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Abstract. In this paper, by using a compactness method, we study the Cauchy problem of the logarithmic Schrödinger equation
with harmonic potential. We then address the existence of ground states solutions as minimizers of the action on the Nehari
manifold. Finally, we explicitly compute ground states (Gausson-type solution) and we show their orbital stability.
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1. Introduction

Recently, Zloshchastiev [25] introduced a new Bose–Einstein condensate in a harmonic trap as a can-
didate structure of physical vacuum, this structure is described by a logarithmic nonlinear Schrödinger
equation in presence of a harmonic potential. The main motivation of such condensates lies essentially
in their important applications in quantum mechanics, nuclear physics, quantum optics. Extensive de-
tails of the physical problem related to logarithmic Bose–Einstein condensate, experimental data and
previous numerical studies can be found in [7] and the references therein.

The aim of this work is the study of the existence and stability of the ground states associated with the
following nonlinear Schrödinger equation

i∂tu + �u − V (x)u + u Log |u|2 = 0, (x, t) ∈ R
N × R, (1.1)

where t is time, x ∈ R
N is the spatial coordinate (N � 1) and u := u(x; t) ∈ C is the wave function.

The local term u Log |u|2 describes the short-range interaction forces between particles. The potential
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V (x) describes an electromagnetic field and has the following harmonic confinement

V (x) = γ (γ − 1)|x|2, γ > 1.

In the absence of the harmonic potential, Eq. (1.1) now arises from different applications in quantum
mechanics, nuclear physics [19], open quantum systems and Bose–Einstein condensation. We refer the
readers to [7,14,24,25] for more information on the related physical backgrounds. The classical logarith-
mic NLS equation was proposed by Bialynicki-Birula and Mycielski [4] as a model of nonlinear wave
mechanics.

To the best of our knowledge, existence and stability of the ground states of logarithmic NLS equation
(1.1) in presence of a harmonic potential has not been studied in the literature. More precisely, Eq. (1.1)
has been previously studied only for γ = 1 (without the term V (x)). Among such works, let us mention
[2,3,5,6,10–13]. This type of equations have been of great interest to both the theoretical and applied
literature in recent years, see [1,20].

Concerning the Schrödinger equation with power-type nonlinearities and harmonic potential, many
authors have been studying the problem of existence and stability of standing waves, see for instance
[9,15–17,22,23] and the references therein.

The many-dimensional harmonic oscillator −� + γ (γ − 1)|x|2 is a self-adjoint operator on L2(RN)

with operator domain {u ∈ H 2(RN) : |x|2u ∈ L2(RN)} and quadratic form domain

�
(
R

N
) = {

u ∈ H 1
(
R

N
) : |x|u ∈ L2

(
R

N
)}

.

It is well known that �(RN) is a Hilbert space when is equipped with the norm

‖u‖2
� =

∫
RN

(|∇u|2 + |x|2|u|2) dx,

and it is continuously embedded in H 1(RN) due to the Hardy inequality. Along the flow of (1.1), we
have the conservation of the L2-norm and of the energy functional associated:

E(u) = 1

2

∫
RN

|∇u|2 dx + γ (γ − 1)

2

∫
RN

|x|2|u|2 dx − 1

2

∫
RN

|u|2 Log |u|2 dx. (1.2)

Note that E is the generating Hamiltonian of (1.1). It is important to note that the logarithmic nonlinearity
z → z Log |z|2 is not locally Lipschitz continuous due to the singularity of the logarithm at the origin, in
particular E /∈ C1(H 1(RN)). In Section 2, we will show that the energy E is well-defined and of class
C1 on the energy space �(RN), which implies that if u ∈ C(R, �(RN)) ∩ C1(R, �′(RN)), then Eq.
(1.1) makes sense in the space �′(RN). Here, �′(RN) is the dual space of �(RN).

We have the following result concerning the well-posedness of the Cauchy problem for (1.1) in the
energy space �(RN). The proof is done in Section 3.

