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In this paper, we study equations driven by a non-local integrodifferential operator
LK with homogeneous Dirichlet boundary conditions. More precisely, we study the
problem 

−LKu+ V (x)u = |u|p−2u, in Ω ,
u = 0, in RN\Ω ,

where 2 < p < 2∗s = 2N
N−2s , Ω is an open bounded domain in RN for N > 2 and V

is a L∞ potential such that −LK + V is positive definite. As a particular case, we
study the problem

(−∆)su+ V (x)u = |u|p−2u, in Ω ,
u = 0, in RN\Ω ,

where (−∆)s denotes the fractional Laplacian (with 0 < s < 1). We give assumptions
on V , Ω and K such that ground state solutions (resp. least energy nodal solutions)
respect the symmetries of some first (resp. second) eigenfunctions of −LK + V , at
least for p close to 2. We study the uniqueness, up to a multiplicative factor, of those
types of solutions. The results extend those obtained for the local case.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Non-local operators arise naturally in many different topics in physics, engineering and even finance. For
examples, they have applications in crystal dislocation, soft thin films, obstacle problems [1,2], continuum
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mechanics [3], chaotic dynamics of classical conservative systems [4] and graph theory [5]. In this paper, we
shall consider the non-local counterpart of semi-linear elliptic equations of the type

−∆u+ V (x)u = |u|p−2u, in Ω ,
u = 0, in ∂Ω ,

(1.1)

where Ω is an open bounded domain with Lipschitz boundary, 2 < p < 2∗ is a subcritical exponent (where
2∗ := 2N/(N − 2) if N > 3, 2∗ = +∞ if N = 2) and V ∈ L∞ is such that −∆ + V is positive definite.
Precisely, we are predominantly interested in the qualitative behavior of solutions to

(−∆)su+ V (x)u = |u|p−2u, in Ω ,
u = 0, in RN\Ω ,

(1.2)

where (−∆)s denotes the fractional Laplacian (with 0 < s < 1) and 2 < p < 2∗s := 2N
N−2s . Let us recall that,

up to a normalization factor, (−∆)s may be defined [6] as follows: for x ∈ RN ,

(−∆)su(x) := −cN,s lim
ε→0


{B(x,ε)

u(y)− u(x)
|y − x|N+2s dy = − 1

2cN,s


RN

u(x+ y)− 2u(x) + u(x− y)
|y|N+2s dy

where cN,s := s22s Γ (N+2s
2 )/

πN/2 Γ (1−s)


is a positive constant chosen [7] to be coherent with the Fourier

definition of (−∆)s. This problem is variational and a ground state (resp. a least energy nodal solution) can
be defined from the associated Euler–Lagrange functional—see [8] (resp. Section 2) for more details. In this
paper, we would like to study the symmetries of those two types of variational solutions. In fact, we consider
a more general setting: we are dealing with ground state and least energy nodal solutions to the following
equation: 

−LKu+ V (x)u = |u|p−2u, in Ω ,
u = 0, in RN\Ω ,

(1.3)

where LK is the non-local operator defined as follows

LKu(x) :=


RN


u(x+ y)− 2u(x) + u(x− y)


K(y) dy.

We shall assume that K : RN\{0} → (0,+∞) is a function such that mK ∈ L1(RN ) where m(x) :=
min{|x|2, 1} and we require the existence of θ > 0 and s ∈ (0, 1) such that K(x) > θ|x|−(N+2s) for any
x ∈ RN\{0}. We also require that K(x) = K(−x) for any x ∈ RN\{0}. In particular, we can consider
K(x) = 1

2cN,s|x|
−(N+2s) so that −LK is exactly the fractional Laplacian operator (−∆)s as defined in (1.1)

and (1.3) boils down to (1.2).
Let us point out that, in the current literature, there are several notions of fractional Laplacian, all of

which agree when the problems are set on the whole RN , but some of them disagree in a bounded domain.
The values (−∆)su(x) are, as we said, consistent with the Fourier definition of (−∆)s, namely F−1(|ξ|2sFu)
and also agree with the local formulation due to Caffarelli–Silvestre [9],

(−∆)su(x) = −C lim
t→0


t1−2s ∂U

∂t
(x, t)

,

where U : RN × (0,∞) → R is the solution to div(t1−2s∇U) = 0 and U(x, 0) = u(x). The fractional
Laplacian defined in this way is also called integral. In a bounded domain Ω , as in [10], we choose to operate
with it on restrictions to Ω of functions defined on RN which are equal to zero on {Ω . A different operator
(−∆)sspec called regional, local or spectral fractional Laplacian, largely utilized in literature, can be defined
as the power of the Laplace operator −∆ via the spectral decomposition theorem. Let (λk)k>1 and (ek)k>1
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be the eigenvalues and eigenfunctions of −∆ in Ω with Dirichlet boundary condition on ∂Ω , normalized in
such a way that |ek|2 = 1. Then, for every s ∈ (0, 1) and all u ∈ H1

0 (Ω) with

u(x) =
∞
k=1

γkek(x), x ∈ Ω ,

one considers the operator

(−∆)sspecu(x) =
∞
j=1

γjλ
s
jej(x), x ∈ Ω .

Of course, in this way, the eigenfunctions of (−∆)sspec agree with the eigenfunction ek of −∆. The operators
(−∆)s and (−∆)sspec are different, in spite of the current literature where they are sometimes erroneously
interchanged. In [11], the authors were able to recover also for the spectral fractional Laplacian the
aforementioned local realization procedure. We refer the interested reader to [12] for a careful comparison of
eigenvalues and eigenvectors of these two operators and to [13] for further discussions about the correlations
among physically relevant nonlocal operators and the introduction of a notion of fractional Laplacian for
Neumann boundary conditions.

Under the assumptions on K stated above, the Problem (1.3) is variational (see [8, Section 2]). The
energy is defined on the space H of Lebesgue measurable functions g : RN → R such that g is zero
almost everywhere outside Ω , its restriction to Ω belongs to L2(Ω) and, furthermore, the map (x, y) →
g(x)− g(y)


K(x− y) ∈ L2R2N\({Ω × {Ω)


(we write {Ω := RN\Ω). The inner product of H is defined

as

⟨u, v⟩H :=

Q


u(x)− u(y)


v(x)− v(y)


K(x− y) dx dy, (1.4)

where Q := R2N\({Ω × {Ω) (see e.g. [8, Section 2] for more details on ⟨·, ·⟩H). The corresponding norm will
be written ∥ · ∥H . The existence of ground state solutions has been proved in [8] while the existence of least
energy nodal solutions is established in this paper (see Section 2).

We now state the main results. For k > 1, we let λk (resp. ϕk) be the kth eigenvalue s counted without
multiplicity (resp. eigenfunction) of the operator −LK + V with “Dirichlet boundary conditions” in Ω in
the sense that ϕk = 0 in {Ω . We also consider Ek the eigenspace associated to λk.

Theorem 1.1. Assume that −LK + V is positive definite. If (up)p>2 is a family of ground state (resp. least
energy nodal) solutions to Problem (1.3), then

∥up∥H + |up|2 6 Cλ
1/(p−2)
i , λi = λ1 (resp. λ2).

If pn → 2 and λ
1/(2−pn)
i upn ⇀ u∗ in H (the weak convergence necessarily holds, up to a subsequence),

then λ
1/(2−pn)
i upn → u∗ in H and u∗ ̸= 0 satisfies

−LKu∗ + V u∗ = λiu∗, in Ω ,
u∗ = 0, in RN\Ω .

Assume that λ1 (resp. λ2) is simple. Then, for p close to 2 and any reflection R such that R(Ω) = Ω ,
ground state solutions (resp. least energy nodal solutions) to Problem (1.3) possess the same symmetry or
antisymmetry as ϕ1 (resp. ϕ2) with respect to R. Moreover, this type of solution is unique up to its sign.

