Local uniqueness of blow-up solutions for critical Hartree equations in bounded domain Marco Squassina¹ · Minbo Yang² · Shunneng Zhao² Received: 27 June 2022 / Accepted: 25 July 2023 © The Author(s) 2023 #### **Abstract** In this paper we are interested in the following critical Hartree equation $$\begin{cases} -\Delta u = \left(\int_{\Omega} \frac{u^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi \right) u^{2_{\mu}^{*} - 1} + \varepsilon u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$ where $N \geq 4$, $0 < \mu \leq 4$, $\varepsilon > 0$ is a small parameter, Ω is a bounded domain in \mathbb{R}^N , and $2^*_{\mu} = \frac{2N - \mu}{N - 2}$ is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. By establishing various versions of local Pohozaev identities and applying blow-up analysis, we first investigate the location of the blow-up points for single bubbling solutions to above the Hartree equation. Next we prove the local uniqueness of the blow-up solutions that concentrates at the non-degenerate critical point of the Robin function for ε small. Mathematics Subject Classification 35A02 · 35J20 · 35B40 · 35J60 Communicated by Susanna Terracini. Marco Squassina marco.squassina@unicatt.it > Minbo Yang mbyang@zjnu.edu.cn Shunneng Zhao snzhao@zjnu.edu.cn Published online: 23 August 2023 School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China [†]Minbo Yang and Shunneng Zhao were supported by National Natural Science Foundation of China (Nos. 11971436, 12011530199) and Natural Science Foundation of Zhejiang Province (No. LZ22A010001). Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25133 Brescia, Italy 217 Page 2 of 51 M. Squassina et al. #### **Contents** | 1 | Introduction and main results | | |----|---|--| | 2 | Local Pohozaev identities and blow-up points | | | | 2.1 Local Pohozaev type identities | | | | 2.2 Location of the blow-up point | | | 3 | Local uniqueness of the blow-up solutions | | | | 3.1 Estimates for blow-up solutions and Green's function | | | | 3.2 The local uniqueness result | | | 4 | Proof of Lemma 3.9 | | | Aj | ppendix A. Estimates of $A_{N,\mu}$ and \mathcal{F}_2 , \mathcal{F}_3 , \mathcal{F}_4 in (3.35) | | | A | ppendix B. Estimates of \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{G}_3 and \mathcal{G}_4 in (4.20) | | | | ppendix C. Estimates of \mathcal{H}_1 , \mathcal{H}_2 and \mathcal{H}_3 in (4.23) | | | Αı | ppendix D. Estimates of $A_{\varepsilon}^{(1)}$ and $A_{\varepsilon}^{(2)}$ in (4.2)-(4.3) and RHS of (4.12) when $\Omega' = B_{\tau}(x_{\varepsilon}^{(1)})$ | | | | eferences | | | | | | ## 1 Introduction and main results In a celebrated paper [4], Brezis and Nirenberg introduced the following Sobolev critical problem $$\begin{cases} -\Delta u = |u|^{2^* - 2} u + \varepsilon u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$ (1.1) where $2^* = \frac{2N}{N-2}$ with $N \ge 3$, $\varepsilon > 0$ is a real positive parameter, Ω is a smooth bounded domain be \mathbb{R}^N . The existence of a positive solution u_{ε} to (1.1), i.e., a solution which achieves the infimum $$S_{\varepsilon} := \inf_{u \in H_0^1(\Omega) \setminus \{0\}} \frac{\int_{\Omega} (|\nabla u|^2 - \varepsilon u^2) dx}{\left(\int_{\Omega} |u|^{2^*} dx\right)^{\frac{2}{2^*}}}$$ has been proved by Brezis and Nirenberg in [4] provided $\varepsilon \in (0, \lambda_1)$ in dimension $N \geq 4$ and when $\varepsilon \in (\lambda_*, \lambda_1)$ in dimension N = 3, where λ_1 is the first eigenvalue of $-\Delta$ with Dirichlet boundary condition and $\lambda_* \in (0, \lambda_1)$ depends on the domain Ω . On the other hand, when $\varepsilon = 0$, problem (1.1) becomes much more delicate. Pohozaev first proved in [33] that (1.1) does not have any solutions in the case where Ω is a star-shaped domain. Bahri and Coron [2] proved that (1.1) has a solution when Ω has a nontrivial topology and $\varepsilon = 0$. As $\varepsilon \to 0$, Rey [34] proved that if a solution u_{ε} of (1.1) satisfies $$|\nabla u_{\varepsilon}|^2 \to S^{\frac{N}{2}} \delta_{x_0}, \quad \text{as } \varepsilon \to 0,$$ (1.2) where δ_x denotes the Dirac mass at x and S the best Sobolev constant defined by $$S := \inf \left\{ \frac{\|\nabla u\|_{L^2}}{\|u\|_{L^{2^*}}} : u \in D^{1,2}(\mathbb{R}^N) \setminus \{0\} \right\}.$$ Then $x_0 \in \Omega$ is a critical point of Robin function $\mathcal{R}(x)$ (see (1.4)). Conversely, if $N \geq 5$ and x_0 is a nondegenerate critical point of $\mathcal{R}(x)$, then for ε sufficiently small (1.1) has a family of solutions u_{ε} satisfying (1.2). Let Ω be a smooth bounded domain in \mathbb{R}^N and $N \geq 4$, Rey [35] (independently by Han [27]) considered $$\begin{cases} -\Delta u = N(N-2)u^{\frac{N+2}{N-2}} + \varepsilon u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \end{cases}$$ (1.3) and studied the localtion of blow-up point for solutions to (1.3) and blowing up rate, namely, $$\begin{split} \lim_{\varepsilon \to 0} \varepsilon \|u_{\varepsilon}\|_{L^{\infty}}^{\frac{2(N-4)}{N-2}} &= \frac{(N-2)^3 \omega_N}{2\rho_N} \mathcal{R}(x_0) \qquad \text{if } N \ge 5, \\ \lim_{\varepsilon \to 0} \varepsilon \ln \|u_{\varepsilon}\|_{L^{\infty}} &= 4\omega_4 \mathcal{R}(x_0) \qquad \text{if } N = 4, \end{split}$$ where ω_N is a measure of the unit sphere of \mathbb{R}^N , $\rho_N = \int_0^\infty \frac{r^{N-1}}{(1+r^2)^{N-2}} dr$ and $$\mathcal{R}(x) := H(x, x) \tag{1.4}$$ is called the Robin function of Ω at point x. The Green's function of the Dirichlet problem for the Laplacian is then defined by $$G(x, y) = \frac{1}{(N-2)\omega_N |y-x|^{N-2}} - H(x, y), \tag{1.5}$$ and it satisfies $$\begin{cases} -\Delta G(x, \cdot) = \delta_x & \text{in } \Omega, \\ G(x, \cdot) = 0 & \text{on } \partial \Omega. \end{cases}$$ Musso and Pistoia in [31] and Bahri, Li and Rey in [3] studied existence of solutions which blow-up at $k \ge 1$ different points of Ω . To investigate the uniqueness of the blow-up solutions, Grossi in [24] proved the uniqueness of the solutions to (1.1) under suitable assumptions on the the domain Ω , see also [25]. If $N \ge 5$ and for ε small enough, Cerqueti in [12] proved that if the domain Ω is symmetric with respect to the coordinate hyperplanes $x_k = 0$ and convex in the x_k -directions, there exists a unique solution u_{ε} of (1.3) with the property that $$\lim_{\varepsilon \to 0} \frac{\int_{\Omega} |\nabla u_{\varepsilon}|^2 dx}{\left(\int_{\Omega} |u_{\varepsilon}|^{2*} dx\right)^{\frac{1}{2*}}} = S,$$ (1.6) and this solution is nondegenerate. Later inspired by Li in [30], Cerqueti and Grossi in [6] follow closely the line of [30] for the blow-up analysis which be used to prove the uniqueness result for the solutions of (1.3), and they proved that all solutions of (1.3) satisfy the property (1.6) under the same hypothesis on the domain Ω . In [22], Glangetas considered the problem (1.3) and it is shown that if $N \geq 5$, the uniqueness of solutions u_{ε} of (1.3) with the property that (1.2) for ε small enough, where x_0 is a nondegenerate critical point of Robin function $\mathcal{R}(x)$. Recently, considering the uniqueness result of Glangetas in [22], Cao, Luo and Peng [9] proved that if ε is small, problem (1.1) has a unique solution provided the domain Ω is convex and $N \geq 6$. For other related results, we refer the readers to [7, 8, 10, 16, 26] and their references for the existence and uniqueness of solutions for nonlinear elliptic equations. There is wide literature about the study of the asymptotic behavior of the solutions for the almost critical problem $$\begin{cases} -\Delta u = u^{2^* - 1 - \varepsilon}, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$ (1.7) Atkinson and Peletier [1] studied the asymptotic behavior of subcritical solutions u_{ε} to (1.7). Brezis and Peletier [5] used the method of PDE to obtain the same results as that in [1] for the spherical domains. Wei in [38] further locate the blow-up point x_0 and to give a precise asymptotic expansion of the least energy solutions for problem (1.7). Rey in [36] and Musso and Pistoia in [32] proved, for $\varepsilon > 0$ small enough, a positive solutions with two positive blow-up points provided the domain Ω have a small hole. For $\varepsilon < 0$, Del Pino, Felmer and Musso in [14] established a positive solutions which blows-up at two positive points when the domain Ω have a hole and for ε small enough. Del Pino, Felmer and Musso in [15] found solutions with three or more positive blow-up points under suitable assumptions on the domain Ω . Towers of positive bubbles for problem (1.7) were constructed by Del Pino, Dolbeault and Musso in [13] under suitable assumptions on the nondegeneracy of Robin's function $\mathcal{R}(x)$ and Green's function. In this paper we are interested in the following critical Hartree equation $$\begin{cases} -\Delta u = \left(\int_{\Omega} \frac{u^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi \right) u^{2_{\mu}^{*} - 1} + \varepsilon u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$ (1.8) where $N \geq 4$, $0 < \mu \leq 4$, $\varepsilon > 0$ is a small parameter, Ω is a smooth and bounded domain in \mathbb{R}^N and the exponent $2^*_{\mu} := \frac{2N-\mu}{N-2}$ is critical in the sense of the Hardy–Littlewood–Sobolev inequality. To under the critical growth of the nonlocal