Proposition 1.1 (Well posedness). Assume that γ > 1. Then the Cauchy problem for (1.1) is globally
well posed in the energy space �(RN), i.e for every u0 ∈ �(RN), there is a unique global solution
u ∈ C(R, �(RN))∩C1(R, �′(RN)) with u(0) = u0. In addition, the conservation of energy and charge
hold, that is

E
(
u(t)

) = E(u0) and
∥∥u(t)

∥∥2

L2 = ‖u0‖2
L2, for all t ∈ R.
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The most important issue in view of the applications of (1.1) in atomic physics and quantum optics
seems to be the study of standing waves solutions of (1.1). In this case they are solutions of (1.1) of the
form u(x, t) = eiωtϕ(x), where ω ∈ R and ϕ is a real valued function which has to solve the following
nonlinear scalar field equation

−�ϕ + ωϕ + γ (γ − 1)|x|2ϕ − ϕ Log |ϕ|2 = 0, x ∈ R
N. (1.3)

Before stating our results, we introduce some notations to be used throughout the paper. For ω ∈ R

and γ > 0, we define the following functionals of class C1 on �(RN):

Sω(u) := 1

2
‖∇u‖2

L2 + γ (γ − 1)

2
‖xu‖2

L2 + ω + 1

2
‖u‖2

L2 − 1

2

∫
RN

|u|2 Log |u|2 dx,

Iω(u) := ‖∇u‖2
L2 + γ (γ − 1)‖xu‖2

L2 + ω‖u‖2
L2 −

∫
RN

|u|2 Log |u|2 dx.

Note the scalar field equation (1.3) is varational in natura, that is, any solution is a critical point of
Sω(u). It is not difficult to show that Iω(u) = 〈S ′

ω(u), u〉.
For Eq. (1.1), the ground state solution play a crucial role in the dynamics. We recall that a nontrivial

solution ϕ ∈ �(RN) of (1.3) is termed as a ground state if it has some minimal action among all solutions
of the nonlinear scalar field equation (1.3). In particular, it is possible to prove existence of ground state
solutions solving the constrained variational problem

d(ω) = inf
{
Sω(u) : u ∈ �

(
R

N
) \ {0}, Iω(u) = 0

}
= 1

2
inf

{‖u‖2
L2 : u ∈ �

(
R

N
) \ {0}, Iω(u) = 0

}
. (1.4)

We define the set of ground states by

Gω = {
ϕ ∈ �

(
R

N
) \ {0} : Sω(ϕ) = d(ω), Iω(ϕ) = 0

}
.

In Section 4, we show that the quantity d(ω) is positive for every ω ∈ R. Indeed, for all γ > 1, N ∈ N

and ω ∈ R one has that

d(ω) = 1

2
π

N
2 γ − N

2 eω+γN .

Moreover, we have that any minimizing sequence is compact, the minimum is achieved and we explicitly
compute the ground states of (1.3). More precisely,

Theorem 1.2 (Ground states). Let N � 1, γ > 1 and ω ∈ R. Then we have:

(i) Any minimizing sequence of d(ω) is relativity compact in �(RN). That is, if a sequence {un} ⊆
�(RN) is such that Iω(un) = 0 and Sω(un) → d(ω) as n goes to +∞, then up to a subsequence
there exist ϕ ∈ �(RN) satisfying Sω(ϕ) = d(ω) and un → ϕ in �(RN).

(ii) The set of ground states is given by Gω = {eiθφω : θ ∈ R}, where

φω(x) := e
ω+γN

2 e− γ
2 |x|2, x ∈ R

N. (1.5)
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Remark 1.3. Assume that the infimum of d(ω) is achieved by u. Then, there exist a Lagrange multiplier
� ∈ R such that S ′

ω(u) = �I ′
ω(u), which implies that 〈S ′

ω(u), u〉 = �〈I ′
ω(u), u〉. Hence〈

S ′
ω(u), u

〉 = Iω(u) = 0 and
〈
I ′
ω(u), u

〉 = −2‖u‖2
L2 < 0,

implies � = 0. Therefore, u is a weak solution to equation (1.3). On the other hand, for any v ∈
�(RN) \ {0} satisfying S ′

ω(v) = 0, it follows that Iω(v) = 0. Thus, by definition of Gω, we get that u has
minimal action among all solutions of (1.3).

We now discuss the notion of stability of standing waves. The basic symmetry associated to equa-
tion (1.1) is the phase-invariance (while the translation invariance does not hold due to the harmonic
potential); taking this fact into account, it is reasonable to define orbital stability as follows:

Definition 1.4. We say that a standing wave solution u(x, t) = eiωtϕ(x) of (1.1) is orbitally stable
in �(RN) if for any ε > 0 there exist η > 0 with the following property: if u0 ∈ �(RN) satisfies
‖u0 − ϕ‖� < η, then the solution u(t) of (1.1) with u(0) = u0 exist for all t ∈ R and satisfies

sup
t∈R

inf
θ∈R

∥∥u(t) − eiθϕ
∥∥

�
< ε.

