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ABSTRACT
In this paper, we are concerned with normalized solutions of a class of Hartree-Fock type systems. By seeking the constrained
global minimizers of the corresponding functional, we prove that the existence and nonexistence of normalized solutions. Also,
the orbital stability of standing waves is obtained under local well-posedness assumptions of the evolution problem.
MSC2020 Classification: 35J50, 35R09, 37K45

1 | Introduction

1.1 | Background

The Hartree–Fock type system
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has received a lot of attention in recent years. For instance, it
appears in the basic quantum, chemistry model of the small num-
ber of electrons interacting with static nuclear, see [1–3]. and
the references therein for details. This system consists of two
Schrödinger equations, in which there are Coulomb interaction
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terms. The constant 𝛽 ∈ ℝ describes the interspecies scattering
lengths. When 𝛽 > 0, it indicates interspecies attraction and 𝛽 < 0
indicates interspecies repulsion.

Such problem was initially introduced by Hartree in [4] by
employing a set of specialized test functions, without explicitly
considering the Pauli exclusion principle. Subsequently, Fock in
[5] and Slater in [6] addressed the Pauli exclusion principle by
selecting a distinct class of test functions known as Slater determi-
nants. By doing so, they derived a system of𝑁-coupled nonlinear
Schrödinger equations:

− ℏ
2

2𝑚
Δ𝜓

𝑘
+ 𝑉ext𝜓𝑘

+

(

∫ℝ3
|𝑥 − 𝑦|−1

𝑁∑

𝑗=1

|
|
|
𝜓
𝑗
(𝑦)||
|

2
d𝑦

)

𝜓
𝑘

+
(
𝑉ex𝜓

)
𝑘

= 𝐸
𝑘
𝜓
𝑘
,

(1.2)

where𝜓
𝑘
∶ ℝ3 → ℂ, 𝑘 = 1, … , 𝑁, 𝑉ext is a given external poten-
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is the 𝑘-th component of the crucial exchange term and 𝐸
𝑘

is
the 𝑘-th eigenvalue. For more details about the Hartree–Fock
method, we refer to [7–10] and references therein.

In this paper, our main interest is focused on the case of 𝑁 = 2
and assume the external potential has the following form:
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which is consistent with the assumptions in [11]. It leads us to
investigate the system (1.1). Since we are mainly interested in the
existence of standing wave solutions to (1.1), namely, solutions
having the form of
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𝑣(𝑥), 𝜆1, 𝜆2 ∈ ℝ (1.3)

it suffices to consider the following coupled elliptic equations
with nonlocal interaction:
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System (1.4) is called a Schrödinger–Poisson type system, see
[12].

In [11], the authors first studied the system (1.4), where 𝜆1, 𝜆2 ∈
ℝ are fixed parameter. They dealt with the functional
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and looked for its critical points in 𝐻
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direction, mainly by variational methods, they showed the exis-
tence of semitrivial and vectorial ground states solutions depend-
ing on the parameters involved. In addition, the authors in [13]
considered the least energy solutions of Hartree–Fock systems
when the nonlinearities are subcritical. However, nothing can be
said a priori on the 𝐿2-norm of solutions.

In recent years, the study of normalized solutions has attracted
considerable attentions; that is, the desired solutions have a priori
prescribed 𝐿2- norm. Let us introduce some related results about
the Schrödinger–Poisson equations:
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been studied by many authors. We refer the reader to [14–18] and
the references therein. The usual way in studying such problem
is to look for the constrained critical points of the functional:
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In [14], J. Bellazzini and G. Siciliano obtained the existence and
stability only for sufficiently large 𝐿
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3
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mountain-pass argument developed on 𝑆(𝑐), they showed that
for 𝑐 > 0 small enough,  admits a critical point constrained on
𝑆(𝑐) at a strictly positive energy level, and it is orbitally unstable.

As for the existence of normalized solutions to nonlinear
Schrödinger system
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we refer to [19–26] and point out that no nonlocal terms are
involved. In [27], J. Wang and W. Yang studied the coupled non-
linear Hartree equations with nonlocal interaction:
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In addition to proving the existence and nonexistence of normal-
ized solutions, they also obtained a precise description of the con-
centration behavior of solutions to the system under certain type
trapping potentials by proving some delicate energy estimates.
Due to the influence of nonlocal terms, we should emphasize that
it is more difficult to estimate the energy and obtain the com-
pactness of the Palais–Smale sequence, which also leads to fewer
research on such problems.
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1.2 | Main Results

Motivated by these recent works above, we consider the existence
of solutions to (1.4) satisfying the conditions:
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In the present paper, by analyzing the compactness of the mini-
mizing sequence of the related constraint problem, we obtain the
existence of the normalized solutions of system (1.4). The orbital
stability and some nonexistence results are also considered.

We state the main results as follows.
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1.3 | Main Difficulties and Ideas
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sider the problem in 𝐻
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𝑟
(ℝ3). By establishing a weak

subadditive inequality, the strong convergence of the minimiz-
ing sequence is obtained. For the non-existence results, we
mainly obtain it by a delicate estimate of the nonlocal term and
applying the fact that any critical point of 𝐼(𝑢, 𝑣) on 𝑆(𝑎1, 𝑎2)
satisfies the identity 𝑄(𝑢, 𝑣) = 0, where 𝑄(𝑢, 𝑣) is defined in
(3.9). In addition, through the scaling transformation 𝑢
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3
appears in our study. That is, when 1 < 𝑞 <
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• Denote by “⇀” and “→” weak convergence and strong con-
vergence, respectively.

• 𝐶 represents various positive constants which may be differ-
ent from line to line.

• The symbol 𝑜
𝑛
(1) is used to denote a quantity that goes to

zero as 𝑛 → +∞.
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This paper is organized as follows. In Section 2, some preliminar-
ies are introduced. Particularly, some results in [11] are recalled
that will be used to get compactness. We also give the varia-
tional setting for our problem. Section 3 is devoted to the proof
of Theorem 1.1, which is about the existence and nonexistence of
normalized solutions of (1.4). In Section 4, the orbital stability of
the set of minimizers is established.

2 | Preliminary Results

First, let us observe that the 𝐶1 functional 𝐼(𝑢, 𝑣) is well-defined
in 𝐻

1(ℝ3) ×𝐻1(ℝ3). For 1 < 𝑞 <
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, thanks to the Hölder
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We now give an upper bound estimate for the nonlocal term.
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𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 ≤ 𝐶1‖𝑢‖
4
3
2 ‖𝑢‖

8
3
8
3

+ 𝐶2‖𝑣‖
4
3
2 ‖𝑣‖

8
3
8
3

+ 𝐶3‖𝑢‖
2
3
2 ‖𝑢‖

4
3
8
3

‖𝑣‖
2
3
2 ‖𝑣‖

4
3
8
3

.

Proof. Since 𝜙
𝑢
(𝑥) ∶= ∫ℝ3

|𝑢(𝑦)|2

|𝑥−𝑦|
d𝑦 ∈ 𝐷

1,2(ℝ3) solves the
equation

− Δ𝜙
𝑢
= 4𝜋𝑢2 in ℝ3 (2.1)

multiplying (2.1) by 𝜙
𝑢
(𝑥) and integrating, we obtain

4𝜋 ∫ℝ3
𝑢

2
𝜙
𝑢
d𝑥 = ∫ℝ3

|
|∇𝜙𝑢||

2d𝑥.

Recall the following inequality:

∫ℝ3
𝑢

2
𝜙
𝑢
d𝑥 ≤ 𝐶‖𝑢‖

4
3
2 ‖𝑢‖

8
3
8
3

,

then we have

∫ℝ3
𝑣

2
𝜙
𝑢
d𝑥 ≤

(

∫ℝ3

|
|𝜙𝑢
|
|
6d𝑥
) 1

6
(

∫ℝ3
|𝑣|

12
5 d𝑥

) 5
6

≤ 𝐶

(

∫ℝ3

|
|∇𝜙𝑢||

2d𝑥
) 1

2
(

∫ℝ3
|𝑣|

12
5 d𝑥

) 5
6

= 2
√
𝜋𝐶

(

∫ℝ3
𝑢

2
𝜙
𝑢
d𝑥
) 1

2
(

∫ℝ3
|𝑣|

12
5 d𝑥

) 5
6

≤ 𝐶̃‖𝑢‖
2
3
2 ‖𝑢‖

4
3
8
3

‖𝑣‖
2
3
2 ‖𝑣‖

4
3
8
3

.

