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By means of nonsmooth critical point theory we prove existence of at least two solutions for a general
class of variational inequalities when between the obstacle and the behavior at +∞ there is a situation
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1. Introduction

Starting from the pioneering paper of Ambrosetti and Prodi [1], jumping problems for
semilinear elliptic equations of the type







−
n
∑

i,j=1

Dj(aij(x)Diu) = g(x, u) in Ω

u = 0 on ∂Ω,

have been extensively treated (see e.g. [14, 18, 20, 21]).

Moreover, also the case of semilinear variational inequalities with a situation of jumping
type has been discussed in [12, 19]. Very recently, quasilinear inequalities of the form:



















∫

Ω

{ n
∑

i,j=1

aij(x, u)DiuDj(v − u) + 1
2

n
∑

i,j=1

Dsaij(x, u)DiuDju(v − u)
}

dx+

−
∫

Ω
g(x, u)(v − u) dx > 〈ω, v − u〉 ∀v ∈ ˜Kϑ,

u ∈ Kϑ,

where Kϑ = {u ∈ H1
0 (Ω) : u > ϑ a. e. in Ω}, ˜Kϑ = {v ∈ Kϑ : (v − u) ∈ L∞(Ω)} and

ϑ ∈ H1
0 (Ω), have been considered in [11].

When ϑ ≡ −∞, namely we have no obstacle and the variational inequality becomes an
equation, the problem has been also studied in [5, 6] by A. Canino and has been extended
in [13] by the authors to the case of fully nonlinear operators.
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The purpose of this paper is to study the more general class of nonlinear variational
inequalities of the type :



















∫

Ω

{

∇ξL(x, u,∇u) · ∇(v − u) +DsL(x, u,∇u)(v − u)
}

dx+

−
∫

Ω
g(x, u)(v − u) dx > 〈ω, v − u〉 ∀v ∈ ˜Kϑ,

u ∈ Kϑ.

(1)

In the main result we shall prove the existence of at least two solutions of (1). The
framework is the same of [13], but technical difficulties arise, mainly in the verification
of the Palais–Smale condition. This is due to the fact that such condition is proved in
[13] using in a crucial way test functions of exponential type. Such test functions are
not admissible for the variational inequality, so that a certain number of modifications is
required in particular in the proofs of Theorem 4.4 and Theorem 5.2.

As in the previous papers dealing with quasilinear equations and inequalities (see e.g.
[3, 5, 6, 7, 11, 22]) we will use variational methods based on the nonsmooth critical point
theory of [9, 10]. Let us mention that similar abstract techniques have been developed
independently in [15, 16].

2. The main result

In the following, Ω will denote a bounded domain of Rn, 1 < p < n, ϑ ∈ W 1,p
0 (Ω) with

ϑ− ∈ L∞(Ω), ω ∈ W−1,p′(Ω) and

L : Ω × R× Rn → R

is measurable in x for all (s, ξ) ∈ R × Rn and of class C1 in (s, ξ) a. e. in Ω. We shall
assume that L(x, s, ·) is strictly convex and for each t ∈ R

L(x, s, tξ) = |t|pL(x, s, ξ) (2)

for a. e. x ∈ Ω and for all (s, ξ) ∈ R× Rn. Furthermore, we assume that :

(i) there exist ν > 0 and b1 ∈ R such that

ν|ξ|p 6 L(x, s, ξ) 6 b1|ξ|p, (3)

for a. e. x ∈ Ω and for all (s, ξ) ∈ R× Rn;

(ii) there exist b2, b3 ∈ R such that

|DsL(x, s, ξ)| 6 b2|ξ|p, (4)

for a. e. x ∈ Ω and for all (s, ξ) ∈ R× Rn and

|∇ξL(x, s, ξ)| 6 b3|ξ|p−1, (5)

for a. e. x ∈ Ω and for all (s, ξ) ∈ R× Rn;
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(iii) there exist R > 0 and a bounded Lipschitzian function ψ : [R,+∞[→ [0,+∞[ such
that

s > R =⇒ DsL(x, s, ξ) > 0, (6)

s > R =⇒ DsL(x, s, ξ) 6 ψ′(s)∇ξL(x, s, ξ) · ξ, (7)

for a. e. x ∈ Ω and for all ξ ∈ Rn. We denote by ψ the limit of ψ(s) as s → +∞.

(iv) g(x, s) is a Carathéodory function and G(x, s) =
∫ s

0
g(x, τ) dτ. We assume that there

exist a ∈ L
np

n(p−1)+p (Ω) and b ∈ L
n
p (Ω) such that

|g(x, s)| 6 a(x) + b(x)|s|p−1, (8)

for a. e. x ∈ Ω and all s ∈ R. Moreover, there exists α ∈ R such that

lim
s→+∞

g(x, s)

sp−1
= α, (9)

for a. e. x ∈ Ω.

Set now :
lim

s→+∞
L(x, s, ξ) = L∞(x, ξ)

(this limit exists by (6)). We also assume that L∞(x, ·) is strictly convex for a. e. x ∈ Ω.
Let us remark that we are not assuming the strict convexity uniformly in x so that such
L∞ is pretty general. Moreover, assume that

sh → +∞, ξh → ξ =⇒ ∇ξL(x, sh, ξh) → ∇ξL∞(x, ξ), (10)

for a. e. x ∈ Ω. Let now

λ1 = min

{

p

∫

Ω

L∞(x,∇u) dx : u ∈ W 1,p
0 (Ω),

∫

Ω

|u|p dx = 1

}

, (11)

be the first (nonlinear) eigenvalue of

{u 7→ −div (∇ξL∞(x,∇u))} .