Otherwise, the standing wave eiωtϕ(x) is said to be unstable in �(RN).

Our second result shows that, in terms of the Cazenave and Lions’ argument, the ground states are
orbitally stable.

Theorem 1.5 (Orbital stability). For any ω ∈ R and N � 1, the standing wave eiωtφω(x) is orbitally
stable in �(RN).

The paper is organized in the following way: in Section 2, we show that the energy functional E is of
class C1 on �(RN). Moreover, we recall several known results and introduce several notations. In Sec-
tion 3, we give an idea of the proof of Proposition 1.1. In Section 4 we prove, by variational techniques,
the existence of a minimizer for d(ω) (Theorem 1.2), while in Section 5 the proof of Theorem 1.5 is
completed.

Notation. The space L2(RN,C), denoted by L2(RN) for shorthand, is equipped with the norm ‖ · ‖L2 .
Moreover 2∗ is defined by 2∗ = 2N/(N − 2) if N � 3, and 2∗ = +∞ if N = 1, 2. Finally, 〈·, ·〉 is the
duality pairing between X′ and X, where X is a Banach space and X′ is its dual.

2. Preliminary lemmas

In this section we recall several known results, almost all are proved in the paper [10]. Moreover, we
show that the energy functional E is of class C1 on �(RN).

Proposition 2.1. The energy functional E defined by (1.2) is of class C1 and for u ∈ �(RN) the Fréchet
derivative of E in u exists and it is given by

E′(u) = −�u + γ (γ − 1)|x|2u − u Log |u|2 − u.
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Before giving the proof of Proposition 2.1, we fix some definitions that will be useful in the sequel.
Define

F(z) := |z|2 Log |z|2, for every z ∈ C,

and as in [10], we introduce the functions A, B on [0, ∞) by

A(s) :=
{

−s2 Log(s2), if 0 � s � e−3;
3s2 + 4e−3s − e−6, if s � e−3; B(s) := F(s) + A(s). (2.1)

We will need the following functions a and b given by

a(z) := z

|z|2 A
(|z|) and b(z) := z

|z|2 B
(|z|), for z ∈ C, z 
= 0. (2.2)

Noticing that for any z ∈ C, b(z) − a(z) = z Log |z|2. In addition, we note that A is a nonnegative
convex and increasing function, and A ∈ C1([0, +∞)) ∩ C2((0, +∞)). We define the following Orlicz
space LA(RN) corresponding to A,

LA
(
R

N
) := {

u ∈ L1
loc

(
R

N
) : A

(|u|) ∈ L1
(
R

N
)}

,

equipped with the norm

‖u‖LA := inf

{
k > 0 :

∫
RN

A
(
k−1

∣∣u(x)
∣∣) dx � 1

}
.

Here L1
loc(R

N) is the space of all locally Lebesgue integrable functions. In [10, Lemma 2.1], the author
proved that (LA(RN), ‖ · ‖LA) is a separable reflexive Banach space. Below we describe some properties
of LA(RN). See [10, Lemma 2.1] for more details.

Proposition 2.2. Assume that {um} is a sequence in LA(RN). Then the following facts hold:

i) If um → u in LA(RN), then A(|um|) → A(|u|) in L1(RN) as m → ∞.
ii) Let u ∈ LA(RN). If um → u a.e. in R

N and if

lim
m→∞

∫
RN

A
(∣∣um(x)

∣∣) dx =
∫
RN

A
(∣∣u(x)

∣∣) dx,

then um → u in LA(RN) as m → ∞.
iii) For any function u in LA(RN), we have the following relationship

min
{‖u‖LA, ‖u‖2

LA

}
�

∫
RN

A
(∣∣u(x)

∣∣) dx � max
{‖u‖LA, ‖u‖2

LA

}
. (2.3)
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Remark 2.3. A simple calculation shows that for all ε > 0, there exists Cε > 0 with∣∣B(z) − B(w)
∣∣ � Cε

(|z|1+ε + |w|1+ε
)|z − w|, for every z, w ∈ C,

hence, integrating on R
N with ε = (2∗ − 2)/2 and applying Hölder’s inequality and Sobolev’s Inequali-

ties we see that∫
RN

∣∣B(|u|) − B
(|v|)∣∣ dx � C

(
1 + ‖u‖2

H 1(RN)
+ ‖v‖2

H 1(RN)

)‖u − v‖L2 (2.4)

for all u, v ∈ H 1(RN).

