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Abstract
In this paper we are interested in the following critical Hartree equation

2*
—Au = (/ L@)dg)u2;_l +eu, in €,
Q

lx — &[#
u=0, on 092,
where N > 4,0 < u <4, e > 0is a small parameter, 2 is a bounded domain in RY, and
2;’1 = ZZIVV :2“ is the critical exponent in the sense of the Hardy—Littlewood—Sobolev inequality.

By establishing various versions of local Pohozaev identities and applying blow-up analysis,
we first investigate the location of the blow-up points for single bubbling solutions to above
the Hartree equation. Next we prove the local uniqueness of the blow-up solutions that
concentrates at the non-degenerate critical point of the Robin function for & small.

Mathematics Subject Classification 35A02 - 35J20 - 35B40 - 35J60

Communicated by Susanna Terracini.

TMinbo Yang and Shunneng Zhao were supported by National Natural Science Foundation of China (Nos.
11971436, 12011530199) and Natural Science Foundation of Zhejiang Province (No. LZ22A010001).

D<) Marco Squassina
marco.squassina@unicatt.it

Minbo Yang
mbyang @zjnu.edu.cn

Shunneng Zhao
snzhao @zjnu.edu.cn
Dipartimento di Matematica e Fisica, Universita Cattolica del Sacro Cuore, Via della Garzetta 48,

25133 Brescia, Italy

School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People’s
Republic of China

Published online: 23 August 2023 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-023-02551-1&domain=pdf

217  Page2of 51 M. Squassina et al.

Contents

1 Introduction and mainresults . . . . ... ... .. ... L L
2 Local Pohozaev identities and blow-up points . . . . . . . . . . . ... L
2.1 Local Pohozaev type identities . . . . . . . . . . .. L
2.2 Location of the blow-up point . . . . . . . . . . . . e
3 Local uniqueness of the blow-up solutions . . . . . . . .. ... ... L L
3.1 Estimates for blow-up solutions and Green’s function . . . . . .. ... ... ... ... .....
3.2 Thelocal uniqueness result . . . . . . . . . ..
4 Proofof Lemma3.9 . . ... .. ... e
Appendix A. Estimates of Ay, and 2, F3, F4in(3.35) ... .. ..o
Appendix B. Estimates of G1, Gy, G3and G4in (4.20) . . . . . . . ..o
Appendix C. Estimates of H1, Hp and H3in (4.23) . . . . . . . . .
Appendix D. Estimates of AL and A% in (4.2)-(4.3) and RHS of (4.12) when @' = B;(x\") . . . . ..
References . . . . . . . . . . . e

1 Introduction and main results

In a celebrated paper [4], Brezis and Nirenberg introduced the following Sobolev critical
problem

{—Au = |u|2*_2u+6u, in 2, (1.1

u=0, on 9€2,

where 2* = % with N > 3, ¢ > 0 is a real positive parameter, €2 is a smooth bounded

domain be R . The existence of a positive solution u, to (1.1), i.e., a solution which achieves
the infimum

Vul? — eu)dx
Se:= inf Jo IVl 2
ueHy (2)\{0} (IQ |u|2*dx) %

has been proved by Brezis and Nirenberg in [4] provided ¢ € (0, A1) in dimension N > 4
and when ¢ € (A4, A1) in dimension N = 3, where A is the first eigenvalue of —A with
Dirichlet boundary condition and A, € (0, A1) depends on the domain €2. On the other hand,
when ¢ = 0, problem (1.1) becomes much more delicate. Pohozaev first proved in [33] that
(1.1) does not have any solutions in the case where 2 is a star-shaped domain. Bahri and
Coron [2] proved that (1.1) has a solution when €2 has a nontrivial topology and ¢ = 0.

As ¢ — 0, Rey [34] proved that if a solution u, of (1.1) satisfies

Vue? — $¥8,,, as e— 0, (12)
where §, denotes the Dirac mass at x and S the best Sobolev constant defined by
\%
S = inf {w -ue D2RN)\ {0}}.
llatll f2x

Then x¢ € 2 is a critical point of Robin function R(x) (see (1.4)). Conversely, if N > 5 and
X0 is a nondegenerate critical point of R(x), then for ¢ sufficiently small (1.1) has a family
of solutions u; satisfying (1.2). Let  be a smooth bounded domain in RY and N > 4, Rey
[35] (independently by Han [27]) considered

N+2 .
{_Au:N(N—Z)uNZ + eu, in €2, (1.3)

u=0, on 9€2,
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and studied the localtion of blow-up point for solutions to (1.3) and blowing up rate, namely,

, Wb (N —2)wy
limellugll;o0° = —F——
e—0

R(x0) if N >S5,

2pN
lim eln |jugl|| Lo = 4wsR(x0) if N =4,
e—0
where wy is a measure of the unit sphere of RV, pyy = fooo %dr and
R(x) = H(x,x) 1.4)

is called the Robin function of €2 at point x. The Green’s function of the Dirichlet problem
for the Laplacian is then defined by

1
Gx,y) = — H(x,y), 1.5
) = ey —x 2~ H ) (1.5)
and it satisfies
—AG(x,-) =8, in 2,
Gx,)=0 on 9L2.

Musso and Pistoia in [31] and Bahri, Li and Rey in [3] studied existence of solutions which
blow-up at k > 1 different points of 2.

To investigate the uniqueness of the blow-up solutions, Grossi in [24] proved the unique-
ness of the solutions to (1.1) under suitable assumptions on the the domain €2, see also [25]. If
N > 5 and for ¢ small enough, Cerqueti in [12] proved that if the domain €2 is symmetric with
respect to the coordinate hyperplanes x; = 0 and convex in the xi-directions, there exists a
unique solution u, of (1.3) with the property that

2
im M —s, (1.6)
0 (Jolueldx) T

and this solution is nondegenerate. Later inspired by Li in [30], Cerqueti and Grossi in [6]
follow closely the line of [30] for the blow-up analysis which be used to prove the uniqueness
result for the solutions of (1.3), and they proved that all solutions of (1.3) satisfy the property
(1.6) under the same hypothesis on the domain 2. In [22], Glangetas considered the problem
(1.3) and it is shown that if N > 5, the uniqueness of solutions u, of (1.3) with the property
that (1.2) for ¢ small enough, where x( is a nondegenerate critical point of Robin function
R(x). Recently, considering the uniqueness result of Glangetas in [22], Cao, Luo and Peng
[9] proved that if € is small, problem (1.1) has a unique solution provided the domain €2 is
convex and N > 6. For other related results, we refer the readers to [7, 8, 10, 16, 26] and
their references for the existence and uniqueness of solutions for nonlinear elliptic equations.

There is wide literature about the study of the asymptotic behavior of the solutions for the
almost critical problem

—Au = uz*_l_s, in ,

1.7
u=020, on 0Q2. (1.7

Atkinson and Peletier [1] studied the asymptotic behavior of subcritical solutions u, to (1.7).

Brezis and Peletier [5] used the method of PDE to obtain the same results as that in [1] for
the spherical domains. Wei in [38] further locate the blow-up point x¢ and to give a precise
asymptotic expansion of the least energy solutions for problem (1.7). Rey in [36] and Musso
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and Pistoia in [32] proved, for ¢ > 0 small enough, a positive solutions with two positive
blow-up points provided the domain €2 have a small hole. For ¢ < 0, Del Pino, Felmer and
Musso in [14] established a positive solutions which blows-up at two positive points when
the domain €2 have a hole and for ¢ small enough. Del Pino, Felmer and Musso in [15]
found solutions with three or more positive blow-up points under suitable assumptions on
the domain €2. Towers of positive bubbles for problem (1.7) were constructed by Del Pino,
Dolbeault and Musso in [13] under suitable assumptions on the nondegeneracy of Robin’s
function R(x) and Green’s function.
In this paper we are interested in the following critical Hartree equation

—Au = (/ - M(g) dé)u w4 egu, in 2,

lx —&|*
u=0, on 0%2,

(1.8)

where N > 4,0 < 1 <4, e > 0is a small parameter, 2 is a smooth and bounded domain in
R¥ and the exponent 2;’1 = 2]1\,\’:; is critical in the sense of the Hardy—Littlewood—Sobolev
inequality. To under the critical growth of the nonlocal problem, we need to recall the famous

Hardy-Littlewood—Sobolev inequality.

Proposition 1.1 ([29]) Let0,r > land0 < yu < N with § + 1 =2— K Let f € L(RV)
andg € L" (RN ), there exists a sharp constant C(0, r, i, N) independent of f, g, such that

/ f(x)g(©)
R

dxd§ < CO,r,pu, NI fllellgl (1.9)
N RN x —EIR

If@:r:%,then

CO,r,u,Ny=Cyp=m?

u INESO) {F(N)} “'
- OHlrd)
There is equality in (1.9) if and only if f = (const.)g and
g(x) = A(1 +22|x — z|H)~@N-w/2
for some A € C, . e R\ {0} and z € RV.

According to Proposition 1.1, the functional

P P
/ / [u ()P lv(y)] @RI ) gy
RN JRV X — y|#

is well defined in H!(RY) x HI(RN) if 224
2N—up

the lower Hardy—thtlewood—Sobolev crltlcal exponent and 2:; =
Hardy-Littlewood—Sobolev critical exponent. In the following, we use Sy, 1 to denote best
constant defined by

Vul’d
SyrLi=  inf Jex Vul"dx

. (1.10)
ueDL2(RN)\ {0} (f]RN fR |’4(X)| “|M(f)\ “d dS)zN u

In this way, we know that (1.13) is closely related to the nonlocal Euler-Lagrange equation

D GG 1w
Au-(/RN |X—§|“d§>u , in R™, (1.11)
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For the critical nonlocal equation (1.11), Du and Yang in [17] and Guo, Hu, Peng and Shuai
in [23] studied equation (1.11) with critical exponent 21]\,\’:2“ by analyzing the corresponding
integral system. They also classified the uniqueness of the positive solutions and concluded

that every positive solution of (1.11) must assume the form (see [17, 20])

_ WN=p@=N) - 2=N__ N-2
U (0) = § 500w CRVFI NN = 2)] T U (),
where (see [37]),

N-2
A2
N-2’

(1+22x —z]2) =

is the unique family of positive solutions of

xeRY, zeRY, 2 eRT,

Uz,k(x) =

—Au=NN-2u*"", in RV, (1.12)

In a recent paper [20], Gao and Yang considered the Hartree type Brezis-Nirenberg prob-
lem (1.13). They proved a Brezis-Nirenberg type result saying that: if N > 4, (1.13) has a
nontrivial solution for ¢ > 0; if N = 3, then there exists A, such that (1.8) has a nontrivial
solution for ¢ > A, where ¢ is not an eigenvalue of —A with homogeneous Dirichlet bound-
ary data; if N > 3 and ¢ < 0, (1.8) admits no solutions when €2 is star-shaped. More recently,
Yang and Zhao in [40] proved that the solution u, of (1.8) blows up exactly at a critical point
of the Robin function that cannot be on the boundary of 2 via the Lyapunov-Schmit reduction
method. Existence of bubbling solutions for equation (1.8) were constructed by Yang, Ye and
Zhao in [41] under suitable assumptions on the nondegeneracy of Robin’s function R (x).

Naturally, one would like to know whether the local uniqueness results of the blow-up
solutions hold true for the Hartree equation and if it is possible to prove the location of
blow-up point for the critical problem via local Pohozaev identities. For N > 4 and ¢ > O is
small, one of the main purposes of this paper is to locate the blow-up point of single bubbling
solutions for the following critical Hartree equation by local Pohozaev identities and blow-up
analysis,

2*
—Au = (/ L(E)dgi)uz/i_l + eu, in 2,
Q

lx —&#
u=0, on 092,

(1.13)

and study the local uniqueness of the blow-up solutions for problem (1.13) provided N > 6
and & small enough.
Before stating the main results, it is useful to introduce some notations. We denote by

N—p+2

App=[NN-2] % ¢yl 57, (1.14)
We know that U, ; (x) is the solution of
UG\ sy
AU, = AH,L</RN mds)Um , in RV,
We denote by PU. , the projection of a function U, ; onto HOl (£2), namely,
APU,, =AU;,, inQ, PU,,=0, ondQ. (1.15)
Let us set

I/jZ,K = UZ,A - PUZ,}\'
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We remark that v/, » is a harmonic function such that
Yo =U;x, on 0Q.