Thus,

∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 = ∫ℝ3
𝑢

2
𝜙
𝑢
d𝑥 + ∫ℝ3

𝑣
2
𝜙
𝑣
d𝑥

+ ∫ℝ3
𝑢

2
𝜙
𝑣
d𝑥 + ∫ℝ3

𝑣
2
𝜙
𝑢
d𝑥

≤ 𝐶1‖𝑢‖
4
3
2 ‖𝑢‖

8
3
8
3

+ 𝐶2‖𝑣‖
4
3
2 ‖𝑣‖

8
3
8
3

+ 𝐶3‖𝑢‖
2
3
2 ‖𝑢‖

4
3
8
3

‖𝑣‖
2
3
2 ‖𝑣‖

4
3
8
3

.

◽

Next, we begin to show that the following properties hold, which
are important for proving the convergence of the minimizing
sequence

(
𝑢
𝑛
, 𝑣

𝑛

)
with respect to 𝑚(𝑎1, 𝑎2).

Lemma 2.2. (see [11], Lemma 3.2). Let 𝑞 ∈ (1, 3) and{(
𝑢
𝑛
, 𝑣

𝑛

)}
⊂ 𝐻

1
𝑟
(ℝ3) ×𝐻1

𝑟
(ℝ3) be such that

(
𝑢
𝑛
, 𝑣

𝑛

)
⇀ (𝑢, 𝑣) in

𝐻
1
𝑟
(ℝ3) ×𝐻1

𝑟
(ℝ3) as 𝑛→ +∞. We have, as 𝑛 → +∞,

𝜙
𝑢
𝑛
,𝑣
𝑛

→ 𝜙
𝑢,𝑣

in 𝐷
1,2
𝑟

(
ℝ3)

,

∫ℝ3

(
𝑢

2
𝑛
+ 𝑣

2
𝑛

)
𝜙
𝑢
𝑛
,𝑣
𝑛

d𝑥 → ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥,

∫ℝ3

|
|𝑢𝑛
|
|
𝑞|
|𝑣𝑛
|
|
𝑞d𝑥 → ∫ℝ3

|𝑢|𝑞|𝑣|𝑞d𝑥.

As it is usual for elliptic equations, the solutions of (1.4) satisfy
a suitable identity called Pohozaev identity, which can be found
in [11], Lemma 3.1]. Benefiting from this Pohozaev identity, our
nonexistence results are obtained.

Lemma 2.3. If (𝑢, 𝑣) is a solution of (1.4), then it satisfies the
Pohozaev identity:

𝑃
𝜆1 ,𝜆2

(𝑢, 𝑣) = 1
2
(
||∇𝑢||22 + ||∇𝑣||

2
2
)
− 3

2
(
𝜆1‖𝑢‖

2
2 + 𝜆2‖𝑣‖

2
2
)

+ 5𝛼
4 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥

− 3
2𝑞

(
||𝑢||2𝑞2𝑞 + ||𝑣||

2𝑞
2𝑞

)
− 3𝛽

𝑞 ∫ℝ3
|𝑢|𝑞|𝑣|𝑞d𝑥

= 0.

3 | Proof of Theorem 1.1

Before proving the main theorem, some lemmas are in order. The
next lemma shows that the functional 𝐼(𝑢, 𝑣) is bounded from
below on 𝑆(𝑎1, 𝑎2) when 1 < 𝑞 <

5
3

.

Lemma 3.1. If 1 < 𝑞 <
5
3

, then for every 𝑎1, 𝑎2 > 0, the func-
tional 𝐼(𝑢, 𝑣) is bounded from below and coercive on 𝑆

(
𝑎1, 𝑎2

)
.

Proof. The Gagliardo–Nirenberg inequality

||𝑢||
𝑝
≤ 𝐶

𝑁,𝑝
||∇𝑢||

𝑁(𝑝−2)
2𝑝

2 ||𝑢||
1− 𝑁(𝑝−2)

2𝑝
2 𝑓𝑜𝑟 𝑢 ∈ 𝐻

1(ℝ𝑁

)
,
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which holds for 2 ≤ 𝑝 ≤ 2∗ when 𝑁 ≥ 3, implies for (𝑢, 𝑣) ∈
𝑆

(
𝑎1, 𝑎2

)
,

∫ℝ3
|𝑢|𝑞|𝑣|𝑞d𝑥 ≤ ||𝑢||𝑞

𝑞𝑝
||𝑣||𝑞

𝑞𝑝
′ ≤ 𝐶||∇𝑢||

3(𝑝𝑞−2)
2𝑝

2 ||∇𝑣||
3(𝑝′𝑞−2)

2𝑝′

2 ,

where 𝑝 > 1, 1
𝑝
′ +

1
𝑝

= 1, 2 ≤ 𝑞𝑝, 𝑞𝑝
′ ≤ 6.

So, we obtain

𝐼(𝑢, 𝑣) = 1
2
||∇𝑢||22 +

1
2
||∇𝑣||22 +

𝛼

4 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥

− 1
2𝑞

(
||𝑢||2𝑞2𝑞 + ||𝑣||

2𝑞
2𝑞

)
− 𝛽

𝑞 ∫ℝ3
|𝑢|𝑞|𝑣|𝑞d𝑥

≥ 1
2
||∇𝑢||22 +

1
2
||∇𝑣||22 −

1
2𝑞

(
||𝑢||2𝑞2𝑞 + ||𝑣||

2𝑞
2𝑞

)

− 𝛽

𝑞 ∫ℝ3
|𝑢|𝑞|𝑣|𝑞d𝑥

≥ 1
2
||∇𝑢||22 +

1
2
||∇𝑣||22

− 1
2𝑞

(
𝐶
𝑞,𝑎1
||∇𝑢||3(𝑞−1)

2 + 𝐶
𝑞,𝑎2
||∇𝑣||3(𝑞−1)

2

)

− 𝛽𝐶

𝑞

||∇𝑢||
3(𝑝𝑞−2)

2𝑝
2 ||∇𝑣||

3(𝑝′𝑞−2)
2𝑝′

2

= 1
2
||∇𝑢||22 +

1
2
||∇𝑣||22 − 𝐶1||∇𝑢||

3(𝑞−1)
2

− 𝐶2||∇𝑣||
3(𝑞−1)
2 − 𝐶3||∇𝑢||

3(𝑝𝑞−2)
2𝑝

2 ||∇𝑣||
3(𝑝′𝑞−2)

2𝑝′

2 .

As 1 < 𝑞 <
5
3

, it follows that 0 < 3(𝑞 − 1) < 2, 0 < 3(𝑝𝑞−2)
2𝑝

+
3(𝑝′𝑞−2)

2𝑝′
< 2, which ensures the boundedness of 𝐼(𝑢, 𝑣) from below

and the coerciveness on 𝑆

(
𝑎1, 𝑎2

)
. ◽

Hereafter, we use the same notation 𝑚

(
𝑎1, 𝑎2

)
for 𝑎1, 𝑎2 ≥ 0

with either 𝑎1 > 0 or 𝑎2 > 0, namely, one component of
(
𝑎1, 𝑎2

)

maybe zero.

In what follows, we collect some basic properties of 𝑚
(
𝑎1, 𝑎2

)
.

Lemma 3.2.

1. Let 1 < 𝑞 <
4
3

, for any 𝑎1, 𝑎2 ≥ 0 with either 𝑎1 > 0 or 𝑎2 > 0,

−∞ < 𝑚

(
𝑎1, 𝑎2

)
< 0.

2. If 4
3
≤ 𝑞 <

3
2

, there exist 𝜌1, 𝜌2 > 0 such that −∞ <

𝑚

(
𝑎1, 𝑎2

)
< 0 for all 𝑎1 ∈

(
0, 𝜌1

)
, 𝑎2 ∈

(
0, 𝜌2

)
. If 3

2
< 𝑞 <

5
3

,
then there exist 𝜌3, 𝜌4 > 0 such that −∞ < 𝑚

(
𝑎1, 𝑎2

)
< 0 for

all 𝑎1 ∈
(
𝜌3,+∞

)
, 𝑎2 ∈

(
𝜌4,+∞

)
.

