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1. Introduction

Let Ω be a smooth bounded domain in R
N . In the study of the nonlinear

equation

− div(jξ(x, u,∇u)) + js(x, u,∇u) = g(x, u) in Ω, (1.1)

an important role is played by the coerciveness feature of j, namely the fact
that there exists a positive constant σ > 0 such that

j(x, s, ξ) ≥ σ|ξ|2 for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N . (1.2)

Under condition (1.2) and other suitable assumptions, including the bound-
edness of the map s �→ j(x, s, ξ), equation (1.1) has been deeply investigated
in the last twenty years by means of variational methods and tools of non-
smooth critical point theory, essentially via two different approaches (see,
e.g., [3, 11] and the references therein). More recently, it was also covered the
case where the map s �→ j(x, s, ξ) is unbounded (see, e.g., [4, 21], again via
different strategies). The situation is by far more delicate under the assump-
tion of degenerate coerciveness, namely for some function σ : R → R

+ with
σ(s)→ 0 as s→∞,

j(x, s, ξ) ≥ σ(s)|ξ|2 for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N . (1.3)
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To the authors’ knowledge, in this setting, for j of the form

(b(x) + |s|)−2β |ξ|2/2,
the first contribution to minimization problems is [9], while for existence of
mountain pass type solutions, we refer the reader to [5], the main point being
the fact that cluster points of arbitrary Palais–Smale sequences are bounded.
See [1] for more general existence statements and [7, 6] for regularity results.

Relying upon a solid background for the treatment of (1.1) in the co-
ercive case, the main goal of this paper is that of building a bridge between
the theory for nondegenerate coerciveness problems and that for problems
with degenerate coerciveness. Roughly speaking, we see a solution to a de-
generate problem as related to a solution of a corresponding nondegener-
ate problem, preserving at the same time the main structural assumptions
typically assumed for these classes of equations. To this aim, we introduce
a suitable class of diffeomorphisms ϕ ∈ C2(R) and consider the functions
j� : Ω× R× R

N → R and g� : Ω× R→ R, defined as

j�(x, s, ξ) = j(x, ϕ(s), ϕ′(s)ξ), g�(x, s) = g(x, ϕ(s))ϕ′(s)

for a.e. x ∈ Ω and all (s, ξ) ∈ R×R
N . Then, if (1.3) holds, we can find σ� > 0

such that
j�(x, s, ξ) ≥ σ�|ξ|2

for a.e. x ∈ Ω and all (s, ξ) ∈ R×R
N , thus recovering the nondegenerate coer-

civeness from the original degenerate framework. We write the corresponding
Euler’s equation as

− div(j�ξ(x, v,∇v)) + j�s(x, v,∇v) = g�(x, v) in Ω. (1.4)

A first natural issue is the correspondence between the solutions of (1.1)
and the solutions of (1.4) through the diffeomorphism ϕ. Roughly speaking,
the natural connection is that u = ϕ(v) is a solution of (1.1) when v is
a solution to (1.4), in some sense. On the other hand, in general, ϕ(v) 	∈
H1

0 (Ω) although v ∈ H1
0 (Ω). Hence, the notion of solution for functions in the

Sobolev space H1
0 (Ω) cannot remain invariant under the action of ϕ, unless

v ∈ L∞(Ω). In fact, we provide a new definition of generalized solution which
is partly based upon the notion of renormalized solution introduced in [13]
in the study of elliptic equations with general measure data and partly on
the variational formulation adopted in [21]. The new notion turns out to
be invariant under diffeomorphisms (Proposition 2.6) as well as conveniently
related to the machinery developed in [21]. Moreover, we detect two relevant
invariant conditions. The first (Proposition 2.11) is a modification of the
standard (noninvariant) sign condition

js(x, s, ξ)s ≥ 0 for all |s| ≥ R and some R ≥ 0, (1.5)

namely there exist ε ∈ (0, 1) and R ≥ 0 such that

(1− ε)jξ(x, s, ξ) · ξ + js(x, s, ξ)s ≥ 0 (1.6)

for a.e. x ∈ Ω and all (s, ξ) ∈ R × R
N with |s| ≥ R. Condition (1.5) is

well known [3, 4, 5, 11, 21, 8, 24] and plays an important role in the study
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of both existence and summability issues for (1.1). In [17], Frehse provides
a counterexample to the L∞(Ω)-boundedness of the solutions when (1.5) is
dropped. The second one (Proposition 2.15) is the generalized Ambrosetti–
Rabinowitz condition [2]: there exist δ > 0, ν > 2 and R ≥ 0 such that

νj(x, s, ξ)− (1 + δ)jξ(x, s, ξ) · ξ − js(x, s, ξ)s− νG(x, s) + g(x, s)s ≥ 0 (1.7)

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N with |s| ≥ R. Typically, this condition

guarantees that an arbitrary Palais–Smale sequence is bounded [3, 4, 11, 21].
The invariant properties for growth conditions are stated in Propositions 2.3,
2.9 and 2.10. In the situations where

j�s(x, s, ξ)s ≥ 0 for all |s| ≥ R� and some R� ≥ 0,

the results of our paper allow to obtain existence and multiplicity of solutions
for problems with degenerate coercivity by a direct application of the results
of [21] (see Theorem 3.1). This is new compared with the results of [5], since
the technique adopted therein does not allow to obtain multiplicity results.
In addition, contrary to [5], under certain assumptions on the nonlinearity g,
the solutions need not be bounded. The further development of the ideas in
this paper is related to strengthening some of the results of [21] in order to
allow the weaker sign condition (1.6) to replace the standard sign condition
(1.5). Then existence and multiplicity theorems for coercive equations with
unbounded coefficients automatically recover existence and multiplicity the-
orems for equations with degenerate coercivity. This will be the subject of a
further investigation.

The plan of the paper is as follows. In Section 2.1 we introduce a new
notion of generalized solution for (1.1) and prove that it is invariant under
the action of ϕ. In Section 2.2 we show how ϕ affects some useful growth
conditions. In Section 2.3 we study the invariance of the sign condition (1.6)
and get some related summability results. In Section 2.4 we consider the
invariance of an Ambrosetti–Rabinowitz (AR, in brief) type inequality (1.7).
Finally, in Section 3 we get a new existence results for multiple, possibly
unbounded, generalized solutions of (1.1).

2. Invariant properties

Now let Ω be a smooth bounded domain in R
N . We consider j : Ω×R×R

N →
R with j(·, s, ξ) measurable in Ω for all s ∈ R and ξ ∈ R

N and j(x, ·, ·) of
class C1 for a.e. x ∈ Ω. Moreover, we assume that the map ξ �→ j(x, s, ξ) is
strictly convex and there exist α, γ, μ : R+ → R

+ continuous with α(s) ≥ 1
for all s ∈ R

+ and such that

1

α(|s|) |ξ|
2 ≤ j(x, s, ξ) ≤ α(|s|)|ξ|2, (2.1)

|js(x, s, ξ)| ≤ γ(|s|)|ξ|2, |jξ(x, s, ξ)| ≤ μ(|s|)|ξ| (2.2)

for a.e. x ∈ Ω and all (s, ξ) ∈ R × R
N . Actually, the second inequality of

(2.2) can be deduced by the strict convexity of ξ �→ j(x, s, ξ) and the right

Author's personal copy
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inequality of (2.1). Furthermore, again by the strict convexity of ξ �→ j(x, s, ξ)
and the left inequality of (2.1) it holds that

jξ(x, s, ξ) · ξ ≥ 1

α(|s|) |ξ|
2; (2.3)

see [21, Remarks 4.1 and 4.3]. Without loss of generality, one may assume that
α, γ, μ : R+ → R

+ appearing in the growth conditions of j, js, jξ are mono-
tonically increasing. Indeed, we can always replace them by the increasing
functions α0, γ0, μ0 : R+ → R

+ defined by

α0(r) = sup
s∈[−r,r]

α(|s|),

γ0(r) = sup
s∈[−r,r]

γ(|s|),

μ0(r) = sup
s∈[−r,r]

μ(|s|).

