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Università degli Studi di Bari,

Via E. Orabona 4, 70125 Bari, Italy

3 Dipartimento di Matematica e Fisica,
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1 Introduction

Let N > 1 and n > 2 . The main goal of this paper is to prove the existence of multiple
solutions u = (u1, . . . , uN ) : Ω → R

N for the semilinear elliptic system





−
n∑

i,j=1

N∑
h=1

Dj(a
hk
ij (x)Diuh) = gk(x, u) + ϕk(x) in Ω

u = χ on ∂Ω

k = 1, .., N

(Sχ,ϕ,N )

whereΩ is a smooth bounded domain in R
n, ϕ = (ϕ1, . . . , ϕN ) ∈ L2(Ω,RN ), χ ∈ H1/2(∂Ω,RN )∩

C(∂Ω,RN ) and the coefficients ahkij ∈ C(Ω,R) are such that ahkij = akhji . Assume that the
Legendre–Hadamard condition holds, i.e., there exists ν > 0 such that

n∑

i,j=1

N∑

h,k=1

ahkij (x)ξiξjη
hηk > ν |ξ|2 |η|2 (1.1)

for all x ∈ Ω and (ξ, η) ∈ R
n × R

N . Moreover, suppose that the nonlinear term g =
(g1, . . . , gN ) ∈ C(Ω × R

N ,RN ) admits a potential G of class C1 such that

∇sG(x, s) = g(x, s) , G(x, 0) = 0 for all (x, s) ∈ Ω × R
N

and satisfies the following conditions:
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(G1) there exist µ > 2 and R > 0 such that for all (x, s) ∈ Ω × R
N

|s| > R =⇒ 0 < µG(x, s) 6 g(x, s) · s ;

(G2) there exist α0 > 0 and p > 2, p < 2n
n−2 if n > 3, such that

|g(x, s)| 6 α0 (|s|p−1 + 1) for all (x, s) ∈ Ω × R
N ;

(G3) g(x,−s) = −g(x, s) for all (x, s) ∈ Ω × R
N

(here, · denotes the Euclidean scalar product in R
N ) .

It is well known that, in the above hypotheses, the problem (Sχ,ϕ,N ) has a variational
structure and its weak solutions are the critical points of the functional

f(u) =
1

2

∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjuk dx−

∫

Ω
(G(x, u) + ϕ · u) dx (1.2)

on the manifold Bχ =
{
u ∈ H1(Ω,RN ) : u = χ a.e. on ∂Ω

}
.

Many authors have studied the semilinear elliptic problem
{
−∆u = g(x, u) + ϕ(x) in Ω

u = χ on ∂Ω
(1.3)

which is a particular case of (Sχ,ϕ,N ) with N = 1 and ahkij = δhkij .
If ϕ ≡ χ ≡ 0 the problem (1.3) is symmetric, so multiplicity results have been obtained

via the equivariant Ljusternik–Schnirelman theory (see, e.g., [12]).
On the contrary, if ϕ or χ are non–trivial the symmetry is broken and, in general, multi-

plicity results do not hold .
However, if ϕ 6≡ 0 and χ ≡ 0, in the 80’s some perturbative methods have been devel-

oped in order to establish the existence of an infinite number of solutions for non–symmetric
problems such as (S0,ϕ,1) (see [1, 11, 15, 16]). But these results are partial since an additional
assumption needs on the growth of the nonlinearity g(x, u).

In last years the problem (1.3) has been studied also when the boundary condition χ

is different from zero. In this case the perturbation term is nonlinear, so the perturbative
methods introduced in [1, 11, 15] do not yield a satisfactory result: in particular, in [5] a
multiplicity result has been obtained if g(x, u) is homogeneous of type |u|p−2u with 2 < p <

2(1 + 1
n) (see also [6] for another similar result).