3. 𝑚
(
𝑎1, 𝑎2

)
is continuous with respect to 𝑎1, 𝑎2.

4. For any 𝑎1 ≥ 𝑏1 ≥ 0, 𝑎2 ≥ 𝑏2 ≥ 0,

𝑚

(
𝑎1, 𝑎2

) ≤ 𝑚

(
𝑏1, 𝑏2

)
+ 𝑚

(
𝑎1 − 𝑏1, 𝑎2 − 𝑏2

)
.

Proof.

1. It follows from Lemma 3.1 that 𝐼(𝑢, 𝑣) is coer-
cive and in particular 𝑚

(
𝑎1, 𝑎2

)
> −∞. We define

𝑢
𝑠
(𝑥) = 𝑒

3𝑠
2 𝑢(𝑒𝑠𝑥), 𝑣

𝑠
(𝑥) = 𝑒

3𝑠
2 𝑣(𝑒𝑠𝑥), so that ‖

‖𝑢𝑠(𝑥)‖‖
2
2 =

‖𝑢(𝑥)‖2
2,
‖
‖𝑣𝑠(𝑥)‖‖

2
2 = ‖𝑣(𝑥)‖

2
2, then we have the following

scaling laws,

‖
‖∇𝑢𝑠(𝑥)‖‖

2
2 = 𝑒

2𝑠‖∇𝑢(𝑥)‖2
2,

‖
‖𝑢𝑠(𝑥)‖‖

2𝑞
2𝑞 = 𝑒

3𝑠(𝑞−1)‖𝑢(𝑥)‖2𝑞
2𝑞,

∫ℝ3

|
|𝑢𝑠(𝑥)||

𝑞|
|𝑣𝑠(𝑥)||

𝑞d𝑥 = 𝑒
3𝑠(𝑞−1) ∫ℝ3

|𝑢(𝑥)|𝑞|𝑣(𝑥)|𝑞d𝑥,

∫ℝ3

[(
𝑢
𝑠
(𝑥)
)2 +

(
𝑣
𝑠
(𝑥)
)2
]
𝜙
𝑢
𝑠
,𝑣
𝑠

(𝑥)d𝑥 = 𝑒
𝑠

∫ℝ3

[
𝑢(𝑥)2 + 𝑣(𝑥)2

]
𝜙
𝑢,𝑣
(𝑥)d𝑥.

Thus,

𝐼

(
𝑢
𝑠
, 𝑣

𝑠

)
=𝑒

2𝑠

2
(
‖∇𝑢‖2

2 + ‖∇𝑣‖
2
2
)

+ 𝛼𝑒
𝑠

4 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣
(𝑥)d𝑥

− 𝑒
3𝑠(𝑞−1)

2𝑞

(
‖𝑢‖2𝑞

2𝑞 + ‖𝑣‖
2𝑞
2𝑞

)

− 𝛽𝑒
3𝑠(𝑞−1)

𝑞 ∫ℝ3
|𝑢|𝑞|𝑣|𝑞d𝑥.

We notice that 0 < 3𝑠(𝑞 − 1) < 𝑠 for 1 < 𝑞 <
4
3

; thus, for 𝑠→
−∞, we have 𝐼

(
𝑢
𝑠
, 𝑣

𝑠

)
→ 0−, which prove the first claim.

2. When 4
3
≤ 𝑞 <

3
2

, we set 𝑢
𝜃
(𝑥) = 𝜃

1
2
− 3

2
𝑟

𝑢

(
𝑥

𝜃
𝑟

)
, 𝑣

𝜃
(𝑥) =

𝜃

1
2
− 3

2
𝑟

𝑣

(
𝑥

𝜃
𝑟

)
, so that ‖

‖𝑢𝜃(𝑥)‖‖
2
2 = 𝜃‖𝑢(𝑥)‖2

2,
‖
‖𝑣𝜃(𝑥)‖‖

2
2 =

𝜃‖𝑣(𝑥)‖2
2, then the following scaling laws can be obtained:

‖
‖∇𝑢𝜃(𝑥)‖‖

2
2 = 𝜃

1−2𝑟‖∇𝑢(𝑥)‖2
2,

‖
‖𝑢𝜃(𝑥)‖‖

2𝑞
2𝑞 = 𝜃

(1−3𝑟)𝑞+3𝑟‖𝑢(𝑥)‖2𝑞
2𝑞,

∫ℝ3

|
|𝑢𝜃(𝑥)||

𝑞|
|𝑣𝜃(𝑥)||

𝑞d𝑥 = 𝜃
(1−3𝑟)𝑞+3𝑟 ∫ℝ3

|𝑢(𝑥)|𝑞|𝑣(𝑥)|𝑞d𝑥,

∫ℝ3

[(
𝑢
𝜃
(𝑥)
)2 +

(
𝑣
𝜃
(𝑥)
)2
]
𝜙
𝑢
𝜃
,𝑣
𝜃

(𝑥)d𝑥 = 𝜃
2−𝑟

∫ℝ3

[
𝑢(𝑥)2 + 𝑣(𝑥)2

]
𝜙
𝑢,𝑣
(𝑥)d𝑥.

Therefore,

𝐼

(
𝑢
𝜃
, 𝑣

𝜃

)
=1

2
𝜃

1−2𝑟(‖∇𝑢‖2
2 + ‖∇𝑣‖

2
2
)

+ 𝛼

4
𝜃

2−𝑟 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣
(𝑥)d𝑥

− 1
2𝑞
𝜃
(1−3𝑟)𝑞+3𝑟

(
‖𝑢‖2𝑞

2𝑞 + ‖𝑣‖
2𝑞
2𝑞

)

− 𝛽

𝑞

𝜃
(1−3𝑟)𝑞+3𝑟 ∫ℝ3

|𝑢|𝑞|𝑣|𝑞d𝑥.
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Note that for 𝑟 = −1, we get

𝐼

(
𝑢
𝜃
, 𝑣

𝜃

)
=1

2
𝜃

3(‖∇𝑢‖2
2 + ‖∇𝑣‖

2
2
)

+ 𝛼

4
𝜃

3 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣
(𝑥)d𝑥

− 1
2𝑞
𝜃

4𝑞−3
(
‖𝑢‖2𝑞

2𝑞 + ‖𝑣‖
2𝑞
2𝑞

)

− 𝛽

𝑞

𝜃
4𝑞−3 ∫ℝ3

|𝑢|𝑞|𝑣|𝑞d𝑥.

Since 4𝑞 − 3 < 3 for 4
3
≤ 𝑞 <

3
2

, there holds for 𝜃 →

0, 𝐼
(
𝑢
𝜃
, 𝑣

𝜃

)
→ 0−. Thus, there exist 𝜌1, 𝜌2 > 0 such that

−∞ < 𝑚

(
𝑎1, 𝑎2

)
< 0 for all 𝑎1 ∈

(
0, 𝜌1

)
, 𝑎2 ∈

(
0, 𝜌2

)
. If 3

2
<

𝑞 <
5
3

, we have 4𝑞 − 3 > 3, then for 𝜃 → +∞, 𝐼

(
𝑢
𝜃
, 𝑣

𝜃

)
→

0−. Thus, there exist 𝜌3, 𝜌4 > 0 such that −∞ < 𝑚

(
𝑎1, 𝑎2

)
<

0 for all 𝑎1 ∈
(
𝜌3,+∞

)
, 𝑎2 ∈

(
𝜌4,+∞

)
. The second claim is

completed.