We also assume that g : Ω× R→ R is a Carathéodory function such that

sup
|t|≤s

|g(·, t)| ∈ L1(Ω) for every s ∈ R
+, (2.4)

and we set G(x, s) =
∫ s

0
g(x, t)dt for every s ∈ R.

Definition 2.1. For an odd diffeomorphism ϕ : R → R of class C2 such that
ϕ(0) = 0, we consider the following properties:

ϕ′(s) ≥ σ
√
α(|ϕ(s)|) for all s ∈ R and some σ > 0, (2.5)

lim
s→+∞

sϕ′(s)
ϕ(s)

= 1 + lim
s→+∞

sϕ′′(s)
ϕ′(s)

=
1

1− β
for some β ∈ [0, 1). (2.6)

A simple model satisfying the requirements of Definition 2.1 is the func-
tion

ϕ(s) = s(1 + s2)
β

2(1−β) for all s ∈ R, 0 ≤ β < 1, (2.7)

in the case when α(t) = C(1 + t)2β for some C > 0.

Definition 2.2. Consider the functions

j : Ω× R× R
N → R, g : Ω× R→ R, G : Ω× R→ R,

and let ϕ ∈ C2(R) be a diffeomorphism according to Definition 2.1. We define

j� : Ω× R× R
N → R, g� : Ω× R→ R, G� : Ω× R→ R

by setting

j�(x, s, ξ) = j(x, ϕ(s), ϕ′(s)ξ)

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N and

g�(x, s) = g(x, ϕ(s))ϕ′(s), G�(x, s) =

∫ s

0

g�(x, t)dt = G(x, ϕ(s))

for a.e. x ∈ Ω and all s ∈ R.

Author's personal copy



Vol. 11 (2012) Invariant properties for quasi-linear operators 141

Now we see that ϕ turns a degenerate problem associated with j into a

nondegenerate one associated with j�, and that j�, j�s and j�ξ satisfy growths
analogous to those of j, js and jξ.

Proposition 2.3. Let ϕ ∈ C2(R) be a diffeomorphism which satisfies the prop-
erties of Definition 2.1. Assume that α, γ, μ : R+ → R

+ satisfy the growth
conditions (2.1)–(2.2). Then there exist continuous functions α�, γ�, μ� : R+→
R

+ and σ� > 0 such that

σ�|ξ|2 ≤ j�(x, s, ξ) ≤ α�(|s|)|ξ|2,
|j�s(x, s, ξ)| ≤ γ�(|s|)|ξ|2, |j�ξ(x, s, ξ)| ≤ μ�(|s|)|ξ|

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N .

Proof. In light of (2.1) and of (2.5) of Definition 2.1, for σ� = σ2, we have

σ�|ξ|2 ≤ ϕ′(s)2

α(|ϕ(s)|) |ξ|
2 ≤ j(x, ϕ(s), ϕ′(s)ξ) ≤ α(|ϕ(s)|)ϕ′(s)2|ξ|2

for a.e. x ∈ Ω and all (s, ξ) ∈ R × R
N . Furthermore, by virtue of (2.2), we

have

|j�ξ(x, s, ξ)| ≤ (ϕ′(s))2μ(|ϕ(s)|)|ξ|
for a.e. x ∈ Ω and all (s, ξ) ∈ R× R

N , as well as

|j�s(x, s, ξ)| ≤
[
|ϕ′′(s)|μ(|ϕ(s)|)ϕ′(s) + (ϕ′(s))3γ(|ϕ(s)|)

]
|ξ|2

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N . The assertions follow with α�, γ�, μ� :

R→ R
+,

α�(s) = α(|ϕ(s)|)ϕ′(s)2,

γ�(s) = |ϕ′′(s)|μ(|ϕ(s)|)ϕ′(s) + (ϕ′(s))3γ(|ϕ(s)|),
μ�(s) = (ϕ′(s))2μ(|ϕ(s)|)

for all s ∈ R. Of course, without loss of generality, one can then substitute
α�, γ�, μ� with even functions satisfying the same growth controls. �

2.1. Generalized solutions

For any k > 0, consider the truncation Tk : R→ R,

Tk(s) =

{
s for |s| ≤ k,

k sign(s) for |s| ≥ k.

Moreover, as in [21], for a measurable function u : Ω→ R, let us consider the
space

Vu =
{
v ∈ H1

0 (Ω) ∩ L∞(Ω) : u ∈ L∞({v 	= 0})}. (2.8)

This functional space was originally introduced by Degiovanni and Zani [16]
for functions u of H1

0 (Ω), in which case Vu turns out to be a dense subspace
of H1

0 (Ω). Observe that, in view of conditions (2.2) and (2.4), it follows that

jξ(x, u,∇u) · ∇v ∈ L1(Ω), js(x, u,∇u)v ∈ L1(Ω), g(x, u)v ∈ L1(Ω)
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142 V. Solferino and M. Squassina JFPTA

for every v ∈ Vu and any measurable u : Ω → R with Tk(u) ∈ H1
0 (Ω) for

every k > 0. For such functions, according to [13], the meaning of ∇u will be
made clear in the proof of Proposition 2.6.

In the spirit of [13], where the notion of renormalized solution is intro-
duced, and [21], where the notion of generalized solution is given, based upon
Vu, we now introduce the following definition.

Definition 2.4. We say that u is a generalized solution to{
− div(jξ(x, u,∇u)) + js(x, u,∇u) = g(x, u) in Ω,

u = 0 on ∂Ω
(2.9)

if u is a measurable function finite a.e. such that

Tk(u) ∈ H1
0 (Ω) for all k > 0, (2.10)

and, furthermore,

jξ(x, u,∇u) · ∇u ∈ L1(Ω), js(x, u,∇u)u ∈ L1(Ω), (2.11)

and∫
Ω

jξ(x, u,∇u) · ∇w +

∫
Ω

js(x, u,∇u)w =

∫
Ω

g(x, u)w for all w ∈ Vu.

(2.12)

Remark 2.5. We point out that, in [21, Definition 1.1], a different notion of
generalized solution of problem (2.9) is introduced when u belongs to the
Sobolev space H1

0 (Ω). On the other hand, actually, by [21, Theorem 4.8] the
two notions agree, whenever u ∈ H1

0 (Ω). Also, the variational formulation
(2.12) with test functions in Vu is conveniently related to the weak slope [15,
12] of the functional associated with (2.9); see [21, Proposition 4.5] (see also
Proposition 2.13).