problem, we need to recall the famous Hardy–Littlewood–Sobolev inequality. **Proposition 1.1** ([29]) Let θ , r > 1 and $0 < \mu < N$ with $\frac{1}{\theta} + \frac{1}{r} = 2 - \frac{\mu}{N}$. Let $f \in L^{\theta}(\mathbb{R}^{N})$ and $g \in L^{r}(\mathbb{R}^{N})$, there exists a sharp constant $C(\theta, r, \mu, N)$ independent of f, g, such that $$\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{f(x)g(\xi)}{|x - \xi|^{\mu}} dx d\xi \le C(\theta, r, \mu, N) \|f\|_{\theta} \|g\|_{r}.$$ (1.9) If $\theta = r = \frac{2N}{2N-\mu}$, then $$C(\theta, r, \mu, N) = C_{N,\mu} = \pi^{\frac{\mu}{2}} \frac{\Gamma(\frac{N-\mu}{2})}{\Gamma(N-\frac{\mu}{2})} \left\{ \frac{\Gamma(N)}{\Gamma(\frac{N}{2})} \right\}^{\frac{N-\mu}{N}}.$$ There is equality in (1.9) if and only if $f \equiv (const.)g$ and $$g(x) = A(1 + \lambda^2 |x - z|^2)^{-(2N - \mu)/2}$$ for some $A \in \mathbb{C}$, $\lambda \in \mathbb{R} \setminus \{0\}$ and $z \in \mathbb{R}^N$. According to Proposition 1.1, the functional $$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x)|^p |v(y)|^p}{|x-y|^{\mu}} dx dy$$ is well defined in $H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N)$ if $\frac{2N-\mu}{N} \leq p \leq \frac{2N-\mu}{N-2}$. Here, it is quite natural to call $\frac{2N-\mu}{N}$ the lower Hardy–Littlewood–Sobolev critical exponent and $2^*_{\mu} := \frac{2N-\mu}{N-2}$ the upper Hardy–Littlewood–Sobolev critical exponent. In the following, we use $S_{H,L}$ to denote best constant defined by $$S_{H,L} := \inf_{u \in D^{1,2}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 dx}{\left(\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x)|^{2\mu} |u(\xi)|^{2\mu}}{|x - \xi|^{\mu}} dx d\xi\right)^{\frac{N-2}{2N - \mu}}}.$$ (1.10) In this way, we know that (1.13) is closely related to the nonlocal Euler-Lagrange equation $$-\Delta u = \left(\int_{\mathbb{R}^N} \frac{u^{2_{\mu}^*}(\xi)}{|x - \xi|^{\mu}} d\xi \right) u^{2_{\mu}^* - 1}, \quad \text{in } \mathbb{R}^N.$$ (1.11) For the critical nonlocal equation (1.11), Du and Yang in [17] and Guo, Hu, Peng and Shuai in [23] studied equation (1.11) with critical exponent $\frac{2N-\mu}{N-2}$ by analyzing the corresponding integral system. They also classified the uniqueness of the positive solutions and concluded that every positive solution of (1.11) must assume the form (see [17, 20]) $$\bar{U}_{z,\lambda}(x) = S^{\frac{(N-\mu)(2-N)}{4(N-\mu+2)}} C^{\frac{2-N}{2(N-\mu+2)}}_{N,\mu} \left[N(N-2) \right]^{\frac{N-2}{4}} U_{z,\lambda}(x),$$ where (see [37]), $$U_{z,\lambda}(x) := \frac{\lambda^{\frac{N-2}{2}}}{(1+\lambda^2|x-z|^2)^{\frac{N-2}{2}}}, \ x \in \mathbb{R}^N, \ z \in \mathbb{R}^N, \ \lambda \in \mathbb{R}^+,$$ is the unique family of positive solutions of $$-\Delta u = N(N-2)u^{2^*-1}, \quad \text{in } \mathbb{R}^N.$$ (1.12) In a recent paper [20], Gao and Yang considered the Hartree type Brezis-Nirenberg problem (1.13). They proved a Brezis-Nirenberg type result saying that: if $N \geq 4$, (1.13) has a nontrivial solution for $\varepsilon > 0$; if N = 3, then there exists λ_* such that (1.8) has a nontrivial solution for $\varepsilon > \lambda_*$, where ε is not an eigenvalue of $-\Delta$ with homogeneous Dirichlet boundary data; if $N \geq 3$ and $\varepsilon \leq 0$, (1.8) admits no solutions when Ω is star-shaped. More recently, Yang and Zhao in [40] proved that the solution u_ε of (1.8) blows up exactly at a critical point of the Robin function that cannot be on the boundary of Ω via the Lyapunov-Schmit reduction method. Existence of bubbling solutions for equation (1.8) were constructed by Yang, Ye and Zhao in [41] under suitable assumptions on the nondegeneracy of Robin's function $\mathcal{R}(x)$. Naturally, one would like to know whether the local uniqueness results of the blow-up solutions hold true for the Hartree equation and if it is possible to prove the location of blow-up point for the critical problem via local Pohozaev identities. For $N \ge 4$ and $\varepsilon > 0$ is small, one of the main purposes of this paper is to locate the blow-up point of single bubbling solutions for the following critical Hartree equation by local Pohozaev identities and blow-up analysis, $$\begin{cases} -\Delta u = \left(\int_{\Omega} \frac{u^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi \right) u^{2_{\mu}^{*} - 1} + \varepsilon u, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$ (1.13) and study the local uniqueness of the blow-up solutions for problem (1.13) provided $N \ge 6$ and ε small enough. Before stating the main results, it is useful to introduce some notations. We denote by $$A_{H,L} := \left[N(N-2) \right]^{\frac{N-\mu+2}{2}} C_{N,\mu}^{-1} S^{\frac{\mu-N}{2}}. \tag{1.14}$$ We know that $U_{z,\lambda}(x)$ is the solution of $$-\Delta U_{z,\lambda} = A_{H,L} \Big(\int_{\mathbb{R}^N} \frac{U_{z,\lambda}^{2^*_{\mu}}(\xi)}{|x-\xi|^{\mu}} d\xi \Big) U_{z,\lambda}^{2^*_{\mu}-1}, \quad \text{in } \mathbb{R}^N.$$ We denote by $PU_{z,\lambda}$ the projection of a function $U_{z,\lambda}$ onto $H_0^1(\Omega)$, namely, $$\Delta P U_{z,\lambda} = \Delta U_{z,\lambda}, \quad \text{in } \Omega, \quad P U_{z,\lambda} = 0, \quad \text{on } \partial \Omega.$$ (1.15) Let us set $$\psi_{z,\lambda} = U_{z,\lambda} - PU_{z,\lambda}.$$ We remark that $\psi_{7,\lambda}$ is a harmonic function such that $$\psi_{7,\lambda} = U_{7,\lambda}$$, on $\partial \Omega$. A first result that we obtain is the following. **Theorem 1.1** Let $N \ge 4$ and $\mu \in (0, N)$. Assume that u_{ε} is a sequence of solutions of $H_0^1(\Omega)$ satisfying $$||u_{\varepsilon}||_{L^{\infty}} \to +\infty \text{ as } \varepsilon \to 0 \text{ and } |u_{\varepsilon}(x)| \le CU_{x_{\varepsilon}, \lambda_{\varepsilon}}(x),$$ (1.16) with its maximum at x_{ε} and $\lambda_{\varepsilon}^{\frac{N-2}{2}} = \max_{x \in \Omega} u_{\varepsilon}(x) = u_{\varepsilon}(x_{\varepsilon})$. Then there exists $x_0 \in \Omega$ such that as $\varepsilon \to 0$, $x_{\varepsilon} \to x_0$, and x_0 is a critical point of Robin function \mathcal{R} , i.e., $\nabla \mathcal{R}(x_0) = 0$. **Remark 1.1** The above results have been be proved by Yang and Zhao [40] by using reduction arguments under different conditions, in this paper we will prove this theorem via the local Pohozaev identity (2.2). In [41], authors constructed the existence of single bubbling solutions for (1.13) via the Lyapunov-Schmit reduction method. Along with this interesting results, we will obtain a type of local uniqueness results of these. More precisely, we can prove the following result. **Theorem 1.2** Let $N \geq 6$ and $\mu \in (0,4)$. Assume that $\{u_{\varepsilon}^{(j)}\}(j=1,2)$ are two families of functions of $H_0^1(\Omega)$ such that $u_{\varepsilon}^{(j)}$ is a solution of (1.13) and satisfies condition (1.16). If $x_0 \in \Omega$ is an isolated non-degenerate critical point of the Robin function $\mathcal{R}(x)$, then there exists $\varepsilon_0' > 0$ such that for any $\varepsilon \in (0, \varepsilon_0']$, such type of solutions $$u_{\varepsilon}^{(j)} = PU_{r^{(j)}\lambda^{(j)}} + w_{\varepsilon}^{(j)}, \quad j = 1, 2,$$ are unique, that is, $u_{\varepsilon}^{(1)}=u_{\varepsilon}^{(2)}$, $x_{\varepsilon}^{(1)}=x_{\varepsilon}^{(2)}$, $\lambda_{\varepsilon}^{(1)}=\lambda_{\varepsilon}^{(2)}$ and $w_{\varepsilon}^{(1)}=w_{\varepsilon}^{(2)}$. **Remark 1.2** In a first version of the main resutls were obtained under the assumption μ is close N or 0 and that N=6 and $\mu=4$. The same results was improved to the present version due to the work [28] by Li, Liu, Tang and Xu, since the nondegeneracy property of the limit critical Hartree equation was generalized to a wider range of the parameters. **Remark 1.3** We remark that there are some restriction on the dimension N and parameter μ , since some estimates do not work well in applying the local Pohozaev identities and applying blow-up analysis. For example, we note that in the case that N=6 and $\mu=4$, it is difficult to prove that $c_0=0$ in Lemma 3.9 by (4.25) and (4.26) (see proof of Lemma 3.9 below). Moreover, for N=5, if x_0 is a nondegerate critical point of Robin function \mathcal{R} , from Lemma 3.2, we have $$|x_{\varepsilon} - x_0| = O\left(\frac{1}{\lambda_{\varepsilon}}\right). \tag{1.17}$$ However, by (1.17), we can not derive the estimates of (3.23) and (3.24) in Lemma 3.23. The proof of the main results is mainly inspired by [16, 26], let $u_{\varepsilon}^{(1)}$ and $u_{\varepsilon}^{(2)}$ be two different positive solutions of (1.1). Set $$\eta_{\varepsilon}(x) := \frac{u_{\varepsilon}^{(1)}(x) - u_{\varepsilon}^{(2)}(x)}{\|u_{\varepsilon}^{(1)}(x) - u_{\varepsilon}^{(2)}(x)\|_{L^{\infty}}},$$ 217 then for any fixed $\theta \in (0,1)$ and small ε , we want to prove $|\eta_{\varepsilon}(x)| < \theta$ for all $x \in$ Ω , which is incompatible with the fact $\|\eta_{\varepsilon}\|_{L^{\infty}} = 1$. Compared with the local Brezis-Nirenberg problem, the appearance of nonlocal critical term in problem (1.13) brings new difficulties. For example, the corresponding local Pohozaev identities will have various new terms involving volume integral, which causes new difficulties in estimates of the order of each terms in the local Pohozaev identities precisely. To apply the blow-up analysis, we need to use some nondegeneracy results. Du and Yang in [17] showed that if μ is close to N with N=3 or 4, $\bar{U}_{z,\lambda}$ as in (1.11) is nondegenerate in the sense that solutions of the linearized equation. Recently, Gao et al. in [19] proved that a nondegeneracy result at $\bar{U}_{z,\lambda}$ for (1.11) when N=6 and $\mu=4$, and also proposed that the problem is an open within the remaining range of N, μ . Later, X. Li, C. Liu, X. Tang and G. Xu. in [28] gave a affirmative answers and it also completely solves the interval of the