3. We assume
(
𝑎
𝑛

1, 𝑎
𝑛

2
)
=
(
𝑎1, 𝑎2

)
+ 𝑜

𝑛
(1). From the definition

of 𝑚
(
𝑎
𝑛

1, 𝑎
𝑛

2
)
, for any 𝜀 > 0, there exists

(
𝑢
𝑛
, 𝑣

𝑛

)
∈ 𝑆

(
𝑎
𝑛

1, 𝑎
𝑛

2
)

such that
𝐼

(
𝑢
𝑛
, 𝑣

𝑛

) ≤ 𝑚

(
𝑎
𝑛

1, 𝑎
𝑛

2
)
+ 𝜀 (3.1)

Setting 𝑢̄
𝑛
∶= 𝑢

𝑛

‖𝑢𝑛‖2
𝑎

1
2
1 , 𝑣𝑛 ∶=

𝑣
𝑛

‖𝑣𝑛‖2
𝑎

1
2
2 , we have that

(
𝑢̄
𝑛
, 𝑣

𝑛

)
∈ 𝑆

(
𝑎1, 𝑎2

)
and

𝑚

(
𝑎1, 𝑎2

) ≤ 𝐼

(
𝑢̄
𝑛
, 𝑣

𝑛

)
= 𝐼

(
𝑢
𝑛
, 𝑣

𝑛

)
+ 𝑜

𝑛
(1) (3.2)

Combining (3.1) and (3.2), we obtain

𝑚

(
𝑎1, 𝑎2

) ≤ 𝑚

(
𝑎
𝑛

1, 𝑎
𝑛

2
)
+ 𝜀 + 𝑜

𝑛
(1) (3.3)

Similarly, from the definition of 𝑚
(
𝑎1, 𝑎2

)
, for any 𝜀 > 0,

there exists (𝑢, 𝑣) ∈ 𝑆

(
𝑎1, 𝑎2

)
such that

𝐼(𝑢, 𝑣) ≤ 𝑚

(
𝑎1, 𝑎2

)
+ 𝜀 (3.4)

Let 𝑢̄ ∶= 𝑢

‖𝑢‖2

(
𝑎
𝑛

1
) 1

2
, 𝑣 ∶= 𝑣

‖𝑣‖2

(
𝑎
𝑛

2
) 1

2 , then
(
𝑢̄, 𝑣

)
∈

𝑆

(
𝑎
𝑛

1, 𝑎
𝑛

2
)

and

𝑚

(
𝑎
𝑛

1, 𝑎
𝑛

2
) ≤ 𝐼

(
𝑢̄, 𝑣

)
= 𝐼(𝑢, 𝑣) + 𝑜

𝑛
(1) (3.5)

Combining (3.4) and (3.5), we deduce that

𝑚

(
𝑎
𝑛

1, 𝑎
𝑛

2
) ≤ 𝑚

(
𝑎1, 𝑎2

)
+ 𝜀 + 𝑜

𝑛
(1) (3.6)

Therefore, since 𝜀 > 0 is arbitrary, according to (3.3) and
(3.6), we deduce that

𝑚

(
𝑎
𝑛

1, 𝑎
𝑛

2
)
= 𝑚

(
𝑎1, 𝑎2

)
+ 𝜀 + 𝑜

𝑛
(1).

The third claim is obtained.

4. By density of 𝐶∞0
(
ℝℕ) into 𝐻

1(ℝℕ), for any 𝜀 > 0, there

exist
(
𝜉1, 𝜉2

)
,

(
𝜉1, 𝜉2

)
∈ 𝐶

∞
0
(
ℝℕ) × 𝐶∞0

(
ℝℕ) with ‖

‖
‖
𝜉
𝑖

‖
‖
‖

2

2
=

𝑏
𝑖
,
‖
‖
‖
𝜉
𝑖

‖
‖
‖

2

2
= 𝑎

𝑖
− 𝑏

𝑖
for 𝑖 = 1, 2 such that

𝐼

(
𝜉1, 𝜉2

) ≤ 𝑚

(
𝑏1, 𝑏2

)
+ 𝜀

2
(3.7)

𝐼

(
𝜉1, 𝜉2

) ≤ 𝑚

(
𝑎1 − 𝑏1, 𝑎2 − 𝑏2

)
+ 𝜀

2
(3.8)

We may assume that
(
𝑠𝑢𝑝𝑝𝜉1 ∪ 𝑠𝑢𝑝𝑝𝜉2

)
∩
(
𝑠𝑢𝑝𝑝𝜉1 ∪ 𝑠𝑢𝑝𝑝𝜉2

)
= ∅,

and

∫ℝ3

(
𝜉1

2
+ 𝜉2

2)
𝜙
𝜉1 ,𝜉2

d𝑥 = ∫ℝ3

∫ℝ3

(
𝜉1

2
(𝑥) + 𝜉2

2
(𝑥)
)(

𝜉1
2(𝑦) + 𝜉2

2(𝑦)
)

|𝑥 − 𝑦|
<

2𝜀
𝛼

,

then for 𝑖 = 1, 2,

‖
‖
‖
𝜉
𝑖
+ 𝜉

𝑖

‖
‖
‖

2

2
= ‖‖
‖
𝜉
𝑖

‖
‖
‖

2

2
+ ‖‖
‖
𝜉
𝑖

‖
‖
‖

2

2
= 𝑏

𝑖
+
(
𝑎
𝑖
− 𝑏

𝑖

)
= 𝑎

𝑖
.

It follows that 𝑚
(
𝑎1, 𝑎2

) ≤ 𝐼

(
𝜉1 + 𝜉1, 𝜉2 + 𝜉2

)
. Set 𝜉

𝑖
= 𝜉

𝑖
+

𝜉
𝑖

, we have ‖‖𝜉𝑖‖‖
2
2 = 𝑎

𝑖
for 𝑖 = 1, 2, and

𝐼

(
𝜉1, 𝜉2

)
= 1

2

(
‖
‖∇𝜉1

‖
‖

2
2 + ‖‖∇𝜉2

‖
‖

2
2

)

+ 𝛼

4 ∫ℝ3

(
𝜉

2
1 + 𝜉

2
2
)
𝜙
𝜉1 ,𝜉2

d𝑥

− 1
2𝑞

(
‖
‖𝜉1
‖
‖

2𝑞
2𝑞 + ‖‖𝜉2

‖
‖

2𝑞
2𝑞

)

− 𝛽

𝑞 ∫ℝ3

|
|𝜉1
|
|
𝑞|
|𝜉2
|
|
𝑞d𝑥

= 1
2

(
‖
‖
‖
∇𝜉1

‖
‖
‖

2

2
+ ‖‖
‖
∇𝜉2

‖
‖
‖

2

2

)

+ 𝛼

4 ∫ℝ3

(
𝜉1

2
+ 𝜉2

2)
𝜙
𝜉1 ,𝜉2

d𝑥

− 1
2𝑞

(
‖
‖
‖
𝜉1
‖
‖
‖

2𝑞

2𝑞
+ ‖‖
‖
𝜉2
‖
‖
‖

2𝑞

2𝑞

)

− 𝛽

𝑞 ∫ℝ3

|
|
|
𝜉1
|
|
|

𝑞|
|
|
𝜉2
|
|
|

𝑞

d𝑥

+ 1
2

(
‖
‖
‖
∇𝜉1

‖
‖
‖

2

2
+ ‖‖
‖
∇𝜉2

‖
‖
‖

2

2

)

+ 𝛼

4 ∫ℝ3

(
𝜉

2
1 + 𝜉

2
2

)
𝜙
𝜉1 ,𝜉2

d𝑥

− 1
2𝑞

(
‖
‖
‖
𝜉1
‖
‖
‖

2𝑞

2𝑞
+ ‖‖
‖
𝜉2
‖
‖
‖

2𝑞

2𝑞

)

− 𝛽

𝑞 ∫ℝ3

|
|
|
𝜉1
|
|
|

𝑞|
|
|
𝜉2
|
|
|

𝑞

d𝑥

+ 𝛼

4

(

∫ℝ3

(
𝜉1

2
+ 𝜉2

2)
𝜙
𝜉1 ,𝜉2

d𝑥

+∫ℝ3

(
𝜉

2
1 + 𝜉

2
2

)
𝜙
𝜉1 ,𝜉2

d𝑥
)

≤ 𝐼

(
𝜉1, 𝜉2

)
+ 𝐼

(
𝜉1, 𝜉2

)
+ 𝜀.