More recently, a refined perturbative method introduced by Bolle in [3] and improved in
[4] has allowed to better the previous results. In fact, it has been proved the existence of
infinitely many solutions of (1.3) when g(x, u) = |u|p−2u for 2 < p < 2(1 + 1

n−1) (cf. [4]).
Both the perturbative approaches used for (1.3) can be extended to the vectorial case

(N > 1). In fact, the problem (Sχ,ϕ,N ) has been studied in [7] if g(x, u) = |u|p−2u and in [8]
only if ahkij = δhkij and n > 3 but g is not necessarily homogeneous with potential G invariant
under the action of a more general group of symmetries.

We point out that such perturbative methods combined with nonsmooth critical point
theory allow to study also a class of quasilinear elliptic problems (see [10, 13] and even [14]
for a recent result when n = 2 and g has an exponential growth).

Here, we consider the system (Sχ,ϕ,N ) with a more general function g. Under the previous
assumptions, we can state our main results.
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Theorem 1.1 Assume that µ and p satisfy

µ

µ− p+ 1
<

2p

n(p− 2)
. (?)

Then, (Sχ,ϕ,N ) has a sequence (um)m ⊂ Bχ of solutions with f(um) → +∞.

In particular, if (G1) holds with µ = p, we obtain the following result.

Corollary 1.2 Assume that µ = p < 2n+1
n . Then, (Sχ,ϕ,N ) admits a sequence (um)m ⊂ Bχ

of solutions with f(um) → +∞.

At last, if χ ≡ 0, weakening the condition (?) the same result in Theorem 1.1 can be
achieved, thus extending the results stated if N = 1 in [2, 16] and if ahkij = δhkij in [8, Theorem
3] to more general elliptic systems.

Theorem 1.3 Assume that χ ≡ 0 and let µ and p satisfy

µ

µ− 1
<

2p

n(p− 2)
. (1.4)

Then, (S0,ϕ,N ) has a sequence (um)m of solutions in H1
0 (Ω,RN ) such that f(um) → +∞.

Let us point out that Bolle’s perturbative method seems not to allow an improvement of
the condition (1.4) if χ ≡ 0. On the contrary, there is a gap between the hypothesis (?) we
need in Theorem 1.1 and the corresponding one in [8, Theorem 2] obtained in the particular
case ahkij = δhkij via [4, Lemma 4.2]. Thus, we think that:

Conjecture 1.4 Theorem 1.1 (and Corollary 1.2, too) holds true provided that

2 < p <
2n

n− 1
, ∂Ω ∈ C2, χ ∈ C2(∂Ω,RN ), ϕ ∈ C(Ω,RN )

and the coefficients ahkij are sufficiently smooth.

2 Bolle’s perturbation arguments

In order to apply the method introduced by Bolle for dealing with problems with broken
symmetry, let us recall the main theorem as stated in [4].

The idea is to consider a continuous path of functionals starting from a symmetric func-
tional J0 and to prove a preservation result for min–max critical levels in order to get crit-
ical points also for the end–point functional J1 (which is the “true” functional of the non–
symmetric problem).

Let H be a Hilbert space equipped with the norm ‖ · ‖. Assume that H = H− ⊕ H+,
where dim(H−) < +∞, and let (el)l>1 be an orthonormal base of H+. Consider

H0 = H−, Hl+1 = Hl ⊕ Rel+1 if l ∈ N;

so (Hl)l is an increasing sequence of finite dimensional subspaces of H.
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Let J : [0, 1]×H → R be a C2–functional and, taken any θ ∈ [0, 1], set Jθ = J(θ, ·) : H →
R.

For a given R > 0 let us set

Γ = {γ ∈ C(H,H) : γ is odd and γ(u) = u if ‖u‖ > R} ,

cl = inf
γ∈Γ

sup
u∈Hl

J0(γ(u)).