The proof of the previous theorem makes use of the implicit function theorem (see Sections 3 and 4). In
particular, since it is known that ϕ1 is a positive eigenfunction when V ≡ 0 (see [8, Proposition 9, assertion
(c)]) and thus λ1 is simple. As we show in Lemma 3.2, λ1 is also simple when V ∈ L∞ and −LK + V is
positive definite. In these cases, we have the following.
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Corollary 1.2. Assume that −LK + V is positive definite. If (up)p>2 are ground state solutions to
−LKu+ V u = |u|p−2u, in Ω ,
u = 0, in RN\Ω ,

(1.5)

then, for p close to 2 and any reflection R such that R(Ω) = Ω , ground state solutions of (1.5) possess the
same symmetry or antisymmetry as ϕ1 with respect to R. Moreover, this type of solution is unique up to its
sign.

When λ2 is not simple, then we cannot use the implicit function theorem. In this case, we just are able
to conclude the following result which no longer asserts uniqueness (see Section 5).

Theorem 1.3. Assume that −LK +V is positive definite and that the zero set of any function in E2\{0} has
zero Lebesgue measure. For p close to 2, least energy nodal solutions up to Problem (1.3) possess the same
symmetries and antisymmetries of their orthogonal projection on E2.

Notice that the result is obtained for a general nonlocal operator and that the assumption about the zero
sets is known to hold when −LK = (−∆)s (see [14]). We are also able to localize least energy nodal solutions
when p ≈ 2, see Theorem 5.5.

These theorems are a generalization of the corresponding results for the semi-linear case (1.1). In
[15–18], this equation has been extensively studied for several choices of potentials V , boundary conditions
and non-linearities. We refer the reader to the references therein.

In the final Section 6, we also present numerical experiments that have not been performed elsewhere
in dimension higher than one. The ideas to obtain them are more than simply an adaptation of the ones
present in the current literature.

In this paper, | · |p will denote the traditional norm in Lp. The notation f ′(u)[v] stands for the Fréchet
derivative of the function f at u in the direction v.

2. Formulation, ground state and least energy nodal solutions

In [8], it is proved that H is a Hilbert space when endowed with the norm

∥u∥2H =

Q

|u(x)− u(y)|2K(x− y) dx dy.

Moreover, the embedding H ↩→ Lq(RN ) is continuous for q ∈ [1, 2∗s] and it is compact when q < 2∗s. In
particular, the Sobolev’s inequality holds: there exists C > 0 such that, for any u ∈ H, |u|2∗s 6 C∥u∥H .

At this point, we may define the functional

Ep : H → R : u → 1
2∥u∥

2
H + 1

2


Ω

V (x)u2 dx− 1
p
|u|pp (2.1)

whose corresponding Euler–Lagrange equation is the weak formulation of Problem (1.3) (see [19]): for u ∈ H,

∀ϕ ∈ H,


R2N


u(y)− u(x)


ϕ(y)− ϕ(x)


K(y − x) dy dx+


Ω

V (x)uϕdx =

Ω

|u|p−2uϕdx.

To establish the existence of ground state solutions, R. Servadei and E. Valdinoci [8] assume that −LK+V is
positive definite and make use of the traditional Mountain Pass Theorem. They minimize Ep on the following
Nehari manifold

Np :=

u ∈ H\{0} :


R2N


u(x)− u(y)

2
K(x− y) dx dy +


Ω

V (x)u2 dx =

Ω

|u|p dx

. (2.2)
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Up to our knowledge, there is no characterization of sign-changing solutions mentioned in the literature for
the non-local case. We prove hereafter that a least energy nodal solution exists and may be characterized as
a minimum of Ep on the traditional nodal Nehari set

Mp :=

u ∈ H\{0} : u± ̸= 0 and Ep(u) = max

t+, t−>0
Ep(t+p u+ + t−p u

−)

, (2.3)

where u+ := max{u, 0} and u− := min{u, 0}. Let us remark that an important technical difference with the
classical local semilinear occurs: ⟨u+, u−⟩H = −2


Ω


Ω
u+(x)u−(y)K(x−y) dxdy > 0 for any sign-changing

solutions u ∈ H.
Let us mention that u ∈ Mp is equivalent to u± ̸= 0 and E ′p(u)[u±] = 0. Indeed, it is clear that if

u ∈Mp then E ′p(u)[u±] = 0. For the other direction, let us first remark that, for any sign-changing function
u ∈ H, there exists t+ > 0 and t− > 0 such that t+u+ + t−u− ∈ Mp. This comes easily from the fact
that E(u) → −∞ when ∥u∥H → +∞ while being constrained to any finite dimensional subspace, and the
fact that the maximum cannot be on the boundary of the cone because E ′p(u+)[u−] = ⟨u+, u−⟩H > 0 and
E ′p(u−)[u+] > 0. It is thus sufficient to show that the system E ′p(t+u+ + t−u−)[u±] = 0 has at most one
non-trivial solution (t+, t−) with t± > 0. Developing the equations E ′p(t+u+ + t−u−)[u±] = 0 leads to a
system of the type 

t− = A(t+)p−1 −Bt+,
t+ = C(t−)p−1 −Dt−,

for some A,B,C,D > 0. As a quick drawing will convince you, one can see the solutions of this system as
the intersection of two increasing functions of t+, one that it super-quadratic and one that is sub-quadratic.
Hence a single intersection exists.

Note that, contrarily to the local case, it is not true that u± ∈ Np if and only if u+ + u− ∈ Mp. This is
again a consequence of the fact that ⟨u+, u−⟩H ̸= 0 for sign-changing functions.

Now let us show that (1.3) possesses at least one least energy nodal solution. In doing so, we will prove
again, as a byproduct, that non-negative and non-positive solutions also exist. We take our inspiration
from [20].

Let ∥ · ∥ be the norm on H, equivalent to ∥ · ∥H (see Section 3), induced by the inner product

⟨u, v⟩ = ⟨u, v⟩H +

Ω

V (x)uv dx. (2.4)

We know that ∇Ep(u) = u−A(u), namely

E ′p(u)[ϕ] = ⟨u−A(u), ϕ⟩, ⟨A(u), ϕ⟩ :=

Ω

|u|p−2uϕ, u, ϕ ∈ H.

If H± denote the positive and negative cones of H, we set

H±ε :=

u ∈ H : dist(u,H±) < ε


.

Then, we first state the following

Lemma 2.1 (Order Preserving Property). Assume that −Lk + V is positive definite and let u ∈ H be such
that

⟨u, ϕ⟩ > 0, for every ϕ ∈ H with ϕ > 0. (2.5)

Then u > 0.
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Proof. Testing inequality (2.5) with ϕ = −u− ∈ H+ yields

⟨u,−u−⟩ = −⟨u+, u−⟩ − ∥u−∥2 > 0.

As ⟨u+, u−⟩ = ⟨u+, u−⟩H > 0, we get ∥u−∥2 = 0 and thus u− = 0 since −Lk + V is positive definite. �

Lemma 2.2. For every ε > 0 sufficiently small, A(∂H±ε ) ⊆ H±ε . In particular, if u ∈ H±ε is a critical point
of Ep, namely A(u) = u, then u ∈ H±.

Proof. We have, for 2 6 p 6 2∗s,

∀u ∈ H, |u+|p = min
w∈H−

|u− w|p 6 C min
w∈H−

∥u− w∥ = C dist(u,H−). (2.6)

Let P+ denotes the metric projector on the positive cone H+ for the norm ∥ · ∥. The metric projection on
the convex set H+ is characterized by

∀ϕ ∈ H+, ⟨u− P+u, ϕ− P+u⟩ 6 0. (2.7)

Because H+ is a cone pointed at 0, this is equivalent to

⟨u− P+u, P+u⟩ = 0 and ∀ϕ ∈ H+, ⟨u− P+u, ϕ⟩ 6 0. (2.8)

The implication (2.8) ⇒ (2.7) is obvious. For (2.7) ⇒ (2.8), taking ϕ = tP+u with t > 0 in (2.7) yields
(t− 1)⟨u− P+u, P+u⟩ 6 0, whence ⟨u− P+u, P+u⟩ = 0.