Combining (3.7) and (3.8), we obtain

𝑚

(
𝑎1, 𝑎2

) ≤ 𝐼

(
𝜉1, 𝜉2

) ≤ 𝑚

(
𝑏1, 𝑏2

)
+ 𝑚

(
𝑎1 − 𝑏1, 𝑎2 − 𝑏2

)
+ 2𝜀;

thus,
𝑚

(
𝑎1, 𝑎2

) ≤ 𝑚

(
𝑏1, 𝑏2

)
+ 𝑚

(
𝑎1 − 𝑏1, 𝑎2 − 𝑏2

)
.
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This completes the proof of the lemma. ◽

Remark 3.3. Note that if we set 𝑢
𝑠
(𝑥) = 𝑒

3𝑠
2 𝑢(𝑒𝑠𝑥), 𝑠 ∈ ℝ, then

𝜙
𝑢
𝑠

(𝑥) = ∫ℝ3

𝑒
3𝑠|𝑢(𝑒𝑠𝑦)|2

|𝑥 − 𝑦|
𝑑𝑦 = 𝑒

𝑠

𝜙
𝑢
(𝑒𝑠𝑥).

To obtain our nonexistence results, we use the fact that any crit-
ical point of 𝐼(𝑢, 𝑣) restricted to 𝑆

(
𝑎1, 𝑎2

)
satisfies 𝑄(𝑢, 𝑣) = 0,

where

𝑄(𝑢, 𝑣) ∶=||∇𝑢||22 + ||∇𝑣||
2
2 +

𝛼

4 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥

− 3(𝑞 − 1)
2𝑞

(
||𝑢||2𝑞2𝑞 + ||𝑣||

2𝑞
2𝑞

)

− 3𝛽(𝑞 − 1)
𝑞 ∫ℝ3

|𝑢|𝑞|𝑣|𝑞d𝑥.

(3.9)

Indeed, we have the following lemmas.

Lemma 3.4. If
(
𝑢0, 𝑣0

)
is a critical point of 𝐼(𝑢, 𝑣) on

𝑆

(
𝑎1, 𝑎2

)
, then 𝑄

(
𝑢0, 𝑣0

)
= 0.

Proof. First, we denote

𝐼
𝜆1 ,𝜆2

(𝑢, 𝑣) =1
2
||∇𝑢||22 +

1
2
||∇𝑣||22 −

𝜆1

2
‖𝑢‖2

2

−
𝜆2

2
‖𝑣‖2

2 +
𝛼

4 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥

− 1
2𝑞
(||𝑢||2𝑞2𝑞 + ||𝑣||

2𝑞
2𝑞) −

𝛽

𝑞 ∫ℝ3
|𝑢|𝑞|𝑣|𝑞d𝑥;

here, 𝜆1, 𝜆2 ∈ 𝑅, and 𝐼
𝜆1 ,𝜆2

(𝑢, 𝑣) is the energy functional corre-
sponding to the equation (1.4).

Clearly,

𝐼
𝜆1 ,𝜆2

(𝑢, 𝑣) = 𝐼(𝑢, 𝑣) −
𝜆1

2
‖𝑢‖2

2 −
𝜆2

2
‖𝑣‖2

2,

and simple calculations imply that

𝑄(𝑢, 𝑣) = 3
2

⟨
𝐼
′
𝜆1 ,𝜆2

(𝑢, 𝑣), (𝑢, 𝑣)
⟩
− 𝑃

𝜆1 ,𝜆2
(𝑢, 𝑣).

Now, from Lemma 3.1 of [11], we know that 𝑃
𝜆1 ,𝜆2

(𝑢, 𝑣) = 0 is a
Pohozaev identity for the Hartree–Fock equation (1.4). In partic-
ular, any critical point (𝑢, 𝑣) of 𝐼

𝜆1 ,𝜆2
(𝑢, 𝑣) satisfies 𝑃

𝜆1 ,𝜆2
(𝑢, 𝑣) = 0.

On the other hand, since
(
𝑢0, 𝑣0

)
is a critical point of 𝐼(𝑢, 𝑣)

on 𝑆

(
𝑎1, 𝑎2

)
, there exists a Lagrange multiplier 𝜆1, 𝜆2 ∈ 𝑅, such

that 𝐼 ′
(
𝑢0, 𝑣0

)
= 𝜆1

(
𝑢0, 0

)
+ 𝜆2

(
0, 𝑣0

)
. Thus, for any

(
𝜑1, 𝜑2

)
∈

𝐻
1(ℝ3) ×𝐻1(ℝ3), we have

⟨
𝐼
′
𝜆1 ,𝜆2

(
𝑢0, 𝑣0

)
,

(
𝜑1, 𝜑2

)⟩

=
⟨
𝐼
′(
𝑢0, 𝑣0

)
− 𝜆1

(
𝑢0, 0

)
− 𝜆2

(
0, 𝑣0

)
,

(
𝜑1, 𝜑2

)⟩
= 0,

which shows that
(
𝑢0, 𝑣0

)
is also a critical point of 𝐼

𝜆1 ,𝜆2
(𝑢, 𝑣).

Hence, 𝑃
𝜆1 ,𝜆2

(
𝑢0, 𝑣0

)
= 0 and

⟨
𝐼
′
𝜆1 ,𝜆2

(𝑢0, 𝑣0),
(
𝑢0, 𝑣0

)⟩
= 0,

𝑄

(
𝑢0, 𝑣0

)
= 0 follows then. ◽

Now, a delicate estimate of the nonlocal term is given, which is
available to control the functional 𝐼(𝑢, 𝑣) and 𝑄(𝑢, 𝑣).

Lemma 3.5. When 3
2
≤ 𝑞 ≤ 2, for any 𝜀 > 0, there are con-

stants 𝐶1, 𝐶2 > 0 depending on 𝑞, 𝜀, such that for any (𝑢, 𝑣) ∈
𝑆

(
𝑎1, 𝑎2

)
,

∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 ≥ − 1
8𝜋𝜀2

(
||∇𝑢||22 + ||∇𝑣||

2
2
)

+ 𝐶1

‖𝑢‖
2𝑞

4−2𝑞
2𝑞

‖∇𝑢‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑢‖

2𝑞−3
4−2𝑞
2

+ 𝐶2

‖𝑣‖
2𝑞

4−2𝑞
2𝑞

‖∇𝑣‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑣‖

2𝑞−3
4−2𝑞
2

.

Proof. When 3
2
≤ 𝑞 ≤ 2, by interpolation, we have

‖𝑢‖2𝑞
2𝑞 ≤ ‖𝑢‖3(4−2𝑞)

3 ‖𝑢‖4(2𝑞−3)
4 (3.10)

Since the 𝜙
𝑢,𝑣
(𝑥) ∈ 𝐷

1,2(ℝ3) solves the equation

− Δ𝜙
𝑢,𝑣
= 4𝜋

(
𝑢

2 + 𝑣
2) in ℝ3 (3.11)

on one hand, multiplying (3.11) by 𝜙
𝑢,𝑣
(𝑥) and integrating, we

obtain

4𝜋 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 = ∫ℝ3

|
|∇𝜙𝑢,𝑣(𝑥)||

2d𝑥 (3.12)

On the other hand, multiplying (3.11) by |𝑢| + |𝑣| and integrating,
we get for any 𝜂 > 0,

4𝜋𝜂 ∫ℝ3

(
𝑢

2 + 𝑣
2)(|𝑢| + |𝑣|)d𝑥 = −𝜂 ∫ℝ3

Δ𝜙
𝑢,𝑣
(𝑥)(|𝑢| + |𝑣|)d𝑥

= 𝜂 ∫ℝ3
∇𝜙

𝑢,𝑣
(𝑥)∇(|𝑢| + |𝑣|)d𝑥.

(3.13)
It follows from Young inequality that for any 𝜀 > 0,

4𝜋𝜂 ∫ℝ3

(
𝑢

2 + 𝑣
2)(|𝑢| + |𝑣|)d𝑥 ≤ 𝜀∫ℝ3

|
|∇𝜙𝑢,𝑣(𝑥)||

2d𝑥

+ 𝜂
2

4𝜀 ∫ℝ3
|∇(𝑢 + 𝑣)|2d𝑥.