Observe that by [2, Lemma 1.4] the first eigenfunction φ1 belongs to L∞(Ω) and by [23,
Theorem 1.1] is strictly positive.

Our purpose is to study (1) when ω = −tp−1φp−1
1 , namely the family of problems

(Pt)























∫

Ω

{

∇ξL(x, u,∇u) · ∇(v − u) +DsL(x, u,∇u)(v − u)
}

dx+

−
∫

Ω
g(x, u)(v − u) dx+ tp−1

∫

Ω
φp−1
1 (v − u) dx > 0 ∀v ∈ ˜Kϑ,

u ∈ Kϑ,

where
Kϑ =

{

u ∈ W 1,p
0 (Ω) : u > ϑ a. e. in Ω

}

and ˜Kϑ = {v ∈ Kϑ : (v − u) ∈ L∞(Ω)}.

Under the previous assumptions, the following is our main result :
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Theorem 2.1. Assume that α > λ1. Then there exists t̄ ∈ R such that for all t > t̄ the
problem (Pt) has at least two solutions.

This result extends [11, Theorem 2.1] dealing with Lagrangians of the type

L(x, s, ξ) =
1

2

n
∑

i,j=1

aij(x, s)ξiξj −G(x, s)

for a. e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.

In this particular case, existence of at least three solutions has been proved in [6] for
equations assuming α > µ2 where µ2 is the second eigenvalue of the operator

{

u 7→ −
n

∑

i,j=1

Dj(AijDiu)

}

.

In our general setting, since L∞ is not quadratic with respect to ξ, we only have the
existence of the first eigenvalue λ1 and it is not clear how to define higher order eigenvalues
λ2, λ3, . . .. Therefore in our case the comparison of α with higher eigenvalues has no
obvious formulation.

3. Recalls from nonsmooth critical point theory

Let (X, d) be a metric space and let f : X → R be a function. We denote by Br(u) the
open ball of center u and radius r and set epi(f) = {(u, λ) ∈ X × R : f(u) 6 λ}. In the
following, the space X × R will be endowed with the metric

d((u, λ), (v, µ)) = ((d(u, v))2 + (λ− µ)2)
1
2

and epi(f) with the induced metric. Finally, we set D(f) = {u ∈ X : f(u) < +∞}.
Definition 3.1. For every u ∈ X with f(u) ∈ R, we denote by |df |(u) the supremum of
the σ′s in [0,+∞[ such that there exist δ > 0 and a continuous map

H : (Bδ(u, f(u)) ∩ epi(f))× [0, δ] → X

satisfying
d(H((v, µ), t), v) 6 t, f(H((v, µ), t)) 6 µ− σt,

whenever (v, µ) ∈ Bδ(u, f(u))∩ epi(f) and t ∈ [0, δ]. The extended real number |df |(u) is
called the weak slope of f at u.

The above notion has been introduced, in an equivalent way, independently in [10, 16],
while a variant has been considered in [15]. The form mentioned here is taken from [4].
For further details see [11, Section 3].

Definition 3.2. An element u ∈ X is said to be a (lower) critical point of f if |df |(u) = 0.
A real number c is said to be a (lower) critical value of f if there exists a critical point
u ∈ X of f such that f(u) = c. Otherwise c is said to be a regular value of f .
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Definition 3.3. Let c be a real number. The function f is said to satisfy the Palais–
Smale condition at level c ((PS)c for short), if every sequence (uh) in X with |df |(uh) → 0
and f(uh) → c admits a subsequence converging in X.

We now recall the main existence tool of the paper.

Theorem 3.4. Let X be a Banach space and f : X → R ∪ {+∞} a function such that
D(f) is closed in X and f|D(f)

is continuous. Let u0, v0, v1 be in X and suppose that there

exists r > 0 such that ‖v0 − u0‖ < r, ‖v1 − u0‖ > r, inf f(Br(u0)) > −∞, and

inf{f(u) : u ∈ X, ‖u− u0‖ = r} > max{f(v0), f(v1)}.

Let
Γ = {γ : [0, 1] → D(f) continuous with γ(0) = v0, γ(1) = v1}

and assume that Γ 6= ∅ and that f satisfies the Palais–Smale condition at the two levels

c1 = inf f(Br(u0)), c2 = inf
γ∈Γ

max
[0,1]

(f ◦ γ).

Then −∞ < c1 < c2 < +∞ and there exist at least two critical points u1, u2 of f such
that f(ui) = ci (i = 1, 2).

Proof. It is sufficient to combine [10, Theorem 3.12] with [11, Proposition 3.4].

4. The bounded Palais–Smale condition

In this section we shall consider the more general variational inequalities (1). To this aim

let us now introduce the functional f : W 1,p
0 (Ω) → R ∪ {+∞}

f(u) =

{
∫

Ω
L(x, u,∇u) dx−

∫

Ω
G(x, u) dx− 〈ω, u〉 u ∈ Kϑ

+∞ u 6∈ Kϑ.