In the framework of the previous definition, we provide in the following
a suitable meaning for the gradient of a function u which satisfies (2.10). As
proved in [13], for a measurable function u on Ω, finite a.e., with Tk(u) ∈
H1

0 (Ω) for any k > 0, there exists a unique ω : Ω → R
N , measurable and

such that

∇Tk(u) = ωχ{|u|≤k} a.e. in Ω and for all k > 0. (2.13)

Then, the gradient ∇u of u is naturally defined by setting ∇u = ω. Assume
that ϕ : R→ R is a diffeomorphism with ϕ(0) = 0 and that for a measurable
function v on Ω, it holds that Tk(v) ∈ H1

0 (Ω) for every k > 0. Then, setting
u = ϕ(v), it follows that Tk(u) ∈ H1

0 (Ω) for every k > 0. In fact, given k > 0,
there exists h > 0 such that Tk(u) = (Tk ◦ϕ) ◦Th(v). Since Tk ◦ϕ : R→ R is
a globally Lipschitz continuous function which is zero at zero, it follows that
Tk(u) ∈ H1

0 (Ω) for all k > 0. Moreover, if ∇u and ∇v denote the gradients
of u and v, respectively, in the sense pointed out above, we get the following
chain rule:

∇u = ϕ′(v)∇v a.e. in Ω. (2.14)
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In fact, for all k > 0, since Tk(u), Th(v) ∈ H1
0 (Ω), from Tk(u) = (Tk◦ϕ)◦Th(v)

we can write

∇Tk(u) = (Tk ◦ ϕ)′(Th(v))∇Th(v)

for every k > 0, namely, by (2.13),

∇uχ{|ϕ(v)|≤k} = (Tk ◦ ϕ)′(Th(v))∇vχ{|v|≤h} a.e. in Ω. (2.15)

Let now x ∈ Ω be an arbitrary point with |v(x)| ≤ h. In turn, by construction,
|ϕ(v(x))| ≤ k, and formula (2.15) directly yields

∇u = (Tk ◦ ϕ)′(v)∇v a.e. in {|v| ≤ h}. (2.16)

Formula (2.14) then follows by taking into account that (Tk ◦ ϕ)′(v(x)) =
ϕ′(v(x)) a.e. in {|v| ≤ h} and by the arbitrariness of h > 0.

The following proposition establishes a link between the generalized
solutions of the problem under the change-of-variable procedure.

Proposition 2.6. Let ϕ ∈ C2(R) be a diffeomorphism which satisfies the prop-
erties of Definition 2.1. Assume that v is a generalized solution to{

− div(j�ξ(x, v,∇v)) + j�s(x, v,∇v) = g�(x, v) in Ω,

v = 0 on ∂Ω.
(2.17)

Then u = ϕ(v) is a generalized solution to{
− div(jξ(x, u,∇u)) + js(x, u,∇u) = g(x, u) in Ω,

u = 0 on ∂Ω.
(2.18)

If in addition v ∈ H1
0 ∩ L∞(Ω), then u ∈ H1

0 ∩ L∞(Ω) is a distributional
solution to (2.18).

Proof. Let v be a generalized solution to (2.17), so that Tk(v) ∈ H1
0 (Ω) for

all k > 0. As pointed out above, it follows that Tk(u) ∈ H1
0 (Ω) too, for every

k > 0 and the chain rule ∇u = ϕ′(v)∇v holds a.e. in Ω. From the definition
of generalized solution we learn that

j�ξ(x, v,∇v) · ∇v ∈ L1(Ω), j�s(x, v,∇v)v ∈ L1(Ω), (2.19)

as well as∫
Ω

j�ξ(x, v,∇v) · ∇w +

∫
Ω

j�s(x, v,∇v)w =

∫
Ω

g�(x, v)w for all w ∈ Vv.

(2.20)
Notice that, for any w ∈ Vv, the integrands in (2.20) are in L1(Ω), by Propo-
sition 2.3, the definition of Vv and ∇v = ∇Tk(v) ∈ L2({w 	= 0}) for any
k > ‖v‖L∞({w �=0}). In light of (2.14) and (2.19), it follows that

jξ(x, u,∇u) · ∇u = j�ξ(x, v,∇v) · ∇v ∈ L1(Ω).

Moreover, a simple computation yields

j�s(x, v,∇v)v =

[
vϕ′(v)
ϕ(v)

χ{v �=0}

]
js(x, u,∇u)u+

[
vϕ′′(v)
ϕ′(v)

]
jξ(x, u,∇u) · ∇u.
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Hence, in view of (2.6), it follows that js(x, u,∇u)u ∈ L1(Ω), being

jξ(x, u,∇u) · ∇u ∈ L1(Ω) and j�s(x, v,∇v)v ∈ L1(Ω).

This yields the desired summability conditions. For any w ∈ Vv, consider now
ŵ = ϕ′(v)w. We have ŵ ∈ Vu. In fact, since v ∈ L∞({w 	= 0}), we obtain
ŵ ∈ H1

0 (Ω) ∩ L∞(Ω) and u = ϕ(v) ∈ L∞({w 	= 0}) = L∞({ŵ 	= 0}), since
ϕ′ is positive by virtue of (2.5). Of course, we have ŵ = ϕ′(Tk(v))w, for all
k > ‖v‖L∞({w �=0}). Hence, recalling (2.13), from

∇(ϕ′(Tk(v))w) = wϕ′′(Tk(v))∇vχ{|v|≤k} + ϕ′(Tk(v))∇w for any k > 0,

by choosing k > ‖v‖L∞({w �=0}), we conclude that

∇ŵ = wϕ′′(v)∇v + ϕ′(v)∇w a.e. in Ω.

Therefore, by easy computations, we get

jξ(x, u,∇u) · ∇ŵ = j�ξ(x, v,∇v) · ∇w +
ϕ′′(v)w
ϕ′(v)

jξ(x, u,∇u) · ∇u, (2.21)

js(x, u,∇u)ŵ = j�s(x, v,∇v)w − ϕ′′(v)w
ϕ′(v)

jξ(x, u,∇u) · ∇u, (2.22)

yielding

jξ(x, u,∇u) · ∇ŵ ∈ L1(Ω), js(x, u,∇u)ŵ ∈ L1(Ω),

since j�ξ(x, v,∇v) · ∇w ∈ L1(Ω), j�s(x, v,∇v)w ∈ L1(Ω) and∫
Ω

∣∣∣∣ϕ′′(v)w
ϕ′(v)

jξ(x, u,∇u) · ∇u

∣∣∣∣ =
∫
{w �=0}

∣∣∣∣ϕ′′(v)w
ϕ′(v)

jξ(x, u,∇u) · ∇u

∣∣∣∣
≤ C

∫
Ω

∣∣ jξ(x, u,∇u) · ∇u
∣∣.

By adding identities (2.21)–(2.22) and recalling the definition of g�(x, v), we
get from (2.20)∫

Ω

jξ(x, u,∇u) · ∇ŵ +

∫
Ω

js(x, u,∇u)ŵ =

∫
Ω

g(x, u)ŵ, ŵ = ϕ′(v)w ∈ Vu.