(3.14)

Thus, taking 𝜂 = 1 in (3.14), combining (3.12) and (3.14), we
obtain

4𝜋 ∫ℝ3

(
𝑢

2 + 𝑣
2)(|𝑢| + |𝑣|)d𝑥 ≤ 4𝜋𝜀∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥

+ 1
4𝜀 ∫ℝ3

|∇(𝑢 + 𝑣)|2d𝑥.
(3.15)

Clearly, we observe that

∫ℝ3

(
𝑢

2 + 𝑣
2)(|𝑢| + |𝑣|)d𝑥 ≥ ∫ℝ3

(
|𝑢|3 + |𝑣|3

)
d𝑥 (3.16)
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Then, from (3.15) and (3.16),

‖𝑢‖3
3 + ‖𝑣‖

3
3 ≤ 𝜀∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 + 1
16𝜋𝜀 ∫ℝ3

|∇𝑢 + ∇𝑣|2d𝑥

(3.17)
is obtained. By (3.17),

∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 ≥ 1
𝜀

(
‖𝑢‖3

3 + ‖𝑣‖
3
3
)

− 1
16𝜋𝜀2 ∫ℝ3

|∇𝑢 + ∇𝑣|2d𝑥

≥ 1
𝜀

(
‖𝑢‖3

3 + ‖𝑣‖
3
3
)

− 1
8𝜋𝜀2

(
||∇𝑢||22 + ||∇𝑣||

2
2
)
.

(3.18)

Now, using Gagliardo-Nirenberg’s inequality, there exists a con-
stant 𝐶

𝑞
> 0, such that

‖𝑢‖4(2𝑞−3)
4 ≤ 𝐶

𝑞
‖∇𝑢‖3(2𝑞−3)

2 ‖𝑢‖2𝑞−3
2 (3.19)

Taking (3.19) into (3.10), we obtain

‖𝑢‖2𝑞
2𝑞 ≤ 𝐶

𝑞
‖𝑢‖3(4−2𝑞)

3 ‖∇𝑢‖3(2𝑞−3)
2 ‖𝑢‖2𝑞−3

2 (3.20)

Thus,

‖𝑢‖3
3 ≥

𝐶
𝑞
‖𝑢‖

2𝑞
4−2𝑞
2𝑞

‖∇𝑢‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑢‖

2𝑞−3
4−2𝑞
2

(3.21)

It follows from (3.21) and (3.18) that

∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 ≥ 𝐶
𝑞
‖𝑢‖

2𝑞
4−2𝑞
2𝑞

𝜀‖∇𝑢‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑢‖

2𝑞−3
4−2𝑞
2

+
𝐶
′
𝑞
‖𝑣‖

2𝑞
4−2𝑞
2𝑞

𝜀‖∇𝑣‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑣‖

2𝑞−3
4−2𝑞
2

− 1
8𝜋𝜀2

(
||∇𝑢||22 + ||∇𝑣||

2
2
)

=
𝐶1‖𝑢‖

2𝑞
4−2𝑞
2𝑞

‖∇𝑢‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑢‖

2𝑞−3
4−2𝑞
2

+
𝐶2‖𝑣‖

2𝑞
4−2𝑞
2𝑞

‖∇𝑣‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑣‖

2𝑞−3
4−2𝑞
2

− 1
8𝜋𝜀2

(
||∇𝑢||22 + ||∇𝑣||

2
2
)

Then, the proof is completed. ◽

The estimate on the nonlocal term leads to a lower bound on
𝑄(𝑢, 𝑣).

Lemma 3.6. When 3
2
< 𝑞 <

5
3

and 𝛼, 𝛽 > 0, for any 𝜀 > 0,
there are constants 𝐶3(𝜀, 𝑞, 𝛼, 𝛽), 𝐶4(𝜀, 𝑞, 𝛼, 𝛽) > 0, such that for
any (𝑢, 𝑣) ∈ 𝑆

(
𝑎1, 𝑎2

)
,

𝑄(𝑢, 𝑣) ≥ 32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
||∇𝑢||22 + ||∇𝑣||

2
2
)

− 𝐶3‖∇𝑢‖
3
2𝑎

1
2
1 − 𝐶4‖∇𝑣‖

3
2𝑎

1
2
2 .

(3.22)

Proof. By Lemma 3.5, for any 𝜀 > 0, there are constants
𝐶1 > 0, 𝐶2 > 0 depending on 𝜀, 𝑞, such that, for any (𝑢, 𝑣) ∈
𝑆

(
𝑎1, 𝑎2

)
, 𝛼, 𝛽 > 0, there holds

𝑄(𝑢, 𝑣) ≥ 32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
||∇𝑢||22 + ||∇𝑣||

2
2
)

+ 𝛼𝐶1

‖𝑢‖
2𝑞

4−2𝑞
2𝑞

‖∇𝑢‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑢‖

2𝑞−3
4−2𝑞
2

+ 𝛼𝐶2

‖𝑣‖
2𝑞

4−2𝑞
2𝑞

‖∇𝑣‖
3(2𝑞−3)

4−2𝑞
2 ‖𝑣‖

2𝑞−3
4−2𝑞
2

− 3(𝑞 − 1)(𝛽 + 1)
2𝑞

(
||𝑢||2𝑞2𝑞 + ||𝑣||

2𝑞
2𝑞

)
.

(3.23)

To obtain (3.22) from (3.23), we introduce the auxiliary function

𝑓
𝑘1 ,𝑘2

(
𝑥1, 𝑥2

)
= 32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
𝑘1 + 𝑘2

)
+ 𝛼𝐷1𝑥

1
4−2𝑞
1 + 𝛼𝐷2𝑥

1
4−2𝑞
2

− 3(𝑞 − 1)(𝛽 + 1)
2𝑞

(
𝑥1 + 𝑥2

)
, 𝑥1, 𝑥2 > 0

with 𝐷1 = 𝐶1

(

𝑘

3(2𝑞−3)
2(4−2𝑞)
1 ⋅ 𝑎

2𝑞−3
2(4−2𝑞)
1

)−1

, and 𝐷2 =

𝐶2

(

𝑘

3(2𝑞−3)
2(4−2𝑞)
2 ⋅ 𝑎

2𝑞−3
2(4−2𝑞)
2

)−1

. The study of the auxiliary function

will provide us with an estimate independent of ||𝑢||2𝑞2𝑞, ||𝑣||
2𝑞
2𝑞 .

Clearly,

𝜕𝑓
𝑘1 ,𝑘2

(
𝑥1, 𝑥2

)

𝜕𝑥
𝑖

= 𝛼

4 − 2𝑞
⋅𝐷

𝑖
⋅ 𝑥

2𝑞−3
4−2𝑞
𝑖

− 3(𝑞 − 1)(𝛽 + 1)
2𝑞

,

𝜕
2

𝜕𝑥
2
𝑖

𝑓
𝑘1 ,𝑘2

(
𝑥1, 𝑥2

)
= 𝛼

4 − 2𝑞
⋅

2𝑞 − 3
4 − 2𝑞

⋅𝐷
𝑖
⋅ 𝑥

4𝑞−7
4−2𝑞
𝑖

> 0,

𝑓𝑜𝑟 𝑥1, 𝑥2 > 0, 𝑖 = 1, 2.

For convenience, we set 𝑀 ∶= 3(𝑞−1)(𝛽+1)(4−2𝑞)
2𝑞

. Therefore,
𝑓
𝑘1 ,𝑘2

(
𝑥1, 𝑥2

)
has the unique global minimum at

[
𝑥1, 𝑥2

]
=

[(
𝑀

𝛼𝐷1

) 4−2𝑞
2𝑞−3

,

(
𝑀

𝛼𝐷2

) 4−2𝑞
2𝑞−3

]

,
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and

𝑓
𝑘1 ,𝑘2

(
𝑥1, 𝑥2

)
= 32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
𝑘1 + 𝑘2

)

+ 𝛼𝐷1

(
𝑀

𝛼𝐷1

) 1
2𝑞−3

+ 𝛼𝐷2

(
𝑀

𝛼𝐷2

) 1
2𝑞−3

− 3(𝑞 − 1)(𝛽 + 1)
2𝑞

[(
𝑀

𝛼𝐷1

) 4−2𝑞
2𝑞−3

+
(

𝑀

𝛼𝐷2

) 4−2𝑞
2𝑞−3

]

= 32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
𝑘1 + 𝑘2

)

+
(
𝛼𝐷1

) 2𝑞−4
2𝑞−3 ⋅𝑀

1
2𝑞−3 ⋅

(

1 − 1
4 − 2𝑞

)

+
(
𝛼𝐷2

) 2𝑞−4
2𝑞−3 ⋅𝑀

1
2𝑞−3 ⋅

(

1 − 1
4 − 2𝑞

)

= 32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
𝑘1 + 𝑘2

)

− 𝛼

2𝑞−4
2𝑞−3 𝐶1 ⋅𝑀

1
2𝑞−3 ⋅

2𝑞 − 3
4 − 2𝑞

⋅ 𝑘
3
2
1 ⋅ 𝑎

1
2
1

− 𝛼

2𝑞−4
2𝑞−3 𝐶2 ⋅𝑀

1
2𝑞−3 ⋅

2𝑞 − 3
4 − 2𝑞

⋅ 𝑘
3
2
2 ⋅ 𝑎

1
2
2

= 32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
||∇𝑢||22 + ||∇𝑣||

2
2
)

− 𝐶3‖∇𝑢‖
3
2𝑎

1
2
1 − 𝐶4‖∇𝑣‖

3
2𝑎

1
2
2 .