remaining exponents N and μ . **Lemma 1.1** Assume that $N \ge 3$, $0 < \mu < N$ with $0 < \mu \le 4$, and $\overline{U}_{7,\lambda}$ be the corresponding family of unique family of positive solutions of (1.11). Then the linearized operator of (1.11)at $\bar{U}_{z,\lambda}$ defined by $$L\phi = -\Delta\phi - 2_{\mu}^{*} \left(\frac{1}{|x|^{\mu}} * (\bar{U}_{z,\lambda}^{2_{\mu}^{*}-1}\phi)\right) \bar{U}_{z,\lambda}^{2_{\mu}^{*}-1} - (2_{\mu}^{*}-1) \left(\frac{1}{|x|^{\mu}} * \bar{U}_{z,\lambda}^{2_{\mu}^{*}}\right) \bar{U}_{z,\lambda}^{2_{\mu}^{*}-2}\phi$$ only admits solutions in $D^{1,2}(\mathbb{R}^N)$ of the form $$\phi = \bar{a}D_{\lambda}\bar{U}_{z,\lambda} + \mathbf{b} \cdot \nabla \bar{U}_{z,\lambda},$$ where $\bar{a} \in \mathbb{R}$, $\mathbf{b} \in \mathbb{R}^N$. Notation. In what follows we let $$\|u\|_{H^1_0} = \left(\int_{\Omega} |\nabla u|^2 dx\right)^{\frac{1}{2}}, \quad \|u\|_{L^q} = \left(\int_{\Omega} |u|^q dx\right)^{\frac{1}{q}}.$$ as the standard norm in the Sobolev space $H_0^1(\Omega)$ and $L^q(\Omega)$ -standard norm for any $q \in$ $[1, +\infty)$, respectively. Moreover, $A = o(\bar{\alpha})$ means $A/\bar{\alpha} \to 0$ as $\varepsilon \to 0$ and $A = O(\bar{\alpha})$ means that $|A/\bar{\alpha}| < C$. This paper is organized as follows: in Sect. 2, we first construct the local Pohozaev type identities for critical Hartree equation and give the proof of Theorem 1.1. In Sect. 3, we give the proofs of some crucial estimates for blow-up solutions and Green's function, and completed the proof of Theorem 1.2. The proof of Theorem 1.2 requires some technical computations which are given in Sect. 5 and Appendixs A-D. # 2 Local Pohozaev identities and blow-up points The first goal of this section is to establish the local Pohozaev type identities for the critical Hartree equation. As an application of the local Pohozaev type identities, we are able to locate the blow-up points in Theorem 1.1. ### 2.1 Local Pohozaev type identities **Lemma 2.1** Suppose that u_{ε} be a solution of the equation (1.13). Then, for any bounded domain $\Omega' \subset \Omega$, one has the following identity holds: 217 Page 8 of 51 M. Squassina et al. $$\begin{split} &-\int_{\partial\Omega'}\frac{\partial u_{\varepsilon}}{\partial\nu}\langle x-x_{\varepsilon},\nabla u_{\varepsilon}\rangle ds + \frac{1}{2}\int_{\partial\Omega'}|\nabla u_{\varepsilon}|^{2}\langle x-x_{\varepsilon},\nu\rangle ds - \frac{N-2}{2}\int_{\partial\Omega'}\frac{\partial u_{\varepsilon}}{\partial\nu}u_{\varepsilon}ds \\ &= \left(\frac{N-2}{2}-\frac{N}{2_{\mu}^{*}}\right)\int_{\Omega'}\int_{\Omega\backslash\Omega'}\frac{u_{\varepsilon}^{2_{\mu}^{*}}(x)u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x-\xi|^{\mu}}d\xi dx \\ &+ \frac{\mu}{2_{\mu}^{*}}\int_{\Omega'}\int_{\Omega\backslash\Omega'}x\cdot(x-\xi)\frac{u_{\varepsilon}^{2_{\mu}^{*}}(x)u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x-\xi|^{\mu+2}}d\xi dx \\ &+ \frac{1}{2_{\mu}^{*}}\int_{\partial\Omega'}\int_{\Omega}\frac{u_{\varepsilon}^{2_{\mu}^{*}}(x)u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x-\xi|^{\mu}}\langle x-x_{\varepsilon},\nu\rangle d\xi ds + \frac{\varepsilon}{2}\int_{\partial\Omega'}u_{\varepsilon}^{2}\langle x-x_{\varepsilon},\nu\rangle ds - \varepsilon\int_{\Omega'}u_{\varepsilon}^{2}dx, \end{split}$$ and $$-\int_{\partial\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} \frac{\partial u_{\varepsilon}}{\partial v} ds + \frac{1}{2} \int_{\partial\Omega'} |\nabla u_{\varepsilon}|^{2} v_{j} ds = \frac{2}{2_{\mu}^{*}} \int_{\partial\Omega'} \int_{\Omega'} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} v_{j} d\xi ds$$ $$+ \frac{\varepsilon}{2} \int_{\partial\Omega'} u_{\varepsilon}^{2} v_{j} ds$$ $$+ \frac{1}{2_{\mu}^{*}} \int_{\partial\Omega'} \int_{\Omega\setminus\Omega'} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} v_{j} d\xi ds + \frac{\mu}{2_{\mu}^{*}} \int_{\Omega'} \int_{\Omega\setminus\Omega'} (x_{j} - \xi_{j})$$ $$\frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu+2}} d\xi dx, \qquad (2.2)$$ for j = 1, ..., N, where v = v(x) denotes the unit outward normal to the boundary $\partial \Omega'$. **Proof** By elliptic regularity theory, we know that the solution u_{ε} of (1.13) is of C^2 . Without loss of generality, we may suppose that $x_{\varepsilon} = 0$. Since u_{ε} satisfies $$-\Delta u_{\varepsilon} = \left(\int_{\Omega} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi\right) u_{\varepsilon}^{2_{\mu}^{*} - 1} + \varepsilon u_{\varepsilon}. \tag{2.3}$$ Then we multiply the equation (2.3) by $\langle x, \nabla u_{\varepsilon} \rangle$ and integrating on Ω' , we obtain $$-\int_{\Omega'} \Delta u_{\varepsilon} \langle x, \nabla u_{\varepsilon} \rangle dx = \int_{\Omega'} \langle x, \nabla u_{\varepsilon} \rangle \Big(\int_{\Omega} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2^{*}_{\mu} - 1}(x) dx + \varepsilon \int_{\Omega'} \langle x, \nabla u_{\varepsilon} \rangle u_{\varepsilon}(x) dx.$$ $$(2.4)$$ Notice that $$\int_{\Omega'} \langle x, \nabla u_{\varepsilon}(x) \rangle \Big(\int_{\Omega} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2^{*}_{\mu} - 1}(x) dx = \int_{\Omega'} \langle x, \nabla u_{\varepsilon}(x) \rangle \Big(\int_{\Omega'} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2^{*}_{\mu} - 1}(x) dx + \int_{\Omega'} \langle x, \nabla u_{\varepsilon}(x) \rangle \Big(\int_{\Omega \setminus \Omega'} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2^{*}_{\mu} - 1}(x) dx.$$ We calculate the first term on the right-hand side to obtain $$\begin{split} 2^*_{\mu} \int_{\Omega'} \langle x, \nabla u_{\varepsilon}(x) \rangle \Big(\int_{\Omega'} \frac{u_{\varepsilon}^{2^*_{\mu}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2^*_{\mu} - 1}(x) dx \\ &= -N \int_{\Omega'} \int_{\Omega'} \frac{u_{\varepsilon}^{2^*_{\mu}}(x) u_{\varepsilon}^{2^*_{\mu}}(\xi)}{|x - \xi|^{\mu}} dx d\xi + \mu \int_{\Omega'} \int_{\Omega'} x \cdot (x - \xi) \frac{u_{\varepsilon}^{2^*_{\mu}}(\xi)}{|x - \xi|^{\mu + 2}} u_{\varepsilon}^{2^*_{\mu}}(x) d\xi dx \\ &+ \int_{\partial\Omega'} \int_{\Omega'} \frac{u_{\varepsilon}^{2^*_{\mu}}(x) u_{\varepsilon}^{2^*_{\mu}}(\xi)}{|x - \xi|^{\mu}} \langle x, \nu \rangle d\xi ds. \end{split}$$ Similarly, we can deduce $$\begin{split} 2^*_{\mu} \int_{\Omega'} \langle \xi, \nabla u_{\varepsilon}(\xi) \rangle \Big(\int_{\Omega'} \frac{u_{\varepsilon}^{2^*_{\mu}}(x)}{|x - \xi|^{\mu}} dx \Big) u_{\varepsilon}^{2^*_{\mu} - 1}(\xi) d\xi \\ &= -N \int_{\Omega'} \int_{\Omega'} \frac{u_{\varepsilon}^{2^*_{\mu}}(x) u_{\varepsilon}^{2^*_{\mu}}(\xi)}{|x - \xi|^{\mu}} dx d\xi + \mu \int_{\Omega'} \int_{\Omega'} \xi \cdot (\xi - x) \frac{u_{\varepsilon}^{2^*_{\mu}}(x)}{|x - \xi|^{\mu + 2}} u_{\varepsilon}^{2^*_{\mu}}(\xi) dx d\xi \\ &+ \int_{\partial \Omega'} \int_{\Omega'} \frac{u_{\varepsilon}^{2^*_{\mu}}(x) u_{\varepsilon}^{2^*_{\mu}}(\xi)}{|x - \xi|^{\mu}} \langle \xi, \nu \rangle dx ds. \end{split}$$ Thus we can prove that $$\int_{\Omega'} \langle x, \nabla u_{\varepsilon}(x) \rangle \Big(\int_{\Omega'} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2^{*}_{\mu} - 1}(x) dx = \frac{\mu - 2N}{22^{*}_{\mu}} \int_{\Omega'} \int_{\Omega'} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(x) u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|x - \xi|^{\mu}} dx d\xi + \frac{1}{2^{*}_{\mu}} \int_{\partial \Omega'} \int_{\Omega'} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(x) u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|x - \xi|^{\mu}} \langle x, v \rangle d\xi ds. \quad (2.5)$$ For the second term, integration by parts, we have $$2_{\mu}^{*} \int_{\Omega'} \langle x, \nabla u_{\varepsilon}(x) \rangle \Big(\int_{\Omega \setminus \Omega'} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2_{\mu}^{*} - 1}(x) dx$$ $$= -N \int_{\Omega'} \int_{\Omega \setminus \Omega'} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(x) u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi dx$$ $$+ \mu \int_{\Omega'} \int_{\Omega \setminus \Omega'} x \cdot (x - \xi) \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu + 2}} u_{\varepsilon}^{2_{\mu}^{*}}(x) d\xi dx$$ $$+ \int_{\partial \Omega'} \int_{\Omega \setminus \Omega'} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(x) u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} \langle x, \nu \rangle d\xi ds. \tag{2.6}$$ On the other hand, we have $$-\int_{\Omega'} \Delta u_{\varepsilon} \langle x, \nabla u_{\varepsilon} \rangle dx = \frac{2-N}{2} \int_{\Omega'} |\nabla u_{\varepsilon}|^{2} dx + \frac{1}{2} \int_{\partial \Omega'} \langle x, \nu \rangle |\nabla u_{\varepsilon}|^{2} dx - \int_{\partial \Omega'} \frac{\partial u_{\varepsilon}}{\partial \nu} \langle x, \nabla u_{\varepsilon} \rangle ds$$ (2.7) and $$\int_{\Omega'} \langle x, \nabla u_{\varepsilon} \rangle u_{\varepsilon} dx = \frac{1}{2} \int_{\partial \Omega'} u_{\varepsilon}^{2} \langle x, \nu \rangle ds - \frac{N}{2} \int_{\Omega'} u_{\varepsilon}^{2} dx.$$ (2.8) 217 Page 10 of 51 M. Squassina et al. In view of Green's formulas, we have $$\int_{\Omega'} |\nabla u_{\varepsilon}|^{2} = -\int_{\Omega'} u_{\varepsilon} \Delta u_{\varepsilon} dx + \int_{\partial \Omega'} \frac{\partial u_{\varepsilon}}{\partial \nu} u_{\varepsilon} ds = \int_{\Omega'} \int_{\Omega} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(x) u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} dx d\xi + \varepsilon \int_{\Omega'} u_{\varepsilon}^{2} dx + \int_{\partial \Omega'} \frac{\partial u_{\varepsilon}}{\partial \nu} u_{\varepsilon} ds.$$ (2.9) Hence by (2.4), (2.5), (2.6), (2.7), (2.8) and (2.9) imply that (2.1). To prove (2.2), We multiply (2.3) by $\frac{\partial u_{\varepsilon}}{\partial x_{j}}$ and integrating on Ω' , we have