Assume that

(A1) J satisfies a weaker form of the classical Palais–Smale condition: any ((θm, um))m ⊂
[0, 1] ×H such that

(J(θm, um))m is bounded and lim
m→+∞

J ′
θm(um) = 0 (2.1)

converges up to subsequences;

(A2) for any b > 0 there exists Cb > 0 such that if (θ, u) ∈ [0, 1] ×H then

|Jθ(u)| 6 b =⇒

∣∣∣∣
∂J

∂θ
(θ, u)

∣∣∣∣ 6 Cb (‖J ′
θ(u)‖ + 1)(‖u‖ + 1);

(A3) there exist two continuous maps η1, η2 : [0, 1] × R → R which are Lipschitz continuous
with respect to the second variable and such that η1(θ, ·) 6 η2(θ, ·). Suppose that if
(θ, u) ∈ [0, 1] ×H then

J ′
θ(u) = 0 =⇒ η1(θ, Jθ(u)) 6

∂J

∂θ
(θ, u) 6 η2(θ, Jθ(u)); (2.2)

(A4) J0 is even and for each finite dimensional subspace W of H it results

lim
u∈W

‖u‖→+∞

sup
θ∈[0,1]

J(θ, u) = −∞ .

For i ∈ {1, 2}, let ψi : [0, 1] × R → R be the solution of the problem
{
∂ψi

∂θ (θ, s) = ηi(θ, ψi(θ, s))

ψi(0, s) = s .

Note that ψi(θ, ·) is continuous, non–decreasing on R and ψ1(θ, ·) 6 ψ2(θ, ·). Set

η1(s) = sup
θ∈[0,1]

|η1(θ, s)|, η2(s) = sup
θ∈[0,1]

|η2(θ, s)| .

In this framework, the following abstract result can be proved (for more details and the
proof, see [3, Theorem 3] and [4, Theorem 2.2]).

Theorem 2.1 There exists C ∈ R such that if l ∈ N then

(a) either J1 has a critical level c̃l with ψ2(1, cl) < ψ1(1, cl+1) 6 c̃l,

(b) or cl+1 − cl 6 C (η1(cl+1) + η2(cl) + 1).

Remark 2.2 Let us remark that Theorem 2.1 can be proved also when J0 is invariant with
respect to the action of a more general Lie group of symmetries choosing in a suitable way
the sequence of levels (cl)l (cf. [8]).
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3 Some preliminary lemmas

In order to prove our multiplicity results, first of all we reduce (Sχ,ϕ,N ) to an elliptic problem
with homogeneous boundary conditions.

Let φ ∈ L∞(Ω,RN ) be the solution of the linear system





n∑
i,j=1

N∑
h=1

Dj(a
hk
ij (x)Diφh) = 0 in Ω

φ = χ on ∂Ω

k = 1, .., N.

(3.1)

The following result can be readily shown.

Proposition 3.1 A function u ∈ Bχ is a solution of (Sχ,ϕ,N ) if and only if v ∈ H1
0 (Ω,RN )

is a solution of





−
n∑

i,j=1

N∑
h=1

Dj(a
hk
ij (x)Divh) = gk(x, v + φ) + ϕk(x) in Ω

v = 0 on ∂Ω

k = 1, .., N

where u(x) = v(x) + φ(x) for a.e. x ∈ Ω.

Hence, our aim is to state the existence of multiple critical points of the functional

J1(u) =
1

2

∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjuk dx−

∫

Ω
(G(x, u+ φ) + ϕ · u) dx

defined on the Hilbert space H1
0 (Ω,RN ) endowed with the scalar product

(u, v) =

∫

Ω
Du ·Dv dx =

N∑

k=1

∫

Ω
∇uk · ∇vk dx

with associated norm ‖ · ‖. Moreover, if 1 6 s 6 +∞, let us denote with | · |s the usual norm
in Ls(Ω,RN ).

According to the Bolle’s perturbation method, consider the path of functionals J : [0, 1]×
H1

0 (Ω,RN ) → R defined as

J(θ, u) =
1

2

∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjukdx−

∫

Ω
(G(x, u+ θφ) + θϕ · u)dx.