Definition 4.1. Let c ∈ R. A sequence (uh) in Kϑ is said to be a concrete Palais–Smale
sequence at level c, ((CPS)c−sequence, for short) for f , if f(uh) → c and there exists a

sequence (ϕh) in W−1,p′(Ω) such that ϕh → 0 and

∫

Ω

∇ξL(x, uh,∇uh) · ∇(v − uh) dx+

∫

Ω

DsL(x, uh,∇uh)(v − uh) dx+

−
∫

Ω

g(x, uh)(v − uh) dx− 〈ω, v − uh〉 > 〈ϕh, v − uh〉 ∀v ∈ ˜Kϑ.

We say that f satisfies the concrete Palais–Smale condition at level c, ((CPS)c, for short),

if every (CPS)c−sequence for f admits a strongly convergent subsequence in W 1,p
0 (Ω).

Theorem 4.2. Let u in Kϑ be such that |df |(u) < +∞. Then there exists ϕ in W−1,p′(Ω)
such that ‖ϕ‖−1,p′ 6 |df |(u) and

∫

Ω

∇ξL(x, u,∇u) · ∇(v − u) dx+

∫

Ω

DsL(x, u,∇u)(v − u) dx+

−
∫

Ω

g(x, u)(v − u) dx− 〈ω, v − u〉 > 〈ϕ, v − u〉 ∀v ∈ ˜Kϑ.
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Proof. Argue as in [11, Theorem 4.6].

Proposition 4.3. Let c ∈ R and assume that f satisfies the (CPS)c condition. Then f
satisfies the (PS)c condition.

Proof. It is an easy consequence of Theorem 4.2.

Let us note that by combining (3) with the convexity of L(x, s, ·), we get

∇ξL(x, s, ξ) · ξ > ν|ξ|p (12)

for a. e. x ∈ Ω and for all (s, ξ) ∈ R× Rn. Moreover, there exists M > 0 such that

|DsL(x, s, ξ)| 6 M∇ξL(x, s, ξ) · ξ (13)

for a. e. x ∈ Ω and for all (s, ξ) ∈ R× Rn.

Suppose now that ϑ(x) > −R for a. e. x ∈ Ω, where R > 0 is as in (iii) and define

˜L(x, s, ξ) =

{

L(x, s, ξ) s > −R

L(x,−R, ξ) s 6 −R.

Such ˜L satisfy our assumptions. On the other hand, if u satisfies

( ˜Pt)























∫

Ω

{

∇ξ
˜L(x, u,∇u) · ∇(v − u) +Ds

˜L(x, u,∇u)(v − u)
}

dx+

−
∫

Ω
g(x, u)(v − u) dx+ tp−1

∫

Ω
φp−1
1 (v − u) dx > 0 ∀v ∈ ˜Kϑ,

u ∈ Kϑ,

then u satisfies (Pt). Therefore, up to substituting L with ˜L, we can assume that L

satisfies (6) for any s ∈ R with |s| > R. (Actually ˜L is only locally Lipschitz in s but one

might always define ˜L(x, s, ξ) = L(x, σ(s), ξ) for a suitable smooth function σ).

Now, we want to provide in Theorem 4.5 a very useful criterion for the verification of
(CPS)c condition. Let us first prove a local compactness property for (CPS)c−sequences.

Theorem 4.4. Let (uh) be a sequence in Kϑ and (ϕh) a sequence in W−1,p′(Ω) such that

(uh) is bounded in W 1,p
0 (Ω), ϕh → ϕ and

∫

Ω

∇ξL(x, uh,∇uh) · ∇(v − uh) dx+

+

∫

Ω

DsL(x, uh,∇uh)(v − uh) dx > 〈ϕh, v − uh〉 ∀v ∈ ˜Kϑ. (14)

Then it is possible to extract a subsequence (uhk
) strongly convergent in W 1,p

0 (Ω).

Proof. Up to a subsequence, (uh) converges to some u weakly in W 1,p
0 (Ω), strongly in

Lp(Ω) and a. e. in Ω. Moreover, arguing as in step I of [11, Theorem 4.18] it follows that

∇uh(x) → ∇u(x) for a. e. x ∈ Ω.
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We divide the proof into several steps.

I) Let us prove that

lim sup
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇(−u−
h ) exp {−M(uh −R)−} dx 6

6
∫

Ω

∇ξL(x, u,∇u) · ∇(−u−) exp {−M(u−R)−} dx (15)

where M > 0 is defined in (13) and R > 0 has been introduced in hypothesis (6).

Consider the test functions

v = uh + ζ exp {−M(uh +R)+}

in (14) where ζ ∈ W 1,p
0 (Ω) ∩ L∞(Ω) and ζ > 0. Then

∫

Ω

∇ξL(x, uh,∇uh) · ∇ζ exp {−M(uh +R)+} dx+

+

∫

Ω

[DsL(x, uh,∇uh)−M∇ξL(x, uh,∇uh) · ∇(uh +R)+]ζ exp {−M(uh +R)+} dx

> 〈ϕh, ζ exp {−M(uh +R)+}〉.