$$-\int_{\Omega'} \Delta u_{\varepsilon} \frac{\partial u_{\varepsilon}}{\partial x_{j}} dx = \int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} \Big(\int_{\Omega} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi \Big) |u_{\varepsilon}(x)|^{2_{\mu}^{*} - 1} dx + \varepsilon \int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} u_{\varepsilon} dx. \quad (2.10)$$ Similar to the above argument, we have $$\begin{split} &\int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} \bigg(\int_{\Omega'} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi \bigg) |u_{\varepsilon}(x)|^{2_{\mu}^{*} - 1} dx \\ &= -(2_{\mu}^{*} - 1) \int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} \bigg(\int_{\Omega'} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi \bigg) |u_{\varepsilon}(x)|^{2_{\mu}^{*} - 1} dx \\ &+ \mu \int_{\Omega'} \int_{\Omega'} (x_{j} - \xi_{j}) \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} d\xi dx \\ &+ \int_{\partial\Omega'} \int_{\Omega'} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} v_{j} d\xi ds. \end{split}$$ Then, we can deduce $$\int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} \left(\int_{\Omega'} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi \right) |u_{\varepsilon}(x)|^{2_{\mu}^{*} - 1} dx = \frac{N - 2}{2N - \mu} \int_{\partial \Omega'} \int_{\Omega'} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} v_{j} d\xi ds + \frac{\mu(N - 2)}{2N - \mu} \int_{\Omega'} \int_{\Omega'} \int_{\Omega'} (x_{j} - \xi_{j}) \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} d\xi dx.$$ (2.11) Similarly, we also have $$\begin{split} & \int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial \xi_{j}} \bigg(\int_{\Omega'} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} dx \bigg) |u_{\varepsilon}(\xi)|^{2_{\mu}^{*} - 1} d\xi \\ & = \frac{N - 2}{2N - \mu} \int_{\partial \Omega'} \int_{\Omega'} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} v_{j} dx ds \\ & + \frac{\mu(N - 2)}{2N - \mu} \int_{\Omega'} \int_{\Omega'} (\xi_{j} - x_{j}) \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} dx d\xi. \end{split}$$ Hence we can get $$\int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} \left(\int_{\Omega'} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi \right) |u_{\varepsilon}(x)|^{2_{\mu}^{*} - 1} dx$$ $$= \frac{2(N - 2)}{2N - \mu} \int_{\partial \Omega'} \int_{\Omega'} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} v_{j} d\xi ds. \tag{2.12}$$ Now similar to the calculations of (2.11), we know $$\int_{\Omega'} \frac{\partial u_{\varepsilon}}{\partial x_{j}} \left(\int_{\Omega \setminus \Omega'} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi \right) |u_{\varepsilon}(x)|^{2_{\mu}^{*} - 1} dx$$ $$= \frac{N - 2}{2N - \mu} \int_{\partial \Omega'} \int_{\Omega \setminus \Omega'} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} v_{j} d\xi ds$$ $$+ \frac{\mu(N - 2)}{2N - \mu} \int_{\Omega'} \int_{\Omega \setminus \Omega'} (x_{j} - \xi_{j}) \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} d\xi dx. \tag{2.13}$$ So, by (2.10), (2.12) and (2.13), we can prove (2.2). This finishes the proof. # 2.2 Location of the blow-up point We first prove the following lemma. **Lemma 2.2** Assume that $N \ge 4$ and u_{ε} is a sequence of solutions of problem (1.13) satisfying the assumptions of Theorem 1.1. Then there holds $\lambda_{\varepsilon} d_{\varepsilon} \to +\infty$ for ε small enough. **Proof** Assume that $\lambda_{\varepsilon}d_{\varepsilon} \to \tilde{c} < +\infty$ as $\varepsilon \to 0$ and u_{ε} is a solution of (1.13) with $\lambda_{\varepsilon}^{\frac{N-2}{2}} = \max_{x \in \Omega} u_{\varepsilon}(x) = u_{\varepsilon}(x_{\varepsilon}) \to +\infty$ as $\varepsilon \to 0$. Set $v_{\varepsilon} = \lambda_{\varepsilon}^{-\frac{N-2}{2}} u_{\varepsilon}(\lambda_{\varepsilon}^{-1}x + x_{\varepsilon})$. Then $v_{\varepsilon}(x)$ satisfies $$\begin{cases} -\Delta v_{\varepsilon}(x) = \Big(\int_{\Omega_{\varepsilon}} \frac{v_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi\Big) v_{\varepsilon}^{2_{\mu}^{*} - 1}(x) + \frac{\varepsilon}{\lambda_{\varepsilon}^{2}} v_{\varepsilon} & \text{in } \Omega_{\varepsilon} := \left\{x : \frac{x}{\lambda_{\varepsilon}} + x_{\varepsilon} \in \Omega\right\}, \\ v_{\varepsilon}(x) = 0 & \text{on } \partial\Omega_{\varepsilon}, \\ v_{\varepsilon}(0) = \max_{x \in \Omega_{\varepsilon}} v_{\varepsilon}(x) = 1. \end{cases}$$ As $\varepsilon \to 0$, by the elliptic regularity, we have $v_{\varepsilon} \to v$ in $C^2_{loc}(\mathbb{R}^N_+)$ and v satisfies $$\begin{cases} -\Delta v(x) = \Big(\int_{\mathbb{R}^N_+} \frac{v^{2^*_{\mu}}(\xi)}{|x - \xi|^{\mu}} d\xi \Big) v^{2^*_{\mu} - 1}(x), \ v > 0, & \text{in } \mathbb{R}^N_+ := \big\{ x \in \mathbb{R}^N : x_N > 0 \big\}, \\ v(0) = \max_{x \in \mathbb{R}^N_+} v(x) = 1, \quad v \in H^1_0(\mathbb{R}^N_+). \end{cases}$$ It follows from the Pohozaev identity that $v \equiv 0$, which contradicts with v(0) = 1. We are ready to give the estimate of u_{ε} away from x_{ε} . **Lemma 2.3** Assume that $N \ge 4$ and u_{ε} is a sequence of solutions of problem (1.13) satisfying the assumptions of Theorem 1.1 and $x \in \Omega \backslash B_{R\lambda_{\varepsilon}^{-1}}(x_{\varepsilon})$ for R > 0 is any fixed large constant. Then $$u_{\varepsilon}(x) = \frac{G(x, x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} A_{N,\mu} + O\left(\frac{\varepsilon}{\lambda_{\varepsilon}^{\frac{N-2}{2}} d^{N-2}} + \frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}} d^{N}} + \frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}} d^{N-1}}\right) \quad in \ \Omega \setminus B_{R\lambda_{\varepsilon}^{-1}}(x_{\varepsilon})$$ $$(2.14)$$ 217 Page 12 of 51 M. Squassina et al. and $$\nabla u_{\varepsilon}(x) = \frac{\nabla G(x, x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} A_{N,\mu} + O\left(\frac{\varepsilon}{\lambda_{\varepsilon}^{\frac{N-2}{2}} d^{N-1}} + \frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}} d^{N+1}} + \frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}} d^{N}}\right) \quad \text{in } \Omega \setminus B_{R\lambda_{\varepsilon}^{-1}}(x_{\varepsilon}).$$ $$(2.15)$$ Here $$d=|x_{\varepsilon}-x|$$ and $A_{N,\mu}=\int_{B_{\frac{1}{2}d\lambda_{\varepsilon}}(0)}\int_{B_{\frac{1}{2}d\lambda_{\varepsilon}}(0)}\frac{v_{\varepsilon}^{2_{\mu}^{*}}(\xi)v_{\varepsilon}^{2_{\mu}^{*}-1}(x)}{|x-\xi|^{\mu}}d\xi dx.$ **Proof** By the potential theory and (1.13), we have $$u_{\varepsilon}(x) = \int_{\Omega} G(x, z) \left(\left(\int_{\Omega} \frac{u_{\varepsilon}^{2^{*}_{\mu}}(\xi)}{|z - \xi|^{\mu}} d\xi \right) u_{\varepsilon}^{2^{*}_{\mu} - 1}(z) + \varepsilon u_{\varepsilon}(z) \right) dz.$$ (2.16) First we remark that, as a consequence of the moving sphere method, the Talenti bubbles satisfy $$\int_{\mathbb{R}^{N}} \frac{U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2\mu}(\xi)}{|x-\xi|^{\mu}} d\xi = \frac{N(N-2)}{A_{H,L}} U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}-2_{\mu}^{*}}, \tag{2.17}$$ (see [21][Proof Theorem 1.2] for example). Combining (1.16), (2.17) and $G(x, z) = O\left(\frac{1}{|z-x|^{N-2}}\right)$, we know $$\begin{split} &\int_{\Omega \setminus B_{\frac{d}{2}}(x_{\varepsilon})} \int_{\Omega} \frac{u_{\varepsilon}^{2^{*}}(\xi) u_{\varepsilon}^{2^{**}}^{2^{*}}(z) G(x,z)}{|x-\xi|^{\mu}} dx d\xi \leq C \int_{\Omega \setminus B_{\frac{d}{2}}(x_{\varepsilon})} \int_{\mathbb{R}^{N}} \frac{U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}}(\xi) U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{**}}(z) G(x,z)}{|x-\xi|^{\mu}} dz d\xi \\ &= O\Big(\frac{1}{\frac{N+2}{\lambda_{\varepsilon}^{2}}} \int_{\left(\Omega \setminus B_{\frac{d}{2}}(x_{\varepsilon})\right) \setminus B_{2d}(x)} \frac{1}{|z-x|^{N-2}|z-x_{\varepsilon}|^{N+2}} dz \\ &+ \frac{1}{\lambda_{\varepsilon}^{2}} \int_{\left(\Omega \setminus B_{\frac{d}{2}}(x_{\varepsilon})\right) \cap B_{2d}(x)} \frac{1}{|z-x|^{N-2}|z-x_{\varepsilon}|^{N+2}} dz \Big) \\ &= O\Big(\frac{1}{\frac{N+2}{\lambda_{\varepsilon}^{2}}} \frac{1}{d^{N}}\Big), \end{split} \tag{2.18}$$ where $d = |x_{\varepsilon} - x|$. Similar to the above estimates, we can also obtain $$\begin{split} &\int_{B_{\frac{d}{2}}(x_{\varepsilon})} \int_{\Omega \setminus B_{\frac{d}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2^{*}}(\xi) u_{\varepsilon}^{2^{*}_{\mu}-1}(z) G(x,z)}{|x-\xi|^{\mu}} d\xi dz \leq C \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \int_{\mathbb{R}^{N}} \frac{U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}_{\mu}}(\xi) U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}_{\mu}-1}(z) G(x,z)}{|x-\xi|^{\mu}} d\xi dz \\ &= O\Big(\lambda_{\varepsilon}^{\frac{N+2}{2}} \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \frac{1}{|z-x|^{N-2}(1+\lambda_{\varepsilon}^{2}|z-x_{\varepsilon}|^{2})^{\frac{N+2}{2}}} dz\Big) \\ &= O\Big(\frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}} d^{N-1}}\Big), \end{split} \tag{2.19}$$ Furthermore, we have $$\begin{split} \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2\mu}(\xi) u_{\varepsilon}^{2\mu-1}(z) G(x,z)}{|x-\xi|^{\mu}} d\xi dz &= G(x,x_{\varepsilon}) \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2\mu}((\xi) u_{\varepsilon}^{2\mu-1}(z)}{|x-\xi|^{\mu}} d\xi dz \\ &+ \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \int_{B_{\frac{d}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2\mu}(\xi) u_{\varepsilon}^{2\mu-1}(z) (G(x,z) - G(x,x_{\varepsilon}))}{|x-\xi|^{\mu}} d\xi dz \end{split}