A first result that we obtain is the following.

Theorem 1.1 Let N > 4 and i € (0, N). Assume that u is a sequence of solutions ofHo1 ()
satisfying

lugllpe — 400 as € — 0 and |ug(x)| < CUy, 3, (x), (1.16)
N-2
with its maximum at x and L > = maxyeq Ug (X) = ug(x;). Then there exists xo € Q such

that as ¢ — 0, x, — xo, and xg is a critical point of Robin function R, i.e., VR (xo) = 0.

Remark 1.1 The above results have been be proved by Yang and Zhao [40] by using reduction
arguments under different conditions, in this paper we will prove this theorem via the local
Pohozaev identity (2.2).

In [41], authors constructed the existence of single bubbling solutions for (1.13) via the
Lyapunov-Schmit reduction method. Along with this interesting results, we will obtain a type
of local uniqueness results of these. More precisely, we can prove the following result.
Theorem 1.2 Let N > 6 and n € (0, 4). Assume that {uéj)}(j = 1, 2) are two families of
functions of HO1 () such that ugj) is a solution of (1.13) and satisfies condition (1.16). If
xo € Q is an isolated non-degenerate critical point of the Robin function R(x), then there
exists &), > 0 such that for any € € (0, g})], such type of solutions

ul) = Png-”,xff) +w, j=1,2,

O 4@, 50 = x®, 50 22

. . 2
are unique, that is, ug = wé ),

and wf;l)
Remark 1.2 In a first version of the main resutls were obtained under the assumption u is
close N or 0 and that N = 6 and = 4. The same results was improved to the present
version due to the work [28] by Li, Liu, Tang and Xu, since the nondegeneracy property of
the limit critical Hartree equation was generalized to a wider range of the parameters.

Remark 1.3 We remark that there are some restriction on the dimension N and parameter
1, since some estimates do not work well in applying the local Pohozaev identities and
applying blow-up analysis. For example, we note that in the case that N = 6 and u = 4, it
is difficult to prove that cp = 0 in Lemma 3.9 by (4.25) and (4.26) (see proof of Lemma 3.9
below). Moreover, for N = 5, if x is a nondegerate critical point of Robin function R, from
Lemma 3.2, we have

e — %0l = O( (1.17)

%)
However, by (1.17), we can not derive the estimates of (3.23) and (3.24) in Lemma 3.23.

The proof of the main results is mainly inspired by [16, 26], let u S) and u,(;z) be two different

positive solutions of (1.1). Set

1 2
u () — ul® (x)
1 2 ’
Nl () — ul ()|

Ne(x) =

@ Springer
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then for any fixed 6 € (0, 1) and small &, we want to prove |n.(x)| < 6 for all x €
2, which is incompatible with the fact |||z~ = 1. Compared with the local Brezis-
Nirenberg problem, the appearance of nonlocal critical term in problem (1.13) brings new
difficulties. For example, the corresponding local Pohozaev identities will have various new
terms involving volume integral, which causes new difficulties in estimates of the order of
each terms in the local Pohozaev identities precisely. To apply the blow-up analysis, we need
to use some nondegeneracy results. Du and Yang in [17] showed that if 1 is close to N with
N =3or4, UZ, » as in (1.11) is nondegenerate in the sense that solutions of the linearized
equation. Recently, Gao et al. in [19] proved that a nondegeneracy result at U, ; for (1.11)
when N = 6 and © = 4, and also proposed that the problem is an open within the remaining
range of N, . Later, X. Li, C. Liu, X. Tang and G. Xu. in [28] gave a affirmative answers
and it also completely solves the interval of the remaining exponents N and j.

Lemma 1.1 Assumethat N > 3,0 < u < NwithOQ < u <4, and Uz,x be the corresponding
Jfamily of unique family of positive solutions of (1.11). Then the linearized operator of (1.11)
at U, ;. defined by
wf 1 =2k -1 -2k -1 " =2 =2k =2
Lo =—0¢ — 2 (w0 )00 = @ =D U5 ) 05 ¢

x|~ x|~

only admits solutions in DV2(RN) of the form
¢ =aDyU.; +b-VU,,,

wherea € R, b € RV,

Notation. In what follows we let

o) i
g = ([ 9ulax)" s = ([ avax)”

as the standard norm in the Sobolev space HO1 (2) and L9(2)-standard norm for any g €
[1, 4+00), respectively. Moreover, A = o(a) means A/ad — Oase — Oand A = O(@)
means that |[A/x| < C.

This paper is organized as follows: in Sect. 2, we first construct the local Pohozaev type
identities for critical Hartree equation and give the proof of Theorem 1.1. In Sect. 3, we
give the proofs of some crucial estimates for blow-up solutions and Green’s function, and
completed the proof of Theorem 1.2. The proof of Theorem 1.2 requires some technical
computations which are given in Sect. 5 and Appendixs A-D.

2 Local Pohozaev identities and blow-up points
The first goal of this section is to establish the local Pohozaev type identities for the critical

Hartree equation. As an application of the local Pohozaev type identities, we are able to locate
the blow-up points in Theorem 1.1.

2.1 Local Pohozaev type identities

Lemma 2.1 Suppose that u, be a solution of the equation (1.13). Then, for any bounded
domain Q' C Q, one has the following identiry holds:

@ Springer
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d 1 N—2/[ @
—f T (e — xe. Vug)ds + 7/ Ve Plx — xe, v)ds — 2 [ e
A 31) 2 QY 2 PIo% av
— (7 v / / I/tgu(x)usu (S)dgdx
/ Q\Q/ |X — %‘|M
M ;4
/ / X (x ua (xX)ug ff)dédx
rJo\ I —&|®

/1. /1.
/ / e (X (S)( — Xg, v)d“g‘ds + E/ u?(x — Xg, v)ds — 6‘/ ugdx,
oY [x —&[» 2 Jogy /

usds

2.1
and
dug 0 1 9 #
_/ kﬁds-}-f/ Ve Pv;ds = / / Jug GO e (€)1 v;déds
aqy 0x; v 2 Jaor ' Jo |x _SW
€ 2
+§ aQ/uavjds
1 e () |u
+7/ / |£()| lue (€)% d$d+ //
25 Joor Janer [x — &M / Q\Q’
e (€) [P e ()]
dedx, 2.2)
forj=1,...,

N, where v = v(x) denotes the unit outward normal to the boundary 3.

Proof By elliptic regularity theory, we know that the solution u, of (1.13) is of C2. Without
loss of generality, we may suppose that x, = 0. Since u, satisfies

2*
ug' (&) 251
— Aup = (/Q o %_Wdé)ug + eu,. 2.3)

Then we multiply the equation (2.3) by (x, Vu,) and integrating on Q’, we obtain

27‘1 .
—/ Aug(x, Vug)dx =/ (x,VuQ(/ us () d%’)uiﬂ_l(x)dx
/ / Q

lx — &|*
+5/ (x, Vug)ue(x)dx. 2.4
Q/

Notice that

“(‘5)
/Q/ (x,Vug(x)>(/Q| —Slf‘ds) '()dx
2*
. ug" (&) 21
- /Q (x, Vug(x)></;2/ . _éwdé)us (¥)dx

2*
ug" (£) 21
+/Q/ (x,Vug(x))(/Q —§|“d5)ua (x)dx.

@ X

@ Springer



Local uniqueness of blow-up solutions for critical Hartree... Page9of51 217

We calculate the first term on the right-hand side to obtain

2 N
2 [ e vueel( [ = ffudg)uzu o
ue (oug () ug“(i-‘) 2
:—N//// e ddE+M//x( e (deds

usu(x)usu(g)
,v)déds.
/m/ g vldEds

Similarly, we can deduce

*

2 .
2 [ e vuen( [ ;8 (;‘l)ﬂdx)ui“ eae

“a#(x)ueﬂ(g) uaﬂ( ) 2
__N//// g dd““/g,/g,"?'@‘ Vgt E)dxds

ue (s ©)
/BQ/ // |X — $|M (Es V>dXdS.

Thus we can prove that

\/;—Z/ (x,Vug(x)></S; |)I:F_(§|)Mds) /i (x)dx

2oy, Zi ooy 2
_ M2—2*2N/ /' ug" (X)ug (S)d d‘;‘—i——/ / Ug (X)ug (“E)( )deds. (2.5)
/ / Q/ /

lx — &~ lx — &~

For the second term, integration by parts, we have

2*
* ue“(f) 2:1_1
2 /Q <x,Vu£(x)></Q\Q/ F _Swd%‘)ua (X)dx
[ [ O )
o X —§#
“(5) 2“
+/L/,/;2\Qx-(x—$7| P & (x)dédx

Msu(x)uau(‘i:)
x,v)d&ds. 2.6
/asz' fQ\Q’ lx —&[# %, vidods (20

On the other hand, we have

2—N 1
—/ Au5<x, Vu£>dx = 7/ |Vug|2dx + 7/‘ <x, v)|Vu8|2dx
/ 2 Q 2 QY

- /8 3 88“; (x, Vue)ds @.7)
and
//(x, Vug)ugdx = %/89/ u?(x, v)ds — g o ugdx. 2.8)
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In view of Green’s formulas, we have

0
IVMAZ::—l/ ugAugdx4-/1 e
o aq Ov
us“(X)us“(E) / 2 / dug
= ——————"dxdé + ¢ usdx +
// lx — &+ o ° aq v

Hence by (2.4), (2.5), (2.6), (2.7), (2.8) and (2.9) imply that (2.1).
To prove (2.2), We multiply (2.3) by and integrating on €', we have

ue dute / |u8<5)|22 2 / due
| a dx = =5 g d —ugdx.
// Ug— ox, x = /;2/ ax.,-( S — 5)|ue(X)| v dx + ¢ o 7%, ugdx

Similar to the above argument, we have

du ([ lue®)L -
/Q/ 0x; (/Q, st>|”s(x)| dx

. % Oug |u£($)| -
= -2, -1 (/Q Tdg ()

o 9x; \Jor x — &R
lute ()17 e (x)
b f [ e %dm

/ / lute ()1 i (£) lue QO Nue E)1™ | e s
s Jor lx —&[* '
Then, we can deduce

/g;/ Bx]- (/Q/ |x — &1 dé‘)l”s(xﬂ dx

/ / it (015 |ue (£) e COVH e @) g g
ZN mw Jooy Jor |x — &M

(N = 2) 1t ()2l () P
TN Sy J T T e

dedx.

Similarly, we also have

due |ue<x>|* 21
£ nd
/Q,agj(/g, o dx ) ue (&) %~ d

/ /|”a($)|“|”s(x)| v;dxds
TN - o Jo lx — & '

1N —2) |ua<x>| |us<s)|2ﬁ

Hence we can get

due lue (€)%
/S;’ ij (/Q/ |X SW d$)|u£(x)|

2(N — 2)/ /Iup(x)l "lus(§)| videds
TN = w Joor Jor v —&[K ! .

@ Springer

(2.9)

(2.10)

2.11)

(2.12)



Local uniqueness of blow-up solutions for critical Hartree... Page 110of 51 217

Now similar to the calculations of (2.11), we know

dug lute (€)%
—d e
/sz’ 3xj (/Q\Q lx — &~ g)|u Sl

2% 2%
/ / s PO o)
TN — 1 se Q\Q lx —&|*
N -2
M( )/ / Ius(%‘)l Iueg)l dédx.
2N —p Jor Q\Q’ lx —&|*
So, by (2.10), (2.12) and (2.13), we can prove (2.2). This finishes the proof. ]

2.2 Location of the blow-up point
We first prove the following lemma.

Lemma 2.2 Assume that N > 4 and u. is a sequence of solutions of problem (1.13) satisfying
the assumptions of Theorem 1.1. Then there holds A d; — 00 for € small enough.