Consequently, if we set P−u := u − P+u, then P−u is orthogonal to P+u. Moreover, since ⟨P−u, ϕ⟩ 6 0
for every ϕ ∈ H+, it follows that P−u 6 0 by virtue of Lemma 2.1. If v := A(u), then taking inequality (2.6)
into account,

dist

A(u), H−


∥P+v∥ 6 ∥v − P−v∥∥P+v∥ = ∥P+v∥2

= ⟨v, P+v⟩ =

Ω

|u|p−2uP+v 6

Ω

|u+|p−2u+ P+v

6 |u+|p−1
p |P+v|p 6 C dist(u,H−)p−1∥P+v∥.

If dist(u,H−) is small enough, we have dist(A(u), H−) 6 1
2 dist(u,H−), concluding the proof. �

According to [21, Lemma 3.2], Lemma 2.2 implies the existence of a pseudo-gradient vector field G such
that H±ε are (forward) invariant for the descending flow. Let us denote the flow by η i.e., η(·, u) is the
maximal solution to 

∂tη(t, u) = −G

η(t, u)


,

η(0, u) = 0,

defined on the interval

0, T (u)


. It follows that ∂H±ε ⊆ A (H±ε ), where A (H±ε ) stands for the basin of

attraction of H±ε for the flow η.
First, we need the following

Lemma 2.3. For ε > 0 sufficiently small, H+
ε ∩ H−ε ⊆ A0, where A0 is the basin of attraction of 0 . In

particular, Ep(u) > 0 for every u ∈ H+
ε ∩H−ε \{0}.

Proof. We know that, for ϵ > 0 small enough, H+
ε ∩ H−ε is (forward) invariant for η and the sole critical

point it contains is 0. The map η being a pseudo-gradient flow and the Palais–Smale condition is satisfied,
either Ep


η(t, u)


→ −∞ as t → T (u) or η(t, u) possesses a limit point u∗ as t → T (u) which is a critical

point of Ep, in which case T (u) = +∞. Also, if u ∈ H+
ε ∩H−ε , then the second case rephrases as η(t, u)→ 0
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as t→ T (u). To conclude, we need to rule out the first case. Taking into account inequalities (2.6), it follows
that

Ep(u) > −1
p
|u|pp > −1

p


|u+|p + |u−|p

p
> −C

p


dist(u,H−) + dist(u,H−)

p
> −C (2ε)p

p
,

whenever u ∈ H+
ε ∩ H−ε . Finally, the flow decreases the functional Ep, so Ep(u) > Ep


η(t, u)


> Ep(0) = 0

for all t > 0. �

We now state the following

Theorem 2.4. There exist a solution to non-negative, a non-positive and a sign-changing solution to Prob-
lem (1.3).

Proof. There exists a solution to Problem (1.3) in H+
ε \H−ε , a solution in H−ε \H+

ε and one solution in
H\(H+

ε ∪ H−ε ). This follows directly from [21, Theorem 3.2], provided that one shows the existence of a
path h : [0, 1]→ H such that h(0) ∈ H+

ε \H−ε , h(1) ∈ H−ε \H+
ε and

0 = inf
H+
ε ∩H−ε

Ep > sup
t∈[0,1]

Ep

h(t)

.

It is readily seen that for any finite dimensional subspace E of H, there exists R > 0 such that u ∈ E and
∥u∥ > R imply that Ep(u) < 0. Pick E := span{u0, u1} ⊆ H, where u0 ∈ H+\{0} and u1 ∈ H−\{0} are
non-collinear given elements. If R > 0 is the corresponding radius, set

h(t) := R∗

(1− t)u0 + tu1


∈ H\{0}, t ∈ [0, 1],

where R∗ is large enough so that min

∥h(t)∥ : t ∈ [0, 1]


> R. This ends the proof, thanks to Lemma 2.2. �

Finally, we state the following

Theorem 2.5. There exists a sign-changing solution u∗ to (1.3) with minimal energy among all sign-changing
solutions. In addition, u∗ ∈Mp achieves the minimum of Ep on Mp.

Proof. Lemma 2.2 says that the only critical points of Ep inside H+
ε ∪H−ε are those belonging to H+ ∪H−.

Thus, all the sign-changing critical points of Ep belong to the closed set H\(H+
ε ∪H−ε ). Let us set

c := inf{Ep(u) : u is a sign-changing critical point of Ep}.

Since Theorem 2.4 says that the set is non-empty, there exists a sequence (un) ⊆ H\(H+
ε ∪ H−ε ) such

that Ep(un) → c, as n → ∞. Since Ep satisfies the Palais–Smale condition, it follows that (un) admits a
subsequence which converges strongly in H to a limit point u∗ ∈ H\(H+

ε ∪H−ε ), such that E ′p(u∗) = 0 and
Ep(u∗) = c.

As u∗ changes sign and E ′p(u∗)[u±] = 0, u ∈Mp (see the discussion following (2.3)). To show that u∗ has
minimal energy on Mp, pick any v ∈ Mp and consider the rectangle C := {t+v+ + t−v− : t+, t− ∈ [0, R]}
where R is large enough so that Ep(t+v+ + t−v−) < 0 whenever t+ = R or t− = R. We will show that there
exists w ∈ C\(H+

ε ∪ H−ε ) such that

Ep(η(t, w))


t>0 is bounded from below. This will conclude the proof

because, η being a gradient flow, η(t, w) must then possess a limit point w∗ ∈ H\(H+
ε ∪ H−ε ) which is a

sign-changing critical point of Ep. Thus Ep(v) > Ep(w) > Ep(η(t, w)) > Ep(w∗) > c for all t ∈ [0,+∞).

To prove the existence of w, we follow an argument similar to the last one of the proof of Theorem
3.1 in [21] which we shall briefly explain. Let us start by considering A0, the basin of attraction of 0.
The set O := C ∩ A0 is a non-empty open subset in C on which Ep > 0. By the choice of R,
t+v+ + t−v− : (t+, t−) ∈ ({R} × [0, R]) ∪ ([0, R]× {R})


∩O = ∅. Consequently, there exists a connected
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component Γ of ∂O intersecting both [0, R]v+ and [0, R]v−. Thus Γ ∩ H+ ̸= ∅ and Γ ∩ H− ̸= ∅. Let
A (H+) = A (H+

ϵ ) (resp. A (H−) = A (H−ϵ )) be the basin of attraction of H+ (resp. H−), where ϵ is
small enough. The sets Γ ∩ A (H+) and Γ ∩ A (H−) are non-empty open subsets of Γ . Moreover they
are disjoint because, if they were not, Lemma 2.3 would imply that Γ ∩ A0 ̸= 0 but, on the other hand,
Γ ⊆ ∂O ⊆ ∂A0 implies Γ ∩ A0 = ∅. In conclusion there exists w ∈ Γ\


A (H+) ∩ A (H−)


. It remains to

show that

Ep(η(t, w))


t>0 is bounded from below. But this is clear because ∂A0 is forward invariant and,

thanks again to Lemma 2.3, Ep(u) > 0 for all u ∈ ∂A0. �

Remark 2.6. Following the ideas of [22, proposition 3.1], it can be shown that any minimizer of Ep on Mp
is a sign-changing critical point of Ep. Therefore, least energy nodal solutions can be characterized as for
the local problem, namely as minimizers of the functional on the nodal Nehari set. This is important from
a numerical point of view as it gives a natural procedure for seeking such solutions.