Lemma 2.4 (Injections). Let N � 1. Then the following assertions hold.

(i) The embedding �(RN) ↪→ Lq(RN) is compact, where 2 � q < 2∗.
(ii) The inclusion map �(RN) ↪→ L2−δ(RN) is continuous, where δ = 1/N .

(iii) The inclusion map �(RN) ↪→ LA(RN) is continuous.

Proof. Item (i) is proved in [22, Lemma 3.1]. Let u ∈ �(RN). By Hölder’s inequality with conjugate
exponents 2N/(2N − 1), 2N we see that

∫
RN

∣∣u(x)
∣∣2− 1

N dx �
(∫

RN

1

(1 + |x|2)α
dx

) 1
2N

(∫
RN

(
1 + |x|2)∣∣u(x)

∣∣2
dx

) 2N−1
2N

,

where α = 2N − 1. Since α > N/2, we have that there exists a constant C > 0 depending only on N

such that ‖u‖L2−1/N (RN) � C‖u‖� , which completes the proof of Item (ii). Concerning (iii), it follows
form (2.1) that for every N ∈ N, there exist C > 0 depending only on N such that

A
(|z|) � C

(|z|2+ 1
N + |z|2− 1

N

) + B
(|z|) for any z ∈ C.

Notice that 2 < 2 + 1/N < 2∗. Thus from Item (i), Item (ii) and (2.4) we have that if un → u as n goes
to +∞ in �(RN), then A(|un −u|) → 0 as n goes to +∞ in L1(RN). This implies by (2.3) that un → u

as n goes to +∞ in LA(RN). This concludes the proof. �

For a proof of following result, see [10, Lemma 2.5 and Lemma 2.6].

Lemma 2.5. Let N � 1 and consider the functions a and b defined by (2.2). Then the following is true.

(i) The operator u → a(u) is continuous from LA(RN) into LA′
(RN). Moreover, the image under a

of every bounded subset of LA(RN) is a bounded subset of LA′
(RN).

(ii) The operator u → b(u) is continuous from H 1(RN) into H−1(RN). Moreover, the image under b
of every bounded subset of H 1(RN) is a bounded subset of H−1(RN).

Lemma 2.6. The operator

L : u → −�u + γ (γ − 1)|x|2u − u Log |u|2

is continuous from �(RN) to �′(RN). The image under L of every bounded subset of �(RN) is a
bounded subset of �′(RN).
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Proof. It is clear −�+γ (γ −1)|x|2 is continuous from �(RN) to �′(RN). Hence, we need to prove the
continuity of the nonlinearity part of L. Indeed, by Lemma 2.5(i), u → a(u) is continuous from LA(RN)

to LA′
(RN), which implies by Lemma 2.4(iii), from �(RN) to �′(RN). Finally, applying Lemma 2.5(ii),

we see that the operator u → a(u) − b(u) = −u Log |u|2 is continuous from �(RN) to �′(RN). This
completes the proof of Lemma 2.6. �

Proof of Proposition 2.1. We first show that E is continuous on �(RN). Note that E can be rewritten
in the following form

E(u) = 1

2
‖∇u‖2

L2 + γ (γ − 1)

2
‖xu‖2

L2 + 1

2

∫
RN

A
(|u|) dx − 1

2

∫
RN

B
(|u|) dx. (2.5)

The first and second term in the right-hand side of (2.5) are continuous on �(RN). Hence, we need to
prove the continuity of the nonlinearity part of E. Combining Proposition 2.2(i) and Lemma 2.4(iii) we
obtain that the third term is continuous on �(RN). Moreover, by (2.4) we have that the fourth term in the
right-hand side of (2.5) is continuous on �(R), which implies that E ∈ C(�(RN),R). Next it is easily
seen that, for u, v ∈ �(RN), t ∈ (−1, 1) (see [10, Proposition 2.7]),

lim
t→0

E(u + tv) − E(u)

t
= 〈

(−�u + γ (γ − 1)|x|2u − u Log |u|2 − u, v
〉
.