N=2
Proof Assume that A.d; — ¢ < +00 as ¢ — 0 and u, is a solution of (1.13) with A, > =

max Ue(X) = ug(xe) — +ooase — 0.Setve = A, 2 ug(A; 'x+xc). Then v, (x) satisfies
xe

—Avg(x) = (/ L@)d‘;‘)vf’ﬁ_l(x) + %vs in Q= {x : % + x; € SZ},

Q lx —&* : e
ve(x) =0 on 082,

v:(0) = max veg(x) = 1.
xe,

As & — 0, by the elliptic regularity, we have v, — v in C? (R_’X ) and v satisfies

loc

—Av(x) = (/N T v (6) df})v l(x), v>0, in RN {x eRY :xy > 0},

El+
v(0) = max v(x) =1, ve HO1 (Rf).
xe]RfX
It follows from the Pohozaev identity that v = 0, which contradicts with v(0) = 1. O

We are ready to give the estimate of u, away from x,.

Lemma 2.3 Assume that N > 4 and u. is a sequence of solutions of problem (1.13) satisfying
the assumptions of Theorem 1.1 and x € Q\B RAZ! (x¢) for R > 0is any fixed large constant.
Then

G(x, xe) £ 1 1 .
Ug(x) = 7AN wto s + 5 + in Q\ BR)\;l(xe)

N2 N+2 N
AT el dN-2 a7 dN 32N

(2.14)
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and
VG(x, x £ 1 1

Vi (x) = MANH—i-O( i+t ) i 2\ Bt (o).

A2 AeZ dN-1 )2 gN+l o 32 gN

(2.15)
;L
Hered = |x; — x| and AN, = / (E) ve” ( )d%‘dx.
Byp, © By x —§&|n

Proof By the potential theory and (1.13), we have

Mu)=/<ﬂnz((/ M(atﬁ) @) +eue@))dz. 2.16)

Q Qlz— &

First we remark that, as a consequence of the moving sphere method, the Talenti bubbles
satisfy

2*
Ut € N(N —2) 2o
/ Xe,Ae g ds — ( )Uz )Lzll, (217)
RN |x —&[* A

(see [21][Proof Theorem 1.2] for example). Combining (1.16), (2.17) and G(x,z) =
O(W), we know

* *

2 21 2 i
/ / ug" €t (z)(;(x,z)dxds ; c/ / UL, ©U, ‘A (2)G(x, Z)dzds
Q\By (xe) JQ [x — &+ Q\B 4 (x) JRN [x — &M
7 7

1 1
=0 / dz
( N2 (Q\Bd (xe))\Bog (x) 12— x[N=2|z — xg|N+2

A ?

1 1
A N-2 N+2dz)

o7 @By (e)nBg ) |2 = XNz — xe

& 2

1

~of). @19

he 2 dN

where d = |x; — x|. Similar to the above estimates, we can also obtain

/ / us“(&)ug (Z)G(X’Z)dgd - C/ / 2 U MAF (2)G(x, Z)dédz
d (xe) Q\Bd()fs) lx =& Bd(xa) RN lx — &I+

:O(MNTH/B ! ) dz)

4 @) |z —xIN=2(1 + 22|z = x1%) 2

—0 ;) (2.19)
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Furthermore, we have

—1
ﬂ I‘-

/ / U (E)us (Z)G(X’Z)dgd — G x0) / Ug ((E)ua (2)

Bd(x(c) Bd(x(c) [x — &M Bd(xg) Bd(xs) [x — &M

— " dé&dz

(2.20)

2% 2% —1
N / / ug (E)u" (z)(G(x,z)—G(x,xs))dez
By (xe) /B g (xe) lx — &1

G(x xg)/ / va“(S)vs ( )dg‘dz
Baye 0) /B e © lx —&[H#

1 v“ v“ NG, A7z 4+ x) — G(x, x
4L / / e (§)ve ( )( (x, Ag ) ( 8))d$dz
2 JBa (0) JBay, (0)

lx —&|»

G 1
(x, xa)ANu“FO( )
At Zan-1

where since
2% 2% 1
1 1 "
_ 0( _ / f Ve (g)ve (Z) . le'1 dde)
307 IBu © JBy, 0 X8I dV " e
=" =

| Ueh & @l
_ O( ; / / 0.1 0.1 _ dsdz)
Asz_l Bd%(O) RN lx — &I
1 [yl
0(?/ jdz)
A2 dN-1 Bd%(o) A+ z1%) 2

- 0(%).

)\52 dN-1

On the other hand, by (1.16), G(x, y) = O(W) and the definition of Uy, ;,, we can
deduce

221

£ 1 1
e | Gx,2ue(z)dz = 0[7 / dz
V/;Z £ N=2 ( By (xe) ‘Z_X‘N72 |Z—Xg|N72
2

he 2
+/ : )] 222
Z

By (o) 1z —xIN 72z — xp N2 2.22)
2
&

=0( N2 )
re 2 dN-2

It follows from (2.16)—(2.21) that the inequality (2.14).
To prove (2.15), we know

Vi, (x) 2/ V.Gx, 2)(( / |u8 (;)M ef‘fl(z)Jreug(z))dz
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Similar to estimate of u.(x), we can also obtain the inequality (2.15). Hence we finish the
proof of Lemma 2.3. o

We are going to prove Theorem 1.1 by applying Lemmas 2.2, 2.3 and the local Pohozaev
identity (2.1).

Proof of Theorem 1.1 We will prove the theorem by excluding the case xo € 9. In fact,
takeing d, = %d(xe, 0€2), and by Lemma 2.2, we have

rede — +00, as € — 0.
Then, by repeating the similar calculations of (A.3) in Lemma A.5, we know

N(N —2)

UgNdx +0(1). (2.23)
AHL '

AN =

By the Hardy-Littlewood—Sobolev inequality, we have

2
/ / ; )Mf’“]f
By, (x¢) Q\Bdg(xé P8 [x — &[pt
1 1 1

=032 ) / / dxdg

‘ Bap (eo) JBa, (o) (14 Al — xe )N T 10 = EFH (1 — xe )PV

1
- 0(7). (2.24)
ptl _pl
Mo dl T

Also, we have

/ RGN C/ / Vs U2 @
Bs (x¢) 9Bs(xs) JRY

|x — &M lx — &~

N(N -2 .
_cNN=2 Uz, vjds. (2.25)
Ag.L 3B (xs)

In view of Lemma 2.3, we know the estimates (2.14) and (2.15) hold on 0 By, (x¢). By(2.24)
and (2.25), taking Q" = By, (x,) in the local Pohozaev identity (2.2) in Lemma 2.1, we have

3G (x, x;) G (x, 1 1
/ (x, x¢) (x xa)ds _ 7/ |VG(x,Xg)|2deS = 0(% + 7N)
(e 0% v 2 JoBy, (xo) d; Aedy

Since we have the identity (see [11])

G (x, xz) 0G (xg, 1 0H (x,
/ (x, x¢) (xe x)ds _ 7/‘ |VG(X,X5)|2Ude — M‘x_x ,
0By(xe)  OXj v 2 JaBsxe) daj T
(2.26)
then we know
PH, xe) =0(—y + : ). i=1...N 2.27)
dx; = \gN-1 " xadN/) =R '
However, recall the following estimate established in [11, 34]
2 1 X — Xg 1
VR = — 0 , d 0, 2.28
)= T o) s @29
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where X € 92 is the unique point, satisfying d(x., Q) = |x, — X|. The estimates in (2.27)
and (2.28), lead to a contradiction as ¢ — 0 immediatelly.

From the above arguments, we know there must hold xo € 2. We have the following
estimate that its proof has been postponed to Lemma A.5 in the Appendix,

N(N —2)

A =
N, AH,L RN

* 1
Ur-la 0(—). 2.29
01 dx+ 22 (2.29)

By Lemma 2.3 and (2.29), we get by taking ' = Bs(x.) in the local Pohozaev identity (2.2)
in Lemma 2.1,

3G (x, x:) 3G (x, xe 1
LHS of (2.2) :/ O, %e) 96, xe) ;0 f/ IVG(x, xo)|vjds
aBs(ar) 0% v 2 JaBsxe)
+0(s n i). (2.30)
py

€

On the other hand, by Hardy—Littlewood—Sobolev inequality, we can also find

M u M M
[ / xj —&)) Ius(é)l |M£();)| dxdt = 0 / [ \us(é)\ \us()j)l dx dé)
Bs(xe) JQ\Bs (xe) — &t Ba(re) Q\Bs(re) ¥ —EIHT

=o(i" ™) / / !
Bs(xe) J\Bs (o) (14 helt —xs\)zN " |X*5|”+1 (1+ helx = xel) N 74

dxd&

It follows from (2.2) and (4.14) that

3G (x, xs) 3G (x, 1 1
f . %e) 06, Xe) ;0 7/ IVG(x., xo)[vjds = 0(8 n —). 2.31)
aBs(xe) 0% v By (xe) Ae

Hence (2.31) and (2.26) imply that
0H (x, x¢)
0x;j

T 0(8+%), j=1,....N. (2.32)
. .

This means that VR (xg) = 0 as € — 0. Thus the conclusion follows. ]

3 Local uniqueness of the blow-up solutions
3.1 Estimates for blow-up solutions and Green’s function

Before we prove that local uniqueness of such type of solutions, we need some preparations.
The following lemma plays a crucial role.

Lemma 3.1 Assume that N > 6, u € (0,4) and u. is a sequence of solutions of problem
(1.13) in HO1 (R2). Then we have

G(x, xg) In A, .
ue(x) = o Ay + o(fg) in Q\ B (xe), 3.1)
he 2 he 2
and
VG (x, x¢) InA .
Vi) = S A+ (T )i R0\ Be(xo), (3.2)
A A
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where Ay, from Lemma 2.3 and d = |x; — x|.

Proof We know that the solution of (1.13) can be rewritten as:

2 2ned
ug(x):// ue (§)ue (Z)G(x’z)dz,*dz—ke?/ 0 ()G dz.  (33)
QJIQ Q

lx —&[#
From the estimate in (2.18), we know
' ©u” (G (x, 2) 1
- dgdz = 0(—5 ) (3.4)
Q\Bg () J By (x:) l[x — & Al
and
22l
G 1
/ / us" Eus  (2) (x’Z)dgd _ 0( N+2) 3.5)
@\By () J2\By (xe) lx — &+ a2
Since

G(x,2) = G(x, x0) + (VG (x, x5), 2 — xe) + O(|z — X2 7).

then we know

2 2ol 2
/ / ug" (&)ue (Z)G(X’Z)dgd — Gx. xg)/ / ug (E)us ( ue ©ue” @ oy
5 ) J By () lx —&[» 5 @) J By () lx —&|»

i Eue @VG(x xe). 2 — xe)
_|_/ / . ’ = dédz
z (xg) z (xg)

lx —&|*
=A
2% 251 )
u u xX)|x —x
+/ [ e (&) 7 _(g\)ul el dédz
%(«’Ce) %(Xs) z
=A)
G(x,xe) InA
= 2 AN,,L+0(—L+§), (3.6)
Ag 2 Ae 2
where

2*
U @ PU (VG (x. x,
A1=0/ / L OPUL,, QTG 30,2 = >d§dz)
z (xg) JRN

lx —&|»

U, % PU, %~ .
o / / W EVPUL 2w |z — ‘dédz)
Bt (xs) JRN

lx —&|*
N(N -2 ‘o
= 0(¥ UZ THVG(x, x0), 7 — x)dz
Ag L By (xe) e
N(N —2
N ( )
An L By ()

= O(/ Uf:ﬂ;gz(z)wglz - xgldz>
B% (xe)

Uz*A we|z — x5|dz>
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T}Lg

}\2 f (1+r2)N+2
- O(A—gnwenH(;),

by G(x, x¢) = G(x¢, x). Similarly, we can calculate that

U U @l - el
Ay =0 / / Xeke O Xeohe dgdz)
Bz (x¢) JRN

lx — &~

N42
— ) T )

(N(N -2)
An L B (x)

In X,
o(=53).
Ae 2

0 U2 @)z — xePdz)

Finally, similar to the calculation of (2.22), from 1, ~ 87ﬁ from [41, subsection 2.2], we
obtain

e [ Gt oz = 0(—gz). a7
he

Then (3.3), (3.4), (3.5), (3.6) and (3.7) imply that (3.1). Finally, we get (3.2) from the fact
that

Vg (x) = //”aﬂ(g)uf @V, G(X’Z)dé‘dz—l—.s/ug(z)VxG(x,z)dz. (3.8)
Q

lx — &~

Hence the proof is finished. O

Lemma 3.2 Assume that N > 6, u € (0,4) and u, is a solution of (1.13). Then we have

In Ag
VR(x,) = 0( . ) (3.9)
and
1 1
&= 7)\2\,_4 (A0+g), (3.10)

where Ay is a strictly positive constant.