Given any z ∈ Vu, we have

w =
z

ϕ′(v)
=

z

ϕ′(Tk(v))
∈ Vv for k > ‖v‖L∞({z �=0}).

In turn,∫
Ω

jξ(x, u,∇u) · ∇z +

∫
Ω

js(x, u,∇u)z =

∫
Ω

g(x, u)z for every z ∈ Vu,

yielding the assertion. Finally, if v is a bounded generalized solution to (2.17),
u ∈ H1

0 (Ω) is bounded too and it follows that u = ϕ(v) is a distributional
solution to (2.18). �
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Remark 2.7. The gradient ∇u = ω does not agree, in general, with the
one in the sense of distributions, since it could be either u 	∈ L1

loc(Ω) or

ω 	∈ L1
loc(Ω,R

N ). If ω ∈ L1
loc(Ω,R

N ), then u ∈ W 1,1
loc (Ω) and ω agrees with

the distributional gradient [13, Remark 2.10].

Under natural regularity assumptions, a generalized solution is, actually,
distributional.

Proposition 2.8. Assume that u is a generalized solution to problem (2.9) and
that, in addition,

jξ(x, u,∇u) ∈ L1
loc(Ω;R

N ), js(x, u,∇u) ∈ L1
loc(Ω), g(x, u) ∈ L1

loc(Ω).
(2.23)

Then u solves problem (2.9) in the sense of distributions.

Proof. Let H : R → R be a smooth cutoff function such that 0 ≤ H ≤ 1,
H(s) = 1 for |s| ≤ 1 and H(s) = 0 for |s| ≥ 2. Given k > 0 and ϕ ∈
C∞

c (Ω), consider in formula (2.12) the admissible test functions w = wk =
H(T2k+1(u)/k)ϕ ∈ Vu. Whence, for every k > 0, it holds that∫

Ω

jξ(x, u,∇u) ·H(T2k+1(u)/k)∇ϕ

+

∫
Ω

jξ(x, u,∇u) ·H ′(T2k+1(u)/k)1/k∇T2k+1(u)ϕ

+

∫
Ω

js(x, u,∇u)H(T2k+1(u)/k)ϕ =

∫
Ω

g(x, u)H(T2k+1(u)/k)ϕ.

(2.24)

Taking into account that jξ(x, u,∇u) · ∇u ∈ L1(Ω) and by (2.13), for all
k > 0, we have∣∣jξ(x, u,∇u) ·H ′(T2k+1(u)/k)1/k∇T2k+1(u)ϕ

∣∣
≤ C

∣∣jξ(x, u,∇u) · ∇u
∣∣ ∈ L1(Ω),

yielding, by the Dominated Convergence Theorem,

lim
k

∫
Ω

jξ(x, u,∇u) ·H ′(T2k+1(u)/k)1/k∇T2k+1(u)ϕ = 0.

On account of assumptions (2.23), the assertion follows by letting k →∞ in
(2.24), again in light of the Dominated Convergence Theorem. �

2.2. Further growth conditions

The next proposition is useful for the study of the mountain pass geometry
of the functional associated with problem (1.1).

Proposition 2.9. Let ϕ ∈ C2(R) be a diffeomorphism satisfying the properties
of Definition 2.1 and such that

0 < lim
s→+∞

ϕ(s)

s
1

1−β

< +∞, (2.25)
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and let α� : R
+ → R

+ be the function introduced in Proposition 2.3. Let
ν > 2(1 − β), k1 ∈ L∞(Ω) with k1 > 0, k2 ∈ L1(Ω), k3 ∈ L2N/(N+2)(Ω).
Assume that

lim
s→∞

α(|s|)
|s|ν−2

= 0 and G(x, s) ≥ k1(x)|s|ν − k2(x)− k3(x)|s|1−β (2.26)

for a.e. x ∈ Ω and all s ∈ R. Then there exists ν� > 2 such that

lim
s→∞

α�(|s|)
|s|ν�−2

= 0 and G�(x, s) ≥ k�1(x)|s|ν
� − k�2(x)− k�3(x)|s|

for a.e. x ∈ Ω and all s ∈ R, for some k�1 ∈ L∞(Ω), k�1 > 0, k�2 ∈ L1(Ω) and

k�3 ∈ L
2N

N+2 (Ω).

Proof. By assumptions (2.25) and (2.6), for ν� = ν
1−β , we have

lim
s→+∞

α�(s)

sν�−2
= lim

s→∞
α(ϕ(s))

ϕ(s)ν−2
· lim
s→∞

ϕ(s)ν−2ϕ′(s)2

sν�−2
= 0.

Finally, if G(x, s) ≥ k1(x)|s|ν − k2(x)− k3(x)|s|1−β , condition (2.25) yields

G�(x, s) ≥ k1(x)|ϕ(s)|ν − k2(x)− k3(x)|ϕ(s)|1−β

≥ k�1(x)|s|ν
� − k�2(x)− k�3(x)|s|

for a.e. x ∈ Ω and all s ∈ R, for suitable k�j : Ω → R, j = 1, 2, 3, with the
stated summability. �

Now, we see how the nonlinearity g gets modified under the action of a
diffeomorphism.

Proposition 2.10. Let ϕ ∈ C2(R) be a diffeomorphism which satisfies the
properties of Definition 2.1 with 0 ≤ β < 2/N , N ≥ 3 and such that (2.25)
holds. Let g : Ω× R→ R satisfy

|g(x, s)| ≤ a(x) + b|s|p−1 for a.e. x ∈ Ω and all s ∈ R, (2.27)

for some a ∈ Lq+βq(p−1)−1

(Ω), q ≥ 2N
N+2 , b ≥ 0 with 2 < p ≤ 2∗(1−β). Then,

we have

|g�(x, s)| ≤ a�(x) + b|s|p�−1 for a.e. x ∈ Ω and all s ∈ R,

for some 2 < p� ≤ 2∗ and a� ∈ Lq(Ω).

Proof. Taking into account (2.25) and (2.6), for a.e. x ∈ Ω and all s ∈ R we
have

|g�(x, s)| ≤ a(x)ϕ′(s) + b|ϕ(s)|p−1ϕ′(s)

≤ Ca(x) + C + Ca(x)
p+β−1
p−1 + C|s| p

1−β−1,

yielding the assertion with p� = p
1−β and a� = Ca+ C + Ca

p+β−1
p−1 . �
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2.3. Sign conditions

The classical sign condition (1.5) is not invariant under diffeomorphism as
Proposition 3.5 shows. The next proposition introduces a different kind of
sign condition that remains invariant under the effect of ϕ.

Proposition 2.11. Let ϕ ∈ C2(R) be a diffeomorphism which satisfies the
properties of Definition 2.1. Assume that there exist ε ∈ (0, 1− β] and R ≥ 0
such that

(1− ε)jξ(x, s, ξ) · ξ + js(x, s, ξ)s ≥ 0 (2.28)

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N with |s| ≥ R.

Then there exist ε� ∈ (0, 1] and R� > 0 such that

(1− ε�)j�ξ(x, s, ξ) · ξ + j�s(x, s, ξ)s ≥ 0

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N with |s| ≥ R�.