\tag{2.20}$$ $$\begin{split} &=\frac{G(x,x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}}\int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)}\int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)}\frac{v_{\varepsilon}^{2_{\mu}^{*}}(\xi)v_{\varepsilon}^{2_{\mu}^{*}-1}(z)}{|x-\xi|^{\mu}}d\xi dz\\ &+\underbrace{\frac{1}{\lambda_{\varepsilon}^{\frac{N-2}{2}}}\int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)}\int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)}\frac{v_{\varepsilon}^{2_{\mu}^{*}}(\xi)v_{\varepsilon}^{2_{\mu}^{*}-1}(z)\left(G(x,\lambda_{\varepsilon}^{-1}z+x_{\varepsilon})-G(x,x_{\varepsilon})\right)}{|x-\xi|^{\mu}}d\xi dz}_{:=\mathcal{I}}\\ &:=\frac{G(x,x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}}A_{N,\mu}+O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}}}d^{N-1}\right), \end{split}$$ where since $$\mathcal{I} = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} \int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)} \int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)} \frac{v_{\varepsilon}^{2_{\mu}^{*}}(\xi) v_{\varepsilon}^{2_{\mu}^{*}-1}(z)}{|x-\xi|^{\mu}} \cdot \frac{|z|}{d^{N-1}\lambda_{\varepsilon}} d\xi dz\right) \\ = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}}} \int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)} \int_{\mathbb{R}^{N}} \frac{U_{0,1}^{2_{\mu}^{*}}(\xi) U_{0,1}^{2_{\mu}^{*}-1}(z)|z|}{|x-\xi|^{\mu}} d\xi dz\right) \\ = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}}} \int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)} \frac{|y|}{(1+|z|^{2})^{\frac{N+2}{2}}} dz\right) \\ = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}}} \int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)} \frac{|y|}{(1+|z|^{2})^{\frac{N+2}{2}}} dz\right) \\ = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}}} \int_{B_{\frac{d\lambda_{\varepsilon}}{2}}(0)} \frac{|y|}{(1+|z|^{2})^{\frac{N+2}{2}}} dz\right)$$ On the other hand, by (1.16), $G(x, y) = O\left(\frac{1}{|y-x|^{N-2}}\right)$ and the definition of $U_{x_{\varepsilon}, \lambda_{\varepsilon}}$, we can deduce $$\varepsilon \int_{\Omega} G(x, z) u_{\varepsilon}(z) dz = O\left[\frac{\varepsilon}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} \left(\int_{B_{\frac{d}{2}}(x_{\varepsilon})} \frac{1}{|z - x|^{N-2}} \frac{1}{|z - x_{\varepsilon}|^{N-2}} dz \right. \right. \\ \left. + \int_{\Omega \setminus B_{\frac{d}{2}}(x_{\varepsilon})} \frac{1}{|z - x|^{N-2}} \frac{1}{|z - x_{\varepsilon}|^{N-2}} dz \right) \right]$$ $$= O\left(\frac{\varepsilon}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} d^{N-2}\right).$$ (2.22) It follows from (2.16)–(2.21) that the inequality (2.14). To prove (2.15), we know $$\nabla u_{\varepsilon}(x) = \int_{\Omega} \nabla_{x} G(x, z) \Big(\Big(\int_{\Omega} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|z - \xi|^{\mu}} d\xi \Big) u_{\varepsilon}^{2_{\mu}^{*} - 1}(z) + \varepsilon u_{\varepsilon}(z) \Big) dz.$$ 217 Page 14 of 51 M. Squassina et al. Similar to estimate of $u_{\varepsilon}(x)$, we can also obtain the inequality (2.15). Hence we finish the proof of Lemma 2.3. We are going to prove Theorem 1.1 by applying Lemmas 2.2, 2.3 and the local Pohozaev identity (2.1). **Proof of Theorem 1.1** We will prove the theorem by excluding the case $x_0 \in \partial \Omega$. In fact, takeing $d_{\varepsilon} = \frac{1}{2}d(x_{\varepsilon}, \partial \Omega)$, and by Lemma 2.2, we have $$\lambda_{\varepsilon} d_{\varepsilon} \to +\infty$$, as $\varepsilon \to 0$. Then, by repeating the similar calculations of (A.3) in Lemma A.5, we know $$A_{N,\mu} = \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^N} U_{0,1}^{2^*-1} dx + o(1).$$ (2.23) By the Hardy-Littlewood-Sobolev inequality, we have $$\int_{B_{d_{\varepsilon}}(x_{\varepsilon})} \int_{\Omega \setminus B_{d_{\varepsilon}}(x_{\varepsilon})} (x_{j} - \xi_{j}) \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} dx d\xi = O\left(\lambda_{\varepsilon}^{2N - \mu}\right) \int_{B_{d_{\varepsilon}}(x_{\varepsilon})} \int_{\Omega \setminus B_{d_{\varepsilon}}(x_{\varepsilon})} \frac{1}{\left(1 + \lambda_{\varepsilon} |\xi - x_{\varepsilon}|\right)^{2N - \mu}} \frac{1}{|x - \xi|^{\mu + 1}} \frac{1}{\left(1 + \lambda_{\varepsilon} |x - x_{\varepsilon}|\right)^{2N - \mu}} dx d\xi = O\left(\frac{1}{\lambda_{\varepsilon}^{N - \frac{\mu + 1}{2}} d_{\varepsilon}^{N - \frac{\mu - 1}{2}}}\right).$$ (2.24) Also, we have $$\int_{\partial B_{\delta}(x_{\varepsilon})} \int_{\Omega} \frac{|u_{\varepsilon}(x)|^{2_{\mu}^{*}} |u_{\varepsilon}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} \nu_{j} d\xi ds \leq C \int_{\partial B_{\delta}(x_{\varepsilon})} \int_{\mathbb{R}^{N}} \frac{|U_{x_{\varepsilon}, \lambda_{\varepsilon}}(x)|^{2_{\mu}^{*}} |U_{x_{\varepsilon}, \lambda_{\varepsilon}}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} \nu_{j} ds = C \frac{N(N - 2)}{A_{H, L}} \int_{\partial B_{\delta}(x_{\varepsilon})} U_{x_{\varepsilon}, \lambda_{\varepsilon}}^{2^{*}} \nu_{j} ds.$$ (2.25) In view of Lemma 2.3, we know the estimates (2.14) and (2.15) hold on $\partial B_{d_{\varepsilon}}(x_{\varepsilon})$. By(2.24) and (2.25), taking $\Omega' = B_{d_{\varepsilon}}(x_{\varepsilon})$ in the local Pohozaev identity (2.2) in Lemma 2.1, we have $$\int_{B_{d_{\varepsilon}}(x_{\varepsilon})} \frac{\partial G(x,x_{\varepsilon})}{\partial x_{j}} \frac{\partial G(x,x_{\varepsilon})}{\partial v} ds - \frac{1}{2} \int_{\partial B_{d_{\varepsilon}}(x_{\varepsilon})} |\nabla G(x,x_{\varepsilon})|^{2} v_{j} ds = O\left(\frac{\varepsilon}{d_{\varepsilon}^{N-1}} + \frac{1}{\lambda_{\varepsilon} d_{\varepsilon}^{N}}\right).$$ Since we have the identity (see [11]) $$\int_{\partial B_{\delta}(x_{\varepsilon})} \frac{\partial G(x, x_{\varepsilon})}{\partial x_{j}} \frac{\partial G(x_{\varepsilon}, x)}{\partial \nu} ds - \frac{1}{2} \int_{\partial B_{\delta}(x_{\varepsilon})} |\nabla G(x, x_{\varepsilon})|^{2} \nu_{j} ds = \frac{\partial H(x, x_{\varepsilon})}{\partial x_{j}} \Big|_{x = x_{\varepsilon}},$$ (2.26) then we know $$\frac{\partial H(x, x_{\varepsilon})}{\partial x_{j}}\Big|_{x=x_{\varepsilon}} = O\Big(\frac{\varepsilon}{d_{\varepsilon}^{N-1}} + \frac{1}{\lambda_{\varepsilon}d_{\varepsilon}^{N}}\Big), \quad j = 1, \dots, N.$$ (2.27) However, recall the following estimate established in [11, 34] $$\nabla \mathcal{R}(x_{\varepsilon}) = \frac{2}{\omega_N} \frac{1}{(2d_{\varepsilon})^{N-1}} \frac{\tilde{x} - x_{\varepsilon}}{d_{\varepsilon}} + O\left(\frac{1}{d_{\varepsilon}^{N-2}}\right), \quad \text{as } d_{\varepsilon} \to 0,$$ (2.28) where $\tilde{x} \in \partial \Omega$ is the unique point, satisfying $d(x_{\varepsilon}, \partial \Omega) = |x_{\varepsilon} - \tilde{x}|$. The estimates in (2.27) and (2.28), lead to a contradiction as $\varepsilon \to 0$ immediatelly. From the above arguments, we know there must hold $x_0 \in \Omega$. We have the following estimate that its proof has been postponed to Lemma A.5 in the Appendix, $$A_{N,\mu} = \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^N} U_{0,1}^{2^*-1} dx + O\left(\frac{1}{\lambda_s^2}\right). \tag{2.29}$$ By Lemma 2.3 and (2.29), we get by taking $\Omega' = B_{\delta}(x_{\varepsilon})$ in the local Pohozaev identity (2.2) in Lemma 2.1, LHS of (2.2) = $$\int_{\partial B_{\delta}(a_{\varepsilon})} \frac{\partial G(x, x_{\varepsilon})}{\partial x_{j}} \frac{\partial G(x, x_{\varepsilon})}{\partial v} ds - \frac{1}{2} \int_{\partial B_{\delta}(x_{\varepsilon})} |\nabla G(x, x_{\varepsilon})|^{2} v_{j} ds + O\left(\varepsilon + \frac{1}{\lambda_{\varepsilon}}\right).$$ (2.30) On the other hand, by Hardy-Littlewood-Sobolev inequality, we can also find $$\begin{split} &\int_{B_{\delta}(x_{\varepsilon})} \int_{\Omega \backslash B_{\delta}(x_{\varepsilon})} (x_{j} - \xi_{j}) \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} dx d\xi = O\Big(\int_{B_{\delta}(x_{\varepsilon})} \int_{\Omega \backslash B_{\delta}(x_{\varepsilon})} \frac{|u_{\varepsilon}(\xi)|^{2_{\mu}^{*}} |u_{\varepsilon}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 1}} dx d\xi\Big) \\ &= O\Big(\lambda_{\varepsilon}^{2N - \mu}\Big) \int_{B_{\delta}(x_{\varepsilon})} \int_{\Omega \backslash B_{\delta}(x_{\varepsilon})} \frac{1}{\left(1 + \lambda_{\varepsilon} |\xi - x_{\varepsilon}|\right)^{2N - \mu}} \frac{1}{|x - \xi|^{\mu + 1}} \frac{1}{\left(1 + \lambda_{\varepsilon} |x - x_{\varepsilon}|\right)^{2N - \mu}} dx d\xi \\ &= O\Big(\frac{1}{\lambda^{N - \frac{\mu + 1}{2}}}\Big). \end{split}$$ It follows from (2.2) and (4.14) that $$\int_{\partial B_{\delta}(x_{\varepsilon})} \frac{\partial G(x, x_{\varepsilon})}{\partial x_{j}} \frac{\partial G(x, x_{\varepsilon})}{\partial \nu} ds - \frac{1}{2} \int_{\partial B_{\delta}(x_{\varepsilon})} |\nabla G(x, x_{\varepsilon})|^{2} \nu_{j} ds = O\left(\varepsilon + \frac{1}{\lambda_{\varepsilon}}\right). \quad (2.31)$$ Hence (2.31) and (2.26) imply that $$\frac{\partial H(x, x_{\varepsilon})}{\partial x_j}\Big|_{x=x_{\varepsilon}} = O\Big(\varepsilon + \frac{1}{\lambda_{\varepsilon}}\Big), \quad j = 1, \dots, N.$$ (2.32) This means that $\nabla \mathcal{R}(x_0) = 0$ as $\varepsilon \to 0$. Thus the conclusion follows. # 3 Local uniqueness of the blow-up solutions # 3.1 Estimates for blow-up solutions and Green's function Before we prove that local uniqueness of such type of solutions, we need some preparations. The following lemma plays a crucial role. **Lemma 3.1** Assume that $N \ge 6$, $\mu \in (0,4)$ and u_{ε} is a sequence of solutions of problem (1.13) in $H_0^1(\Omega)$. Then we have $$u_{\varepsilon}(x) = \frac{G(x, x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} A_{N,\mu} + O\left(\frac{\ln \lambda_{\varepsilon}}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right) \quad in \ \Omega \setminus B_{\tau}(x_{\varepsilon}), \tag{3.1}$$ and $$\nabla u_{\varepsilon}(x) = \frac{\nabla_{x} G(x, x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} A_{N,\mu} + O\left(\frac{\ln \lambda_{\varepsilon}}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right) \quad \text{in } \Omega \setminus B_{\tau}(x_{\varepsilon}), \tag{3.2}$$ 217 Page 16 of