3. A priori estimates

3.1. Equivalence between norms

In this section, we prove that the norm ∥ · ∥ corresponding to the inner product (2.4) and the traditional
norm ∥ · ∥H are equivalent.

Proposition 3.1. The norms ∥·∥ and ∥·∥H are equivalent when V ∈ L∞(Ω) and −LK+V is positive definite.

Proof. As V ∈ L∞ and H embeds continuously in L2, there exists a constant C > 0 such that, for any
u ∈ H, one has ∥u∥2 6 (1 + C|V |∞)∥u∥2H . Moreover, for any ε ∈ (0, 1) and u ∈ H, we have

∥u∥2 = ε∥u∥2H + (1− ε)∥u∥2 + ε


Ω

V (x)u2 dx

> ε∥u∥2H +

λ1 − ελ1 − ε|V |∞

 
Ω

u2

where λ1 > 0 since the operator −LK + V is positive definite. Taking ε small, we conclude the proof. �

Thus, for this new norm ∥ · ∥ on H, we can use Poincaré’s and Sobolev’s inequalities. In the following, we
assume that we work with H endowed with the norm ∥ · ∥ and the inner product (2.4).

3.2. Upper bound

In this section, let us consider (up)2<p<2∗s a family of ground state solutions (resp. least energy nodal
solutions) for the problem

−LKu(x) + V (x)u(x) = λ|u(x)|p−2u(x), for x ∈ Ω ,
u(x) = 0, for x ∈ RN\Ω ,

(3.1)

where λ = λ1 (resp. λ2), then the vp := λ1/(p−2)up are solutions to Problem (1.3). Let us note Ẽp the
functional associated to (3.1):

Ẽp(u) = 1
2∥u∥

2
H + 1

2


Ω

V (x)u2 dx− λ

p
|u|pp = 1

2∥u∥
2 − λ

p
|u|pp,

and let Ñp (resp. M̃p) be its corresponding Nehari manifold (resp. nodal Nehari set). As the symmetries of
up and vp are the same and Ep(vp) = λ2/(p−2)Ẽp(up), it suffices to study the ground state and least energy
nodal solutions to (3.1).
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Lemma 3.2. Assume −LK + V is positive definite. All eigenfunctions in E1\{0} are nonnegative or
nonpositive. Thus dimE1 = 1. All eigenfunctions of E2\{0} change sign.

Proof. Since −LK+V is positive definite, ∥·∥ is a norm. Suppose on the contrary that there exists u ∈ E1\{0}
with both u+ ̸= 0 and u− ̸= 0. Then, one has

∥u∥2

|u|22
= ∥u

+ + u−∥2

|u+ + u−|22
= ∥u

+∥2 + 2⟨u+, u−⟩H + ∥u−∥2

|u+|22 + |u−|22

>
∥u+∥2 + ∥u−∥2

|u+|22 + |u−|22
> min


∥u+∥2

|u+|22
,
∥u−∥2

|u−|22


which contradicts the variational characterization of λ1. Because the cone K := {u : u > 0} is closed and
pointed, it is standard to show that the fact that E1 is made only of elements of K or −K implies dimE1 6 1.

Finally, let ϕ2 ∈ E2\{0} and suppose on the contrary that ϕ2 > 0 (the case ϕ2 6 0 is similar). Because
ϕ2 ⊥ E1 in L2(Ω), one concludes that ϕ2 = 0 a.e. on {ϕ1 > 0}. Thus, 0 = ⟨ϕ1, ϕ2⟩ = ⟨ϕ1, ϕ2⟩H =
−2


RN×RN ϕ1(x)ϕ2(y)K(x− y) d(x, y) < 0, a contradiction. �

Proposition 3.3. The family (up)2<p<p̄ is bounded in H for the norm ∥ · ∥, for any p̄ < 2∗s.

Proof. Let us start with ground state solutions. Consider ϕ1 ∈ E1 such that ∥ϕ1∥ = 1. If

tp :=


1
λ1|ϕ1|pp

1/(p−2)
> 0,

then tpϕ1 ∈ Np i.e., t2p∥ϕ1∥2 = tppλ1|ϕ1|pp. We shall prove that p → tp : (2, p̄]→ R is bounded. By continuity,
it is enough to check that tp converges to some t∗ < +∞ as p→ 2. We have

lim
p→2

ln tp = − lim
p→2

ln(λ1|ϕ1|pp)
p− 2 .

Since λ1|ϕ1|22 = 1, we can use L’Hospital’s rule. Remark that ∂p

Ω
|ϕ1|p =


Ω

ln |ϕ1| |ϕ1|p by Lebesgue’s
dominated convergence theorem. Then, for p→ 2,

lim
p→2

tp = exp

−

Ω

ln |ϕ1| |ϕ1|2
Ω
|ϕ1|2


< +∞.

Since up ∈ Ñp has the lowest energy,
 1

2 −
1
p


∥up∥2 = Ẽp(up) 6 Ẽp(tpϕ1) =

 1
2 −

1
p


t2p concluding this case.

Let us now treat the case of least energy nodal solutions. Pick ϕ2 ∈ E2\{0} and let t+p > 0 and t−p > 0 be
such that t+p ϕ+

2 + t−p ϕ
−
2 ∈ M̃p (they exist because ϕ2 changes sign, see Section 2). Expanding the equations

Ẽ ′p(t+p ϕ+
2 + t−p ϕ

−
2 )[ϕ±2 ] = 0 yields

t+p ∥ϕ+
2 ∥2 + t−p ⟨ϕ+

2 , ϕ
−
2 ⟩ − λ2(t+p )p−1|ϕ+

2 |pp = 0 (3.2)

t−p ∥ϕ−2 ∥2 + t+p ⟨ϕ+
2 , ϕ

−
2 ⟩ − λ2(t−p )p−1|ϕ−2 |pp = 0. (3.3)

The fact that ϕ2 is a second eigenfunction reads ⟨ϕ2, w⟩ = λ2

Ω
ϕ2w for all w ∈ H. In particular, taking w

as ϕ+
2 and ϕ−2 yields

∥ϕ+
2 ∥2 = −⟨ϕ+

2 , ϕ
−
2 ⟩+ λ2|ϕ+

2 |22 and ∥ϕ−2 ∥2 = −⟨ϕ+
2 , ϕ

−
2 ⟩+ λ2|ϕ−2 |22. (3.4)

Substituting back in (3.2)–(3.3), one deduces that

t+p

|ϕ+

2 |22 − (t+p )p−2|ϕ+
2 |pp


= −t−p

|ϕ−2 |22 − (t−p )p−2|ϕ−2 |pp


.

Thus |ϕ+
2 |22 − (t+p )p−2|ϕ+

2 |pp and |ϕ−2 |22 − (t−p )p−2|ϕ−2 |pp always have opposite signs. Let us show that t+p and
t−p are bounded as p→ 2. Let us split these families into (possibly) two sub-families according to the sign of
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|ϕ+
2 |22− (t+p )p−2|ϕ+

2 |pp. We deal with the subfamily for which |ϕ+
2 |22− (t+p )p−2|ϕ+

2 |pp > 0 (for the other one, this
expression is <0, so |ϕ−2 |22− (t−p )p−2|ϕ−2 |pp > 0 and the argument is similar). This inequality can be rewritten
as

t+p 6


|ϕ+

2 |22
|ϕ+

2 |
p
p

1/(p−2)

−−−→
p→2

exp

−

Ω

ln |ϕ+
2 | |ϕ

+
2 |2

|ϕ+
2 |22


(3.5)

(with s ln |s| understood as 0 when s = 0) where the convergence results from arguments similar to those
used in the ground state case. Thus t+p is bounded for p close to 2 and Eq. (3.2) implies that the same holds
for t−p .