Proof Similar to the arguments of (2.32), by applying the Pohozaev identity in Lemma 2.1
and Lemma 3.1, we can obtain (3.9) by taking ' = B (x.). Next we shall prove (3.10). By
Lemma 2.3, we find

G(x, xg) € 1
ue() = 55 A+ O~ + =5 )s ¥ €@\ Belx) 3.11)
A2 ey
and
VG(x, x e 1
wa(x):MAMJrO( - +—E), xeQ\ B (x).  (3.12)
Ae? AT Al
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By (3.11) and (3.12), taking ' = B (x,) in the local Pohozaev identity (2.1), we obtain

2N—p N—pu

ua (our (&) » W 2 e
/ / e WOMe 35 jegy < c( / v, (x)dx) ( / 2 (x)dx)
L) JB (v X — &I Be(xe) F Q\B: (x:)
1

Similarly, we can also calculate that

uet (st (€)
/Br(xs) / |)C — %‘|M ()C — Xe, V)déds

* 2*
ue“(x)us“ &)
= — &)~ 2 dgdx
AN /fup) /sz\Brm) |x — &|1+2

1 e
:0(—),/ u2x—x,vds:0(7).
AT JoB(xe ey = xeov) P

Inserting (3.11) and (3.12) into the Pohozaev identity (2.1), we know

A%; 0G (x, x¢) 1
U s Ag 2
— 7x—x,VG(x,x)ds+ff IVG(x, x¢)|7(x — x¢, v)ds
)»?"2[ /Br(m v =% o) 2 JoB, () W =2, v)

N —2/ BG(x,xg)G(x’xs)] (3.13)
2 Jopxy OV

1
2
=—¢ s(x)dx + 0 + — ).
-/Br(m < N2 K?’>

By applying the following identity (see [9])

3G (x, 1
—/ 9GO 2e) 1 VG (e x)ds + / IVG(x, xo)2{x — xe, v)ds
Br(xo) 2 Jo. o)

av
N =2 aG (x, x¢) N -2
_ / Gl x0) = ds = = ———R(x),
2 JoBxo) v 2
we get from (3.13) that
(N = 2)H (e, x0) A%, / , e 1
=¢ u +0( +—). (3.14)
w2 Be(x) Ay
On the one hand, by Lemma A.5, we know
N(N —2) 2% 1
Ay =072 [y 0(—). 3.15
N Agr  Jrv %! Oz G19)

8/ ug(x)dx = a[/ (PUy, 3, (x))de + O(f PU,, ), we + IIwSIIiI)]
Br (x¢) Br (x¢) Br (x¢) 0

&
:ﬁ UOldx+O(N2>

+ 0((/ U2 5, dx) el + el )
Br(xe) 0

& 2 &
= F/I%N Uo’ldx + 0(}\‘7>

On the other hand, by PUy, , < Uy, 1., we have

(3.16)

@ Springer



Local uniqueness of blow-up solutions for critical Hartree... Page 190of 51 217

Therefore, together with (3.14), (3.15) and (3.16), we can deduce

NN ~2)Rix,) 2% 1\2 ¢ > 1
28m.108 (/RN Yoa dxt O(ﬁ)> - ?(/RN Ug dx + 0(72>>

+0<)L;772 + %) (3.17)

which implies that (3.10) is true. O

3.2 The local uniqueness result

The purpose of this subsection is devoted to complete the proof of Theorem 1.2. There are
some prelimilaries to be done before we go into the proof. First of all, we let uél) and u§2) be

two different solutions of (1.1). We will use xéj ) and )»gj ) to denote the center and the height
)

of the bubbles appearing in us’" (j = 1, 2), respectively.
Let
(1 @
ug ' (x) —ug ' (x)
Ne(x) 1= —q5 o , (3.18)
lug " (x) — ue™ (x) || oo
then 1. (x) satisfies ||n¢ || L~=1 and
— Ane(x) = f(x,ul” ul®), (3.19)
where
(M g1\ 20
M @) — 2t _ (ue”®)™
F o u?) = @, 1)(/Q g 48)Cetomeo)
De(§)ne(8) 2% 1
* Lels)ne(8) @ (1)) 25
W25 [, e g 4) W) e
with
1 2% -2
Ce(x) = / (rug“(x>+<1—r>u,§2>(x>) "o,
0
Lo @ e ) !
De(g)=/ (ms &) + (1 — u (g)) dr. (3.20)
0
Lemma3.3 For N > 6, u € (0, 4], it holds that
InalY In At
D —x@| = 0(%) and 11 =22 = 0 ). (3.21)
(A )? (re)?

Proof First we remark that
R(xe) = R(x0) + (VR(x0), xe — x0) + O (V2R (x0)|xe — x0/%).

Combining (3.9) and x¢ is a nondegerate critical point of Robin function R, we see that for
N=>6

In Ag
e = x0l = O i ) (3.22)
A direct computations, we get (3.21) from (3.10) and (3.22). m]
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Lemma3.4 For N > 6, u € (0, 4), it holds that

m 2
252 InA 2% 2 N o
) =U 0 +0( (f) Ui o+ 0( 2wl 1%72) (3.23)
j=1
and
1) 2
-1 InAg 2 —1 o
D (x) = U(‘l) o+ 0(= N YU o+ 0 (2w, 3.24)
j=1

Proof In view of Lemma 3.3, we first note that
U, ,0) =Uo,0)| = 0(|x§l) —xP)- (VU a0 @ _ o)

HAD =A@ (VU , 0], 0))

e 2 -
= O(Uxél)’)él)(}n(; )|x£ ) — xs( )| + T))
&€

In A"
=o(=5r N U0, 0@, (3.25)
which implies that
w0 _ o™, 0 () 396
Ug ™ —Ug" = 20 ) m,m )+ Z|w ). (3.26)
j=1
Then (3.26) can deduce that (3.23) and (3.24). O

From [39], we have the following estimate:

Lemma 3.5 For any constant 0 < o < N — 2, there is a constant C > 0 such that

/ : L i< (1+|y\>m fo<N-2
RN [y —xN2 A+ )2 T | e Indyl, if o = N =2

Lemma 3.6 Forany constantoc > N —2 — and i € (0, 4], there is a constant C > 0 such
that

] ] W, ifUZN—Z—%andO<M<4,
(A+[y) =N=#
/N 2N(N—2) 2N(2+0) dx < ! C 1 . —N_2_ & d —4
RY |y — x| 2= (1 + |x|) V-1 —Fmeg nlyl, fo=N-2-75 and p=4.
(I|y 2N=nr

Proof We just need to obtain the estimate for |y| > 2, the other is similar. Let d = %| y|.
Then we have

1 1 Cc 1
2N (2+0) dx = N(N— 2N(2+0) dx
Bq(0) |y — x| 2N n (14 |x]) 2V-x d 2N— u Ba(0) (1 + |x|) 2N=w

C 1 C
< <
= NN N@+20—2N+p) —  NQo+p) °
d 2N p. (1 d) 2N—1 d 2N-n
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forany o > N —2 — 5. And we have

1 1 C 1
o 4X = e Wy 4%
Ba() |y — x| e u 1+ |x] e " d 2= JBa(Y) |y — x| 2N

C N@E—p) C
d N <
- 2N(2+0) — NQo+p)
N—n d 2N-u

Assume that x € RV \ (Bd (0)U By (y)). Then we know

1 1
e —ylz 5yl Xz Syl

Hence by a direct computation, we have

1 1

/ TR NGrey 4%
R\ (BiOUB)) |y — x| IV (1 4 |x]) 20
1 1
S/ 2N(2+0) dx
BN\ (BaOUB/0) x| "IV (1 4 |x|)
< ¢ / ! d
< o —— e dx
a B SR (5 00B10) (1 4 ) B
C
<
= NQo+w) ’
d =i
forany 0 > N — 2 — 4. This finishes the proof. ]

Lemma 3.7 For n.(x) defined by (3.18), we have

In A (1) lnk(])
/ Ne(X)dx = ———— and . (x) = ————, in Q\ Bs(xV), (327
o PO (V)N =2 ‘

where § > 0 is a any small fixed constant.

Proof By the potential theory, we know

He(O) = (25 — Dot (6) + 25men(x) + & /Q G(x, e @)z,

where

W) o2
nat0 = [ G [ S d) o @m. oz,
Q Q

lx — &~
D (§)n:(§) ) 2% —1
= | G(x, ——d T d
mat) = [ oo [ SR e ) w0
Firstly, we can deduce
4o 1) Xopt2
M o
Ce(n)| = C — and |D.(§)|<C ——. (3.28)
’ (142D )z — XDy ‘ (142D jg — xD)N12
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Combining |n.| < 1, (1.16), (2.17) and Lemma 3.5, then we get

2*
U o0 ©)%
na=C [ (] Crprp®) dg ) C. ()dz
al RV

z—xN=2 lx —&|»

1 1
< C/ dx
@ |z = A% N2 (14 |z = 2 Px D 2)?
1 1 3.29
= C/ My — > 7dz 429
Qhe (x —xg ) — 2|V (1+|Z|)

1
(1428 =2V

Next repeating the above process, we know

|
et =0 )-
(1421 = 2

Then we can proceed as in the above argument for finite number of times to prove

et =0 LESS ). (3.30)
’ (142" —xOPN? '
Next, we find
Um0 —Uo, 0] = 0((1\11(1);;2>Ux§1>’kg>(X). (3.31)
&

Hence by Lemma 3.6 and Hardy-Littlewood—Sobolev inequality, we can calculate that for
d(R2) :=diam(R2)

D. .
na=c [ ([ L)1) (U, @) G x4
Q Q & she

lx — &~
o[ ™ ([
= A - -
= N—2 N(N—p+2) 2N(N=2)
AT Mo ) T 2 |z — x| 2N
o) N(N—p+2) 2N—u
()»a )72/\/7# P )TJ
z
N(N—p+2)
(1+(A§1))2|Z_xél)|2) IN—1
2N—p
(/ 1 1 d ) 2N
<C — — X
2 D x — xV) — o TR (1+ |Z|)2N5’X1_‘jz)

C
= 1) ()N -
(1 + Ag |x — xg I)

Finally, we have

6‘/ Go(x, 2)ne(z)dz = O(e).
Q
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Therefore, together with the estimates of 7, 1 and 7. 2, we can deduce

In A"
1+ Agl)|x — x§1)|)

Ine ()] = 0(( =5) + 0. (3.32)

Hence (3.27) can be deduced by (3.32). O

According to the above nondegeneracy result in Lemma 1.1, we have the following crucial
lemma.

Lemma 3.8 Suppose that the exponents N, | satisfy the assumptions of Theorem 1.2. Let

Me(x) = ne (5 A + xél)) Then we have that

Ne(x) — chm(x)‘ (ﬁ)’ uniformly in CI(BR(O)for any R >0, (3.33)

where cy, k =1, ..., N are some constants and
BUOA‘ aUo,1
= . N = ’,k=1,...,N.
0= "0 Lot 9T Ty

Proof Since |7.| < 1, by the regularity theorem [18], we know that
e € C'(Bz(0)) and el crep o)) < C-

for any fixed large Randa € (0, 1). Hence we may assume that 7, — 7jg in c! (B(0)) for
any large R > 0. Now by a direct calculation, we have

1
e Ane(— 2
a0y G )

~ & ~
= E¢17e (x) + Eco(x) + mns (x),

—Afe(x) = —

where

| (1) (Hy-1 (1
Eea(n) = — - (/Q( @ te+x) dg)Ce (M x +20),

W DYyN—pt2 lx —&*

Fat = (f ()" +x§1>)ﬁg(y)d$) oo +x§1)))2i—1.