From (6) and (13) we deduce that

[

DsL(x, uh,∇uh)−M∇ξL(x, uh,∇uh) · ∇(uh +R)+
]

ζ exp {−M(uh +R)+} 6 0,

so that by the Fatou’s Lemma we get

∫

Ω

∇ξL(x, u,∇u) · ∇ζ exp {−M(u+R)+} dx+

+

∫

Ω

[DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇(u+R)+]ζ exp {−M(u+R)+} dx >

> 〈ϕ, ζ exp {−M(u+R)+}〉 ∀ζ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ζ > 0. (16)

Now, let us consider the functions

ηk = η exp {M(u+R)+}ϑk(u),

where η ∈ W 1,p
0 (Ω) ∩ L∞(Ω) with η > 0 and ϑk ∈ C∞(R) is such that 0 6 ϑk(s) 6 1,

ϑk = 1 on [−k, k], ϑk = 0 outside [−2k, 2k] and |ϑ′
k| 6 c/k for some c > 0.

Putting them in (16), for each k > 1 we obtain

∫

Ω

∇ξL(x, u,∇u) · ∇(ηϑk(u)) dx+

∫

Ω

DsL(x, u,∇u)ηϑk(u) dx >

> 〈ϕ, ηϑk(u)〉 ∀η ∈ W 1,p
0 (Ω) ∩ L∞(Ω), η > 0.
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Passing to the limit as k → +∞ we obtain

∫

Ω

∇ξL(x, u,∇u) · ∇η dx+

∫

Ω

DsL(x, u,∇u)η dx >

> 〈ϕ, η〉 ∀η ∈ W 1,p
0 (Ω) ∩ L∞(Ω), η > 0. (17)

Taking η = (ϑ− − u−) exp {−M(u−R)−} ∈ W 1,p
0 (Ω) ∩ L∞(Ω) in (17) we get

∫

Ω

∇ξL(x, u,∇u) · ∇(ϑ− − u−) exp {−M(u−R)−} dx >

> −
∫

Ω

[

DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇(u−R)−
]

(ϑ− − u−) exp {−M(u−R)−}dx+ 〈ϕ, (ϑ− − u−) exp {−M(u−R)−}〉. (18)

On the other hand, taking

v = uh − (ϑ− − u−
h ) exp {−M(uh −R)−} > uh − (ϑ− − u−

h ) = u+
h − ϑ−

in (14) we obtain

∫

Ω

∇ξL(x, uh,∇uh) · ∇(ϑ− − u−
h ) exp {−M(uh −R)−} dx+

∫

Ω

[

DsL(x, uh,∇uh)−M∇ξL(x, uh,∇uh) ·∇(uh−R)−
]

(ϑ−−u−
h ) exp {−M(uh −R)−}dx

6 〈ϕh, (ϑ
− − u−

h ) exp {−M(uh −R)−}〉. (19)

From (6) and (13) we deduce that

DsL(x, uh,∇uh)−M∇ξL(x, uh,∇uh) · ∇(uh −R)− > 0.

From (19), using Fatou’s Lemma and (18) we obtain

lim sup
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇(ϑ− − u−
h ) exp {−M(uh −R)−} dx 6

6
∫

Ω

∇ξL(x, u,∇u) · ∇(ϑ− − u−) exp {−M(u−R)−} dx. (20)

Since

lim
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇ϑ− exp {−M(uh −R)−} dx =

=

∫

Ω

∇ξL(x, u,∇u) · ∇ϑ− exp {−M(u−R)−} dx,

then from (20) we deduce (15).
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II) Let us now prove that

lim sup
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇u+
h exp {−M(uh −R)−} dx 6

6
∫

Ω

∇ξL(x, u,∇u) · ∇u+ exp {−M(u−R)−} dx. (21)

We consider the test functions

v = uh −
[

(u+
h − ϑ+) ∧ k

]

exp {−M(uh −R)−} > ϑ+ (ϑ− − u−
h )

in (14). By Fatou’s Lemma, we get

∫

Ω

∇ξL(x, uh,∇uh) · ∇(u+
h − ϑ+) exp {−M(uh −R)−} dx+

∫

Ω

[

DsL(x, uh,∇uh)−M∇ξL(x, uh,∇uh) ·∇(uh−R)−
]

(u+
h−ϑ+) exp {−M(uh −R)−} dx

6 〈ϕh, (u
+
h − ϑ+) exp {−M(uh−R)−}〉 (22)

from which we deduce that

[

DsL(x, uh,∇uh)−M∇ξL(x, uh,∇uh) · ∇(uh −R)−
]

(u+
h −ϑ+) exp {−M(uh −R)−}

belongs to L1(Ω). Using Fatou’s Lemma in (22) we obtain

lim sup
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇(u+
h − ϑ+) exp {−M(uh −R)−} dx 6

6 −
∫

Ω

[

DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇(u−R)−
]

(23)

(u+ − ϑ+) exp {−M(u−R)−}dx + 〈ϕ, (u+ − ϑ+) exp {−M(u−R)−}〉,

from which we also deduce that

[

DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇(u−R)−
]

(u+ − ϑ+) exp {−M(u−R)−} (24)

belongs to L1(Ω). Now, taking ηk = [(u+ − ϑ+) ∧ k] exp {−M(u−R)−} in (17), we have

∫

Ω

∇ξL(x, u,∇u) · ∇
[

(u+ − ϑ+) ∧ k
]

exp {−M(u−R)−} dx+

+

∫

Ω

[

DsL(x, u,∇u)−M∇ξL(x, u,∇u)·∇(u−R)−
] [

(u+ − ϑ+) ∧ k
]

exp {−M(u−R)−}dx

>
〈

ϕ,
[

(u+ − ϑ+) ∧ k
]

exp {−M(u−R)−}
〉

. (25)

