr(Ω)
for 1 ≤ r < 2∗s . Recalling that the sequences

w1
n := (u+n)p−1(v+n)q , w2

n := (v+n)q−1(u+n)p , p + q = 2∗s ,

are uniformly bounded in L(2∗s )� (Ω) and converge pointwisely to w1
0 = up−10 vq0 and w2

0 = vq−10 up0 respectively,
we obtain

(w1
n , w2

n) ⇀ (w1
0, w2

0), weakly in L(2∗s )� (Ω), as n → ∞.

Hence, passing to the limit in

J�(un , vn)(φ, ψ) = on(1) for all (φ, ψ) ∈ Y(Ω), as n → ∞,

we infer that (u0, v0) is a nonnegative weak solution. Now, to conclude the proof, it is su�cient to prove that
the solution is nontrivial.

Claim. We have (u0, v0) ̸= (0, 0).

Notice that if (u0, v0) is a solution of system with u0 = 0, then v0 = 0. The same holds for the reversed situa-
tion.
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In fact, suppose u0 = 0. Then, if b > 0, it follows that v0 = 0. If, instead, b = 0, then c ∈ {μ1, μ2} < λ1,s.
Since v0 is a solution of equation

{
(−∆)sv0 = cv0 in Ω,

v0 = 0 onℝN \ Ω,
we have that v0 = 0. Therefore, we may suppose that (u0, v0) = (0, 0). Define, as in [3],

L := lim
n→∞

∫
ℝN

(|(−∆)
s
2 un|2 + |(−∆)

s
2 vn|2) dx,

from J�(un , vn)(un , vn) = on(1), we get

lim
n→∞

∫
ℝN

(u+n)p(v+n)q dx =
L
2 .

Recalling that J(un , vn) = c + on(1), thus
c = sL

N
. (5.15)

From the definition of (5.4), we have

∫
ℝN

(|(−∆)
s
2 un|2 + |(−∆)

s
2 vn|2) dx ≥ S̃s(∫

ℝN

|un(x)|p|vn(x)|q dx)
2
2∗s

and passing to the limit the inequality above, we get

L ≥ S̃s(
L
2)

2
2∗s .

Now, combining this estimate with (5.15), it follows that

c ≥ 2s
N (

S̃s
2 )

N
2s
. (5.16)

Take B, C > 0with B/C = √p/q and let uε ≥ 0 as in Proposition 5.2. Fix ε > 0 su�ciently small so that Propo-
sition 5.3 holds and define vε := uε/‖uε‖L2∗s . Using the definition of Ss,λ(u), for every t ≥ 0, we obtain

J(tBvε , tCvε) ≤
t2(B2 + C2)

2 (∫
ℝN

|(−∆)
s
2 vε|2 dx − μ1 ∫

ℝN

|vε|2 dx) −
2t2∗s BpCq

2∗s

=
t2(B2 + C2)

2 Ss,μ1 (uε) −
2t2∗s BpCq

2∗s
=: ψ(t), t ≥ 0.

Thus, an elementary calculation yields

ψmax = max
ℝ+ ψ =

2s
N {

(B2 + C2)
2(BpCq)2/2∗s Ss,μ1 (uε)}

N
2s

.

By Lemma 5.1 and Proposition 5.3, we conclude that, for ε > 0 small,

ψmax <
2s
N {

(B2 + C2)
2(BpCq)2/2∗s Ss}

N
2s

=
2s
N {

1
2[(

p
q)

q
p+q

+ (
p
q)
− p
p+q

]Ss}
N
2s

=
2s
N (

S̃s
2 )

N
2s
.

Let now ã ∈ C([0, 1], Y(Ω)) be defined by

ã(t) := (τtBvε , τtCvε), t ∈ [0, 1],

where τ > 0 is su�ciently large so that J(τBvε , τCvε) ≤ 0. Hence, ã ∈ Γ and we conclude that

c ≤ sup
t∈[0,1]

J(ã(t)) ≤ sup
t≥0

J(tBvε , tCvε) ≤ ψmax <
2s
N (

S̃s
2 )

N
2s
,

which contradicts (5.16). Hence (u0, v0) ̸= (0, 0) and the proof is complete. Finally, that u0 > 0 and v0 > 0
follows as in the sub-critical case.
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