ADyN-p+2 Ix — &[~

Then for any ¢(x) € Cg° (RN) with supp ¢(x) C B)L(l)s(xél)) for a small fixed §, we have

[ vieovemdr = [ (B
B ) My B.(l) o)
»Ds 5
FEe2(X))p(x)dx + —5— Ne (X)@(x)dx. (3.34)
% (1))2 B, )

In view of the elementary inequality (A.2) in Appendix A, we know
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/ O Es,]ﬁs(x)(p(x)dx
(D Xe

( 1)( +xel))) “Ce< M +x(l)> (x)

* —
2% — 1
= 1“7/ / dxdé
()\g ))N_/H_z Bhgl)é(xél)) BA£1>6(X6(~])) [x — &
21 N 2525 — 1) 25 2n —1)? (2717_1 )
IO ONET (DyN—p+2 D\N—p+2” )
(Ae YN (Ae YN (2he HN—1 (Ag YN

(3.35)

where

1
(PU M Am( M +x< ))) “Cg( I +x8 )ns(x)(ﬂ(x)
Fi :/ | [ dxdg,
BAg.])s(Xé )) B ([) (X( )) |X — Elu
(1

ne |
B.Agl) @)
P (D\\2:— (1) (1)
( U D A(l)( M + Xe )) ( 30 + Xg )Cs( 50 + Xe )ﬂs(x)(p(x)
/ dxdé,
B OB @)

lx —&|*
.
3(1) M)

/ (PU 500 Gl + x5 @i Gy +x)P2C (i + 5 ()0 0)
B 1) (x¢ )

0 &I
Vs
-
Bl(l)é(xs(,l))
1 D2t Dy =
ng)(;§n +x) Ce (5t + 1) e (e (x)

/ £ £ dxdg.
B s @) lx —&[»

By the definition of Ux<” NOE Lemma 3.4 and Lemma A.5, we have

dxdg,

1 1 .
(PU_ ) )\(l)(r('sl) +x} ))) , 0 /\(1)( g +x} ))) 125 (e (x)
_ & s/ £
fl_/ 0 / ) I — 1
B 1y (xg ") B(l) (xg ")
A5

+o(@) (3.36)

dxdg

2 2% 2
Ui U (X)ﬁs(X)w(X) 1
— o D \N—p+2 0,1 0,1
=0e )" /N/]RN |x — &K dxdg + ( (1))

And we have the following rest other estimates for which the proof is left in Lemma A.6 in
Appendix A:

1 1 1 1 1 1
(Agl))NfTJrz Fr = 0(@)7 (kgl))N*TH F3 = O(E)s ‘(Agl))N*TH Fy = 0(@)
(3.37)
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Now similar to the calculations of (3.35), by inequality (A.2), we can deduce

[ Eavtas
B (1) (ag ")
Ag '8

De( iy +x6)ie @) (1 2y +xE) 5 o)
£ £

2*
= 7“/ / dxdg
()\‘5;1))]\’7"Jr2 Bxgl)a(xél)) Bl\g)a(xgl)) [x — &M
Uk ©i U ) |
s 0,185 Uo R
,zH/RN /RN — dxdg+o(ké])). (3.38)
On the other hand, from ||n.|| = 1, we have
e - 1
T/ o e = o(ﬁ) (3.39)
()Vs )2 Bxgl)a(xg ) )"8
Consequently, in view of (3.34)-(3.39), we obtain
2 22
) . Upi U ()iie ()
[ viwvewds =g -n [ 2 -
B}\(])a(){g ) RN JRN |X - é—l
Ugh @)Uy, (e |
. 0.1 MUy ) 1
20 [ [ x— gl dXd“o(xé”)'
(3.40)
Taking ¢ — 0 in (3.40), we find that 7 satisfies
2*
Uy (&) 22
— AFn— (2F _ _—01%7 n o
Ado = 25, = 1)( /R L) Uah @i
2% —1
Uyl (®)ijo(§) 2% 1
* 0,1 w . N
+2“(/RN T dé)qul . in RV, (3.41)

From the non-degeneracy results of Lemma 1.1, which gives 7jp = 2,1:/:0 ckPk. Hence the
conclusion (3.33) follows by (3.40) and (3.41). O

The proof of the following lemma is postponed to Sect. 4.

Lemma 3.9 Suppose that the exponents N, p satisfy the assumptions of Theorem 1.2, there
holds

ck =0, for k=0,...,N,
where cy are the constants in Lemma 3.8.

We are going to prove Theorem 1.2 by using Lemmas 3.8 and 3.9.

Proof of Theorem 1.2 From (3.32), we find that

1
[ne(x)| = O(W) 4+ 0(g), for x € Q\ BR(AQ,))_l(x§1>),
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which means that for any fixed 6 € (0, 1) and small &, there exists R > 0 such that

[ne(x)| <6, for x € Q\ Bk(/\él)),l(xél)).

Also for above fixed I§, in view of Lemma 3.9, we know
(Ol = 0(1), for x € By, (). (342)

Then for any fixed & € (0, 1) and small &, we can deduce that |n.(x)| < 6 for all x € Q.
This is a contradiction to || 9|z = 1. So uél) = ug ) for small &. This finishes the proof of
Theorem 1.2. O

4 Proof of Lemma 3.9

This section is devoted to the proof of Lemma 3.9.

Lemma 4.1 For N > 6 and u € (0, 4), let n.(x) be the function defined by (3.18). Then we
have the following estimate:

ne) = (@5 = DAL +2547) 66" 0

N M
* M) | % @) o Inhe 1 )
+];((2M—1)B +2#B€k)8kG(x XHO((AQ))N)' cl(@\ Bas(xY)).
“4.1)
where § > 0 is any small fixed constant, 9y G(z, x) = %kx)
A — / / @ @) Ce@me@ it “2)
B I |z —&|r ’ :
(2) 25—1
D
A®) :/ / e (E)ne (8) (us” (2)) dede. 43)
Bsx") JBsx") lz — &
W <0 " (€)% Ce(2)ne(2)
B = / / ) dzde, (44)
’ Bs(x{") Bs(xé”) lz —&|"
() 2% —1
D ug  (z))»
B2 =/ /' (1)) e (E)n:(6)( L( ) dede. @.5)
‘ Bs (") Bm“)) lz =&
Proof By the potential theory and (3.19), we have
Ne (x) = f G(z,x)g(z, 2P (2), 22 (2))dz
Q
(1)
Wi (6))%
== [ 6o [ S b )Cu@m (s
e §I7 4.6)

* Ds(g)ns (5) 2) 2% 1

e / G(z, x)ne(2)dz.
Q
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According to Lemma 3.7, for any z € Q\Bas (aél)), we obtain the estimate of the third term
in (4.6) as

/ G(z, x)n:(z)dz =f G(Z,x)ng(z)dz—i—/ G(z, X)n.(2)dz
“ B (a1 2B x()
In A(l) 1n 20
4.7)

Decomposing the first term of (4.6) by

" @)™ b
[ ( [ SR de)eiom@:

B g (€))%
= /l;g(xgl)) G(Z, x)(/Ba(xél)) Wdé)Cg(Z)na(Z)dZ
M (€)%
2 T L & £
* /Q\Ba(zgl)) o X)(/I;s(xé”) |z — &» d%')c (@) (2)dz

(" (&)
+/ G(z,x) / 2 dE)Ce(2)ne(2)dz
\Bs(x") ( By |z —&[H ) e
=G +2Gy + Gs.

We are going to estimate G 1, G» and G3, respectively. By using Hardy—Littlewood—Sobolev
inequality, Lemma 3.7 and (3.28), then we have

G A(I)G ) G 6D (Me(;l)(é))zf‘d c
(xg X)+/B (x(l))( (z,x) = Glxg 7, ))</15’3(x§.1)) TioEE f) e (2)ne(2)dz
(1) 2%
() ¢ (D) (1) (g " ()1 Ce(2)ne(2)
=A'G G
Px + E Gt X)/Bam”)/Ba( Nt T dads

(1) 2%
1 )2 (ug " (§))7H
+ 0(4|x (U\N _/ Bs D) |z — x| (/Ba(xgn) P dé)Ca(Z)’?s(Z)dl)

=aPeu, x)+ZakG(x<” 0B
k=1

(1
1 !Z — Xe )| U (1) (1)(§)C£(Z)TIS(Z)
+0 7[ / dzdt
e =1V Byl Sl ol

= A6, x)+zakG(x(l) 0B
k=1

1 1)
+0<|x RO /B (x<1>)| Ul RO <1>(x)’75(Z)dZ>

Al 1 )
(Y e =P

= AVGED o+ ZBkG(x(l) 0B + 0(
k=1
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where Aél) and Be(l,g are defined in (4.2) and (4.4). Moreover, we can also find

2*
Ux(ﬂl) A<1>($)G(Z,X)C£(Z)ns(z)
Gy < Cf / e he dzd%'
\B; (") JBs (") |z — &1

AP 1 1
0 N< m N-2 e 4
(e IV N @By N\ Bas ) 12 = XITT7 7 i

1 1
+/ dz)
By () 12 = XV 72 (DF

In At / L e In At / L
. o Z — v /4l
VN2 Jang il |z — 212 YN 82 Sy 2 = x|V 2

_ 0( In )\f;l) )
IR

Analogously, we also have
G — 0( ln)»él) )
PTG

For the second term in (4.6), we decompose it by

De(§)ne(§) @ (21
/Q Gz /Q st)(ug ()% dz

= Dg(§)n:(§) PN
B /Ba(xél)) ¢ X)(‘/Ba(%(l)) st)(”s () dz

De@ne®) .\ oy o
2 /;a(xél)) Gele X)<~/Q\Ba(x§1)) 7dr§)(u€ (@) dz

|z — &I
De®ne®) ) oy i
+/9\Ba(xé”>G(Z’x)(/sz\z;s(x;“) |z —&|» d‘f)("e (@) dz

=L+ Ly + L3.

Similar to the estimate for G, by Hardy-Littlewood—Sobolev inequality and the fact
[ne(x)] <1, (3.28) and (3.31), a direct calculation shows that

Ly = APGxY, x)+ZakG<x<‘> x)
k=1

/ / m)Da@)ns(S)(um(z))Zi*‘ dnds
Bs(xtY) Bg(xé‘h |z — &~

1 D (2 2y -1
+o|— / f 2 = 20D (E)ne(é)(us G
e — x|V Bs(xé”> Bs(xt") lz —&r

2 1 1 @) (N2
= ADG D, x) +ZakG(x() 0B +0( i)
k=1 lx —xe |V

1
S . 1 : e e ——"
Bsx) sy (14 2P 1g — x (V)T e = 81 (14 a0 — 0N
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N
=AP66D. 0+ Y %G, 0)BE +
k=1

o(=m Joo . : : e
(LY |x—x£”|N 550 s (14 €1)" T 1a = 81 (14 12V

1 1
— A2GM, 0+ BAaGGM, x) + 0( )
,; QLN Jx = x|y

where A( ) and B(z) are defined in (4.3)and (4.5). By Lemma 3.7, we can calculate that

(1) (1)(5)”?(5)[-/ (1) (1)(Z)G(Z, X)
L) < C/ / dzdg
B ") JB; (")

lz — EI“

Clnal" '”‘,2“ . A 1 no1 (B
i U (é)ds) ( | Ul 0 @ dz)

N2 Mgy By Nz = xN=2 7P 43

(1) 1) N(N—p+2) IN— ( . )

- Clng 1 (/ (Ag)) 2w d) N

Lhaer 1 .
- 1 _ N-2 N(N—p+2

(Ag ))N 2 (Agl)) 2 Bs (") (1 + (Agl))z\z —x§1)| ) Wi

(1)
InAg
- 0( oDy2n -4 )

And similar to the estimate of (4.8), we can also find

o fn
\Bs (x{") Q\Ba(xé")
U <M1) A(n(f)’]s(g)U (1; (1)(Z)G(Z X)
dzds
lz — &
1 2N} —1 —pu
o Chi? (f f'”ﬁ‘:)@)ds) (/ ‘4 ! o) e )2%’
T oMN2 N oyl Vi By Mz = x V= 7Y ”W
_ Chn A 1
- 1 _ N2
WV )5
2N IN—u
(/ 1 mdz> N
(285 )\ Bas o) |z — N2 (1+ D)2 — xOp )N g2
cin it 1 oL pr i dz) e
W70 J@a®)nmsm 12 =5V (g gy )
cinxtP
Ty
1 [(/ 1 B / 1 o
o S A Y I —
(}Lgl))zvf’7 B V) }Z (1)‘2N(N ut2) Bas () |Z—X|21;’(VN“2)