Because of 𝑓
𝑘1 ,𝑘2

(
𝑥1, 𝑥2

) ≥ 𝑓
𝑘1 ,𝑘2

(
𝑥1, 𝑥2

)
for all 𝑥1, 𝑥2 > 0, we get

(3.22). ◽

Next, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Assume that
(
𝑢
𝑛
, 𝑣

𝑛

)
is a minimizing

sequence with respect to 𝑚(𝑎1, 𝑎2), then 𝐼

(
𝑢
𝑛
, 𝑣

𝑛

)
= 𝑚

(
𝑎1, 𝑎2

)
+

𝑜
𝑛
(1). By the coerciveness of 𝐼(𝑢, 𝑣) on 𝑆

(
𝑎1, 𝑎2

)
, the sequence(

𝑢
𝑛
, 𝑣

𝑛

)
is bounded, and so,

(
𝑢
𝑛
, 𝑣

𝑛

)
⇀ (𝑢, 𝑣) in𝐻1

𝑟
(ℝ3) ×𝐻1

𝑟
(ℝ3).

By the compactness of the embedding 𝐻
1
𝑟

(
ℝ𝑁

)
⊂ 𝐿

𝑝

(
ℝ𝑁

)
for

2 < 𝑝 < 6, Lemma 2.2, and the weak convergence, the following
formulas hold

𝑢
𝑛
→ 𝑢 in 𝐿

2𝑞(ℝ3)
,

𝑣
𝑛
→ 𝑣 in 𝐿

2𝑞(ℝ3)
,

∫ℝ3

(
𝑢

2
𝑛
+ 𝑣

2
𝑛

)
𝜙
𝑢
𝑛
,𝑣
𝑛

d𝑥 → ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥,

∫ℝ3

|
|𝑢𝑛
|
|
𝑞|
|𝑣𝑛
|
|
𝑞d𝑥 → ∫ℝ3

|𝑢|𝑞|𝑣|𝑞d𝑥;

thus, we have

𝑚

(
𝑎1, 𝑎2

)
= lim

𝑛→∞
𝐼

(
𝑢
𝑛
, 𝑣

𝑛

) ≥ 𝐼(𝑢, 𝑣) (3.24)

Assume that
(
𝑢
𝑛
, 𝑣

𝑛

)
⇀ (𝑢, 𝑣) = (0, 0) in 𝐻

1
𝑟
(ℝ3) ×𝐻1

𝑟
(ℝ3), it fol-

lows that 𝑚
(
𝑎1, 𝑎2

) ≥ 0, which contradicts with 𝑚

(
𝑎1, 𝑎2

)
< 0.

Note that if ‖𝑢‖2
2 = 𝑎1 and ‖𝑣‖2

2 = 𝑎2, we are done. Indeed, from
the definition of 𝑚

(
𝑎1, 𝑎2

)
, we deduce 𝐼(𝑢, 𝑣) ≥ 𝑚

(
𝑎1, 𝑎2

)
this

moment, this together with (3.24) leads to

𝑚

(
𝑎1, 𝑎2

)
= 𝐼(𝑢, 𝑣) (3.25)

Therefore, combined with 𝐼

(
𝑢
𝑛
, 𝑣

𝑛

)
= 𝑚

(
𝑎1, 𝑎2

)
+ 𝑜

𝑛
(1),

the strong convergence of
(
𝑢
𝑛
, 𝑣

𝑛

)
in 𝐻

1
𝑟

(
ℝ3) ×𝐻1

𝑟

(
ℝ3)

then directly follows. Otherwise, we assume by contradic-
tion that ‖𝑢‖2

2 ∶= 𝑏1 < 𝑎1 or ‖𝑣‖2
2 ∶= 𝑏2 < 𝑎2. By definition,

𝐼(𝑢, 𝑣) ≥ 𝑚

(
𝑏1, 𝑏2

)
, and thus, it results from (3.24) that

𝑚

(
𝑏1, 𝑏2

) ≤ 𝑚

(
𝑎1, 𝑎2

)
(3.26)

At this point, by Lemma 3.2, in case 1 < 𝑞 <
4
3

,
𝑚

(
𝑎1 − 𝑏1, 𝑎2 − 𝑏2

)
< 0. In case 4

3
≤ 𝑞 <

3
2

, then there
are 𝜌1, 𝜌2 > 0 such that 𝑚

(
𝑎1 − 𝑏1, 𝑎2 − 𝑏2

)
< 0 for all

𝑎1 ∈
(
0, 𝜌1

)
, 𝑎2 ∈

(
0, 𝜌2

)
. So we get

𝑚

(
𝑎1, 𝑎2

)
> 𝑚

(
𝑏1, 𝑏2

)
+ 𝑚

(
𝑎1 − 𝑏1, 𝑎2 − 𝑏2

)
,

which is a contradiction to Lemma 3.2(4) and Theorem 1.1(1) and
(2) is proved.

Since there is (𝑢, 𝑣) ∈ 𝑆

(
𝑎1, 𝑎2

)
with 𝑚

(
𝑎1, 𝑎2

)
= 𝐼(𝑢, 𝑣). By the

Lagrange multiplier, there exist 𝜆1, 𝜆2 ∈ ℝ such that

𝐼
′(𝑢, 𝑣) = 𝜆1(𝑢, 0) + 𝜆2(0, 𝑣).

Therefore, we obtain the normalized solution
(
𝜆1, 𝜆2, 𝑢, 𝑣

)
of

(1.4)–(1.5) in ℝ2 ×𝐻1
𝑟
(ℝ3) ×𝐻1

𝑟
(ℝ3) for the above several cases.

We consider the non-existence for 3
2
< 𝑞 <

5
3

. By contradic-
tion, assuming that there are sequence 𝑎

𝑛

1 ⊂ 𝑅
+
, 𝑎

𝑛

2 ⊂ 𝑅
+, with

𝑎
𝑛

1 → 0, 𝑎𝑛2 → 0, as 𝑛 → ∞, and
{(
𝑢
𝑛
, 𝑣

𝑛

)}
⊂ 𝑆

(
𝑎
𝑛

1, 𝑎
𝑛

2
)

such that(
𝑢
𝑛
, 𝑣

𝑛

)
⊂ 𝑆

(
𝑎
𝑛

1, 𝑎
𝑛

2
)

is a critical point of 𝐼(𝑢, 𝑣) restricted to
𝑆

(
𝑎
𝑛

1, 𝑎
𝑛

2
)

. Then, on the one hand, from Lemma 3.4,

𝑄

(
𝑢
𝑛
, 𝑣

𝑛

)
= ||∇𝑢

𝑛
||22 + ||∇𝑣𝑛||

2
2 +

𝛼

4 ∫ℝ3

(
𝑢

2
𝑛
+ 𝑣

2
𝑛

)
𝜙
𝑢
𝑛
,𝑣
𝑛

d𝑥

− 3(𝑞 − 1)
2𝑞

(
||𝑢

𝑛
||2𝑞2𝑞 + ||𝑣𝑛||

2𝑞
2𝑞

)

− 3𝛽(𝑞 − 1)
𝑞 ∫ℝ3

|𝑢
𝑛
|𝑞|𝑣

𝑛
|𝑞d𝑥

= 0.