Let us remark that it is J(1, ·) = J1; so, for simplicity, set Jθ = J(θ, ·). Clearly, the functional
J0 is even on H1

0 (Ω,RN ).
Standard arguments prove that, in our assumptions, J is a C1–functional and for any

θ ∈ [0, 1] and u, v ∈ H1
0 (Ω,RN ) it is

∂J

∂θ
(θ, u) = −

∫

Ω

(
g(x, u+ θφ) · φ + ϕ · u

)
dx
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and

J ′
θ(u)[v] =

∂J

∂u
(θ, u)[v]

=

∫

Ω

( n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjvk − g(x, u+ θφ) · v − θϕ · v
)
dx.

Let us point out that, by integration, the assumption (G1) implies that there exist α1, α2, α3 >

0 such that for all w ∈ H1
0 (Ω,RN ) it is

α1|w|
µ
µ − α2 6

∫

Ω
G(x,w) dx 6

1

µ

∫

Ω
g(x,w) · w dx+ α3. (3.2)

Remark 3.2 The condition µ 6 p, which follows by (3.2) and (G2), can hold together with
condition (?) if p < 2

(
1 + 1

n

)
. Moreover, (?) implies

p− 1 < µ. (3.3)

The above inequalities allow to state the following results.

Lemma 3.3 Taken any ρ ∈ ] 1
µ , 1] there exist β(ρ), γ(ρ) > 0 such that

Jθ(u) − ρJ ′
θ(u)[u] >

(
1

2
− ρ

) ∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjuk dx

+ β(ρ)

∫

Ω
|u+ θφ|µdx− (1 − ρ)|ϕ|2|u|2 − γ(ρ)

for any (θ, u) ∈ [0, 1] ×H1
0 (Ω,RN ) .

Proof . Let (θ, u) ∈ [0, 1] ×H1
0 (Ω,RN ) and ρ ∈ ] 1

µ , 1]. By the definition of Jθ it is

Jθ(u) − ρJ ′
θ(u)[u] =

(
1

2
− ρ

) ∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjuk dx

−

∫

Ω
G(x, u+ θφ) dx+ ρ

∫

Ω
g(x, u+ θφ) · u dx− (1 − ρ)θ

∫

Ω
ϕ · u dx.

It is quite easy to see that (G2) and (3.2) imply the existence of some constants γ1(ρ), γ2(ρ) > 0
such that

−

∫

Ω
G(x, u+ θφ) dx+ ρ

∫

Ω
g(x, u+ θφ) · u dx

> (ρµ− 1)

∫

Ω
G(x, u+ θφ) dx− ρθ

∫

Ω
g(x, u+ θφ) · φ dx− γ1(ρ)

> (ρµ− 1) α1|u+ θφ|µµ − ρα0

∫

Ω
|u+ θφ|p−1|φ| dx− γ2(ρ).
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Let us point out that, taken any ε > 0 and a corresponding β(ε) > 0, (3.3) and the Young’s
inequality imply

|u+ θφ|p−1|φ| 6 ε|u+ θφ|µ + β(ε)|φ|
µ

µ−p+1 for all x ∈ Ω.

So, choosing ε small enough, by integrating it follows that there exist β(ρ) and γ(ρ) positive
constants such that

−

∫

Ω
G(x, u+ θφ) dx+ ρ

∫

Ω
g(x, u+ θφ) · u dx > β(ρ)|u+ θφ|µµ − γ(ρ);

hence, the proof is complete.

Remark 3.4 Taken ν as in (1.1), for each ε ∈ ]0, ν[ there exists cε > 0 such that for all
u ∈ H1

0 (Ω,RN ) the following G̊arding type inequality holds:

∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjuk dx > (ν − ε)‖u‖2 − cε|u|
2
2

(see [9, Theorem 6.5.1]). So, for a suitable choice of a positive constant d, for all u ∈
H1

0 (Ω,RN ) we obtain

∫

Ω

( n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjuk + d|u|2
)
dx >

ν

2
‖u‖2. (3.4)

Lemma 3.5 Let ((θm, um))m ⊂ [0, 1]×H1
0 (Ω,RN ) be such that (2.1) holds. Then ((θm, um))m

converges up to subsequences.