_0( lnkgl) )+0< lnkgl) )
o)+ O
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where we using W > N an

of G, Ga, G3, Ly, Ly, L3, then we get

d 2N(N 2) < N. Combining (4.6)-(4.7) and estimates

N
ne0) = (@5 = DAL +2;42)660 0 + 3 (@ - DBY + 288G (. )
k=1

A’ elnal) 1 Ina) Inal)
( (ONY (])N2+ (1)N+ (MHyan 4+ (MyaN )
(Ae?) (Ae HN— Ae?) (A )=N— (A )=N—H
= ((2* — DAP +2% A§2>)G(x;1>,x)
InaM

10 4 0% g M)
+Z<(2 DB + 2587 )G x! x)+0((k§1))N),

for x € Q\ Bys(x{1),

in the last step we have used ¢ = 0(%}“) = O(W)
On the other hand, from (4.6), we obtam ’

1
D) _ (o — 1) / DGz, ) / e T dE ) Ce@ne()dz
" e

+2; [ DuGen( [ Md&)(uf)(z))zi-ldwe | PuGe e
Q @ lz—§&" Q

Similar to the above estimates of 7, (x), we know for N > 6,

g/ D, Gz, x)ne(2)d O(L’\gl))
1 G (2, X)ne (2)dz = .
2 ’ ()Y

By Hardy-Littlewood—Sobolev inequality and the fact that |, (x)| < 1, Lemma 3.7, (3.28)
and (3.31), then we can get

1)
[ pucen( [ O Ve, eomeerd:

Sl“
1) 1) (1 M ln)‘g)
= A,’ Dy, G(x; x)—i—le:Dx,(BkG(x s X)Bo )+ 0 (W)v
and
D¢ (§)n:(§) @ 21
/DxiG(Z’X)(./QWdS)(us (2) d
@ M @ M 2
= A Dy G(x; x)+ZngDx,(8kG(x X)HO(W)'

k=1
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Therefore, we deduce

one(x
nelx) _ (@ = 0AD +2;A2) Dy Gx(M, )

8xi ®
N
+ 30 (@ = DB +25B2) Dy (kG e 1)
k=1
In 2"
+o( )
(e N
for x € 2\ Bas(x1),
According to the above argument of 7.(x) and 3?—;”6) Then we can finish the proof of
Lemma 4.1. o
)]

Lemma 4.2 Assume that N > 6, u € (0,4) and ug'’ with j = 1, 2 be the solutions of (1.1).
Then we have

G(x", x)

) —
u’(x) = — AN
’ "'

"

ISTIRN .
+0(W) in C (Q\Bzg(xa )), (4.9)
o 2

where Ay, is from Lemma 2.3.
Proof Firstly, in view of Lemma 3.1, we know that (4.9) holds for j = 1 and

G(x? x)

”§2)(x) BENON =
(Ae?) 7

N,

( In Agl)

(Am)%) in C'(2\ B (). (4.10)

By a direct calculate shows that

G x) GV x

) N2 — 1), N=2
a5 a5
1 2
M _ O,

() (2)
[xe’ — [he” — Ag|
o (D)2 )+o( a0y 2 )
& &

Since Bs (xél)) C Bys (xél)) for small ¢, we deduce that (4.9) for j = 2 from Lemma 3.3 and
(4.10). 0

Lemma 4.3 For n.(x) defined by (3.18), we have the following pohozaev identities:

(1) (2)

9 P 0 0 1

_/ g nsds_/ g '75ds+—/ (V@i +ul?), Vi )v;ds
s 0xj v a OV Ox; 2 Jor /

@) (6125 ¢ . O
:i‘/ / [ul? &) CS(X)nS(X)VJdédS—f—L./ / De()ne(§)ues (x)] v]dsds
25 Jaer Ja 2 Jagr Ja

|x — &M [x —&|#
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f / \uQ)(s)F’ﬁég(x)ng(x)v,dgd +7/ / Dg(s)ns@)wé“(x)ﬂiujdsds
oo e — g s Jo v — g

(2)
+%/ / (xj—éj Gk Cs(X)ne(X)dde
2 rJo\Q/

_g|u+2
n Dg<5)ns(s>|u£“(x>|zi
+7f//9\9/(x_,- — ) PO
% /39 (@ +uP)nev;ds, (4.11)
and

e 1 1 au‘(92) 1
—/ —(x— xV, vu! )>ds —/ —(x —xV, Vne)ds
aq v a0

3 @
+ l/ (V(ul M4 u(z)), Ve )x — x D, v)ds + 2-N / [3na oy = due ng]ds
Ay

2 2 v v
@ (£112 & M ()2
:_7 / / u® ()| Cf(””f(x)dgdH/ / D:(&)ne () ul” ()] dgdx]
Jove |x — &~ CJove [x —&|H

ul (€)% Co (X) ¢ (x)

M[L/ K—z\g/x ' (-X N s) |X — %‘|1L+2 dsd'x
D )ne (&)l ()P
déd

/ //Q\Q/ X — E#T2 £da

u (€)% Ce (x) 176 (x)
+ = AL —xV v\ded
/BQ/ ./Q\Q/ lx — &1 (X Xe V) &ds

(2%
+/ / Ds(&)’?é(&)'ue (x)l <X (l) )des
Q" JQ\Q

lx —&|*
u (&) Co ()76 () .
2 déd
w2 f L el s
+2/ / Ds(é)ﬂs(é)lugl)(x)lzz (x (1) )déds
o Jo lx — &K
€
+ 5/ (ugl) + ugz))ns(x —xV, v)ds — 8/ (ugl) + ugz))ngdx, (4.12)
’ Q/ Q/
where Q' C Q is a smooth domain, v = v(x) denotes the unit outward normal to the
boundary 92 and

1 *
Cex) = / (ruV @) + (1 = 0@ ) ar,
0

2—1

1
D.(§) = f (tulV (&) + (1 — HuP )™
0

Proof In view of Lemma 2.1, taking u, = ue ) with j = 1,21in (2.2), and then making a
difference between those respectively. By a direct calculations, we can obtain (4.11). Simi-
larly, taking u, = ul? with j = 1,21in (2.1), and then making a difference between those

respectively, we can also derive that (4.12). O
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Now we are ready to prove Lemma 3.9 by using the local Pohozaev identities.

Proof of Lemma 3.9 We divide the argument into two steps: Step 1. We prove thatc;, = 0, k =
., N. We define the following quadratic form

du Iy ou

Py, u, 1) = Py, u, By (xV :_/ d‘/
(7., 7) = P01, u, Be (xe ) ap®) ax v Jyga) oy
an

5%, —ds /;B,(x“) (Vn, Vu)vjds.
For N > 6, taking Q' = B, (xél)) in (4.11), by (4.1) and (4.9), we know

An (@5 = DAL 425 4P)p (G(x(” x), GV, x),t)

LHS of (4.11) =

)52
XN: Ava (@ = DB + 25 B2)P (G(x(“ ), 3G, x),'c)
+ -
I=1 o.M
nal”
+0(W (4.13)
(k(l)) )

We next estimate A(l) and Aé ), respectively. In fact,

(£)Ce(xX)ne(x)
a _ (1) }\(1) . 1
A= 0</T(xe”) /fu“)) x — &I xdé) - 0((A§”)N‘2)’

since

(12
e )
/ | m M dx
B,(xé ) (142 |x — xg |)N+2

(1
1 Ae'T erl 1
=0(——— ————dr ) =0 ————),
(()Lgl))N—Z /0 (14 r)N+2 r) ((}Lgl))N—2)

Also, we have

DeEn:(E) (U o, (x)) %!
AD — o e e @ 5 dXdS)
‘ r(xsl)) r(x(l))

lx —&|*
i AN AN -1) S
e S IN-
=0 (/;e @) (De(€)ne (§)) 7 dg) 27 </ @) Ux§1>,)\§> (X)dx)
1 1 2N—p
aMn-2 B.m, O (14 |x|2)%—72)
- 0(—55)
a2/
by %:’:rz) > N. On the other hand, from [11], we know
(1)
IR
(G(x“> 0, G, ),r) :—%. (4.14)
Xi
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Hence it follow from (3.9) that

(@; = DAL +2:42)P (G(x(” x),G(xg”,x),r) Al

- ( 1), 3N=2
M3

o= ) (4.15)

Next we are going to estimate each term of the right hand side of (4.11) with Q" = B; (xél)).
We define

@ £y (2% ,
7/ / ™ ()11 Ce (X)ns(X)vjdEd&
3B (x{")

o — g
7/ / Dg(smg(s)mé”(x)ﬁiv,-dgds
3B, ") lx — &~ '
poe L / |u<2)<s>|2??ég<x>ng(x)v,,- Dg(s>ng<s>|u£”<x>|27w,-] deds
T2 o) ,(x(“) |x — &[» [x —&[» '
@) g (28
" Lug” () Ce(x)n
25 B JanB. (xD) lx — &
Ps .= E/ (u‘(gl) + ugz))ngvjds,
2 JoB, x(V)
1" Do (&) (&) |ul” (x)
Pg := T:/ / ()Cj—%'j) ) dxdé.
2 .My JavB ) lx —&|»
Firstly, we can deduce
_ ()\(D)N 12 (A(l))N 142
C.(x) < C e and D,(¢) <C s

(14 0M2px — xMp) 2 (1+0M)2s —xOp)

Then we have
~ 1 1 .
C0) =0 <W) and Ds(s>=0(W), in @\ B, (). (416)
&

Together with (2.17), (3.25) and (3.27), we obtain

U 1), 0 )1 Ce(0)1: (x)v;
_ 0(/ / X b T ’dgds)
3B xV) Ja lx — &[»

N+2

)
(Ae )2
= 0([ ng(x)v-ds)
28"y (14 a0 —x DN
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and

Py

Wop 2N—p
2,’; _2N 2N o o
0 (U avi) T ds | D (€)1 (8)| V7 dix
0B () e e Q

NN—p+2) 2N—p

1 .0y Mo :
- 0<(/\§1))N></sz (1+(k§1>)|x (1)|)Md ) 2
= (=)

Similar to the above estimates, we can also prove

In At
P3 = 0(7()\‘(1))21\] 2)

Moreover, we can find

/ PN LAURIC ﬁdé / S=b g
x; —&;)—=2 — —o.
B T e —gpet? e ) I

This means that P4 = Ps = 0. Furthermore, note that ¢ = 0((}\(,)1)1\,_4) = O((AJ))Z) if

N > 6, so we have

Hence we know that

In 2l )

RHS of (4.11) = 0(w

Then it follows from (4.13) that
Anu(@s = DB + 25 B2 P (G(x“) ), 4G, x), r)

al nel 1
Z 52 = 0((}\(]))3N 4)

1
=1 (A ))

Using the estimate (see [11])

BZR (1)
(G(x“) x), %G xD, x), T) _ _ORG(xe ) 4.17)
0x;0Xx]
and xg is a nondegenerate critical point of Robin function R (x), we see that
1
(1) 9% @ _
@ - BY) +2:B (7) (4.18)
l/- el ()Lgl))N_l

On the other hand, we consider that the estimates of Béll) and Bg(?l) in (4.4)-(4.5). Using
the elementary inequality (A.2) in Appendix A, then we know that