Using (24) and passing to the limit as k → +∞ in (25), it results

∫

Ω

∇ξL(x, u,∇u) · ∇(u+ − ϑ+) exp {−M(u−R)−} dx+

+

∫

Ω

[

DsL(x, u,∇u)−M∇ξL(x, u,∇u) · ∇(u−R)−
]

(u+ − ϑ+) exp {−M(u−R)−}dx

> 〈ϕ, (u+ − ϑ+) exp {−M(u−R)−}〉. (26)
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Combining (26) with (23) we obtain

lim sup
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇(u+
h − ϑ+) exp {−M(uh −R)−} dx 6

6
∫

Ω

∇ξL(x, u,∇u) · ∇(u+ − ϑ+) exp {−M(u−R)−} dx (27)

Since

lim
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇ϑ+ exp {−M(uh −R)−} dx =

=

∫

Ω

∇ξL(x, u,∇u) · ∇ϑ+ exp {−M(u−R)−} dx

from (27) we deduce (21).

III) Let us finally prove that uh → u strongly in W 1,p
0 (Ω). We claim that

lim sup
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇uh exp {−M(uh −R)−} dx 6

6
∫

Ω

∇ξL(x, u,∇u) · ∇u exp {−M(u−R)−} dx

In fact using (15) and (21) we get

lim sup
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇uh exp {−M(uh −R)−} dx 6

6 lim sup
h

∫

Ω∩{uh>0}
∇ξL(x, uh,∇uh) · ∇u+

h exp {−M(uh −R)−} dx+

+ lim sup
h

∫

Ω∩{uh60}
∇ξL(x, uh,∇uh) · ∇(−u−

h ) exp {−M(uh −R)−} dx 6

6
∫

Ω

∇ξL(x, u,∇u) · ∇u exp {−M(u−R)−} dx (28)

From (28) using the Fatou Lemma we get

lim
h

∫

Ω

∇ξL(x, uh,∇uh) · ∇uh exp {−M(uh −R)−} dx =

=

∫

Ω

∇ξL(x, u,∇u) · ∇u exp {−M(u−R)−} dx.

Therefore, since by (12) we have

ν exp{−M(R +
∥

∥ϑ−∥
∥

∞)}|∇uh|p 6 ∇ξL(x, uh,∇uh) · ∇uh exp {−M(uh −R)−},

it follows that

lim
h

∫

Ω

|∇uh|p dx =

∫

Ω

|∇u|p dx,

namely the strong convergence of (uh) to u in W 1,p
0 (Ω).
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Theorem 4.5. For every c ∈ R the following assertions are equivalent:

(a) f satisfies the (CPS)c condition;

(b) every (CPS)c−sequence for f is bounded in W 1,p
0 (Ω).

Proof. Since the map {u 7→ g(x, u)} is completely continuous from W 1,p
0 (Ω) to L

np′
n+p′ (Ω),

the proof goes like [11, Theorem 4.37].

5. The Palais–Smale condition

Let us now set

g0(x, s) = g(x, s)− α(s+)p−1, G0(x, s) =

∫ s

0

g0(x, t)dx.

Of course, g0 is a Carathéodory function satisfying

lim
s→+∞

g0(x, s)

sp−1
= 0, |g0(x, s)| 6 a(x) + b(x)|s|p−1 ,

for a. e. x ∈ Ω and all s ∈ R where a ∈ L
np

n(p−1)+p (Ω) and b ∈ L
n
p (Ω). Then (Pt) is

equivalent to finding u ∈ Kϑ such that

∫

Ω

∇ξL(x, u,∇u) · ∇(v − u) dx+

∫

Ω

DsL(x, u,∇u)(v − u) dx+

−α

∫

Ω

(u+)p−1(v−u) dx−
∫

Ω

g0(x, u)(v−u) dx+ tp−1

∫

Ω

φp−1
1 (v−u) dx > 0 ∀v ∈ ˜Kϑ.

Let us define the functional f : W 1,p
0 (Ω) → R ∪ {+∞} by setting

f(u)=







∫

Ω
L(x, u,∇u) dx− α

p

∫

Ω
(u+)p dx−

∫

Ω
G0(x, u) dx+ tp−1

∫

Ω
φp−1
1 u dx if u∈ Kϑ

+∞ if u 6∈ Kϑ.

In view of Theorem 4.2, any critical point of f is a weak solutions of (Pt). Let us introduce

a new functional ft : W
1,p
0 (Ω) → R ∪ {+∞} by setting for each t > 0

ft(u)=







∫

Ω
L(x, tu,∇u) dx− α

p

∫

Ω
(u+)p dx− 1

tp

∫

Ω
G0(x, tu) dx+

∫

Ω
φp−1
1 u dx if u ∈ Kt

+∞ if u 6∈ Kt.

where we have set
Kt =

{

u ∈ W 1,p
0 (Ω) : tu > ϑ a. e. in Ω

}

.

From Theorem 4.2 it follows that if u is a critical point of ft then tu satisfies (Pt).