Proof . If ((θm, um))m is such that (2.1) holds, then a constant K > 0 exists such that for
any ρ ∈ ] 1

µ , 1] Lemma 3.3 implies

K + ρ ‖um‖ > Jθm(um) − ρJ ′
θm(um)[um]

>

(
1

2
− ρ

) ∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)Diu
m
h Dju

m
k dx

+ β(ρ)

∫

Ω
|um + θφ|µdx− (1 − ρ)|ϕ|2|u

m|2 − γ(ρ)

for all m large enough. Then, taken d as in (3.4) and ρ < 1
2 , simple calculations imply the

existence of γ̃(ρ) > 0 such that

K + ρ ‖um‖ +

(
1

2
− ρ

)
d|um|22 + (1 − ρ)|ϕ|2|u

m|2

>

(
1

2
− ρ

)
ν

2
‖um‖2 +

β(ρ)

2µ−1
|um|µµ − γ̃(ρ);

hence, (um)m is bounded in H1
0 (Ω,RN ).

Now, taken ωm = J ′
θm(um) + g(x, um + θmφ) + θmϕ, it is easy to see that (ωm)m converges

strongly in H−1(Ω,RN ), up to subsequences. So, arguing as in [7, Lemma 4.1], (um)m has a
converging subsequence in H1

0 (Ω,RN ).

The following results state that the assumptions (A2) – (A4) introduced in Section 2 are
verified, too.
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Lemma 3.6 For any b > 0 there exists Cb > 0 such that

|Jθ(u)| 6 b =⇒

∣∣∣∣
∂J

∂θ
(θ, u)

∣∣∣∣ 6 Cb(‖J
′
θ(u)‖ + 1)(‖u‖ + 1)

for each (θ, u) ∈ [0, 1] ×H1
0 (Ω,RN ) .

Proof . Fix b > 0 and let (θ, u) ∈ [0, 1] ×H1
0 (Ω,RN ) be such that |Jθ(u)| 6 b. Taking ρ = 1

2
in Lemma 3.3 we have

b+
1

2
‖J ′

θ(u)‖ ‖u‖ > Jθ(u) −
1

2
J ′
θ(u)[u]

> β

(
1

2

)
|u+ θφ|µµ −

1

2
|ϕ|2|u|2 − γ

(
1

2

)

and therefore, since µ > 2, straightforward computations and the Young’s inequality imply
the existence of a constant α4 > 0 such that

|u+ θφ|µµ 6 α4(‖J
′
θ(u)‖ ‖u‖ + 1).

On the other hand, (G2) implies

∣∣∣∣
∂J

∂θ
(θ, u)

∣∣∣∣ 6

∣∣∣∣
∫

Ω
g(x, u+ θφ) · φ dx

∣∣∣∣ + |ϕ|2|u|2

6 α0(|u+ θφ|p−1
p−1 + |Ω|)|φ|∞ + |ϕ|2|u|2.

(3.5)

Whence, the conclusion follows by the above inequalities and (3.3).

Lemma 3.7 If (θ, u) ∈ [0, 1] × H1
0 (Ω,RN ) is such that J ′

θ(u) = 0 then the inequality (2.2)
holds with η1, η2 : [0, 1] × R → R defined as

−η1(θ, s) = η2(θ, s) = C̃
(
s2 + 1

) p−1
2µ

for a suitable constant C̃ > 0.

Proof . Let (θ, u) ∈ [0, 1] ×H1
0 (Ω,RN ) be such that J ′

θ(u) = 0. By Lemma 3.3 if it is ρ = 1
2

we obtain

Jθ(u) > β

(
1

2

)
|u+ θφ|µµ −

1

2
|ϕ|2|u|2 − γ

(
1

2

)
;

so, arguing as in the proof of Lemma 3.6, σ > 0 exists such that

|u+ θφ|µµ 6 σ(J2
θ (u) + 1)

1
2 .