30 _ u))(uﬁ“(é))zﬁcg(z)ne(z) dds
b Jba (”) |z —&" ‘

o, (4.19)
= 7(9 T e e PN ))
= (Al(gl))zN—[,l,-i-] 1 2 2 3 4 )
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where
(PU 0 Gy + 5 Cely + V)i 2)
g1 =/ / 2 —t — dzds,
B (1) OB 1) (O) lz — &+
(PU (1) A(l)( (1) +x81))) ! (l)( (1) +x€1))C€( (1) +xe ))718(2)
gz=/ [ z dzds,
By 0B ) ©) |Z—f|"
(PU (1) )\(1)( (1) +x(1)))22_2( (])( (]) + él))) Ce(&y (]) +xg ))WE(Z)
Q3=/ / 7 dzdg,
B)L(l)f(o) BA.(I)'[(O) lz — EW
(wi (&5 S+ )% ey + 52
Gy =/ f k] = dzdé. (4.20)
By OJB 1) O lz —&*
Then by Lemmas B.1, B.2 and B.3 in Appendix B, we get
m_ ¢ NN -2 1 %—f% 1 _
B, = ¥—1 Any (Agl))N_l - U (Z)dz+0<7(kgl))N—1)’ for I=1,2,...,N.
4.21)
Noting that
B® = / / (1))Ds($)ns(§)(u(2)(z))2 e
ol Bs(x") Bs(x(l)) |z — &|* (4.22)
=Hi + (2}, — DHa + O(H3),
where
21
" D:(§)n:(€)(PU o ()™
=/ / (21 —x.;) P dzdg,
Bs (x") JBs (<) lz —&|"
22 (2)
/ / (1))DS(S)UE(S)(PUXEZ)’Ag)(Z)) wy (Z)d i
zas,
Bs (") By <”> Yo |z —&»
@), \\25—1
D we ()™
s =/ /' (1>) (E)me (6)( SL( ) dedt. 423)
Bs(x{) Ba(x(l lz =&
Then by Lemma C.1 in Appendix C, we get
B® _ 0(#) 424)
o = Gow) |
Thus by (4.18), (4.21) and (4.24) imply ¢y =0,k = 1,2, ..., N.
Step 2. We prove that ¢y = 0. First we define the following quadratic form
Q(n, u, 1) = —/ (Vi v)fx = x(V, Vu)ds
9B (x{")
1
+ */ <V77, Vu><x - x(l) >ds —l— —_— Vn, >uds
2 Jo, e 0B (x{")
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Taking Q' = B; (x{") in (4.12), from (4.1) and (4.9), we have

LHS of (4.12) =

24N, = DAL +2542)Q(G (", 0, G 0, 7)

o=
Since we have the estimate (see [11])

(N 2) W=D (1))

Q(G(x“) X, G, x),'l:)
which implies that
va(@s = DAL 428 (2’)(1\1 )R (x é”)
oy

LHS of (4.12) =

Note that by (3.15), we know

N(N —-2)

AN = ApL

N U&*fl(z)dz +o(1).
On the other hand, from Lemma D.1 in Appendix D, we can find

(1) 2%
AD 4 A® :/ / (us " (%)) “Cs(z)ns(z)dzdé
Bsx"y JBs(x (V) |z — &»

e
, Up'” (2)cogodz + 0(

B 1 N(N-2
= ()\g]))Nfz AH,L

A direct calculation, we can also find
A N -2 *
2% —1 U d:—if 2 1(2)dz.
)/]RN 0,1 ¢odz ) o U()’l (2)dz

Therefore, together with the above estimates, we can deduce

LHS of (4.12) =

Z(AH,L)Z(N +2) ()L(l))
ol
od)= )
From Lemma D.2 in Appendix D, we know

_ 2¢ 2 1
RHS of (412) = W(é]\l UO,I(Z)dZ)CO + O(W)

As a result,

N2V =2 (N —p+ R 1 o1, )2
2(Ag,L)*(N +2) 0.DyN=2 (/ U1 (Z)dZ) co
2¢e

ey

</1;<N U&(Z)dz)co +o(1).

1
()L((El))N72)'

N2(N — 2)*%(N — u + 2)R(xV 1 . 2
(N =2*(N — p+2R(x") N(/ U3 a2 o

(4.25)
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Notice that, from the proof of Lemma 3.9 in Sect. 3, we can find the basic estimate
N2(N — 23RV 1 1 \2
W -2 2( e ) (/ U2 @)dz + O(—— ))
2(An.1) D=2\ fgw )2

€ 1
= (Aé”)z</ U§ 1 (2)dz + 0(( (1))2)) (4.26)

€ 1
O(QSBN—2+(AS5N)
Then (4.25) and (4.26) imply that c¢g = 0. This finishes the proof of Lemma. ]
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Appendix A. Estimates of Ay , and 7, F3, F4in (3.35)

In this section, we give that have been used in the previous sections. Let recall that

A N2
Yor(x) =U;p — PU,, Uz jp(x) = (m) 2
Some basic estimates as follow:
LemmaA.1
aU i —Zj
Werlt) _ (v g *? M5 o)
02 (1+22x —22) %
0Up(x) _ N =2 wa 1-2%x —z|2N —0 (Uz,x) ’
aA 2 A+ A2x —z2)7 A
1
¥ alle = O( ),

AT gN-2
where where d = dist(x, 0R2) is the distance between x and the boundary of 2.

Proof This follows from the definition of U, ,, PU, ), ¥, and direct computations. See
also [34]. O
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LemmaA.2 It holds

1
Ve = o(ﬁ), in C'() and PU,,;, = 0(%)’ in C'(Q\ Bs(xo)),

(Ag) 2 (he) 2
where § > 0 is any small fixed constant.
Proof For a proof of this lemma, we refer to [34]. m]
Lemma A.3 It holds
O 7=+ == ). ifN <6—p,
)»5 )\,T
- —K .
lwell g = 0(““12@ + S ) ifN=6-pu (A1)
€ )“;27
0(ﬁ+ﬁ), lfN>6—,LL.
de 2 he 2
Proof See Lemma 4.1 in [40]. O

LemmaA.4 Foranya > 0, b > 0, one has
(@a+b) =a +rad 'b+0(b"), ifl<r=<2,
r—1) (A.2)

B2y o), if r>2.

(a@a+b) =da +rd b+ 5

Proof This follows from a direct calculation. ]

LemmaA.5 For N > 4, u € (0, 4], it holds
N(N —2)

AN, =
o AL Jrv

o 1
Ui ax+0(53). (A3)
£
where Ay, and Ap 1 from (1.14) and Lemma 2.3, respectively.

Proof We have

u,
Avp / / Vg (E)va (x) Pe &% W) jedx
Bm(m Bu, @ X — &K (A4)
T (B1 — 2B, — 33)

where

31:/ / ue ©up” ()dex Bz_/ / i Eupt ()dsdx,
RNV JRV |x — &M RN JRN\ B, (x,) [x —&[#

;1 ;L
Bs :/ f ug (§)ug (x)dédx.
RN\BT(XS) RN\BT(XE) |X - $|M

Combining (A.2) and a direct calculation shows that

NN-2) 1
g =YNZ2 / U dx + 0=
RN

N2

=)
AH,L )\‘ST N;—Z (A.S)

Ae
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where the estimate of (A.5) follows by the following some computations. Firstly we remark
that

PU “(PU 21

/ / (PUy,, x;(é))| n( §|:F e (X)) 7R dédx

RN JRN X —

NN -2) 1 - 1 (A.6)
== = [ U dx+0( ),
H,L )"8 2 R }"S 2
since
U" (S)Ux“xg()llfxmydd _ NN -2 y2-2 i of L
/RN /RN X — EJF S=hn S Vree Ve (=x)

2*
/ [ XE )LF (é)‘/fxg )Lg Xe, )vs (x)'/’xg e dEdx =
RN JRN IX—SI"

Cew? e 1
)\.g Xg,he Xg )\.g
fRNfRN P dsdxzo( Lﬂ)

and

Xe, )\S (é)‘/fxg e xg Ag ( )1//)55 e i 1
/RN/RN = dédx_O(—M).

Secondly, we have

2% 242
/RN /RN (PUs, p, () (PUs, GNPy 0<||w5||H(}). (A7)

lx — &~

Moreover, we deduce

/ / (PUy, 3, (€)1  we (PU, 5, (x))50™ ds "
RV JRN [x — &M+
+00 FN-1 N—p
- o( N;z(/ — L dr) ||w€||H01) (A.8)
)»52 0 (1 +r2) IN—1

~o()

and

2 -1 2,’;—2
/ (PUx, 2 () we(PUyx, 5, (%)) We dédx = 0(||ws||§11>~ (A9)
RN JRN 0

lx — &~
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Similar to the calculation of (A.7), (A.8) and (A.9), we find

1

2% -2 2% _
[ / (PUy, 3) 1 " w2(PUy, 5, (X)1
RN JRN lx —&#

+(PUXQ,M)2?3‘Zu)%(lDUXE,M<x>>271‘ asae = o( L 1 )
X — & TR
&

Wi (PUy, 1, ()% W (PUy, 5, ()22 !
/ / e 1T Xeke dgdx+/ / e 17 ek Sdgdx=0<7+2),
RN JRN lx — &1 RN JRN lx — &1 Nea
&

0% 27171 2% 1 27;,*1
/ / (PUy, 1, (€))Hw dédH/ / (PUxepe E)7" wewe dédxzo(—l )
RN JRN lx —&|# RN JRN lx — &+ AL?Z ’
&

2% 25 -1

—1
(PUsy 2, €2 202w wit ©wp" VR
/]RN /]RN v — 1 dsd”/w ./]RN -l dédx_0<k¥>’

Combining (A.6) and (A.7)-(A.9), the estimate (A.5) is reached.
Using |ug (x)| < CUy, ,, we compute

&U s ( ) X
BZ < C/ / x kg Xeyhe dé'dx = O(/ Uf ;l(x)dx)
RV JRMB o) I RV\Be(ve) "

: : (A.10)
=0(—— / —————dx ) = 0| —— ).
<)L£Nz RN\ B, (x,) |X — Xe|N+2 ) (A:’z”)
And similar to the estimate of (A.10), we can also obtain
1
By = 0<@). (A11)
Ae?
Then (A.4), (A.5) and (A.10)-(A.11) imply that (A.3). m}

Lemma A.6 For any fixed small § > 0, it holds

1 1 1 1 1 1
()H(El))N—u+2]:2 - 0(@)’ (Agl))N—u+2f3 - O(ﬁ» ()\gl))N—u+2]:4 - O(ﬁ)

&€ &

Proof Notice that
_ 251 252
(PUI = U+ 0(U o)
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Let us write 7> = F3,1 + F2,2. Now by Lemma 3.4 and (A.1), we can calculate that

1

Gy

2 NG| (1 -
U XD A(]’(x“’ +x; ))w )( 2D +X; ))U Ul A(l)(km +Xs )r]s(x)(p(x)
=/ / dxd&
By ) B o) ")

lx =&

AP
+ 0(7(15) )
£

2,- 1 1 (1 ~
U <un )L(li()h(l) +xf( ))w( )( E) +~x<“ ))U RO A(”(A(” +xf )Ws(x)‘ﬂ(x)
/ / dxdé&
B ) i) JB 1y (i)

lx —&[*

2% (1 1 ) < 2~
U m Am(lm x5 ()+x5 N Y w12 ()e)

j=
+0</ / dxdg)
B}\gl)s(xéw s ") [x — &M

~o()

(A.12)
Next, similar to the calculations of (A.12), by Lemma A.2, we can also get
_ v g O(L).
Dy 0
Hence we prove that W}} = 0(%") Analogously, we have
_ 1 a O(L), N S O(L)
Py ZOGI) @ G
This finishes the proof. O

Appendix B. Estimates of G, G2, G3 and G4 in (4.20)

LemmaB.1 Forany N > 6 and u € (0, 4), it holds that

1
T Doav 171
(kél))2N7u+1

_ cl N(N—2) 1 / U%(Z)dZ'f'o(#)’ forl:l,z,...,N
-1 Agp )N e 70! (N1

(B.1)
Proof In view of PU, ; = U, — ¥, we know
x 2% 2% —1 )
(PU = U 25U s + O(UZ,‘R y? A).
Then G| can be written as follows:
G1=G11—-2,G12+0(G13), (B.2)
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where

*

2
é (1) (1)~
Uxéll) A(l>(k(l) + xg )CE()L(ZU +xe )ne(2)
g e & e £ &
1.1 / / 2]
Bx(gl)r(o) B}\gl)f(o)

E dzdé,

25-1 1 1 D, ~
o G+ x5 o) 0 G+ xice g + D)@
912=/ / . xXphg ) Ag e ke Ap Ae dzde,
Bkgl)f(o) Bxg”r(o) |z — &1
U2::—2 £ ) 3 (1))\2 z (D~
W,y Hxe D o (o txe ) Ce(y+xe)ile (2)
91 :/ / z Xg gl Ag e shel Ag Ag dzdt.
Bxgl)r(O) B}Lgl)f(O) |z — &+