51 M. Squassina et al. where $A_{N,\mu}$ from Lemma 2.3 and $d = |x_{\varepsilon} - x|$. **Proof** We know that the solution of (1.13) can be rewritten as: $$u_{\varepsilon}(x) = \int_{\Omega} \int_{\Omega} \frac{u_{\varepsilon}^{2\mu}(\xi) u_{\varepsilon}^{2\mu-1}(z) G(x,z)}{|x-\xi|^{\mu}} d\xi dz + \varepsilon \int_{\Omega} u_{\varepsilon}(z) G(x,z) dz.$$ (3.3) From the estimate in (2.18), we know $$\int_{\Omega \backslash B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi) u_{\varepsilon}^{2_{\mu}^{*}-1}(z) G(x,z)}{|x-\xi|^{\mu}} d\xi dz = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right) \tag{3.4}$$ and $$\int_{\Omega \setminus B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{\Omega \setminus B_{\frac{\tau}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi) u_{\varepsilon}^{2_{\mu}^{*}-1}(z) G(x,z)}{|x-\xi|^{\mu}} d\xi dz = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right). \tag{3.5}$$ Since $$G(x, z) = G(x, x_{\varepsilon}) + \langle \nabla G(x, x_{\varepsilon}), z - x_{\varepsilon} \rangle + O(|z - x_{\varepsilon}|^{2}),$$ then we know $$\begin{split} &\int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi) u_{\varepsilon}^{2_{\mu}^{*}-1}(z) G(x,z)}{|x-\xi|^{\mu}} d\xi dz = G(x,x_{\varepsilon}) \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi) u_{\varepsilon}^{2_{\mu}^{*}-1}(z)}{|x-\xi|^{\mu}} d\xi dz \\ &+ \underbrace{\int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi) u_{\varepsilon}^{2_{\mu}^{*}-1}(z) \langle \nabla G(x,x_{\varepsilon}), z-x_{\varepsilon} \rangle}{|x-\xi|^{\mu}} d\xi dz}_{:=A_{1}} \\ &+ \underbrace{\int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(\xi) u_{\varepsilon}^{2_{\mu}^{*}-1}(x) |x-x_{\varepsilon}|^{2}}{|z-\xi|^{\mu}} d\xi dz}_{:=A_{2}} \\ &= \frac{G(x,x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} A_{N,\mu} + O\left(\frac{\ln \lambda_{\varepsilon}}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right), \end{split} \tag{3.6}$$ where $$A_{1} = O\left(\int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{\mathbb{R}^{N}} \frac{U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}}(\xi) P U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}-1}(z) \langle \nabla G(x,x_{\varepsilon}), z - x_{\varepsilon} \rangle}{|x - \xi|^{\mu}} d\xi dz\right)$$ $$+ O\left(\int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{\mathbb{R}^{N}} \frac{U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}}(\xi) P U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}-2}(\xi) w_{\varepsilon} |z - x_{\varepsilon}|}{|x - \xi|^{\mu}} d\xi dz\right)$$ $$= O\left(\frac{N(N - 2)}{A_{H,L}} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}-1} \langle \nabla G(x,x_{\varepsilon}), z - x_{\varepsilon} \rangle dz$$ $$+ \frac{N(N - 2)}{A_{H,L}} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}-2} w_{\varepsilon} |z - x_{\varepsilon}| dz\right)$$ $$= O\left(\int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^{*}-2}(z) w_{\varepsilon} |z - x_{\varepsilon}| dz\right)$$ 217 $$\begin{split} &=O\Big(\frac{1}{\lambda_{\varepsilon}^2}\Big(\int_0^{\frac{\tau\lambda_{\varepsilon}}{2}}\frac{r^{N-1}}{(1+r^2)^{\frac{6N}{N+2}}}dr\Big)^{\frac{N+2}{2N}}\|w_{\varepsilon}\|_{H_0^1}\Big)\\ &=O\Big(\frac{1}{\lambda_{\varepsilon}^2}\|w_{\varepsilon}\|_{H_0^1}\Big), \end{split}$$ by $G(x, x_{\varepsilon}) = G(x_{\varepsilon}, x)$. Similarly, we can calculate that $$\begin{split} A_2 &= O\Big(\int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} \int_{\mathbb{R}^N} \frac{U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2\mu}(\xi) U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2\mu-1}(z) |z-x_{\varepsilon}|^2}{|x-\xi|^{\mu}} d\xi dz\Big) \\ &= O\Big(\frac{N(N-2)}{\mathcal{A}_{H,L}} \int_{B_{\frac{\tau}{2}}(x_{\varepsilon})} U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2^*-1}(z) |z-x_{\varepsilon}|^2 dz\Big) \\ &= O\Big(\frac{\ln \lambda_{\varepsilon}}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\Big). \end{split}$$ Finally, similar to the calculation of (2.22), from $\lambda_{\varepsilon} \sim \varepsilon^{-\frac{1}{N-4}}$ from [41, subsection 2.2], we obtain $$\varepsilon \int_{\Omega} G(x, z) u_{\varepsilon}(z) dz = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right). \tag{3.7}$$ Then (3.3), (3.4), (3.5), (3.6) and (3.7) imply that (3.1). Finally, we get (3.2) from the fact that $$\nabla u_{\varepsilon}(x) = \int_{\Omega} \int_{\Omega} \frac{u_{\varepsilon}^{2\mu}(\xi) u_{\varepsilon}^{2\mu-1}(z) \nabla_{x} G(x,z)}{|x-\xi|^{\mu}} d\xi dz + \varepsilon \int_{\Omega} u_{\varepsilon}(z) \nabla_{x} G(x,z) dz.$$ (3.8) Hence the proof is finished. **Lemma 3.2** Assume that $N \ge 6$, $\mu \in (0,4)$ and u_{ε} is a solution of (1.13). Then we have $$\nabla \mathcal{R}(x_{\varepsilon}) = O\left(\frac{\ln \lambda_{\varepsilon}}{\lambda_{\varepsilon}^{2}}\right) \tag{3.9}$$ and $$\varepsilon = \frac{1}{\lambda_{\varepsilon}^{N-4}} \left(A_0 + \frac{1}{\lambda_{\varepsilon}^2} \right), \tag{3.10}$$ where A_0 is a strictly positive constant. **Proof** Similar to the arguments of (2.32), by applying the Pohozaev identity in Lemma 2.1 and Lemma 3.1, we can obtain (3.9) by taking $\Omega' = B_{\tau}(x_{\varepsilon})$. Next we shall prove (3.10). By Lemma 2.3, we find $$u_{\varepsilon}(x) = \frac{G(x, x_{\varepsilon})}{\lambda^{\frac{N-2}{2}}} A_{N,\mu} + O\left(\frac{\varepsilon}{\lambda^{\frac{N-2}{2}}} + \frac{1}{\lambda^{\frac{N}{2}}}\right), \quad x \in \Omega \setminus B_{\tau}(x_{\varepsilon})$$ (3.11) and $$\nabla u_{\varepsilon}(x) = \frac{\nabla G(x, x_{\varepsilon})}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} A_{N,\mu} + O\left(\frac{\varepsilon}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} + \frac{1}{\lambda_{\varepsilon}^{\frac{N}{2}}}\right), \quad x \in \Omega \setminus B_{\tau}(x_{\varepsilon}).$$ (3.12) 217 Page 18 of 51 M. Squassina et al. By (3.11) and (3.12), taking $\Omega' = B_{\tau}(x_{\varepsilon})$ in the local Pohozaev identity (2.1), we obtain $$\begin{split} \int_{B_{\tau}(x_{\varepsilon})} \int_{\Omega \setminus B_{\tau}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(x) u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi dx &\leq C \Big(\int_{B_{\tau}(x_{\varepsilon})} U_{x_{\varepsilon}, \lambda_{\varepsilon}}^{2^{*}}(x) dx \Big)^{\frac{2N - \mu}{2N}} \Big(\int_{\Omega \setminus B_{\tau}(x_{\varepsilon})} u_{\varepsilon}^{2^{*}}(x) dx \Big)^{\frac{2N - \mu}{2N}} \\ &= O\Big(\frac{1}{\lambda_{\varepsilon}^{N}} \Big). \end{split}$$ Similarly, we can also calculate that $$\begin{split} &\int_{\partial B_{\tau}(x_{\varepsilon})} \int_{\Omega} \frac{u_{\varepsilon}^{2_{\mu}^{*}}(x) u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x-\xi|^{\mu}} \langle x-x_{\varepsilon}, \nu \rangle d\xi ds \\ &= O\Big(\frac{1}{\lambda_{\varepsilon}^{N}}\Big), \ \int_{B_{\tau}(x_{\varepsilon})} \int_{\Omega \backslash B_{\tau}(x_{\varepsilon})} x \cdot (x-\xi) \frac{u_{\varepsilon}^{2_{\mu}^{*}}(x) u_{\varepsilon}^{2_{\mu}^{*}}(\xi)}{|x-\xi|^{\mu+2}} d\xi dx \\ &= O\Big(\frac{1}{\lambda_{\varepsilon}^{N}}\Big), \int_{\partial B_{\tau}(x_{\varepsilon})} u_{\varepsilon}^{2} \langle x-x_{\varepsilon}, \nu \rangle ds = O\Big(\frac{\varepsilon}{\lambda_{\varepsilon}^{N-2}}\Big). \end{split}$$ Inserting (3.11) and (3.12) into the Pohozaev identity (2.1), we know $$\frac{A_{N,\mu}^{2}}{\lambda_{\varepsilon}^{N-2}} \left[-\int_{\partial B_{\tau}(x_{\varepsilon})} \frac{\partial G(x, x_{\varepsilon})}{\partial \nu} \langle x - x_{\varepsilon}, \nabla G(x, x_{\varepsilon}) \rangle ds + \frac{1}{2} \int_{\partial B_{\tau}(x_{\varepsilon})} |\nabla G(x, x_{\varepsilon})|^{2} \langle x - x_{\varepsilon}, \nu \rangle ds \right. \\ \left. - \frac{N-2}{2} \int_{\partial B_{\tau}(x_{\varepsilon})} \frac{\partial G(x, x_{\varepsilon})}{\partial \nu} G(x, x_{\varepsilon}) \right] \\ = -\varepsilon \int_{B_{\tau}(x_{\varepsilon})} u_{\varepsilon}^{2}(x) dx + O\left(\frac{\varepsilon}{\lambda_{\varepsilon}^{N-2}} + \frac{1}{\lambda_{\varepsilon}^{N}}\right). \tag{3.13}$$ By applying the following identity (see [9]) $$\begin{split} -\int_{\partial B_{\tau}(x_{\varepsilon})} & \frac{\partial G(x,x_{\varepsilon})}{\partial \nu} \langle x - x_{\varepsilon}, \nabla G(x,x_{\varepsilon}) \rangle ds + \frac{1}{2} \int_{\partial B_{\tau}(x_{\varepsilon})} |\nabla G(x,x_{\varepsilon})|^{2} \langle x - x_{\varepsilon}, \nu \rangle ds \\ & - \frac{N-2}{2} \int_{\partial B_{\tau}(x_{\varepsilon})} G(x,x_{\varepsilon}) \frac{\partial G(x,x_{\varepsilon})}{\partial \nu} ds = -\frac{N-2}{2} \mathcal{R}(x_{\varepsilon}), \end{split}$$ we get from (3.13) that $$\frac{(N-2)H(x_{\varepsilon}, x_{\varepsilon})A_{N,\mu}^{2}}{2\lambda_{\varepsilon}^{N-2}} = \varepsilon \int_{B_{\tau}(x_{\varepsilon})} u_{\varepsilon}^{2} + O\left(\frac{\varepsilon}{\lambda_{\varepsilon}^{N-2}} + \frac{1}{\lambda_{\varepsilon}^{N}}\right). \tag{3.14}$$ On the one hand, by Lemma A.5, we know $$A_{N,\mu} = \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^N} U_{0,1}^{2^*-1} + O\left(\frac{1}{\lambda^2}\right). \tag{3.15}$$ On the other hand, by $PU_{x_{\varepsilon},\lambda_{\varepsilon}} \leq U_{x_{\varepsilon},\lambda_{\varepsilon}}$, we have $$\varepsilon \int_{B_{\tau}(x_{\varepsilon})} u_{\varepsilon}^{2}(x) dx = \varepsilon \left[\int_{B_{\tau}(x_{\varepsilon})} (PU_{x_{\varepsilon},\lambda_{\varepsilon}}(x))^{2} dx + O\left(\int_{B_{\tau}(x_{\varepsilon})} PU_{x_{\varepsilon},\lambda_{\varepsilon}} w_{\varepsilon} + \|w_{\varepsilon}\|_{H_{0}^{1}}^{2}\right) \right] \\ = \frac{\varepsilon}{\lambda^{2}} \int_{\mathbb{R}^{N}} U_{0,1}^{2} dx + O\left(\frac{\varepsilon}{\lambda^{N-2}}\right) \\ + O\left(\left(\int_{B_{\tau}(x_{\varepsilon})}