Lemma 5.1. Let (uh) a sequence in W 1,p
0 (Ω) and %h ⊆]0,+∞[ with %h → +∞. Assume

that the sequence
(

uh

%h

)

is bounded in W 1,p
0 (Ω). Then

g0(x, uh)

%p−1
h

→ 0 in L
np′
n+p′ (Ω),

G0(x, uh)

%ph
→ 0 in L1(Ω).
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Proof. Argue as in [5, Lemma 3.3] .

In view of (12) and (18), we can extend ψ to [−N,+∞[ where N is such that ‖ϑ−‖∞ 6 N ,
so that assumption (7) becomes

s > −N =⇒ DsL(x, s, ξ) 6 ψ′(s)∇ξL(x, s, ξ) · ξ. (29)

Theorem 5.2. Let α > λ1, c ∈ R and let (uh) in Kϑ be a (CPS)c−sequence for f . Then

(uh) is bounded in W 1,p
0 (Ω).

Proof. By Definition 4.1, there exists a sequence (ϕh) in W−1,p′(Ω) with ϕh → 0 and

∫

Ω

∇ξL(x, uh,∇uh) · ∇(v − uh) dx+

∫

Ω

DsL(x, uh,∇uh)(v − uh) dx+

− α

∫

Ω

(u+
h )

p−1(v − uh) dx−
∫

Ω

g0(x, uh)(v − uh) dx+ tp−1

∫

Ω

φp−1
1 (v − uh) dx >

> 〈ϕh, v − uh〉 ∀v ∈ Kϑ : (v − uh) ∈ L∞(Ω). (30)

We set now %h = ‖uh‖1,p, and suppose by contradiction that %h → +∞. If we set

zh = %−1
h uh, up to a subsequence, zh converges to some z weakly in W 1,p

0 (Ω), strongly in
Lp(Ω) and a. e. in Ω. Note that z > 0 a. e. in Ω.

We shall divide the proof into several steps.

I) We firstly prove that

∫

Ω

∇ξL∞(x,∇z) · ∇z dx > α

∫

Ω

zp dx. (31)

Consider the test functions v = uh+(z∧k) exp {−ψ(uh)}, where ψ is the function defined

in (7). Putting such v in (30) and dividing by %p−1
h , we obtain

∫

Ω

∇ξL(x, uh,∇zh) · ∇(z ∧ k) exp {−ψ(uh)} dx+

+
1

%p−1
h

∫

Ω

[DsL(x, uh,∇uh)− ψ′(uh)∇ξL(x, uh,∇uh) · ∇uh] (z ∧ k) exp {−ψ(uh)}dx >

> α

∫

Ω

(z+h )
p−1(z ∧ k) exp {−ψ(uh)} dx+

∫

Ω

g0(x, uh)

%p−1
h

(z ∧ k) exp {−ψ(uh)} dx+

− tp−1

∫

Ω

φp−1
1

%p−1
h

(z ∧ k) exp {−ψ(uh)} dx+
1

%p−1
h

〈ϕh, (z ∧ k) exp {−ψ(uh)}〉.

Observe now that the first term
∫

Ω

∇ξL(x, uh,∇zh) · ∇(z ∧ k) exp {−ψ(uh)} dx

passes to the limit, yielding
∫

Ω

∇ξL∞(x,∇z) · ∇(z ∧ k) exp {−ψ} dx.
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Indeed, by taking into account assumptions (10) and (5), we may apply [8, Theorem 5]
and deduce that, up to a subsequence,

a. e. in Ω \ {z = 0} : ∇zh(x) → ∇z(x).

Since of course, being uh(x) → +∞ a. e. in Ω \ {z = 0}, again recalling (10), we have

a. e. in Ω \ {z = 0} : ∇ξL(x, uh(x),∇zh(x)) → ∇ξL∞(x,∇z(x)).

Since by (5) the sequence (∇ξL(x, uh(x),∇zh(x))) is bounded in Lp′(Ω), the assertion
follows. Note also that the term

1

%p−1
h

〈ϕh, (z ∧ k) exp {−ψ(uh)}〉,

goes to 0 even if 1 < p < 2. Indeed, in this case, one could use the Cerami–Palais–Smale

condition, which yields %hϕh → 0 in W−1,p′

0 (Ω).

Now, by (29) we have

DsL(x, uh,∇uh)− ψ′(uh)∇ξL(x, uh,∇uh) · ∇uh 6 0,

then, passing to the limit as h → +∞, we get

∫

Ω

∇ξL∞(x,∇z) · ∇(z ∧ k) exp {−ψ̄} dx > α

∫

Ω

zp−1(z ∧ k) exp {−ψ̄} dx.

Passing to the limit as k → +∞, we obtain (31).

II) Let us prove that zh → z strongly in W 1,p
0 (Ω), so that of course ‖z‖1,p = 1. Consider

the function ζ : [−R,+∞[→ R defined by

ζ(s) =

{

MR if s > R

Ms if |s| < R
(32)

where M ∈ R is such that for a. e. x ∈ Ω, each s ∈ R and ξ ∈ Rn

|DsL(x, s, ξ)| 6 M∇ξL(x, s, ξ) · ξ.