Proof. Let us write ε = ε0(1 − β) for some ε0 ∈ (0, 1]. By taking into ac-
count (2.6), there exist 0 < δ < ε0(1 + ε0(1 − β))−1 and R� > 0 sufficiently
large such that

1 +
ϕ′′(s)s
ϕ′(s)

≥ ϕ′(s)s
ϕ(s)

− δ,
ϕ′(s)s
ϕ(s)

≥ 1

1− β
− δ,

and |ϕ(s)| ≥ R for all s ∈ R with |s| ≥ R�. Then, in turn, we get

j�ξ(x, s, ξ) · ξ + j�s(x, s, ξ)s

=

(
1 +

ϕ′′(s)s
ϕ′(s)

)
jξ(x, ϕ(s), ϕ

′(s)ξ) · ϕ′(s)ξ

+
ϕ′(s)s
ϕ(s)

js(x, ϕ(s), ϕ
′(s)ξ)ϕ(s)

≥ ϕ′(s)s
ϕ(s)

(
jξ(x, ϕ(s), ϕ

′(s)ξ) · ϕ′(s)ξ

+ js(x, ϕ(s), ϕ
′(s)ξ)ϕ(s)

)
− δjξ(x, ϕ(s), ϕ

′(s)ξ) · ϕ′(s)ξ

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N with |s| ≥ R�. Setting

ε� = ε0 − δ(1 + ε0(1− β)) ∈ (0, 1],

it follows by assumption that

j�ξ(x, s, ξ) · ξ + j�s(x, s, ξ)s ≥
(
ε
ϕ′(s)s
ϕ(s)

− δ

)
jξ(x, ϕ(s), ϕ

′(s)ξ) · ϕ′(s)ξ

≥ ε�j�ξ(x, s, ξ) · ξ
for a.e. x ∈ Ω and all (s, ξ) ∈ R × R

N with |s| ≥ R�. This concludes the
proof. �
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Remark 2.12. In the literature of quasi-linear problems like (1.1) the (say,
positive) sign condition js(x, s, ξ)s ≥ 0 is a classical assumption (cf. [3, 11]
and the references therein), helping to achieve both existence and summabil-
ity of the solutions. On the other hand, in [20], when j(x, s, ξ) = A(x, s)ξ · ξ,
the existence of solutions is obtained either with the opposite sign condition
or even without any sign hypothesis at all. To handle this situation, alterna-
tive conditions as [20, Assumption 1.5] are assumed, which imply (2.28) (at
least for s ≥ R) for suitable ε, as it can be easily verified.

Under the generalized sign condition (2.28), we get a summability result
which improves [21, Lemma 4.6]. This also shows that condition (2.11) in
Definition 2.4 is natural. For a function f , the notation |df |(u) stands for the
weak slope of f at u (cf., e.g., [12, 15]).

Proposition 2.13. Assume that (2.2) holds and that there exist ε ∈ (0, 1) and
R ≥ 0 such that (2.28) holds. Let us set

I(u) =

∫
Ω

j(x, u,∇u), u ∈ H1
0 (Ω).

Then, for every u ∈ dom(I) with |dI|(u) < +∞, we have∫
Ω

jξ(x, u,∇u) · ∇u+ js(x, u,∇u)u ≤ |dI|(u)‖u‖1,2. (2.29)

In particular, there holds

jξ(x, u,∇u) · ∇u ∈ L1(Ω), js(x, u,∇u)u ∈ L1(Ω),

and there exists Ψ ∈ H−1(Ω) with ‖Ψ‖H−1 ≤ |dI|(u) such that∫
Ω

jξ(x, u,∇u) · ∇w +

∫
Ω

js(x, u,∇u)w = 〈Ψ, w〉 for all w ∈ Vu.

Proof. Let b ∈ R be such that b > I(u). Notice first that if u is such that∫
Ω

jξ(x, u,∇u) · ∇u+ js(x, u,∇u)u ≤ 0,

then the conclusion holds. Otherwise, let σ be an arbitrary positive number
such that ∫

Ω

jξ(x, u,∇u) · ∇u+ js(x, u,∇u)u > σ‖u‖1,2.

Fixed η > 0, we set α−1 = ‖u‖1,2(1+ η). Let us prove that there exists δ > 0
such that, for all v ∈ B(u, δ) and for any τ ∈ L∞(Ω) with ‖τ‖∞ < δ, it
follows that∫

Ω

[
js(x,w, (1− ατ)∇v)v + jξ(x,w, (1− ατ)∇v) · ∇v

]
> σ‖u‖1,2, (2.30)

where w = (1 − ατ)v. In fact, assume by contradiction that this is not the
case. Then, we find a sequence (vn) ⊂ H1

0 (Ω) with ‖vn−u‖1,2 → 0 as n→∞
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and a sequence (τn) ⊂ L∞(Ω) with ‖τn‖∞ → 0 as n→∞ such that, denoting
wn = (1− ατn)vn for all n ≥ 1, it holds that∫

Ω

[
js(x,wn, (1− ατn)∇vn)vn + jξ(x,wn, (1− ατn)∇vn) · ∇vn

]
≤ σ‖u‖1,2.

(2.31)
Since vn → u in H1

0 (Ω) and τn → 0 in L∞(Ω) as n→∞, a.e. in Ω, we have
that

js(x,wn, (1− ατn)∇vn)vn + jξ(x,wn, (1− ατn)∇vn) · ∇vn

−→ js(x, u,∇u)u+ jξ(x, u,∇u) · ∇u.

Moreover, there exists a positive constant C(R) such that, for every n ≥ 1,

js(x,wn, (1− ατn)∇vn)vn + jξ(x,wn, (1− ατn)∇vn) · ∇vn ≥ −C(R)|∇vn|2.
(2.32)

In fact, if |wn(x)| ≥ R, from condition (2.28) the left-hand side is nonnegative.
If instead |wn(x)| ≤ R, we can assume |vn(x)| ≤ 2R, and by (2.2) we get∣∣∣ js(x,wn, (1− ατn)∇vn)vn + jξ(x,wn, (1− ατn)∇vn) · ∇vn

∣∣∣
≤ γ(|wn|)|vn| |∇vn|2 + μ(|wn|)|∇vn|2 ≤ (2γ(R)R+ μ(R))|∇vn|2.

Then, we are allowed to apply Fatou’s lemma, yielding

lim inf
n→∞

∫
Ω

[
js(x,wn, (1− ατn)∇vn)vn + jξ(x,wn, (1− ατn)∇vn) · ∇vn

]

≥
∫
Ω

js(x, u,∇u)u + jξ(x, u,∇u) · ∇u > σ‖u‖1,2,

which immediately yields a contradiction with (2.31). Hence (2.30) holds, for
some δ > 0. Observe that, since j(x, ·, ·) is of class C1 for a.e. x ∈ Ω then, for
any t ∈ [0, 1] and every v ∈ dom(I), there exists 0 ≤ τ(x, t) ≤ t such that

j(x, (1− αt)v, (1− αt)∇v)− j(x, v,∇v)

= −αt
[
js(x, (1− ατ)v, (1− ατ)∇v)v + jξ(x, (1− ατ)v, (1− ατ)∇v) · ∇v

]
.