Thus, E is Gâteaux differentiable. By virtude of Lemma 2.6 we conclude that E is Fréchet differen-
tiable. �

3. The Cauchy problem

In this section we sketch the proof of the global well-posedness of (1.1) for any γ > 1 as stated in
Proposition 1.1. A similar technique was applied by Cazenave [11, Theorem 9.3.4] in the case of the
NLS equation (1.1) without the term V (x). We first construct a sequence of global weak solutions of a
regularized Cauchy problem in C(R, �(RN)) which converges to a weak solution of the equation (1.1).
This produces a weak solution. Then, applying some properties of the logarithmic nonlinearity we show
the uniqueness of the weak solution of equation (1.1).

Before outlining the main ideas of the proof of Proposition 1.1, we fix some definitions that will be
useful in the sequels. For z ∈ C and m ∈ N, we introduce the functions am and bm by

am(z) = zãm

(|z|), ãm(s) :=
{

A(s)

s2 , if s � 1
m
,

m2A( 1
m
), if 0 � s � 1

m
,

bm(z) = zb̃m

(|z|), b̃m(s) :=
{

B(s)

s2 , if 0 � s � m,
B(m)

m2 , if s � m,

where A and B were defined in (2.2). We will need the following family of nonlinearities given by
gm(z) = bm(z) − am(z) for any fixed m ∈ N and for every z ∈ C.
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Now we need to construct an appropriate sequence of weak solutions of the following regularized
Cauchy problem

i∂tu
m + �um − γ (γ − 1)|x|2um + gm

(
um

) = 0, m ∈ N. (3.1)

Proposition 3.1. For every u0 ∈ �(RN), there is a unique global solution um ∈ C(R, �(RN)) ∩
C1(R, �′(RN)) of problem (3.1) with u(0) = u0. Furthermore, the mass and total energy associated
with (3.1) are conserved in time, namely

Em

(
um(t)

) = Em(u0) and
∥∥um(t)

∥∥2

L2 = ‖u0‖2
L2 for all t ∈ R, (3.2)

where

Em(u) = 1

2
‖∇u‖2

L2 + γ (γ − 1)

2
‖xu‖2

L2 +
∫
RN

�m

(|u|) dx −
∫
RN

�m

(|u|) dx,

and the functions t �→ �m(t) and t �→ �m(t) are defined by

�m(t) :=
∫ t

0
sãm(s) ds and �m(t) :=

∫ t

0
sb̃m(s) ds.

Proof. Since gm is globally Lipschitz continuous C → C, the global well-posedness follows from
Strichartz inequalities and a fixed point argument; see e.g. [11, Theorem 9.2.6 and Remark 9.2.8]. �

In the following we will make use of the following lemma.

Lemma 3.2. Assume that {um}m∈N is a sequence bounded in L∞(R, �(RN)) and in W 1,∞(R, �′(RN)).
Then there exist a subsequence, which we still denote by {um}m∈N, and there exist a function u ∈
L∞(R, �(RN)) ∩ W 1,∞(R, �′(RN)) such that the following conclusions are valid.

(i) um(t) ⇀ u(t) in �(RN) as m → ∞ for all t ∈ R.
(ii) For any t ∈ R there is a subsequence mj with umj (x, t) → u(x, t) as j → ∞, for a.e. x ∈ R

N .
(iii) um(x, t) → u(x, t) as m → ∞, for a.e. (x, t) ∈ R

N × R.

Proof. The proof follows a similar argument used in [11, Lemma 9.3.6], and we omit the details. �

Proof of Proposition 1.1. Here, for simplicity, we assume that γ (γ − 1) = 1. We proceed by approx-
imating the equation as follows (see [11, Theorem 9.3.4]): taking into account Lemma 3.1, we get that
exists a unique solution um ∈ C(R, �(RN)) ∩ C1(R, �′(RN)) of the regularized NLS equation (3.1)
with u(0) = u0. In turn, by combining the conservation of energy and charge (3.2) we obtain that the se-
quence of approximating solutions um is bounded in L∞(R, �(RN)) (see Step 2 of [11, Theorem 9.3.4]
for example). On the other hand, notice that the following inequality can be easily shown

∣∣gm(z)
∣∣2 � C

(|z|2+ 1
N + |z|2− 1

N

)
for all z ∈ C and all m ∈ N.