The conclusion follows easily since1
2 −

1
p


∥up∥2 = Ẽp(up) 6 Ẽp(v̂p) =

1
2 −

1
p


∥v̂p∥2

and ∥v̂p∥ is bounded for p close to 2 because t+p and t−p are and vp → u∗. �

We may thus assume that up weakly converges, up to a subsequence, to some u∗ ∈ H as p→ 2.

Proposition 3.4. If (up) converges weakly in H to u∗ as p→ 2 then u∗ ∈ E1 (resp. E2).

Proof. For every v ∈ H, one has

0 = Ẽ ′p(up)[v] = ⟨up, v⟩ − λ

Ω

|up|p−2upv

where λ = λ1 (resp. λ = λ2) for ground state solutions (resp. least energy nodal solutions). Since up converges
weakly to u∗, the first term converges to ⟨u∗, v⟩. Moreover, up → u∗ in Lq(Ω) for 1 6 q < 2∗s. So, up to
a subsequence, up → u∗ a.e. and there is f ∈ L2(Ω) such that |up| 6 f almost everywhere. By Lebesgue’s
dominated convergence theorem, the second term converges to


Ω
u∗v as

|up|p−2upv
 6 |max{f, 1}|p̄−1 |v| ∈

L1(Ω) when p 6 p̄ < 2∗s. As the limit does not depend on the subsequence, the whole sequence converges.
Thus, u∗ is a weak solution to −LKu+ V (x)u = λu. �

3.3. Lower bound

Proposition 3.5. If (up) converges weakly to u∗ in H as p→ 2 then u∗ ̸= 0.

Proof. We first treat the case when up is a ground state solution. By Hölder’s inequality, we have |up|2p 6

|up|2(1−ω)2 |up|2ω2∗s with ω = 2∗s
2∗s−2

p−2
p . Then, by using Poincaré and Sobolev inequalities and since up belongs

to the Nehari manifold, we have

|up|2p 6

λ−1

1 ∥up∥2
1−ω

S−1∥up∥2
ω =


|up|pp
1−ω |up|pωp (S−1λ1)ω = |up|pp (S−1λ1)ω.

Thus, |up|pp > (Sλ−1
1 )2∗s/(2∗s−2). Using the compact embeddings and Lebesgue’s dominated convergence

theorem, one has |u∗|22 = limp→2 |up|pp > 0.

In the case of least energy nodal solutions, we claim that there exists vp = t+p u
+
p + t−p u

−
p ∈ Np ∩E⊥1 such

that ∥vp∥ 6 ∥up∥. Then, by the same argument as for the ground state case (with λ2 instead of λ1 because
vp ⊥ E1), we get that vp stays away from zero which is enough to conclude. To prove the claim, consider
the line segment

T : [0, 1]→ H\{0} : α → (1− α)u+
p + αu−p .

For all α ∈ [0, 1], there exists a unique tα > 0 such that tαT (α) ∈ Np. This tα can be written explicitly
and is easily seen to be continuous w.r.t. α. For α = 0, we have


Ω
tαu

+
p ϕ1 > 0 and, for α = 1, we have
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
Ω
tαu
−
p ϕ1 < 0. So, by continuity, there is a α∗ ∈ (0, 1) such that


Ω
tα∗T (α∗)ϕ1 = 0 and tα∗T (α∗) ∈ Np.

We just set t+p := tα∗(1 − α∗) and t−p := tα∗α
∗ to conclude. By definition of Mp ⊆ Np, we get that

Ẽp(vp) 6 Ẽp(up) and so, ∥vp∥ 6 ∥up∥. �

Proposition 3.6. Ground state solutions (resp. least energy nodal solutions) to (3.1) converge, up to a
subsequence, in H to some ϕ∗1 ∈ E1\{0} (resp. ϕ∗2 ∈ E2\{0}).

Proof. Let (up) be a family of ground state solutions of (3.1). The argument is identical for least energy
nodal solutions. By Proposition 3.3, for any sequence pn → 2, there exists a subsequence, still denoted pn,
such that upn converges weakly in H to some u∗ ∈ H. Propositions 3.4 and 3.5 imply that u∗ ∈ E1\{0}.
Finally, the compact embedding of H into Lq for 1 6 q < 2∗s and

0 = Ẽ ′pn(upn)[upn − u∗]− Ẽ ′2(u∗)[upn − u∗]

= ∥upn − u∗∥2 −
λ1
pn


Ω

|upn |pn−2upn(upn − u∗) + λ1
2


Ω

u∗(upn − u∗)

show that upn → u∗ in H. �

Remark that, from Propositions 3.3–3.5, we get the first conclusion of Theorem 1.1.

4. Symmetries and uniqueness via implicit function theorem

In this section, we prove the uniqueness (up to its sign) in H of a ground state solution (resp. least energy
nodal solution) to Problem (3.1) when dimE1 = 1 (resp. dimE2 = 1). To start, we consider the following
family of problems parametrized by 2 < p < 2∗s and λ ∈ R:

(−LK + V )u = λ|u|p−2u, in Ω ,
u = 0, in RN\Ω ,
∥u∥ = 1.

(4.1)

Proposition 4.1. When dimE1 = 1 (resp. dimE2 = 1), there exists a unique curve of solutions p →
(p, u∗p, λp) solving (4.1) starting from (2, ϕ1, λ1) (resp. (2, ϕ2, λ2)) where ϕ1 ∈ E1 with ∥ϕ1∥ = 1 (resp. ϕ2 ∈
E2 with ∥ϕ2∥ = 1). There is also a unique curve of solutions starting from (2,−ϕ1, λ1) (resp. (2,−ϕ2, λ2))
which is given by p → (p,−u∗p, λp).

Proof. We make the proof for the ground states, the other case being similar. Let ψ be the function

ψ : (2, 2∗s)×H × R→ H × R : (p, u, λ) →

u− λ(−LK + V )−1(|u|p−2u), ∥u∥2 − 1


,

so that (p, u, λ) is a root of ψ if and only if u is a solution to (4.1). To pursue our goal, we shall use the
implicit function theorem as well as the closed graph theorem. First, we have to show that the Fréchet
derivative of ψ at (2, ϕ1, λ1) with respect to (u, λ) is bijective on H × R. Let us remark that

∂(u,λ)ψ(2, ϕ1, λ1)[(v, t)] =

v − λ1(−LK + V )−1v − t(−LK + V )−1ϕ1, 2⟨ϕ1, v⟩


. (4.2)

For injectivity, let us start by showing that ∂(u,λ)ψ(2, ϕ1, λ1)[(v, t)] = 0 if and only if
v − λ1(−LK + V )−1v = 0,
t = 0,
v is orthogonal to ϕ1 in H.

(4.3)
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Clearly, (4.3) is sufficient. For its necessity, observe that the second component of (4.2) implies that ϕ1 is
orthogonal to v in H and thus also in L2(Ω) because ϕ1 is an eigenfunction. Taking the L2-inner product of
the first component of (4.2) with ϕ1 yields t = 0, hence completing the equivalence. Now, the only solution
of (4.3) is (v, t) = (0, 0) because the first equation and the dimension 1 of E1 imply v = αϕ1 for some α ∈ R
and then the third property implies v = 0. This concludes the proof of the injectivity. Let us now show that,
for any (w, s) ∈ H × R, the equation ∂(u,λ)ψ(2, ϕ1, λ1)[(v, t)] = (w, s) always possesses at least one solution
(v, t) ∈ H × R. One can write w = w̄ϕ1 + w for some w̄ ∈ R and w ∈ H orthogonal to ϕ1 in H. Similarly,
one can decompose v = v̄ϕ1 + v. Arguing as for the first part, the equation can be written

v − λ1(−LK + V )−1v = w,
t = −λ1w̄,

v̄ = s/2.
(4.4)

The existence of the solution v results from the Fredholm alternative. This concludes the proof that
∂(u,λ)ψ(2, ϕ1, λ1) is onto and thus of the existence and uniqueness of the branch p → (p, u∗p, λp) emanating
from (2, ϕ1, λ1). It is clear that p → (p,−u∗p, λp) is a branch emanating from (2,−ϕ1, λ1) and, using as above
the implicit function theorem at that point, we know it is the only one. �

Theorem 4.2. Assume dimE1 = 1 (resp. dimE2 = 1). For p close to 2, ground state solutions (resp. least
energy nodal solutions) to (3.1) are unique (up to their sign) and possess the same symmetries as ϕ1
(resp. ϕ2).