If we choose the test functions

v = uh −
uh − ϑ

exp(MR)
exp(ζ(uh))

in (30), we have

∫

Ω

∇ξL(x, uh,∇uh) · ∇(uh − ϑ) exp{ζ(uh)} dx+

+

∫

Ω

[DsL(x, uh,∇uh) + ζ ′(uh)∇ξL(x, uh,∇uh) · ∇uh] (uh − ϑ) exp{ζ(uh)} dx 6
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6 α

∫

Ω

(u+
h )

p−1(uh − ϑ) exp{ζ(uh)} dx+

∫

Ω

g0(x, uh)(uh − ϑ) exp{ζ(uh)} dx+

−tp−1

∫

Ω

φp−1
1 (uh − ϑ) exp{ζ(uh)} dx+ 〈ϕh, (uh − ϑ) exp{ζ(uh)}〉 .

Note that it results

[DsL(x, uh,∇uh) + ζ ′(uh)∇ξL(x, uh,∇uh) · ∇uh] (uh − ϑ) > 0.

Therefore, after division by %ph we get

∫

Ω

∇ξL(x, uh,∇zh) · ∇
(

zh −
ϑ

%h

)

exp{ζ(uh)} dx 6

6 α

∫

Ω

(z+h )
p−1

(

zh −
ϑ

%h

)

exp{ζ(uh)} dx+
1

%p−1
h

∫

Ω

g0(x, uh)

(

zh −
ϑ

%h

)

exp{ζ(uh)} dx+

− tp−1

%p−1
h

∫

Ω

φp−1
1

(

zh −
ϑ

%h

)

exp{ζ(uh)} dx+
1

%p−1
h

〈

ϕh,

(

zh −
ϑ

%h

)

exp{ζ(uh)}
〉

,

which yields

lim sup
h

∫

Ω

∇ξL(x, uh,∇zh) · ∇zh exp{ζ(uh)} dx 6 α exp{MR}
∫

Ω

zp dx. (33)

By combining (33) with (31) we get

lim sup
h

∫

Ω

∇ξL(x, uh,∇zh) · ∇zh exp{ζ(uh)} dx 6 exp{MR}
∫

Ω

∇ξL∞(x,∇z) · ∇z dx.

In particular, by Fatou’s Lemma, it results

exp{MR}
∫

Ω

∇ξL∞(x,∇z) · ∇z dx 6

6 lim inf
h

∫

Ω

∇ξL(x, uh,∇zh) · ∇zh exp{ζ(uh)} dx 6

6 lim sup
h

∫

Ω

∇ξL(x, uh,∇zh) · ∇zh exp{ζ(uh)} dx 6

6 exp{MR}
∫

Ω

∇ξL∞(x,∇z) · ∇z dx,

namely, we get
∫

Ω

∇ξL(x, uh,∇zh) · ∇zh exp{ζ(uh)} dx →
∫

Ω

exp{MR}∇ξL∞(x,∇z) · ∇z dx.

Therefore, since

ν exp{−MR}|∇zh|p 6 ∇ξL(x, uh,∇zh) · ∇zh exp{ζ(uh)} ,

thanks to the generalized Lebesgue’s theorem, we conclude that

lim
h

∫

Ω

|∇zh|p dx =

∫

Ω

|∇z|p dx,
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and zh converges to z in W 1,p
0 (Ω).

III) Let us consider the test functions v = uh + ϕ exp {−ψ(uh)} with ϕ ∈ W 1,p
0 ∩ L∞(Ω)

and ϕ > 0. Taking such v in (30) and dividing by %p−1
h we obtain

∫

Ω

∇ξL(x, uh,∇zh) · ∇ϕ exp {−ψ(uh)} dx+

+
1

%p−1
h

∫

Ω

[DsL(x, uh,∇uh)− ψ′(uh)∇ξL(x, uh,∇uh) · ∇uh]ϕ exp {−ψ(uh)} dx >

> α

∫

Ω

(z+h )
p−1ϕ exp {−ψ(uh)} dx+

∫

Ω

g0(x, uh)

%p−1
h

ϕ exp {−ψ(uh)} dx+

− tp−1

∫

Ω

ϕp−1

%p−1
h

exp {−ψ(uh)} dx+
1

%p−1
h

〈ϕh, ϕ exp {−ψ(uh)}〉.

Note that, since by step II we have zh → z in W 1,p
0 (Ω), the term

∫

Ω

∇ξL(x, uh,∇zh) · ∇ϕ exp {−ψ(uh)} dx

passes to the limit, yielding

∫

Ω

∇ξL∞(x,∇z) · ∇ϕ exp {−ψ} dx.

By means of (29), we have

DsL(x, uh,∇uh)− ψ′(uh)∇ξL(x, uh,∇uh) · ∇uh 6 0,

then passing to the limit as h → +∞, we obtain

∫

Ω

∇ξL∞(x,∇z) · ∇ϕ exp {−ψ̄} dx− α

∫

Ω

zp−1ϕ exp {−ψ̄} dx > 0,

for each ϕ ∈ W 1,p
0 ∩ L∞(Ω) with ϕ > 0 which yields

∫

Ω

∇ξL∞(x,∇z) · ∇ϕdx > α

∫

Ω

zp−1ϕdx (34)

for each ϕ ∈ W 1,p
0 (Ω) with ϕ > 0.