Hence, by Lemma 2.4, we get that gm(um) is bounded in L∞(R, �′(RN)), which implies by (3.1) that the
sequence ∂tu

m is bounded in L∞(R, �′(RN)). We can now conclude that {um}m∈N satisfies the conditions
of Lemma 3.2. Let u be the limit of um.
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We claim that the limiting function u ∈ L∞(R, �(RN)) is a weak solution of the NLS (1.1). Indeed,
it follows from property (i) of Lemma 3.2 that u(0) = u0. Furthermore, by (3.1), for any test function
ψ ∈ C∞

0 (RN) and φ ∈ C∞
0 (R) we get∫

R

[−〈
ium, ψ

〉
φ′(t) + 〈

um, ψ
〉
�
φ(t)

]
dt +

∫
R

∫
RN

gm

(
um

)
ψφ dx dt = 0. (3.3)

Taking into account that gm(z) → z Log |z|2 pointwise in z ∈ C as m → +∞, via properties (i)–(iii) of
Lemma 3.2 we get the following integral equation (see Step 3 of [11, Theorem 9.3.4])∫

R

[−〈iu, ψ〉φ′(t) + 〈u, ψ〉�φ(t)
]
dt +

∫
R

∫
RN

u Log |u|2ψφ dx dt = 0. (3.4)

We are now ready to conclude the proof of proposition. Since u ∈ L∞(R, �(RN)), in view of
Lemma 2.6 and (3.4) we see that ut ∈ L∞(R, �′(RN)) and u is a weak solution of problem (1.1).
Next, to prove the uniqueness of the weak solution and the conservation of charge and energy one can
follow the argument of [11, Theorem 9.3.4]. The proof is now concluded. �

4. Variational analysis

This section is devoted to the proof of Theorem 1.2. We begin with the logarithmic Sobolev inequality.
See [21, Theorem 8.14].

Lemma 4.1. Let α > 0 and assume that f ∈ H 1(RN) \ {0}. Then

∫
RN

∣∣f (x)
∣∣2

Log
∣∣f (x)

∣∣2
dx � α2

π
‖∇f ‖2

L2 + (
Log ‖f ‖2

L2 − N(1 + Log α)
)‖f ‖2

L2 . (4.1)

Furthermore, there is equality if and only if the function f is, up to translation, a multiple of e{−π |x|2/2α2}.

Lemma 4.2 (Ground energy). Let ω ∈ R and γ > 1. Then, the quantity d(ω) is given by

d(ω) = 1

2
‖φω‖2

L2 = 1

2
π

N
2 γ − N

2 eω+γN , (4.2)

where φω is defined by (1.5).

Proof. We observe for further usage that ‖φω‖2
L2 = π

N
2 γ − N

2 eω+γN for every ω ∈ R. We first prove
2d(ω) � ‖φω‖2

L2 . By direct computations, we obtain that Iω(φω) = 0, which implies that, by the defini-
tion of d(ω), 2d(ω) � ‖φω‖2

L2 . On the other hand, it is easily seen that

inf
{‖∇u‖2

L2 + γ 2‖xu‖2
L2 : u ∈ �

(
R

N
)
, ‖u‖2

L2 = 1
} = γN. (4.3)

In particular, multiplying (4.3) by γ −1(γ − 1) we get

(γ − 1)N‖u‖2
L2 � γ −1(γ − 1)‖∇u‖2

L2 + γ (γ − 1)‖xu‖2
L2 . (4.4)
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Now, let u ∈ �(RN) \ {0} be such that Iω(u) = 0. By virtue of the logarithmic Sobolev inequality with
α2 = π/γ and inequality (4.4) we get

(
ω + γN + N Log(

√
π/γ )

)‖u‖2
L2 �

(
Log ‖u‖2

L2

)‖u‖2
L2,

which implies that ‖u‖2
L2 � ‖φω‖2

L2 . Then, in view of the definition of d(ω), it follows that 2d(ω) �
‖φω‖2

L2 . This conclude the proof. �

Next we give a useful lemma.

Lemma 4.3. Assume that {un} is a bounded sequence in �(RN) satisfying as n → ∞, un → u a.e. in
R

N . Then u ∈ �(RN) and

lim
n→∞

∫
RN

{|un|2 Log |un|2 − |un − u|2 Log |un − u|2} dx =
∫
RN

|u|2 Log |u|2 dx.