Proof. We make the argument for the ground state solutions as it is identical for the other case. Let
(up)2<p<2∗s be a family of ground state solutions to Problem (3.1) and pn → 2. It suffices to show that,
up to a subsequence, (upn) possess the same symmetries as ϕ1. Thanks to Proposition 3.6, we can assume
without loss of generality that upn → u∗ ∈ E1\{0}. Thus u∗ = αϕ1 for some α ̸= 0. Notice that u is a
solution to (3.1) if and only if u/∥u∥ is a solution to (4.1) with λ = λ1∥u∥p−2. Also, since the family (up)
remains bounded away from 0, one has upn∥upn∥−1 → sign(α)ϕ1 and λ1∥upn∥pn−2 → λ1. Then, for n large,
Proposition 4.1 implies upn∥upn∥−1 = sign(α)u∗pn . Hence upn is unique up to its sign. Also, upn respects
the (anti-)symmetries of ϕ1. Indeed, let us consider a direction d such that ϕ1 is symmetric (resp. anti-
symmetric) with respect to d. If upn is not, let us consider u′pn the symmetric (resp. anti-symmetric) image
of upn . Because ϕ1 is symmetric (resp. anti-symmetric) in the direction d, u′pn → αϕ1 (resp. u′pn → −αϕ1).
Arguing as before, we conclude that up∥up∥−1 = ±sign(α)u∗p = ±u′p∥u′p∥−1, which concludes the proof. �

This directly gives the second conclusion of Theorem 1.1 and thus completes it proof.

5. Asymptotic symmetries: Lyapunov-type reduction

In this section, we present an abstract symmetry result which is useful when dimE1 ̸= 1 or dimE2 ̸= 1.
By Propositions 3.3 and 3.5, it will give the proof of Theorem 1.3. The idea is to show that, for p close to
2, a priori bounded solutions of (1.3) can be distinguished by their projections on the eigenspaces Ei. This
will follow from Proposition 5.2 below.

Lemma 5.1. Let i > 1. There exists ε > 0 such that if a ∈ LN/(2s)(Ω) satisfies |a − λi|N/(2s) < ε and u

solves 
−LKu+ V u = a(x)u, in Ω ,
u = 0, in RN\Ω ,

then PEiu = 0⇒ u = 0 where PEi is the orthogonal projector on Ei.
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Proof. Assume by contradiction that there exists a nontrivial solution u such that PEiu = 0. Let
w = PE1⊕···⊕Ei−1u (with w = 0 if i = 1 so one does not need (5.1)) and z = P(E1⊕···⊕Ei)⊥u. Taking
successively w and z as test functions and using Poincaré, Sobolev and Hölder inequalities, we infer that

∥w∥2 = λi|w|22 +

Ω

(a(x)− λi)uw dx >
λi
λi−1
∥w∥2 − C|a(x)− λi| N2s ∥w∥ ∥u∥,

∥z∥2 = λi|z|22 +

Ω

(a(x)− λi)uz dx 6
λi
λi+1
∥z∥2 + C|a(x)− λi| N2s ∥z∥ ∥u∥.

We deduce that

∥w∥ 6
λi−1C

λi − λi−1
|a− λi| N2s ∥u∥, (5.1)

∥z∥ 6
λi+1C

λi+1 − λi
|a− λi| N2s ∥u∥. (5.2)

Since ∥u∥2 = ∥w∥2 + ∥z∥2, we get a contradiction when |a− λi|N/(2s) is small enough for the coefficients of
∥u∥ in (5.1)–(5.2) to be less than 1. �

The next result must be compared with the use of the implicit function theorem in the previous section.
Note that, this time, uniqueness is not guaranteed.

Proposition 5.2. Let i > 1. Let (up)2<p<2∗s and (vp)2<p<2∗s be two families of solutions to
−LKu+ V u = λi|u|p−2u, in Ω ,
u = 0, in RN\Ω .

Let pn → 2 be such that upn ⇀ ϕi for some ϕi ∈ Ei\{0}, (vpn) is bounded in H, and the Lebesgue measure
of the zero set of ϕi, namely {x ∈ Ω : ϕi(x) = 0}, is zero. If, for n large, PEiupn = PEivpn , then, for all n
large enough, upn = vpn .

Proof. Suppose on the contrary that there is a subsequence, still denoted (pn), such that, for all n,
PEiupn = PEivpn and upn ̸= vpn . Since (vpn) is bounded in H, up to a subsequence, vpn ⇀ v∗ in H

for some v∗ ∈ H. Clearly ϕi = PEiϕi = PEiv∗. Compact embeddings of H imply that vpn → v∗ in Lq(Ω)
for every q ∈ [1, 2∗s) and thus v∗ ∈ Ei. Therefore v∗ = ϕi. Observe that

(−LK + V )(up − vp) = ap(x)(up − vp), in Ω ,
up − vp = 0, in RN\Ω ,

(5.3)

where

ap(x) := (p− 1)
 1

0

vp(x) + θ(up(x)− vp(x))
p−2 dθ.

It is readily seen that apn(x)→ λi for a.e. x such that ϕi(x) ̸= 0. Noting that
vp(x)+θ(up(x)−vp(x))

p−2
6

|vp(x)|p−2 + |up(x)|p−2, we can apply Lebesgue’s dominated convergence theorem to deduce that apn → λi
in LN/(2s)(Ω\{ϕi = 0}). Since {ϕi = 0} has zero measure, this convergence also holds in LN/(2s)(Ω).

In particular, for n large enough, |ap − λi|N/(2s) < ε where ε > 0 is given by Lemma 5.1. Since
PEi(upn − vpn) = 0, Lemma 5.1 implies upn = vpn . This contradiction concludes the proof. �

Remark 5.3. In the nonlocal setting, the unique continuation property is a difficult subject and it has
only recently been investigated in [14]. In particular, by [14, Theorem 1.4], the Lebesgue measure of
{x ∈ Ω : ϕi(x) = 0} is indeed equal to zero for the model operator −LK = (−∆)s.
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Theorem 5.4. Let (up)2<p<2∗s be a family of ground state (resp. least energy nodal) solutions to Prob-
lem (3.1) and let i = 1 (resp. i = 2). Let G be a group acting on H in such a way that there exists
C > 0 so that, for every g ∈ G, u ∈ H, and p close to 2,

(i) g(Ei) = Ei, (ii) g(E⊥i ) = E⊥i , (iii) Ep(gu) = Ep(u), (iv) ∥gu∥ 6 C∥u∥.

Assume the zero set of any functions in Ei\{0} has zero Lebesgue measure. Then, for p close enough to 2,
up is invariant under the isotropy group Gαp = {g ∈ G : gαp = αp} of αp := PEiup.

Proof. Suppose on the contrary that there exists sequences pn → 2 and gn ∈ Gαpn , where αpn := PEiupn ,
such that gnupn ̸= upn for all n. According to Proposition 3.6, one can assume w.l.o.g. that upn → ϕ∗i ∈
Ei\{0}.