(2.33)
As for inequality (2.32), for some C(R) > 0, for t small enough it holds that

js(x, (1− ατ)v, (1− ατ)∇v)v

+ jξ(x, (1− ατ)v, (1− ατ)∇v) · ∇v ≥ −C(R)|∇v|2.
Whence, if v ∈ dom(I), by (2.33) it follows that (1 − αt)v ∈ dom(I) for all
t ∈ [0, δ] and

js(x, (1− ατ)v, (1− ατ)∇v)v + jξ(x, (1− ατ)v, (1− ατ)∇v) · ∇v ∈ L1(Ω).
(2.34)

Up to reducing δ, we may assume that δ < η‖u‖1,2. Then, for all v ∈ B(u, δ),
we have ‖v‖1,2 ≤ (1 + η)‖u‖1,2 = α−1. Consider the continuous map H :
B(u, δ)∩ Ib× [0, δ]→ H1

0 (Ω) defined as H(v, t) = (1−αt)v, where Ib = {v ∈
H1

0 (Ω) : I(v) ≤ b}. From (2.30) (applied, for each t ∈ [0, δ], with the function
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τ(·, t) ∈ L∞(Ω, [0, δ]) for which identity (2.33) holds) and identity (2.33), for
every t ∈ [0, δ] and v ∈ B(u, δ) ∩ Ib we have

‖H(v, t)− v‖1,2 ≤ t, I(H(v, t)) ≤ I(v)− σ

1 + η
t.

Then, by means of [15, Proposition 2.5] and exploiting the arbitrariness of
η, we get |dI|(u) ≥ σ. In turn, (2.29) follows from the arbitrariness of σ.
Concerning the second part of the statement, since |dI|(u) < +∞, from (2.28)
and (2.29),

jξ(x, u,∇u) · ∇u+ js(x, u,∇u)u ∈ L1(Ω). (2.35)

In turn, using again (2.28), it follows that jξ(x, u,∇u) · ∇u ∈ L1(Ω), since

εjξ(x, u,∇u) · ∇u ≤ εμ(R)|∇u|2 + εjξ(x, u,∇u) · ∇uχ{|u|≥R}
≤ εμ(R)|∇u|2 + |js(x, u,∇u)u+ jξ(x, u,∇u) · ∇u|.

Then, by exploiting (2.35) again, js(x, u,∇u)u ∈ L1(Ω). The final assertion
does not rely upon any sign condition and follows directly from [21, Propo-
sition 4.5]. This concludes the proof. �

In the next result we show that it is possible to enlarge the class of
admissible test functions. In order to do this, suppose we have a function
u ∈ H1

0 (Ω) such that∫
Ω

jξ(x, u,∇u) · ∇z +

∫
Ω

js(x, u,∇u)z = 〈w, z〉 for all z ∈ Vu (2.36)

for w ∈ H−1(Ω). Under suitable assumptions, if (2.28) holds true, we can
use ζu ∈ H1

0 (Ω) with ζ ∈ L∞(Ω) as an admissible test functions in (2.36),
generalizing [21, Theorem 4.8].

Proposition 2.14. Assume that (2.2) and (2.28) hold. Let w ∈ H−1(Ω),
and let u ∈ H1

0 (Ω) be such that (2.36) is satisfied. Moreover, suppose that
jξ(x, u,∇u) ·∇u ∈ L1(Ω) and that there exist v ∈ H1

0 (Ω) and η ∈ L1(Ω) such
that

js(x, u,∇u)v ≥ η and jξ(x, u,∇u) · ∇v ≥ η. (2.37)

Then js(x, u,∇u)v ∈ L1(Ω), jξ(x, u,∇u) · ∇v ∈ L1(Ω) and∫
Ω

jξ(x, u,∇u) · ∇v +

∫
Ω

js(x, u,∇u)v = 〈w, v〉. (2.38)

In particular, if ζ ∈ L∞(Ω), ζ ≥ 0, ζu ∈ H1
0 (Ω) and jξ(x, u,∇u) · ∇(ζu) ∈

L1(Ω), then it follows that js(x, u,∇u)ζu ∈ L1(Ω) and∫
Ω

jξ(x, u,∇u) · ∇(ζu) +

∫
Ω

js(x, u,∇u)ζu = 〈w, ζu〉. (2.39)

Author's personal copy



Vol. 11 (2012) Invariant properties for quasi-linear operators 151

Proof. The first part of the statement follows by means of [21, Theorem 4.8].
By assumption (2.28) and since ζ is nonnegative and bounded, we have

js(x, u,∇u)ζu = ζjs(x, u,∇u)uχ{|u|≤R} + ζjs(x, u,∇u)uχ{|u|≥R}
≥ −Rγ(R)‖ζ‖L∞(Ω)|∇u|2
− (1− ε)ζjξ(x, u,∇u) · ∇u ∈ L1(Ω).

The last assertion of the statement then follows from the first one. �

2.4. AR-type conditions

Some AR-type conditions, typically used in order to guarantee the bounded-
ness of Palais–Smale sequences, remain invariant.

Proposition 2.15. Let ϕ ∈ C2(R) be a diffeomorphism which satisfies the
properties of Definition 2.1. Assume that there exist δ > 0, ν > 2(1− β) and
R ≥ 0 such that

νj(x, s, ξ)− (1 + δ)jξ(x, s, ξ) · ξ − js(x, s, ξ)s− νG(x, s) + g(x, s)s ≥ 0

and G(x, s) ≥ 0 for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N with |s| ≥ R.

Then there exist δ� > 0, ν� > 2 and R� > 0 such that

ν�j�(x, s, ξ)− (1 + δ�)j�ξ(x, s, ξ) · ξ − j�s(x, s, ξ)s

− ν�G�(x, s) + g�(x, s)s ≥ 0

and G�(x, s) ≥ 0 for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N with |s| ≥ R�.

Proof. A direct calculation yields
ν

1− β
j�(x, s, ξ)− j�ξ(x, s, ξ) · ξ − j�s(x, s, ξ)s−

ν

1− β
G�(x, s) + g�(x, s)s

=
ν

1− β
j(x, ϕ(s), ϕ′(s)ξ)−

(
1 +

ϕ′′(s)s
ϕ′(s)

)
jξ(x, ϕ(s), ϕ

′(s)ξ) · ϕ′(s)ξ

− ϕ′(s)s
ϕ(s)

js(x, ϕ(s), ϕ
′(s)ξ)ϕ(s)− ν

1− β
G(x, ϕ(s))

+
ϕ′(s)s
ϕ(s)

g(x, ϕ(s))ϕ(s)

=
ϕ′(s)s
ϕ(s)

(
ϕ(s)

ϕ′(s)s
ν

1− β
j(x, ϕ(s), ϕ′(s)ξ)

− ϕ(s)

ϕ′(s)s

(
1 +

ϕ′′(s)s
ϕ′(s)

)
jξ(x, ϕ(s), ϕ

′(s)ξ) · ϕ′(s)ξ

− js(x, ϕ(s), ϕ
′(s)ξ)ϕ(s)

− ν

1− β

ϕ(s)

ϕ′(s)s
G(x, ϕ(s)) + g(x, ϕ(s))ϕ(s)