Proof. Taking into account that �(RN) ↪→ LA(RN), the assertion follows by [2, Lemma 2.3] (see also
[8]). �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let {un} ⊆ �(RN) be a minimizing sequence for d(ω), namely, Iω(un) = 0 for
all n, and Sω(un) → d(ω) as n → ∞. Notice that sequence {un} is bounded in �(RN). In fact, it is clear
that the sequence ‖un‖2

L2 is bounded. Furthermore, by virtue of the logarithmic Sobolev inequality (4.1)
and recalling that Iω(un) = 0, we obtain

(
1 − α2

π

)
‖∇un‖2

L2 + γ (γ − 1)‖xun‖2
L2 � Log

[(
e−(ω+N)

αN

)
‖un‖2

L2

]
‖un‖2

L2 .

Now by taking sufficiently small positive α > 0 enables us to conclude that all minimizing sequences
are bounded in �(RN). This implies that there exists some function ϕ ∈ �(RN) such that, up to a
subsequence, un ⇀ ϕ weakly in �(RN) and this implies, by virtue of Lemma 2.4(i) that as n goes to
+∞, un → ϕ in Lq(RN) for 2 � q < 2∗. In particular, we get ‖ϕ‖2

L2 = 2d(ω).
Now, let us prove that Iω(ϕ) = 0. Assume by contradiction that Iω(ϕ) < 0. Notice that by simple

computations, we can see that there is 0 < λ < 1 such that Iω(λϕ) = 0. In view of definition of d(ω),
we get

d(ω) � Sω(λϕ) = 1

2
‖λϕ‖2

L2 <
1

2
‖ϕ‖2

L2 = d(ω),

a contradiction. On the other hand, assume that Iω(ϕ) > 0. Since un ⇀ ϕ in �(RN), it follows that

‖∇un‖2
L2 − ‖∇un − ∇ϕ‖2

L2 − ‖∇ϕ‖2
L2 → 0, (4.5)

‖xun‖2
L2 − ‖xun − xϕ‖2

L2 − ‖xϕ‖2
L2 → 0, (4.6)
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as n → ∞. By combining (4.5) with (4.6) and Lemma 4.3 leads to

lim
n→∞ Iω(un − ϕ) = lim

n→∞ Iω(un) − Iω(ϕ) = −Iω(ϕ),

which combined with Iω(ϕ) > 0 implies that Iω(un − ϕ) < 0 for sufficiently large n. Then, by arguing
as above, we can prove that

d(ω) � 1

2
lim

n→∞ ‖un − ϕ‖2
L2 = d(ω) − 1

2
‖ϕ‖2

L2,

which is a contradiction. We get Iω(ϕ) = 0, and this implies, by virtue of the definition of d(ω), that
ϕ ∈ Gω.

Next we prove that un → ϕ in �(RN). Notice that, on one hand, we have un → ϕ in L2(RN). On the
other hand, since the sequence {un} is bounded in �(RN), it follows by (2.4) that

lim
n→∞

∫
RN

B
(∣∣un(x)

∣∣) dx =
∫
RN

B
(∣∣ϕ(x)

∣∣) dx,

which combined with Iω(un) = Iω(ϕ) = 0 for any n ∈ N, gives

lim
n→∞

[
‖∇un‖2

L2 + γ (γ − 1)‖xun‖2
L2 +

∫
RN

A
(|un|

)
dx

]

= ‖∇ϕ‖2
L2 + γ (γ − 1)‖xϕ‖2

L2 +
∫
RN

A
(|ϕ|) dx, (4.7)

and this implies, by virtue of (4.7), the weak lower semicontinuity and Fatou’s Lemma, that (see e.g.
[18, Lemma 12 in chapter V])

lim
n→∞ ‖∇un‖2

L2 = ‖∇ϕ‖2
L2, lim

n→∞ ‖xun‖2
L2 = ‖xϕ‖2

L2 . (4.8)

Therefore, it follows from (4.8) that un → ϕ in �(RN). This proves the first part of the statement of
Theorem 1.2.