Since 𝛼 > 0, 𝛽 > 0 and 3
2
< 𝑞 <

5
3

, naturally, we deduce

||∇𝑢
𝑛
||22 + ||∇𝑣𝑛||

2
2 ≤ 3(𝑞 − 1)(𝛽 + 1)

2𝑞

(
||𝑢

𝑛
||2𝑞2𝑞 + ||𝑣𝑛||

2𝑞
2𝑞

)
(3.27)

We have, from Gagliardo–Nirenberg’s inequality, that for some
𝐶1 > 0 and 𝐶2 > 0,

||∇𝑢
𝑛
||22 + ||∇𝑣𝑛||

2
2 ≤ 𝐶1(𝑎𝑛1)

3−𝑞
2 ‖‖∇𝑢𝑛‖‖

3(𝑞−1)
2

+ 𝐶2(𝑎𝑛2)
3−𝑞

2 ‖‖∇𝑣𝑛‖‖
3(𝑞−1)
2 .

(3.28)

Because of 3(𝑞 − 1) < 2, we obtain that

||∇𝑢
𝑛
||2 → 0 𝑎𝑛𝑑 ||∇𝑣

𝑛
||2 → 0 𝑎𝑠 𝑛 → ∞ (3.29)

On the other hand, by Lemma 3.6, it follows that there are con-
stants 𝐶3(𝜀, 𝑞, 𝛼, 𝛽), 𝐶4(𝜀, 𝑞, 𝛼, 𝛽) > 0 such that

32𝜋𝜀2 − 𝛼

32𝜋𝜀2

(
||∇𝑢

𝑛
||22 + ||∇𝑣𝑛||

2
2
)

≤ 𝐶3
‖
‖∇𝑢𝑛‖‖

3
2
(
𝑎
𝑛

1
) 1

2 + 𝐶4
‖
‖∇𝑣𝑛‖‖

3
2
(
𝑎
𝑛

2
) 1

2
.

(3.30)
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According to the arbitrariness of 𝜀, we can take 𝜀 >
√

𝛼

32𝜋
, then

(3.30) implies that

||∇𝑢
𝑛
||2 →∞ 𝑜𝑟 ||∇𝑣

𝑛
||2 → ∞ 𝑎𝑠 𝑛 → ∞,

which are contradictory to (3.29). Thus, we finish the proof of
Theorem 1.1(3).

Now, when 𝑞 = 3
2

, it is enough to prove that, for any 𝑎1.𝑎2 >

0, there holds 𝑄(𝑢, 𝑣) > 0 for all (𝑢, 𝑣) ∈ 𝑆(𝑎1, 𝑎2). Indeed, if
𝑄(𝑢, 𝑣) > 0 holds true, we can conclude the nonexistence of min-
imizers directly from Lemma 3.4.

To check 𝑄(𝑢, 𝑣) > 0 for all (𝑢, 𝑣) ∈ 𝑆

(
𝑎1, 𝑎2

)
, let 𝜂 = 2 in (3.13)

and 𝜀 = 1 in (3.14), then from (3.12) and (3.14), we get

𝛼

4 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥 ≥ 𝛼

2 ∫ℝ3

(
𝑢

2 + 𝑣
2)(|𝑢| + |𝑣|)d𝑥

− 𝛼

16𝜋 ∫ℝ3

(
∇(|𝑢| + |𝑣|)2d𝑥

)
.

(3.31)

Thus, for any (𝑢, 𝑣) ∈ 𝑆

(
𝑎1, 𝑎2

)
, 𝑞 = 3

2
,

𝑄(𝑢, 𝑣) = ||∇𝑢||22 + ||∇𝑣||
2
2 +

𝛼

4 ∫ℝ3

(
𝑢

2 + 𝑣
2)
𝜙
𝑢,𝑣

d𝑥

− 1
2
(
||𝑢||33 + ||𝑣||

3
3
)
− 𝛽 ∫ℝ3

|𝑢|
3
2 |𝑣|

3
2 d𝑥

≥ ||∇𝑢||22 + ||∇𝑣||22 + 𝛼

2 ∫ℝ3

(
𝑢

2 + 𝑣
2)(|𝑢| + |𝑣|)d𝑥

− 𝛼

16𝜋 ∫ℝ3

(
∇(|𝑢| + |𝑣|)2

)
d𝑥 − 1

2
(
||𝑢||33 + ||𝑣||

3
3
)

− 𝛽 ∫ℝ3
|𝑢|

3
2 |𝑣|

3
2 d𝑥

≥ (1 − 𝛼

8𝜋

)(
||∇𝑢||22 + ||∇𝑣||

2
2
)
+ 𝛼 − 1

2
(
||𝑢||33 + ||𝑣||

3
3
)

+ (𝛼 − 𝛽)∫ℝ3
|𝑢|

3
2 |𝑣|

3
2 d𝑥.

Since 1 ≤ 𝛼 < 8𝜋, and 0 < 𝛽 < 𝛼, we can get 𝑄(𝑢, 𝑣) > 0. At this
point, the proof is complete.

4 | Proof of Theorem 1.3

In this section, we prove Theorem 1.3 following the classical argu-
ments of [28, 29].

Proof of Theorem 1.3. First of all, we notice explicitly that
𝐺

(
𝑎1, 𝑎2

)
is invariant by translation; that is, if (𝑢, 𝑣) ∈ 𝐺

(
𝑎1, 𝑎2

)
,

then also (𝑢(⋅ − 𝑦), 𝑣(⋅ − 𝑦)) ∈ 𝐺

(
𝑎1, 𝑎2

)
for any 𝑦 ∈ ℝ3. We argue

by contradiction, assuming that there exist 𝑎1 and 𝑎2 > 0 such
that 𝐺

(
𝑎1, 𝑎2

)
is not orbitally stable. This means that there is

a 𝜖0 > 0, and a sequence of initial
(
Ψ𝑛

1(0),Ψ
𝑛

2(0)
)
⊂ 𝐻

1
𝑟

(
ℝ3) ×

𝐻
1
𝑟

(
ℝ3) and

{
𝑡
𝑛

}
⊂ ℝ+ such that

inf
(𝑢,𝑣)∈𝐺(𝑎1 ,𝑎2)

‖
‖(Ψ

𝑛

1(0),Ψ
𝑛

2(0)) − (𝑢, 𝑣)‖‖𝐻1 → 0

and

inf
(𝑢,𝑣)∈𝐺(𝑎1 ,𝑎2)

‖
‖
‖

(
Ψ𝑛

1
(
⋅, 𝑡

𝑛

)
,Ψ𝑛

2
(
⋅, 𝑡

𝑛

))
− (𝑢, 𝑣)‖‖

‖𝐻1
≥ 𝜀0 (4.1)

Since by the conservation laws, the energy and the charge
associated with Ψ

𝑖
(⋅, 𝑡) 𝑖 = 1, 2. satisfies 𝐼

(
Ψ𝑛

1(⋅, 𝑡𝑛),Ψ
𝑛

2(⋅, 𝑡𝑛)
)
=

𝐼

(
Ψ𝑛

1(⋅, 0),Ψ
𝑛

2(⋅, 0)
)
, and ‖

‖Ψ
𝑛

𝑖
(⋅, 𝑡

𝑛
)‖‖

2
2 = ‖‖Ψ

𝑛

𝑖
(0)‖‖

2
2, for 𝑖 = 1, 2.

Define

̃Ψ𝑛

𝑖
(⋅, 𝑡

𝑛
) =

Ψ𝑛

𝑖
(⋅, 𝑡

𝑛
)

‖
‖Ψ

𝑛

𝑖
(⋅, 𝑡

𝑛
)‖‖2

𝑎

1
2
𝑖
, for 𝑖 = 1, 2,

we have
‖
‖
‖
̃Ψ𝑛

𝑖
(⋅, 𝑡

𝑛
)‖‖
‖

2

2
= 𝑎

𝑖
, for 𝑖 = 1, 2, and

𝐼

(
̃Ψ𝑛

1,
̃Ψ𝑛

2
)
= 𝑚

(
𝑎1, 𝑎2

)
+ 𝑜

𝑛
(1).

So we find a minimizing sequence ( ̃Ψ𝑛

1,
̃Ψ𝑛

2) with respect to
𝑚

(
𝑎1, 𝑎2

)
. However, according to Theorem 1.1 (1) and (2),

the minimizing sequence is precompact (up to translation)
in 𝐻

1
𝑟
(ℝ3) ×𝐻1

𝑟
(ℝ3), which contradicts (4.1). The proof is

completed.
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