)

for a.e. x ∈ Ω and all (s, ξ) ∈ R×R
N with s 	= 0. We recall that j(x, τ, ζ) ≥ 0,

jξ(x, τ, ζ) · ζ ≥ 0 and that the map s �→ sϕ(s) is nonnegative. Therefore, on
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account of condition (2.6), for all η > 0 small enough, there exists R� > 0
large enough such that |ϕ(s)| ≥ R for all s ∈ R with |s| ≥ R� and

ν

1− β
j�(x, s, ξ)− j�ξ(x, s, ξ) · ξ − j�s(x, s, ξ)s−

ν

1− β
G�(x, s) + g�(x, s)s

≥ ϕ′(s)s
ϕ(s)

(
νj(x, ϕ(s), ϕ′(s)ξ)− η(1− β)j(x, ϕ(s), ϕ′(s)ξ)

− jξ(x, ϕ(s), ϕ
′(s)ξ) · ϕ′(s)ξ

− η(1− β)jξ(x, ϕ(s), ϕ
′(s)ξ) · ϕ′(s)ξ

− js(x, ϕ(s), ϕ
′(s)ξ)ϕ(s)− νG(x, ϕ(s))

− η(1− β)G(x, ϕ(s)) + g(x, ϕ(s))ϕ(s)

)

≥ ((1− β)−1 − η)(δ − η(1− β))j�ξ(x, s, ξ) · ξ

− ϕ′(s)s
ϕ(s)

(1− β)ηj�(x, s, ξ)− ϕ′(s)s
ϕ(s)

(1− β)ηG�(x, s)

≥ ((1− β)−1 − η)(δ − η(1− β))j�ξ(x, s, ξ) · ξ − 2ηj�(x, s, ξ)− 2ηG�(x, s)

for a.e. x ∈ Ω and all (s, ξ) ∈ R×R
N with |s| ≥ R�. Finally, since by convexity

of j� and j�(x, s, 0) = 0 we have j�ξ(x, s, ξ) · ξ ≥ j�(x, s, ξ), we get

ν

1− β
j�(x, s, ξ)− j�ξ(x, s, ξ) · ξ − j�s(x, s, ξ)s−

ν

1− β
G�(x, s) + g�(x, s)s

≥ δ�j�ξ(x, s, ξ) · ξ + 2ηj�(x, s, ξ)− 2ηG�(x, s).

In turn, choosing η small enough and setting

δ� = (1− β)−1δ − η(5 + δ) + η2(1− β) > 0, ν� = ν(1− β)−1 − 2η > 2,

the assertion follows. �

Corollary 2.16. Let ϕ ∈ C2(R) be a diffeomorphism satisfying the properties
of Definition 2.1. Assume that ξ �→ j(x, s, ξ) is homogeneous of degree two
and that there are ν > 2 and R > 0 with

js(x, s, ξ)s ≤ 0, 0 ≤ νG(x, s) ≤ g(x, s)s (2.40)

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N with |s| ≥ R. Then

ν�j�(x, s, ξ)− (1 + δ�)j�ξ(x, s, ξ) · ξ − j�s(x, s, ξ)s− ν�G�(x, s) + g�(x, s)s ≥ 0

for a.e. x ∈ Ω and all (s, ξ) ∈ R×R
N with |s| ≥ R�, for some δ� > 0, R� > 0

and ν� > 2.

Proof. Since ξ �→ j(x, s, ξ) is 2-homogeneous and ν > 2, there exists δ > 0
with

νj(x, s, ξ)− (1 + δ)jξ(x, s, ξ) · ξ = (ν − 2− 2δ)j(x, s, ξ) ≥ 0
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for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N . Hence, by assumptions (2.40), we get

νj(x, s, ξ)− (1 + δ)jξ(x, s, ξ) · ξ − js(x, s, ξ)s− νG(x, s) + g(x, s)s ≥ 0

for a.e. x ∈ Ω and all (s, ξ) ∈ R × R
N with |s| ≥ R. Proposition 2.15 yields

the assertion. �

3. Multiplicity of solutions

As a by-product of the previous results, we obtain the following existence
result. Compared with the results of [5] here we can get infinitely many
solutions, not necessarily bounded.

Theorem 3.1. Assume that ϕ ∈ C2(R) satisfies the properties of Defini-
tion 2.1, (2.25) and let N ≥ 3. Moreover, let j : Ω × R × R

N → R satisfy
(2.1)–(2.2), ξ �→ j(x, s, ξ) be strictly convex, and

j(x,−s− ξ) = j(x, s, ξ) for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N , (3.1)

j�s(x, s, ξ)s ≥ 0 for all |s| ≥ R� and some R� ≥ 0. (3.2)

Let g : Ω× R→ R be continuous, satisfying (2.27) with 2 < p < 2∗(1− β),

g(x,−s) = −g(x, s) for a.e. x ∈ Ω and all s ∈ R, (3.3)

G(x, s) ≥ 0 for |s| ≥ R and the joint conditions (1.7) and (2.26), for some
R ≥ 0. Then,{

− div(jξ(x, u,∇u)) + js(x, u,∇u) = g(x, u) in Ω,

u = 0 on ∂Ω
(3.4)

admits a sequence (un) of generalized solutions in the sense of Definition 2.4.
Furthermore,

2N

N + 2
< q <

N

2
=⇒ un ∈ L

Nq(1−β)
N−2q (Ω),

q >
N

2
=⇒ un ∈ L∞(Ω),

in the notations of assumptions (2.27). In particular, if q > N/2, it follows
that uh ∈ H1

0 (Ω) ∩ L∞(Ω) are solutions in distributional sense.

Proof. Of course, ξ �→ j�(x, s, ξ) is strictly convex. By assumptions (2.1)–
(2.2), (2.27), (1.7) and (2.26), in light of Propositions 2.3, 2.9, 2.10 and 2.15
and taking into account the sign condition (3.2) for j�, [21, assumptions (1.1)–
(1.4), (1.7), (2.2), (2.4) and the variant (1.7) for j� of conditions (1.9) and
(2.3) joined together which still guarantees the boundedness of Palais–Smale
sequences] are satisfied for j� and g� for some R�. Also, since ϕ is odd, (3.1)
yields

j�(x,−s,−ξ) = j(x, ϕ(−s),−ϕ′(−s)ξ) = j(x,−ϕ(s),−ϕ′(s)ξ) = j�(x, s, ξ)

for a.e. x ∈ Ω and all (s, ξ) ∈ R× R
N and, analogously, (3.3) yields

g�(x,−s) = g(x, ϕ(−s))ϕ′(−s) = g(x,−ϕ(s))ϕ′(s) = −g�(x, s)
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for a.e. x ∈ Ω and all s ∈ R. Then, we are allowed to apply [21, Theorem 2.1]
and obtain a sequence (vh) ⊂ H1

0 (Ω) of generalized solutions of (2.17) in the
sense of [21], namely

j�ξ(x, vh,∇vh) · ∇vh ∈ L1(Ω), j�s(x, vh,∇vh)vh ∈ L1(Ω),

and∫
Ω

j�ξ(x, vh,∇vh) · ∇ψ +

∫
Ω

j�s(x, vh,∇vh)ψ =

∫
Ω

g�(x, vh)ψ for all ψ ∈ Vvh
.