Now we claim that |ϕ| ∈ Gω and |ϕ| is necessarily radially symmetric. Indeed, denoting by ϕ∗ the
Schwarz symmetrization of |ϕ|, since A, B ∈ C1([0, +∞)) are increasing functions with A(0) =
B(0) = 0, it is follows from Layer cake representation [21, Theorem 1.13] and (2.1) that

∫
RN

∣∣ϕ∗(x)
∣∣2

Log
∣∣ϕ∗(x)

∣∣2
dx =

∫
RN

∣∣ϕ(x)
∣∣2

Log
∣∣ϕ(x)

∣∣2
dx.

Moreover, as it is readily checked,

∫
RN

|x|2∣∣ϕ∗(x)
∣∣2

dx <

∫
RN

|x|2∣∣ϕ(x)
∣∣2

dx unless |ϕ| = ϕ∗ a.e.
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Thus, since we have that ‖∇ϕ∗‖2
L2 � ‖∇|ϕ|‖2

L2 � ‖∇ϕ‖2
L2 and ‖ϕ∗‖2

L2 = ‖ϕ‖2
L2 , it follows that if

|ϕ| 
= ϕ∗, then Iω(ϕ∗) < Iω(ϕ) = 0 with ‖ϕ∗‖2
L2 = ‖ϕ‖2

L2 , which is a contradiction because ϕ ∈ Gω.
This contradiction finishes the proof of claim.

By virtue of Lemma 4.2 it follows that {eiθφω : θ ∈ R} ⊆ Gω. Next let us consider ϕ ∈ Gω. Taking
into account the definition of d(ω), ‖ϕ‖2

L2 = 2d(ω) and Iω(ϕ) = 0. We claim that the function ϕ

satisfies the equality in (4.1) with α2 = π/γ . Let us assume the contrary, i.e. suppose that we have
the strict inequality in (4.1) with α2 = π/γ . Since ϕ satisfies Iω(ϕ) = 0, a direct computation yields
‖ϕ‖2

L2 > 2d(ω) (see proof of Lemma 4.2), a contradiction. Thus, in light of Lemma 4.1 we have that
there exist r > 0, y ∈ R

N and θ0 ∈ R such that

ϕ(x) = reiθ0e− γ
2 |x−y|2, x ∈ R

N.

Since |ϕ| is radial and ‖ϕ‖2
L2 = 2d(ω), we conclude that y = 0 and r2 = eω+γN . Hence, ϕ(x) =

eiθ0φω(x) and the Theorem 1.2 is proved. �

5. Stability of standing waves

Proof of Theorem 1.5. We argue by contradiction. Suppose that φω is not stable in �(RN) under flow
associated with problem (1.1). Then there exist ε > 0, a sequence of initial data (un,0)n∈N in �(RN)

such that for all n � 1,

‖un,0 − φω‖� <
1

n
, (5.1)

and a sequence (tn)n∈N such that

inf
θ∈R

∥∥un(tn) − eiθφω

∥∥
�

� ε, for any n ∈ N, (5.2)

where un denotes the unique solution of problem (1.1) with initial data un,0. Now, setting vn(x) =
un(x, tn) it follows by (5.1) and conservation laws

‖vn‖2
L2 = ∥∥un(tn)

∥∥2

L2 = ‖un,0‖2
L2 → ‖φω‖2

L2, (5.3)

E(vn) = E
(
un(tn)

) = E(un,0) → E(φω). (5.4)

Consequently, by virtue of (5.3) and (5.4),

Sω(vn) → Sω(φω) = d(ω). (5.5)

Thus, (5.3) together with (5.5) implies that Iω(vn) → 0 as n goes to +∞. Next, let us set fn(x) =
ρnvn(x) with

ρn = exp

(
Iω(vn)

2‖vn‖2
L2

)
,
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where exp(x) represent the exponential function. We know that ρn → 1 as n goes to +∞, and Iω(fn) =
0 for any n ∈ N. Since {vn} is bounded in �(RN), it follows immediately that ‖vn − fn‖� → 0. By
virtue of (5.5), we see that {fn} is a minimizing sequence for d(ω). Thanks to Theorem 1.2 we know
that, up to a subsequence, there exists θ0 ∈ R such that∥∥fn − eiθ0φω

∥∥
�

→ 0, as n → +∞. (5.6)

Thus, in view of the triangular inequality, (5.6) and remembering that vn = un(tn), one can easily proves
that ∥∥un(tn) − eiθ0φω

∥∥
�

→ 0 as n → +∞,

which is a contradiction with (5.2). This completes the proof of the orbital stability of the ground states
of (1.1). �
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