Whence, the conclusion follows by (3.5) and suitable estimates of |u + θφ|p−1
p−1 and |u|2 with

respect to |u+ θφ|p−1
µ .
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Remark 3.8 If in (Sχ,ϕ,N ) the boundary condition χ is identically zero, it is possible to
prove the previous lemma with

−η1(θ, s) = η2(θ, s) = C̃
(
s2 + 1

) 1
2µ .

Indeed, in this case the path of functionals becomes

J(θ, u) =
1

2

∫

Ω

n∑

i,j=1

N∑

h,k=1

ahkij (x)DiuhDjukdx−

∫

Ω
(G(x, u) + θϕ · u)dx;

hence, J ′
θ(u) = 0 implies

∣∣∣∣
∂J

∂θ
(θ, u)

∣∣∣∣ =

∣∣∣∣
∫

Ω
ϕ · u dx

∣∣∣∣ 6 |ϕ|2|u|2 6 C̃(J2
θ (u) + 1)

1
2µ .

Lemma 3.9 If W is a finite dimensional subspace of H1
0 (Ω,RN ) then

lim
u∈W

‖u‖→+∞

sup
θ∈[0,1]

J(θ, u) = −∞ .

Proof . It is enough remarking that by (3.2) some positive constants β1, β2, β3 exist such
that

Jθ(u) 6 β1‖u‖
2 − β2|u|

µ
µ − β3 for all (θ, u) ∈ [0, 1] ×H1

0 (Ω,RN ).

4 Proof of the main results

Finally, we can apply Theorem 2.1. To this aim let us introduce a suitable class of min-max
values for the even functional J0.

Let ((λl, ul))l be a sequence in R ×H1
0 (Ω,RN ) such that





−∆ulk = λlulk in Ω

ul = 0 on ∂Ω,

k = 1, . . . N,

with (ul)l orthonormalized. Let us consider the finite dimensional subspaces

H0 := Ru0; Hl+1 := Hl ⊕ Rul+1 for any l ∈ N.

Defined the set of maps Γ as in Section 2 with H = H1
0 (Ω,RN ) and a suitable positive

constant R > 0, for all l ∈ N let us consider

cl = inf
γ∈Γ

sup
u∈Hl

J0(γ(u)).

Clearly, it is cl 6 cl+1.

Proof of Theorem 1.1. We claim that condition (b) in Theorem 2.1 can not hold for all l
large enough. In fact, if we take η1, η2 as in Lemma 3.7, condition (b) in Theorem 2.1 becomes

cl+1 − cl 6 C̃1

(
(cl)

p−1
µ + (cl+1)

p−1
µ + 1

)
(4.1)
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for a suitable C̃1 > 0; hence, if (4.1) holds for all l large enough, then by [1, Lemma 5.3] it
follows that there exist γ̃ > 0 and l0 ∈ N such that

cl 6 γ̃ l
µ

µ−p+1 for all l > l0. (4.2)

On the other hand, by (3.4) and (G2) it follows that suitable positive constants α̃1, α̃2 exist
such that

Jθ(u) >
ν

4
‖u‖2 − α̃1|u|

p
p − α̃2 for all (θ, u) ∈ [0, 1] ×H1

0 (Ω,RN );

whence, arguing as in [16] (see also [1]), it is possible to show that if n > 3 there exist l1 ∈ N

and M > 0 such that

cl > M l
2p

n(p−2) for all l > l1,

while if n = 2 for every ε > 0 there exist lε ∈ N and Mε > 0 such that

cl > Mε l
p

p−2
−ε for all l > lε.

But such estimates are in contradiction with (4.2) in the assumption (?), so condition (a) in
Theorem 2.1 holds for infinitely many l ∈ N.

Proof of Theorem 1.3. By Remark 3.8 it follows that the estimate (4.1) can be replaced
by

cl+1 − cl 6 C̃1

(
(cl)

1
µ + (cl+1)

1
µ + 1

)
.

So, arguing as in the proof of Theorem 1.1, it is

cl 6 γ̃ l
µ

µ−1 for all l large enough.

Whence, condition (a) in Theorem 2.1 holds for infinitely many l if µ and p satisfy the
hypothesis (1.4).
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