It follows from (iii) that, for all v ∈ H, E ′pn(gupn)[v] = E ′pn(upn)[g−1v], so gnupn are also solutions to
Problem (3.1). Moreover, given that

gup = g(PEiup) + g(PE⊥
i
up) with g(PEiup) ∈ Ei and g(PE⊥

i
up) ∈ E⊥i ,

one deduces that PEi(gup) = g(PEiup). In particular, PEi(gnupn) = gnαpn = αpn . As a consequence,
PEi(gnupn) = PEi(upn). Moreover, property (iv) implies that (gnupn) is bounded in H. Proposition 5.2 thus
implies that gnupn = upn for n large which contradicts our initial negation of the thesis. �

Theorem 5.5 (Localization of Limit Functions). Let (up)p>2 be a family of least energy nodal solutions to
Problem (3.1). Let pn → 2 be such that upn → u∗ in H. Then u∗ ∈ E2\{0} and it achieves the minimum of
the reduced functional

E∗ : E2 → R : u → 1
2


Ω

u2 − u2 ln u2

subject to the constraint u ∈ N∗ where N∗ is the reduced Nehari manifold

N∗ :=

u ∈ E2\{0} : E ′∗(u)[u] = 0


.

In particular, u∗ satisfies 
(−LK + V )u∗ = λ2u∗ in Ω ,
u∗ = 0 in RN\Ω ,
Ω

u∗ ln |u∗| v = 0 for all v ∈ E2.

(5.4)

Remark 5.6. 1. Quantities like s ln s are understood as being 0 when s = 0.
2. For all v ∈ E2\{0}, there exists a unique tv > 0 such that tvv ∈ N∗. This tv is given by the explicit

formula tv = exp

−

Ω
v2 ln |v|dx/|v|22


. Since v → tv is continuous and N∗ is the image of the unit

sphere of E2 under the map v → tv v, N∗ is compact. Therefore, there exists a v∗ ∈ N∗ that achieves the
minimum of E∗ on N∗. Moreover, for all v ∈ N∗ and all t > 0, E∗(tv) = 1

2 t
2(1− ln t2)|v|22 6 E∗(v) so the

reduced functional E∗ possesses a Mountain-Pass structure.

Proof. Propositions 3.4 and 3.5 imply that u∗ ∈ E2\{0}. Let v ∈ E2. We have

0 = 1
2− pn

E ′pn(upn)[v] = λ2


Ω

upn − |upn |pn−2upn
2− pn

v

= λ2


Ω

1
2− pn

 pn
2

ln |upn | |upn |q−2upnv dq dx −−−−→
n→∞

λ2


Ω

u∗ ln |u∗| v.
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Thus u∗ satisfies (5.4). Since E ′∗(u)[v] = −2

Ω
u ln |u| v, u∗ is a critical point of E∗ and, in particular, u∗ ∈ N∗.

It remains to show that u∗ achieves the minimal value of E∗ on N∗.

Let v ∈ N∗. Set vp := t+p v
+ + t−p v

− where t± > 0 are the unique positive reals such that vp ∈ Mp (they
exist because v changes sign, see Section 2). Let pn → 2. Arguing as in the proof of Proposition 3.3, one can
show that (t±pn) are bounded. So, up to subsequences, t±pn → t± for some t± ∈ [0,∞). Passing to the limit
on Eq. (3.2) and using (3.4), one finds that (t− − t+)⟨v+, v−⟩ = 0 and so that t+ = t−. In addition, as in
the proof of Proposition 3.3, we can also assume w.l.o.g. that

∀n, δn := t+pn

|v+|22 − (t+pn)pn−2|v+|pnpn


= −t−pn


|v−|22 − (t−pn)pn−2|v−|pnpn


> 0. (5.5)

Using the fact that the bracket of the right expression is non-positive and passing to the limit (similarly to
Eq. (3.5)) yields

t+ = t− > exp

−

Ω

ln |v−| |v−|2

|v−|22


> 0.

Thus (t±pn)pn−2 → 1 and so δn → 0. Dividing (5.5) by 2− pn and passing to the limit gives

t+


ln t+|v+|22 +

Ω

ln |v+| |v+|2


= −t−


ln t−|v−|22 +

Ω

ln |v−| |v−|2


(5.6)

where we used the elementary identity tp−2|v|pp−|v|22 =
 p
2 t
q−2 ln t |v|qq+tq−2 

Ω
ln |v| |v|q dx dq, for all v ∈ H

and t > 0, to compute the limit. Since t+ = t−, (5.6) can be rewritten

ln t+ |v|22 +

Ω

ln |v| |v|2 = 0.

Recalling that v ∈ N∗ means


ln |v| |v|2 = 0, one deduces that t+ = 1 = t−. Thus vp → v.

Because upn has least energy on Mpn , Ẽpn(upn) 6 Ẽpn(vpn). Because upn and vpn belong to Npn , this
is equivalent to |upn |pnpn 6 |vpn |pnpn . Passing to the limit and using the fact that u∗, v ∈ N∗ yield the desired
inequality 2E∗(u∗) = |u∗|22 6 |v|22 = 2E∗(v). �

6. Numerical examples

In this section, we illustrate our results by numerical computations. We consider the particular case of
the fractional Laplacian problem (1.2) for some values of s ∈ (0, 1]. The functional and its derivatives are
computed thanks to the Finite Element Method. Ground states (resp. least energy nodal solutions) are
approximated using the Mountain-Pass Algorithm (resp. the Modified Mountain-Pass Algorithm) [23,24].

Let us give some details on the computation of the various quantities. Given a mesh of the domain Ω ,
the integrals


Ω
V u2,


Ω
|u|p, . . . are approximated using standard quadrature rules on each element of the

mesh. The hardest part for evaluating the functional Ep and its derivatives is clearly the computation of
the stiffness matrix. More precisely, if (ϕi)ni=1 denotes the usual FEM basis consisting of “hat functions” for
each interior node of the mesh, we need to compute

⟨ϕi, ϕj⟩H =


RN×RN


ϕi(x)− ϕi(y)


ϕj(x)− ϕj(y)


K(x− y) d(x, y). (6.1)

The two difficulties are that the kernel K is singular and the domain is unbounded. The convergence
of the finite element method for this type of non-local operator was proved by Marta D’Elia and Max
Gunzburger [25]. In order to compute (6.1), they restrict their attention to N = 1, use an “interaction
domain” ΩI ⊆ RN\Ω and assume that K vanishes outside a ball of “large” radius. In this paper, we deal
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Fig. 1. Case i = j.

directly with (6.1) posed on RN × RN with K(x) = 1
2cN,s|x|

−N−2s. The reason it is possible results from a
couple of remarks. First notice that

Si := supp

(x, y) → ϕi(y)− ϕi(x)


= (suppϕi × RN ) ∪ (RN × suppϕi).

Thus the integral in (6.1) has only to be considered on Si ∩ Sj . For brevity, let us write Si := suppϕi.
Expanding Si ∩ Sj and remarking that the integral (6.1) is unchanged if one swaps x and y, one deduces
that 

Si∩Sj
= 2


(Si∩Sj)×{(Si∪Sj)
+


(Si∩Sj)2
+2


(Si\Sj)×Sj
+2


(Si∩Sj)×(Sj\Si)
.

Among these four sets, the sole unbounded one is (Si∩Sj)×{(Si∪Sj). If suppϕi∩suppϕj has zero Lebesgue
measure, i.e., if i and j are not indices of neighboring nodes, then the integral boils down to

⟨ϕi, ϕj⟩H = −2


suppϕi×suppϕj
ϕi(x)ϕj(y)K(x− y) d(x, y),

where K(x− y) is non-singular except when x = y ∈ suppϕi ∩ suppϕj (often empty) where both ϕi and ϕj
vanish. If suppϕi ∩ suppϕj has non-zero measure, then the integral on the unbounded set must be taken
into account. However, it simplifies to

(Si∩Sj)×{(Si∪Sj)


ϕi(x)− ϕi(y)


ϕj(x)− ϕj(y)


K(x− y) d(x, y)

=

Si∩Sj

ϕi(x)ϕj(x)


{(Si∪Sj)
K(x− y) dy


dx, (6.2)

and therefore to estimate this integral it is enough to be able to estimate the integral of K in a neighborhood
of infinity.