In a similar fashion, considering in (30) the admissible test functions

v = uh −
(

ϕ ∧ zh − ϑ/%h

exp(ψ)

)

exp(ψ(uh))

with ϕ ∈ W 1,p
0 ∩ L∞(Ω) and ϕ > 0 and dividing by %p−1

h , recalling that zh → z strongly,
we get

∫

Ω

∇ξL∞(x,∇z) · ∇
[

ϕ ∧ z

expψ

]

dx 6 α

∫

Ω

zp−1

[

ϕ ∧ z

expψ

]

dx,
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for each ϕ ∈ W 1,p
0 ∩ L∞(Ω) with ϕ > 0. Actually this holds for any ϕ ∈ W 1,p

0 (Ω) with
ϕ > 0. By substituting ϕ with tϕ with t > 0 we obtain

∫

Ω

∇ξL∞(x,∇z) · ∇
[

ϕ ∧ z

t expψ

]

dx 6 α

∫

Ω

zp−1

[

ϕ ∧ z

t expψ

]

dx.

Letting t → +∞, and taking into account (34), it results

∫

Ω

∇ξL∞(x,∇z) · ∇ϕdx = α

∫

Ω

zp−1ϕdx (35)

for each ϕ ∈ W 1,p
0 (Ω) with ϕ > 0. Clearly (35) holds for any ϕ ∈ W 1,p

0 (Ω), so that z
is a positive eigenfunction related to α. This is a contradiction by [17, Remark 1, pp.
161].

Theorem 5.3. Let c ∈ R, α > λ1 and t > 0. Then ft satisfies the (PS)c−condition.

Proof. Since ft(u) = f(tu)
tp

, it is sufficient to combine Theorem 5.2, Theorem 4.5 and
Proposition 4.3.

6. Min–Max estimates

Let us first introduce the “asymptotic functionalÔ f∞ : W 1,p
0 (Ω) → R ∪ {+∞} by setting

f∞(u) =

{
∫

Ω
L∞(x,∇u) dx− α

p

∫

Ω
up dx+

∫

Ω
φp−1
1 u dx if u ∈ K∞

+∞ if u 6∈ K∞

where
K∞ =

{

u ∈ W 1,p
0 (Ω) : u > 0 a. e. in Ω

}

.

Proposition 6.1. There exist r > 0, σ > 0 such that

(a) for every u ∈ W 1,p
0 (Ω) with 0 < ‖u‖1,p 6 r then f∞(u) > 0;

(b) for every u ∈ W 1,p
0 (Ω) with ‖u‖1,p = r then f∞(u) > σ > 0.

Proof. Let us consider the weakly closed set

K∗ =

{

u ∈ K∞ :

∫

Ω

L∞(x,∇u) dx− α

p

∫

Ω

up dx 6
1

2

∫

Ω

L∞(x,∇u) dx

}

.

In K∞ \K∗ the statements are evident. On the other hand, it is easy to see that

inf

{∫

Ω

vφp−1
1 dx : v ∈ K∗, ‖v‖1,p = 1

}

= ε > 0

arguing by contradiction. Therefore for each u ∈ K∗ we have

f∞(u) =

∫

Ω

L∞(x,∇u) dx− α

p

∫

Ω

up dx+

∫

Ω

φp−1
1 u dx > c‖u‖p1,p + ε‖u‖1,p

where c ∈ R is a suitable constant. Thus the statements follow.
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Proposition 6.2. Let r > 0 be as in the Proposition 6.1. Then there exist t̄ > 0, σ′ > 0
such that for every t > t̄ and for every u ∈ W 1,p

0 (Ω) with ‖u‖1,p = r, then ft(u) > σ′.

Proof. By contradiction, we can find two sequences (th) ⊆ R and (uh) ⊆ W 1,p
0 (Ω) such

that th > h for each h ∈ N, ‖uh‖1,p = r and fth(uh) < 1
h
. Up to a subsequence, (uh)

weakly converges in W 1,p
0 (Ω) to some u ∈ K∞. Using (b) of [13, Theorem 5], it follows

that
f∞(u) 6 lim inf

h
fth(uh) 6 0.

By (a) of Proposition 6.1, we have u = 0. On the other hand, since

lim sup
h

fth(uh) 6 0 = f∞(u),

using (c) of [13, Theorem 5] we deduce that (uh) strongly converges to u in W 1,p
0 (Ω),

namely ‖u‖1,p = r. This is impossible.

Proposition 6.3. Let σ′, t̄ as in Proposition 6.2. Then there exists t̃ > t̄ such that for

every t > t̃ there exist vt, wt ∈ W 1,p
0 (Ω) such that ‖vt‖1,p < r, ‖wt‖1,p > r, ft(vt) 6 σ′

2
and

ft(wt) 6 σ′

2
. Moreover we have

sup {ft((1− s)vt + swt) : 0 6 s 6 1} < +∞.

Proof. We argue by contradiction. We set t̃ = t̄ + h and suppose that there exists
(th) such that th > h + t̄ and such that for every vth , wth in W 1,p

0 (Ω) with ‖vth‖1,p < r,

‖wth‖1,p > r it results fth(vth) >
σ′

2
and fth(wth) >

σ′

2
. It is easy to prove that there exists

a sequence (uh) in Kth which strongly converges to 0 in W 1,p
0 (Ω) and therefore ‖uh‖1,p < r

and fth(uth) 6 σ′

2
eventually as h → +∞. This contradicts our assumptions. In a similar

way one can prove the statement for wt, while the last statement is straightforward.

7. Proof of the main result

Proof of Theorem 2.1. By combining Theorem 5.3, Propositions 6.2 and 6.3 we can
apply Theorem 3.4 and deduce the assertion.
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