Combining (2.17), (3.33), (3.23) and oddness of the function, we can prove that as ¢ — 0

2 VS o
UO,I(E)UO,I (Z)( > Ck¢k(Z))

1 -
g1 — / / Y — dzdé&
()Lgl))2N—u.+1 (}Lgl))Nfl RN JrN [x — y|H
_N(N-2) 1 CI/ leNiz 3U0.1(2) i (B.3)
Aur (N ey O gy

g NN-2) 1

=— U,y “(2)dz, for [=1,2,...,N.
1 Ams () /RN 0.1 @)z for

Together with (3.23), (A.1), Lemma A.l, oddness of the function, Hardy-Littlewood—
Sobolev, Holder and Sobolev inequalities, we can prove

1

———Gi2
o Dy2N -t
2% _1 A-p N U,
i N-2 0,1
o, ol Uoli ®Ug” @2 e t)
= W/ / “ e deds
()2 e @78 m O
=G12,1
ol L Ny
1 n N-2 0,1
||1//x(1) A(])HLOO ln)»((g) UO,l (S)UO,I (Z)(kg Ck Az )
ro(—= NI )/ / “ B et
()La )2 Bxgl)z(o) Blgl)T(O)
=G122 (B.4)
2% -1 2 ) 2k-2y, O 3U
Ut @2 1wl P ) (3 e gl
I o wlre : =1 k=1 %
O(Wv f @ 2 — &I dxdy
()72 BAQ)T(O) Bxél)r(o)
=:01,2,3

= O(Q;n)ﬁ)

N-2
( in2" )+ of (nr) "W )
i N—pu+2)(4— ’
(Ag ))21\1_2 (Agl))m*%*H%
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by

(1

4N
1 Aél)‘[ FN-1 21\2/7];“- he'T  p2IN-p . pN—1 2’;’]\7#
G121 = 0( 55w ) ( wammm ) o )
o Uy :

(1+r) 2N-n (I+r) 2N-n

1
=o(Gmm=s)

where we have used ZYW=#+2D o apd 2VN—ptd N 4 2;\%#.

2N—p 2N—up
4
G122 = 0(@“))21\’—2)(/0 INN—p+2) d’) /0 INN—p+4) d’)
3 (1 + }") 2N—p (1 + ,-) 2N—1

Q)
InAg
=0(—pt—),
(<A£”>2N*2>

and

)
Z§=1 I wy!) I ZOTZ 1 2N

2N
Gio3 = 0(—)(/ 7 dz)
(Agl))ZN_%_] Bkgl)r(o) ( 2N(N—p+2)

1+ |Z|) N

lzl% A

X (/ 7deZ)
Bkénr(o) (1 + m)ﬂ

- 0( (M) % )

By N=pt+2)(E—p)
(AS))W 5—1+ 2N=2)

And analogously, from 0 < wxu) = Uxu) S, We have
& e & /e

1 Gy s ( 1 )
ADy2N—p+1 13=0 DyN-1 ’ (B.5)
since VTR > N and 2D > N 4 2N Then (B.2), (B.3), (B.4) and (B.5)
imply (B.1). O

LemmaB.2 Forany N > 6 and u € (0, 4), it holds that

1 1
(kél))zN—uH G2 = o<()\§1))1\/71 ) (B.6)
Proof Firstly, G, can be written as follows:
Gy =Go1 + 0(G22), (B.7)

where

dzdé,

21 1 1 1 z 1), =
Uty oGl + 5wl (G +x)Ce(Fy + 1))
92,1 =/ / g — - -
B 080 © o — &

2,2 1 1 1 1 z Dy~
Ut o Gir+xi w0 o0 G+l 5 +x) (s +x1) i (2)
gm:/ / gy : : ! dzde.
B)Vgl)t(o) B-A“,(O)

lz —&["
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Now by (3.23), and Lemma A.1, we have

1
——— 01
(Agl))2N71L+l

2% N
| TRROT TSI sl
A 3—”—2/ / “ Iz —&l" = dzdé
()"S )2 Bkgl)‘((o) Blgl)‘r(o) ’
=:021.1
2=l (1) N 4
() i ol u e S e i)
0 / / W = dzdg
()Lgl))%vil B, @78, ©) Iz =41 (B-8)
=02.12
2% 2 . _ N
| Upi ©ui (X i) (L gt
' =1 k=1 i
+0 / / W d dzds
<( (1))3 ’%> B)L(])T(O) B}L(l)r(o) lz — &I+
=0213
1
:()<4(A§l))N—l)’
by
| wil ||H1 i N—p+2 % IN—p
G211 = 0(——%)( vgi©ag) B
M B (1) () h (© B e
(re) (0 0D (14 1z) 2w
1
(ué”)N )
1
G212 = 0(7>,
% DyN—
(LN
and
] N
Gr13=0(——21 f ug@®dg) N
((Agl))%*%)( B, O 0.1 )
2 4—
W1 A\ w N2
(/Bm <0>( 9z ) dy) <¥ ”Hd)

1
=0o\————mm}.
(aé”)N—l )
Next similar to the calculations of A3 1, we know

: a=o( ). (B.9)

v 22 = G
Then (B.7), (B.8) and (B.9) imply (B.6).

Similar to the proof of Lemmas B.1 and B.2, we can find following two estimates.
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LemmaB.3 Forany N > 6 and u € (0, 4), it holds that

1 g_< 1 ) 1 Q—( 1 )
OS)pN—M+1 3_*)(A95N—1’ Og)pN—u+1 4_*)(ASUN—1'

Appendix C. Estimates of H 1, H> and H3 in (4.23)

Lemma C.1 Forany N > 6 and n € (0, 4), it holds that

Hi = 0(()\21)1)}\]_1), Hr = O(OLE?D])N_]), Hz = 0((}\(81)])1\1_]). (C.1)

Proof Firstly, let us write B; H; = Hj,1 + 0(7—[1,2), where

(1) De (S)%(E)U me (2)(Z)
Hia= - M dzde,
b ﬁ;f(xf‘))/z%(x“))(a Yel) lz —EI“ wds

DS(‘S)U?(S)U o (2) (Z)l/fx(b L@
Hi. =/ / ) ———dzdk.
b2 B: (") /B (x “)) lz —%‘I“

Now, let us write

2= ( z 1
" o 1 U MO )L(l)(ktl) +Xy ))’Is(x)U 0 A(l)(,AT'n‘Hfé ))d "
L1= (7)/ f 2 - Z
=1/ Jp o, 0 )0 0 |z — &
=Hi11
2 (1 . (1
O( ln)»gl) )/ /‘ U RU A(])( ()+X£ ))WS(S)U f]) ()( ()+Xe ))d it

_— 2 z
(Aél))zN_"+2 By, (0) JB 1) (0) lz — &I

=Hi1,2

2
()2 (1
( Z |w€j | we )n&U ([1) )L(])()L(l) +xe ))

i o 0t
o\ —— 2 dzdé
<(A§I))2N—/L+1 ) B‘AQUT(O) B)‘Ll)r(o) |z — &
=Hi13
1
- n(rnw1 ) (C2)

Note that, we have

2% ] |
ZIUX<MI> Am(,\m +x0)
[ e,
k(l) 0) |Z - Elﬂ
which imply
Hi11=Hi12=0. (C3)
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On the other hand, we divide our argument into three cases: (1). For 0 < u < 2, and
INN—p+2) 2N SN,
IN—p 2N

2N—p

([ e oo™ <c
B, ©

Using Hardy-Littlewood—Sobolev, Holder inequality and (A.1), then we have

=
Zl ng'] ||H01_ _ N ON—p
J= - A 2N
Hi13=0 W(/ ’|Z|Uoﬁ (Z)‘mﬂ‘dz)
(Ae’) 2 ORI
(C.4)
1
=0 3N—u+2 | (N 2)2
(A(l)) u+ Jr( (1\;;4—2))
(2). For ju = 2, and V502 — 2N 4 N,
2N—p
2% 1 2N =F
([ el @) T = omah).
BA§‘>T(O)
Using the definition of H; 1 3 and (A.1), we can also obtain
Hiis = ( ! ) (C.5)
W3 =Gyt '
(3).For2 < u < 4, and 2N(21;/v:’;+2) < 21\2/N;L + N,
2N 2N—p —2
(f , JFui @) ™ = o(0m)'F),
Bxﬁ')r(o)
Using the definition of H; 1 3 and (A.1), we can also get
Hiis = ( ! ) (C.6)
W= Gt '

Thus, from (C.4), (C.5) and (C.6) imply H; 1 = O(W) Similarly, we can also prove

Hia= "(wl)]v_l)'

Similar to the above argument of 1, we can also get

Hy = 0(()Lgl)1)Nl) Hy = O(anl)N) .7

Then the conclusion follows by the above estimates. O
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Appendix D. Estimates of AS) and Aéz) in (4.2)-(4.3) and RHS of (4.12)
when @ = B;(x")

LemmaD.1 Forany N > 6 and n € (0, 4), it holds that

1 N(N —2)
()Lél))N—z AnL

4 1
AP +AD = v Uy * (2)cogodz + 0<W>. (D.1)
&€

Proof The proof is similar to that of Lemmas B.1, B.2 and B.3. Then we can estimate (D.1)
by (2.17), (3.23), (3.24), (3.31), (3.27), (3.33), (4.2), (4.3) and (A.3). O

LemmaD.2 Forany N > 6 and ju € (0, 4), it holds that

_ 2¢ ) 1
RHS of (4.12) = ((D)Nf(/ﬂw Ug1(2)dz)eo —l—o(m).

&

Proof Taking ' = B;(x{") in (4.12), RHS of (4.12) can be written as follows:

RHSof 4. 12) =1+ D+ T+ T+ Ts+To+E1+ Tg + Jo,

where
_n u €)2 Ce(0)ne (x) | De(E)ne (@)l ()%

T+ Tp=-L /B,<x;1>> /Q\B,<x;'>> [ — + e Jawae.

T+ Ty = M./,(xé‘)) /52\3,(;4”) [x (x — &)

1l (€)% Ce (X176 (x) De (&) (E)ul” (0%

g b e S s,
+Jo =
St /azwé”)/ﬂ\sr(xﬁ")

De(&)ne (&) |ul” ()%
o — &1

2) 2% &
ROEE

T+ Ts = 2/ /
3B (") J B (")

P OPColme)

<x — xg(]), v)]déds,

De ()7 (8)|ul” (x)) %

— M ]d d
=& T
&
Jo = 7/‘ 1 (ugl) + ”22))776<x - Es(l)’ V>ds - 8/ 1 (ugl) + M‘EZ))nS(x)dx'
2 JoB. ) B:(x{")
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Using Lemmas 3.27, 3.8, 4.1, (3.31) and Hardy-Littlewood—Sobolev inequality, we can
calculate that

3N—2u+2
Ji =00 7=) /
B, (x")

f 1 1 1e (x)
o L L el At L e P ) A

dxdé&

D
InA 1 1 1
- < ) 3 / / 2N—p " N— ;HerXdE
W7 0 Javs ) 0 (14181 T =S (14 1)
_o ( In kgl) )
- (k(l))3N —6
and analogously
)
InA
FH=P=Ts=0(——<)
(1), 38=6
(re )2
Using Hardy-Littlewood—Sobolev inequality, we obtain

= o(eM) ™3 1

/BBI(XF”) /Q\Bf(xé”) 1+A(1)|§ f1)|)2N_“

L] ne () x —xi). v)
[x — y|» (1 N }Lgl)lx _ xé1)|)N7u+2

dids

( At /‘ /‘ 1 1 1 . vyded
——— — — X,V s
0P Jas ) 0 Jans ) 0 (141N T =8 (1)

_0 2

- ((Am)w 4)

Similarly, we can also obtain

(1)
In g
Jo =& =& = 0(w)
Moreover, we know

/ %ﬂ@%@ﬂ=—/ Ug, (2)dz.
RN RN

Combining (3.33), then we get

2
Jo = —78“2(/ Uo.1(2)copodz + 0(1)>-
RN

()

= ()\(E’;H(/I;N U&](Z)d2>€0 +0<()\,£‘1)1)N22>.

The conclusion can be reached by the above estimates J1, J2, J3, Ja, J5, J6, J7, Jg, and
Jo. o
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