U_{x_{\varepsilon},\lambda_{\varepsilon}}^{2} dx\right)^{\frac{1}{2}} \|w_{\varepsilon}\|_{H_{0}^{1}} + \|w_{\varepsilon}\|_{H_{0}^{1}}^{2}\right) \\ = \frac{\varepsilon}{\lambda^{2}} \int_{\mathbb{R}^{N}} U_{0,1}^{2} dx + O\left(\frac{\varepsilon}{\lambda^{4}}\right). \tag{3.16}$$ Therefore, together with (3.14), (3.15) and (3.16), we can deduce $$\frac{N^{2}(N-2)^{3}\mathcal{R}(x_{\varepsilon})}{2A_{H,L}\lambda_{\varepsilon}^{N-2}} \left(\int_{\mathbb{R}^{N}} U_{0,1}^{2^{*}-1} dx + O(\frac{1}{\lambda^{2}}) \right)^{2} = \frac{\varepsilon}{\lambda_{\varepsilon}^{2}} \left(\int_{\mathbb{R}^{N}} U_{0,1}^{2} dx + O(\frac{1}{\lambda^{2}}) \right) + O\left(\frac{\varepsilon}{\lambda_{\varepsilon}^{N-2}} + \frac{1}{\lambda_{\varepsilon}^{N}}\right), \tag{3.17}$$ which implies that (3.10) is true. # 3.2 The local uniqueness result The purpose of this subsection is devoted to complete the proof of Theorem 1.2. There are some prelimilaries to be done before we go into the proof. First of all, we let $u_{\varepsilon}^{(1)}$ and $u_{\varepsilon}^{(2)}$ be two different solutions of (1.1). We will use $x_{\varepsilon}^{(j)}$ and $\lambda_{\varepsilon}^{(j)}$ to denote the center and the height of the bubbles appearing in $u_{\varepsilon}^{(j)}(j=1,2)$, respectively. Let $$\eta_{\varepsilon}(x) := \frac{u_{\varepsilon}^{(1)}(x) - u_{\varepsilon}^{(2)}(x)}{\|u_{\varepsilon}^{(1)}(x) - u_{\varepsilon}^{(2)}(x)\|_{I^{\infty}}},\tag{3.18}$$ then $\eta_{\varepsilon}(x)$ satisfies $\|\eta_{\varepsilon}\|_{L^{\infty}}=1$ and $$-\Delta \eta_{\varepsilon}(x) = f\left(x, u_{\varepsilon}^{(1)}, u_{\varepsilon}^{(2)}\right),\tag{3.19}$$ where $$f(x, u_{\varepsilon}^{(1)}, u_{\varepsilon}^{(2)}) = (2_{\mu}^{*} - 1) \left(\int_{\Omega} \frac{\left(u_{\varepsilon}^{(1)}(\xi)\right)^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi \right) C_{\varepsilon}(x) \eta_{\varepsilon}(x)$$ $$+ 2_{\mu}^{*} \left(\int_{\Omega} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|x - \xi|^{\mu}} d\xi \right) \left(u_{\varepsilon}^{(2)}(x)\right)^{2_{\mu}^{*} - 1} + \varepsilon \eta_{\varepsilon}$$ with $$C_{\varepsilon}(x) = \int_{0}^{1} \left(t u_{\varepsilon}^{(1)}(x) + (1 - t) u_{\varepsilon}^{(2)}(x) \right)^{2_{\mu}^{*} - 2} dt,$$ $$D_{\varepsilon}(\xi) = \int_{0}^{1} \left(t u_{\varepsilon}^{(1)}(\xi) + (1 - t) u_{\varepsilon}^{(2)}(\xi) \right)^{2_{\mu}^{*} - 1} dt.$$ (3.20) **Lemma 3.3** For $N \ge 6$, $\mu \in (0, 4]$, it holds that $$|x_{\varepsilon}^{(1)} - x_{\varepsilon}^{(2)}| = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^2}\right) \quad and \quad |\lambda_{\varepsilon}^{(1)} - \lambda_{\varepsilon}^{(2)}| = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^2}\right). \tag{3.21}$$ **Proof** First we remark that $$\mathcal{R}(x_{\varepsilon}) = \mathcal{R}(x_0) + \langle \nabla \mathcal{R}(x_0), x_{\varepsilon} - x_0 \rangle + O(\nabla^2 \mathcal{R}(x_0) |x_{\varepsilon} - x_0|^2).$$ Combining (3.9) and x_0 is a nondegerate critical point of Robin function \mathcal{R} , we see that for $N \ge 6$ $$|x_{\varepsilon} - x_0| = O\left(\frac{\ln \lambda_{\varepsilon}}{\lambda_{\varepsilon}^2}\right). \tag{3.22}$$ A direct computations, we get (3.21) from (3.10) and (3.22). 217 Page 20 of 51 M. Squassina et al. **Lemma 3.4** For $N \geq 6$, $\mu \in (0, 4)$, it holds that $$C_{\varepsilon}(x) = U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}^{2_{\mu}^{*} - 2} + O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\lambda_{\varepsilon}^{(1)}}\right) U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}^{2_{\mu}^{*} - 2} + O\left(\sum_{j=1}^{2} |w_{\varepsilon}^{(j)}|^{2_{\mu}^{*} - 2}\right)$$ (3.23) and $$D_{\varepsilon}(x) = U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}^{2_{\mu}^{*} - 1} + O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\lambda_{\varepsilon}^{(1)}}\right) U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}^{2_{\mu}^{*} - 1} + O\left(\sum_{i=1}^{2} |w_{\varepsilon}^{(i)}|^{2_{\mu}^{*} - 1}\right).$$ (3.24) **Proof** In view of Lemma 3.3, we first note that $$\begin{split} |U_{a_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(x) - U_{x_{\varepsilon}^{(2)},\lambda_{\varepsilon}^{(2)}}(x)| &= O\left(|x_{\varepsilon}^{(1)} - x_{\varepsilon}^{(2)}| \cdot \left(\nabla_{x} U_{x,\lambda_{\varepsilon}^{(1)}}(x)|_{x = x_{\varepsilon}^{(1)}}\right) + |\lambda_{\varepsilon}^{(1)} - \lambda_{\varepsilon}^{(2)}| \cdot \left(\nabla_{x} U_{x_{\varepsilon}^{(1)},\lambda}(x)|_{\lambda = \lambda_{\varepsilon}^{(1)}}\right)\right) \\ &= O\left(U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}\left(\lambda_{\varepsilon}^{(1)}|x_{\varepsilon}^{(1)} - x_{\varepsilon}^{(2)}| + \frac{\lambda_{\varepsilon}^{(1)} - \lambda_{\varepsilon}^{(2)}}{\lambda_{\varepsilon}^{(1)}}\right)\right) \\ &= O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\lambda_{\varepsilon}^{(1)}}\right) U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(x), \end{split} \tag{3.25}$$ which implies that $$u_{\varepsilon}^{(1)} - u_{\varepsilon}^{(2)} = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\lambda_{\varepsilon}^{(1)}}\right) U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}(x) + O\left(\sum_{i=1}^{2} |w_{\varepsilon}^{(j)}|\right). \tag{3.26}$$ Then (3.26) can deduce that (3.23) and (3.24). From [39], we have the following estimate: **Lemma 3.5** For any constant $0 < \sigma \le N - 2$, there is a constant C > 0 such that $$\int_{\mathbb{R}^N} \frac{1}{|y-x|^{N-2}} \frac{1}{(1+|x|)^{2+\sigma}} dx \le \begin{cases} \frac{C}{(1+|y|)^{\sigma}}, & \text{if } \sigma < N-2, \\ \frac{C}{(1+|y|)^{\sigma}} \ln|y|, & \text{if } \sigma = N-2. \end{cases}$$ **Lemma 3.6** For any constant $\sigma \geq N-2-\frac{\mu}{2}$ and $\mu \in (0,4]$, there is a constant C>0 such that $$\int_{\mathbb{R}^{N}} \frac{1}{|y-x|^{\frac{2N(N-2)}{2N-\mu}}} \frac{1}{(1+|x|)^{\frac{2N(2+\sigma)}{2N-\mu}}} dx \leq \begin{cases} \frac{C}{(1+|y|)^{\frac{N(2\sigma+\mu)}{2N-\mu}}}, & \text{if } \sigma \geq N-2-\frac{\mu}{2} \text{ and } 0 < \mu < 4, \\ \frac{C}{(1+|y|)^{\frac{N(2\sigma+\mu)}{2N-\mu}}} \ln|y|, & \text{if } \sigma = N-2-\frac{\mu}{2} \text{ and } \mu = 4. \end{cases}$$ **Proof** We just need to obtain the estimate for $|y| \ge 2$, the other is similar. Let $d = \frac{1}{2}|y|$. Then we have $$\begin{split} \int_{B_d(0)} \frac{1}{|y-x|^{\frac{2N(N-2)}{2N-\mu}}} \frac{1}{(1+|x|)^{\frac{2N(2+\sigma)}{2N-\mu}}} dx &\leq \frac{C}{d^{\frac{2N(N-2)}{2N-\mu}}} \int_{B_d(0)} \frac{1}{(1+|x|)^{\frac{2N(2+\sigma)}{2N-\mu}}} dx \\ &\leq \frac{C}{d^{\frac{2N(N-2)}{2N-\mu}}} \frac{1}{(1+d)^{\frac{N(4+2\sigma-2N+\mu)}{2N-\mu}}} &\leq \frac{C}{d^{\frac{N(2\sigma+\mu)}{2N-\mu}}}, \end{split}$$ for any $\sigma > N - 2 - \frac{\mu}{2}$. And we have $$\begin{split} \int_{B_d(y)} \frac{1}{|y-x|^{\frac{2N(N-2)}{2N-\mu}}} \frac{1}{(1+|x|)^{\frac{2N(2+\sigma)}{2N-\mu}}} dx &\leq \frac{C}{d^{\frac{2N(2+\sigma)}{2N-\mu}}} \int_{B_d(y)} \frac{1}{|y-x|^{\frac{2N(N-2)}{2N-\mu}}} dx \\ &\leq \frac{C}{d^{\frac{2N(2+\sigma)}{2N-\mu}}} d^{\frac{N(4-\mu)}{2N-\mu}} &\leq \frac{C}{d^{\frac{N(2\sigma+\mu)}{2N-\mu}}}. \end{split}$$ Assume that $x \in \mathbb{R}^N \setminus (B_d(0) \cup B_d(y))$. Then we know $$|x - y| \ge \frac{1}{2}|y|, \quad |x| \ge \frac{1}{2}|y|.$$ Hence by a direct computation, we have $$\begin{split} & \int_{\mathbb{R}^{N} \setminus \left(B_{d}(0) \cup B_{d}(y)\right)} \frac{1}{|y-x|^{\frac{2N(N-2)}{2N-\mu}}} \frac{1}{(1+|x|)^{\frac{2N(2+\sigma)}{2N-\mu}}} dx \\ & \leq \int_{\mathbb{R}^{N} \setminus \left(B_{d}(0) \cup B_{d}(y)\right)} \frac{1}{|x|^{\frac{2N(N-2)}{2N-\mu}}} \frac{1}{(1+|x|)^{\frac{2N(2+\sigma)}{2N-\mu}}} dx \\ & \leq \frac{C}{d^{\frac{2N(N-2)}{2N-\mu}}} \int_{\mathbb{R}^{N} \setminus \left(B_{d}(0) \cup B_{d}(y)\right)} \frac{1}{(1+|x|)^{\frac{2N(2+\sigma)}{2N-\mu}}} dx \\ & \leq \frac{C}{d^{\frac{N(2\sigma+\mu)}{2N-\mu}}}, \end{split}$$ for any $\sigma \geq N - 2 - \frac{\mu}{2}$. This finishes the proof. **Lemma 3.7** For $\eta_{\varepsilon}(x)$ defined by (3.18), we have $$\int_{\Omega} \eta_{\varepsilon}(x) dx = \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \quad and \quad \eta_{\varepsilon}(x) = \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N-2}}, \quad in \quad \Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)}), \tag{3.27}$$ where $\delta > 0$ is a any small fixed constant. **Proof** By the potential theory, we know $$\eta_{\varepsilon}(x) = (2_{\mu}^* - 1)\eta_{\varepsilon,1}(x) + 2_{\mu}^*\eta_{\varepsilon,2}(x) + \varepsilon \int_{\Omega} G(x,z)\eta_{\varepsilon}(z)dz,$$ where $$\begin{split} &\eta_{\varepsilon,1}(x) = \int_{\Omega} G(x,z) \bigg(\int_{\Omega} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|x-\xi|^{\mu}} d\xi \bigg) C_{\varepsilon}(z) \eta_{\varepsilon}(x) dz, \\ &\eta_{\varepsilon,2}(x) = \int_{\Omega} G(x,z) \bigg(\int_{\Omega} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|x-\xi|^{\mu}} d\xi \bigg) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*}-1} dz. \end{split}$$ Firstly, we can deduce $$|C_{\varepsilon}(z)| \le C \frac{(\lambda_{\varepsilon}^{(1)})^{\frac{4-\mu}{2}}}{\left(1 + \lambda_{\varepsilon}^{(1)}|z - x_{\varepsilon}^{(1)}|\right)^{4-\mu}} \quad \text{and} \quad |D_{\varepsilon}(\xi)| \le C \frac{(\lambda_{\varepsilon}^{(1)})^{\frac{N-\mu+2}{2}}}{\left(1 + \lambda_{\varepsilon}^{(1)}|\xi - x_{\varepsilon}^{(1)}|\right)^{N-\mu+2}}. \quad (3.28)$$ 217 Page 22 of 51 M. Squassina et al. Combining $|\eta_{\varepsilon}| \leq 1$, (1.16), (2.17) and Lemma 3.5, then we get $$\eta_{\varepsilon,1} \leq C \int_{\Omega} \frac{1}{|z-x|^{N-2}} \Big(\int_{\mathbb{R}^{N}} \frac{\left(U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}(\xi) \right)^{2_{\mu}^{*}}}{|x-\xi|^{\mu}} d\xi \Big) C_{\varepsilon}(z) dz \\ \leq C \int_{\Omega} \frac{1}{|z-\lambda_{\varepsilon}^{(1)}x|^{N-2}} \frac{1}{\left(1+|z-\lambda_{\varepsilon}^{(1)}x_{\varepsilon}^{(1)}|^{2}\right)^{2}} dx \\ \leq C \int_{\Omega} \frac{1}{