For the one-dimensional case (N = 1) where Ω is an interval, the mesh is simply given by points
x1 < x2 < · · · < xM such that Ω =]x1, xM [. The various possibilities for the sets Si ∩ Sj are depicted
in Figs. 1–3. For K(x) = 1

2c1,s|x|
−1−2s, the integrals on the various rectangles or unbounded strips in

Figs. 1–3, amount to compute

 b
a

 d
c

2
i,j=0

qijx
iyj

|y − x|p
dy dx (6.3)

where −∞ 6 a < b 6 c < d 6 +∞, and p ∈ R. Note that, thanks to the symmetry w.r.t. the diagonal,
one may only integrate on {(x, y) | y > x} and remove the absolute value. It is tedious but elementary to
explicitly compute integrals of the type (6.3) and thus to have a precise estimate of the stiffness matrix at
a low cost.
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Fig. 2. Case i+ 1 = j.

Fig. 3. Case i+ 1 < j.

Fig. 4. Errors ∥uM − u∗∥H and |uM − u∗|2 w.r.t. the number of nodes M .

As Marta D’Elia and Max Gunzburger [25] did, one can judge the convergence of the method by comparing
the FEM solution to the explicit solution to (−∆)su = 1 on Ω = B(0, R), namely

u∗(x) = 2−2s Γ (N/2)
Γ (N/2 + s)Γ (1 + s)


R2 − |x|2

s
, x ∈ B(0, R). (6.4)

For a given s, let us denote uM the FEM solution to (−∆)su = 1 on a mesh with M nodes. Fig. 4 shows the
errors ∥uM − u∗∥H and |uM − u∗|2 as functions of M . These graphs suggest that ∥uM − u∗∥H = O(M−0.5)
and |uM − u∗|2 = O(M−0.8).

Let us now turn to the non-linear problem (1.2) with V = 0, p = 4 and Ω =]− 1, 1[. The initial function
for the Mountain-Pass Algorithm (resp. the Modified Mountain-Pass Algorithm) is u0(x) = cos(πx/2) (resp.
u0(x) = sin(πx)) and the algorithms stop when ∥∇Ep∥H 6 10−2. The ground state and l.e.n.s. are plotted
in Fig. 5 for several values of s. Some characteristics of the solutions are given in Table 1. Note that, for
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Fig. 5. Ground state and l.e.n.s. for s ∈ {0.3, 0.4, 0.7, 0.9}.

Fig. 6. First and second eigenfunctions for s = 0.3.

Fig. 7. Comparison of the ground state u1 with ϕ1 for s = 0.3 and p ∈ {2.1, 3, 4}.

Table 1
Characteristics of the ground state u1 and the l.e.n.s. u2 for
Ω =]− 1, 1[.

s E4(u1) maxu1 E4(u2) maxu2 minu2
0.3 0.29 1.7 0.74 2.5 −2.5
0.4 0.38 1.4 1.41 2.1 −2.1
0.7 0.76 1.5 6.45 2.6 −2.6
0.9 1.39 1.7 18.30 3.3 −3.3

p fixed, the smaller s is, the more concentrated around 0 (resp. around ±1/2) the ground state (resp. the
l.e.n.s.) becomes. This contrasts with the linear case (−∆)su = 1 where the solution (6.4) goes to 1 as s→ 0.

If one looks at the first and second eigenfunctions ϕ1 and ϕ2 (see Fig. 6), the concentration phenomena
may be surprising as one expects u1 (resp. u2) to resemble ϕ1 (resp. ϕ2). However, the above results say
that the latter is true for s fixed and p→ 2. If one set s to, say, 0.3, and let p→ 2, one clearly sees on Fig. 7
that the ground state goes to a multiple of ϕ1.

For the two dimensional case, the computation of the stiffness matrix (6.1) is more challenging [25, p. 1259].
The reason is that there are no longer explicit formulas for the integrals and {(Si∪Sj) is not a simple shape.
Let us give some information on how we estimate the stiffness matrix (6.1). The functions of the space H are
approximated by P 1-finite elements on a triangular mesh T of Ω (i.e., continuous functions that are affine on
each triangle of the mesh T ). We require that these functions vanish on (the piecewise affine approximation
of) ∂Ω .

To deal with the singular kernel, we use a generalized Duffy transformation. Let us explain how it works
to compute


T


T


ϕi(x)−ϕi(y)


ϕj(x)−ϕj(y)


K(x− y) dxdy where T is a triangle of the mesh of T . For

the outer integral, we use a standard second order integration scheme which evaluates the function at the
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Fig. 8. Splitting the integral on right triangles.

middle of the edges of T . For the inner one, we first make use of the fact that ϕi (as well as ϕj) is affine on
T so that ϕi(x)− ϕi(y) = ∇ϕi · (x− y) where ∇ϕi is constant on T , so the integral boils down to

1
2cN,s


T

∇ϕi · ex∇ϕj · ex
1

|x− y|2s
dx where ex := x− y

|x− y|
. (6.5)

For each y ∈ ∂T considered for the outer integral approximation, one can project orthogonally y on the
two opposite sides of T and compute the integral on T as a sum or difference (depending on whether the
projection falls or not inside T ) of integrals on right triangles yq3p2, yq3p1, yq2p1 and yq2p3 (see Fig. 8).
It thus remains to compute (6.5) on a right triangle to which y is a non-right corner. So let T be the
triangle yqp with a right angle at q. We perform the following change of variable, dubbed generalized Duffy
transformation,

x = y + uβ(q − y) + uβv(p− q), (u, v) ∈ (0, 1)2,

so that (6.5) becomes

cN,s|T |
 1

0

 1

0
∇ϕi · ev∇ϕj · ev

βu2β(1−s)−1

(|q − y|2 + v2|p− q|2)s dudv where ev := q − y + v(p− q)
|q − y|2 + v2|p− q|2

and |T | denotes the area of T . Taking β := 1/(2(1 − s)), so that u2β(1−s)−1 ≡ 1, gives a smooth integrand
so that the integral can be estimated by standard means.

To deal with the unboundedness of {(Si ∪ Sj) in (6.2), we first integrate on Ω\(Si ∪ Sj). Then, for
each x used to compute the outer integral of (6.2), we mesh B(x,R)\Ω , where R is large enough so that
B(x,R) ⊃ Ω . The integral on B(x,R)\Ω is computed using that mesh. For the remaining set, {B(x,R), the
integral is computed explicitly:

{B(x,R)
K(x− y) dy = 1

2cN,s


SN−1

dθ
 ∞
R

r−N−2srN−1 dr = cN,s |SN−1| 1
4sR2s .

Note that this approach could be extended to kernels that are well approximated by functions “of separated
variables” in a neighborhood of infinity: K(x) ≈ Θ(θ)/rN+2s when |x| = r → +∞.

In Figs. 9–10, you can see the computed ground state and least energy nodal solutions for s ∈ {0.6, 0.9} on
the unit ball B(0, 1) for p = 4. The behavior is similar to the one-dimensional case, namely the ground state
is rotationally invariant and the least energy nodal solution looks Schwarz foliated symmetric. Moreover,
both solutions concentrate as s becomes smaller.
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Fig. 9. Ground state solution for s = 0.9 (left) and s = 0.6 (right).

Fig. 10. Least energy nodal solution for s = 0.9 (left) and s = 0.6 (right).
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