In particular, (vn) is a sequence of H1
0 (Ω) generalized solutions of problem

(2.17) in the sense of Definition 2.4. The desired existence assertion now
follows from Proposition 2.6 for un = ϕ(vn). Concerning the summability,
if a� ∈ Lr(Ω) and |g�(x, s)| ≤ a�(x) + b|s|(N+2)/(N−2) for a.e. x ∈ Ω and
all s ∈ R, then, by [21, Theorem 7.1], a generalized solution v ∈ H1

0 (Ω) of
problem (2.17) belongs to LNr/(N−2r)(Ω) for any 2N/(N+2) < r < N/2 and
to L∞(Ω) for all r > N/2. Since g is subjected to (2.27), by Proposition 2.10,
we also get the final conclusions. �

Remark 3.2. We believe that Theorem 3.1 remains true if (3.2) is substituted
by (1.6).

Remark 3.3. For β = 0, the summability of solutions coincides with the
standard one.

By exploiting a multiplicity result of [18] which merely uses the relaxed
sign condition (2.28) it is possible to provide a fully invariant version of
Theorem 3.1 with respect to the sign condition (2.28), that we state in the
following theorem.

Theorem 3.4. Assume that ϕ ∈ C2(R) satisfies the properties of Defini-
tion 2.1, (2.25) and let N ≥ 3. Moreover, let j : Ω × R × R

N → R satisfy
(2.1)–(2.2), let ξ �→ j(x, s, ξ) be strictly convex satisfying (3.1) and (2.28).
Let g : Ω × R → R be continuous, satisfying (2.27) with 2 < p < 2∗(1 − β),
and assume that (3.3), (1.7) and (2.26) hold, for some R ≥ 0. Assume in
addition that

lim
s→∞

g(x, s)

s
=∞, jξ(x, s, ξ) · ξ ≤ 2j(x, s, ξ) (3.5)

and that j�(x, s, ξ) ≤ C|ξ|2 and j�s(x, s, ξ) ≤ C|ξ|2 for some C > 0. Then,
(3.4) admits a sequence (un) of generalized solutions with the same regularity
conclusion of Theorem 3.1.

Proof. It is sufficient to follow step by step the argument of the proof of
Theorem 3.1 by using [18, Theorem 1.2] in place of [21, Theorem 2.1], noticing
that the conditions in (3.5) are invariant under the diffeomorphism ϕ. �

The next proposition yields a class of j, which is the one studied in [5]
(condition (3.6) below is precisely condition (1.3) in [5]), satisfying the as-
sumptions of Theorem 3.1.
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Proposition 3.5. Assume that j : Ω× R× R
N → R is of the form

j(x, s, ξ) =
1

2
a(x, s)|ξ|2,

where a(x, ·) ∈ C1(R,R+) for a.e. x ∈ Ω. Assume furthermore that there
exists R ≥ 0 such that

−2βa(x, s) ≤ Dsa(x, s)(1 + |s|) sign(s) ≤ 0 (3.6)

for a.e. x ∈ Ω and all s ∈ R with |s| ≥ R. Let ϕ ∈ C2(R) be a diffeomorphism
according to Definition 2.1 which in addition satisfies

ϕ′′(s)− βϕ′(s)2

1 + ϕ(s)
≥ 0 for all s ∈ R with s ≥ 1. (3.7)

Then there exist ν� > 2, δ� > 0 and R� > 0 such that

sj�s(x, s, ξ) ≥ 0, ν�j�(x, s, ξ)− (1 + δ�)j�ξ(x, s, ξ) · ξ − j�s(x, s, ξ)s ≥ 0

for a.e. x ∈ Ω, all ξ ∈ R
N and every s ∈ R with |s| ≥ R�.

Proof. Let R� ≥ 1 be such that |ϕ(s)| ≥ R for all s ∈ R with |s| ≥ R�. Then,
by (3.6), for all s ≥ R� we have ϕ(s) ≥ R and

j�s(x, s, ξ) =
[
Dsa(x, ϕ(s))(ϕ

′(s))3 + 2ϕ′(s)ϕ′′(s)a(x, ϕ(s))
]
|ξ|2/2

≥ a(x, ϕ(s))ϕ′(s)
[−βϕ′(s)2

1 + ϕ(s)
+ ϕ′′(s)

]
|ξ|2.

Recalling that a(x, ϕ(s)) and ϕ′(s) are positive and by (3.7), one gets

j�s(x, s, ξ) ≥ 0.

Similarly, if s ≤ −R�, again by (3.6), we have ϕ(s) ≤ −R and

j�s(x, s, ξ) ≤ a(x, ϕ(s))ϕ′(s)
[

βϕ′(s)2

1 + |ϕ(s)| + ϕ′′(s)
]
|ξ|2,

and so that j�s(x, s, ξ) ≤ 0, again due to (3.7), since being ϕ and ϕ′′ odd and
ϕ′ even yields

ϕ′′(s) +
βϕ′(s)2

1 + |ϕ(s)| ≤ 0 for all s ∈ R with s ≤ −1.

The second inequality in the assertion follows from Corollary 2.16 (applied
with g = 0), since ξ �→ j(x, s, ξ) is 2-homogeneous and js(x, s, ξ)s ≤ 0 for a.e.
x ∈ Ω, all ξ ∈ R

N and any |s| ≥ R. �

Remark 3.6. In the statement of Proposition 3.5, in place of condition (3.6),
one could consider the following slightly more general assumption: there exists
R ≥ 0 such that

−2β|s|a(x, s) ≤ Dsa(x, s)(b(x) + s2) sign(s) ≤ 0 (3.8)

for a.e. x ∈ Ω and all s ∈ R with |s| ≥ R, for some measurable function
b : Ω → R such that ν−1 ≤ b(x) ≤ ν, for some ν > 0. This condition
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is satisfied for instance by a(x, s) = (b(x) + s2)−β with b measurable and
bounded between positive constants.

Remark 3.7. When the maps s �→ j�(x, s, ξ), j�s(x, s, ξ), j
�
ξ(x, s, ξ) are bound-

ed, the variational formulation of (2.17) can be meant in the sense of distri-
butions (see Proposition 2.8). For instance, as it can be easily verified, this
occurs for the a mentioned in Remark 3.6, a(x, s) = (b(x) + s2)−β .

Acknowledgments

This work was supported by Miur project “Variational and Topological Meth-
ods in the Study of Nonlinear Phenomena.” The second author wishes to
thank Marco Degiovanni for useful discussions and Luigi Orsina for some
feedback on a preliminary version of the paper. The second author wishes to
dedicate this work to the memory of his mother Maria Grazia.

References

[1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence
results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat.
Pura Appl. (4) 182 (2003), 53–79.

[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point
theory and applications. J. Funct. Anal. 14 (1973), 349–381.

[3] D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus
of variations. Arch. Ration. Mech. Anal. 134 (1996), 249–274.

[4] D. Arcoya and L. Boccardo, Some remarks on critical point theory for non-
differentiable functionals. NoDEA Nonlinear Differential Equations Appl. 6
(1999), 79–100.

[5] D. Arcoya, L. Boccardo and L. Orsina, Existence of critical points for some
noncoercive functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001),
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