\lambda_{\varepsilon}^{(1)}(x-x_{\varepsilon}^{(1)})-z|^{N-2}} \frac{1}{\left(1+|z|\right)^{4}} dz \\ \leq C \frac{1}{\left(1+\lambda_{\varepsilon}^{(1)}|x-x_{\varepsilon}^{(1)}|\right)^{2}}.$$ (3.29) Next repeating the above process, we know $$\eta_{\varepsilon,1} = O\left(\frac{1}{\left(1 + \lambda_{\varepsilon}^{(1)} | x - x_{\varepsilon}^{(1)}|\right)^4}\right).$$ Then we can proceed as in the above argument for finite number of times to prove $$\eta_{\varepsilon,1} = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\left(1 + \lambda_{\varepsilon}^{(1)} | x - x_{\varepsilon}^{(1)}|\right)^{N-2}}\right). \tag{3.30}$$ Next, we find $$|U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(x) - U_{x_{\varepsilon}^{(2)},\lambda_{\varepsilon}^{(2)}}(x)| = O\left(\frac{\ln \lambda_{\varepsilon}}{(\lambda_{\varepsilon}^{(1)})^2}\right) U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(x). \tag{3.31}$$ Hence by Lemma 3.6 and Hardy–Littlewood–Sobolev inequality, we can calculate that for $d(\Omega) := diam(\Omega)$ $$\begin{split} \eta_{\varepsilon,2} &\leq C \int_{\Omega} \bigg(\int_{\Omega} \frac{D_{\varepsilon}(\xi)}{|x-\xi|^{\mu}} d\xi \bigg) \Big(U_{x_{\varepsilon}^{(2)},\lambda_{\varepsilon}^{(2)}}(z) \Big)^{2_{\mu}^{*}-1} G_{\varepsilon}(x,z) dz \\ &\leq \frac{C}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}} \bigg(\int_{0}^{d(\Omega)} \frac{r^{N-1}}{(1+r^{2})^{\frac{N(N-\mu+2)}{2N-\mu}}} dr \bigg)^{\frac{2N-\mu}{2N}} \bigg(\int_{\Omega} \frac{1}{|z-x|^{\frac{2N(N-2)}{2N-\mu}}} \\ &\frac{(\lambda_{\varepsilon}^{(1)})^{\frac{N(N-\mu+2)}{2N-\mu}}}{(1+(\lambda_{\varepsilon}^{(1)})^{2}|z-x_{\varepsilon}^{(1)}|^{2})^{\frac{N(N-\mu+2)}{2N-\mu}}} dz \bigg)^{\frac{2N-\mu}{2N}} \\ &\leq C \bigg(\int_{\Omega} \frac{1}{|\lambda_{\varepsilon}^{(1)}(x-x_{\varepsilon}^{(1)})-z|^{\frac{2N(N-2)}{2N-\mu}}} \frac{1}{(1+|z|)^{\frac{2N(N-\mu+2)}{2N-\mu}}} dx \bigg)^{\frac{2N-\mu}{2N}} \\ &\leq \frac{C}{(1+\lambda_{\varepsilon}^{(1)}|x-x_{\varepsilon}^{(1)}|)^{N}}. \end{split}$$ Finally, we have $$\varepsilon \int_{\Omega} G_{\varepsilon}(x,z) \eta_{\varepsilon}(z) dz = O(\varepsilon).$$ Therefore, together with the estimates of $\eta_{\varepsilon,1}$ and $\eta_{\varepsilon,2}$, we can deduce $$|\eta_{\varepsilon}(x)| = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\left(1 + \lambda_{\varepsilon}^{(1)}|x - x_{\varepsilon}^{(1)}|\right)^{N-2}}\right) + O(\varepsilon). \tag{3.32}$$ Hence (3.27) can be deduced by (3.32). According to the above nondegeneracy result in Lemma 1.1, we have the following crucial lemma. **Lemma 3.8** Suppose that the exponents N, μ satisfy the assumptions of Theorem 1.2. Let $\tilde{\eta}_{\varepsilon}(x) = \eta_{\varepsilon}(\frac{x}{\lambda^{(1)}} + x_{\varepsilon}^{(1)})$. Then we have that $$\left|\tilde{\eta}_{\varepsilon}(x) - \sum_{k=0}^{N} c_k \phi_k(x)\right| = o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right), \text{ uniformly in } C^1(B_R(0) \text{ for any } R > 0, \quad (3.33)$$ where c_k , k = 1, ..., N are some constants and $$\phi_0 = \frac{\partial U_{0,\lambda}}{\partial \lambda}\Big|_{\lambda=1}, \quad \phi_k = \frac{\partial U_{0,1}}{\partial x_k}, \ k=1,\ldots,N.$$ **Proof** Since $|\tilde{\eta}_{\varepsilon}| \leq 1$, by the regularity theorem [18], we know that $$\tilde{\eta}_{\varepsilon} \in C^{1}(B_{\tilde{R}}(0)) \text{ and } \|\tilde{\eta}_{\varepsilon}\|_{C^{1,\alpha}(B_{\tilde{p}}(0))} \leq C,$$ for any fixed large \tilde{R} and $\alpha \in (0, 1)$. Hence we may assume that $\tilde{\eta}_{\varepsilon} \to \tilde{\eta}_0$ in $C^1(B_{\tilde{R}}(0))$ for any large $\tilde{R} > 0$. Now by a direct calculation, we have $$-\Delta \tilde{\eta}_{\varepsilon}(x) = -\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2}} \Delta \eta_{\varepsilon} \left(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)} \right)$$ $$= E_{\varepsilon,1} \tilde{\eta}_{\varepsilon}(x) + E_{\varepsilon,2}(x) + \frac{\varepsilon}{(\lambda_{\varepsilon}^{(1)})^{2}} \tilde{\eta}_{\varepsilon}(x),$$ where $$\begin{split} E_{\varepsilon,1}(x) &= \frac{2_{\mu}^* - 1}{(\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}} \Big(\int_{\Omega} \frac{\left(u_{\varepsilon}^{(1)} ((\lambda_{\varepsilon}^{(1)})^{-1} \xi + x_{\varepsilon}^{(1)}) \right)^{2_{\mu}^*}}{|x - \xi|^{\mu}} d\xi \Big) C_{\varepsilon} \Big((\lambda_{\varepsilon}^{(1)})^{-1} x + x_{\varepsilon}^{(1)} \Big), \\ E_{\varepsilon,2}(x) &= \frac{2_{\mu}^*}{(\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}} \Big(\int_{\Omega} \frac{D_{\varepsilon} \Big((\lambda_{\varepsilon}^{(1)})^{-1} \xi + x_{\varepsilon}^{(1)} \Big) \tilde{\eta}_{\varepsilon}(y)}{|x - \xi|^{\mu}} d\xi \Big) \Big(u_{\varepsilon}^{(2)} ((\lambda_{\varepsilon}^{(1)})^{-1} x + x_{\varepsilon}^{(1)}) \Big)^{2_{\mu}^* - 1}. \end{split}$$ Then for any $\varphi(x) \in C_0^{\infty}(\mathbb{R}^N)$ with $\sup \varphi(x) \subset B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})$ for a small fixed δ , we have $$\begin{split} &\int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \nabla \tilde{\eta}_{\varepsilon}(x) \nabla \varphi(x) dx = \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \left(E_{\varepsilon,1} \tilde{\eta}_{\varepsilon}(x) + E_{\varepsilon,2}(x) \right) \varphi(x) dx + \frac{\varepsilon}{(\lambda_{\varepsilon}^{(1)})^2} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \tilde{\eta}_{\varepsilon}(x) \varphi(x) dx. \end{split}$$ (3.34) In view of the elementary inequality (A.2) in Appendix A, we know 217 Page 24 of 51 M. Squassina et al. $$\begin{split} &\int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} E_{\varepsilon,1}\tilde{\eta}_{\varepsilon}(x)\varphi(x)dx \\ &= \frac{2_{\mu}^{*} - 1}{(\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{\left(u_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*}} C_{\varepsilon}\left(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi \\ &= \frac{2_{\mu}^{*} - 1}{(\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}} \mathcal{F}_{1} + \frac{2_{\mu}^{*}(2_{\mu}^{*} - 1)}{(\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}} \mathcal{F}_{2} + \frac{2_{\mu}^{*}(2_{\mu}^{*} - 1)^{2}}{(2\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}} \mathcal{F}_{3} + O\left(\frac{2_{\mu}^{*} - 1}{(\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}} \mathcal{F}_{4}\right), \end{split} \tag{3.35}$$ where $$\begin{split} \mathcal{F}_{1} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{\left(PU_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*}} C_{\varepsilon}\left(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right) \tilde{\eta}_{\varepsilon}(x) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi, \\ \mathcal{F}_{2} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{\left(PU_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*}} - 1} w_{\varepsilon}^{(1)} \left(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right) C_{\varepsilon} \left(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right) \tilde{\eta}_{\varepsilon}(x) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi, \\ \mathcal{F}_{3} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{\left(PU_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*}} - 2} (w_{\varepsilon}^{(1)} \left(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right))^{2} C_{\varepsilon} \left(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right) \tilde{\eta}_{\varepsilon}(x) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi, \\ \mathcal{F}_{4} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{\left(w_{\varepsilon}^{(1)} \left(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right)\right)^{2_{\mu}^{*}} C_{\varepsilon} \left(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right) \tilde{\eta}_{\varepsilon}(x) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi. \\ \int_{B_{\chi(1)_{\varepsilon}}(x_{\varepsilon}^{(1)})} \frac{\left(w_{\varepsilon}^{(1)} \left(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right)\right)^{2_{\mu}^{*}} C_{\varepsilon} \left(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}\right) \tilde{\eta}_{\varepsilon}(x) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi. \end{split}$$ By the definition of $U_{x_{\mathcal{E}}^{(1)},\lambda_{\mathcal{E}}^{(1)}}$, Lemma 3.4 and Lemma A.5, we have $$\begin{split} \mathcal{F}_{1} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{\left(PU_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2\mu} \left(U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2\mu} - 2\tilde{\eta}_{\varepsilon}(x)\varphi(x)}{|x - \xi|^{\mu}} dx d\xi \\ &+ o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right) \\ &= (\lambda_{\varepsilon}^{(1)})^{N - \mu + 2} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{U_{0,1}^{2\mu}(\xi)U_{0,1}^{2\mu - 2}(x)\tilde{\eta}_{\varepsilon}(x)\varphi(x)}{|x - \xi|^{\mu}} dx d\xi + o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right). \end{split} \tag{3.36}$$ And we have the following rest other estimates for which the proof is left in Lemma A.6 in Appendix A: $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}} \mathcal{F}_{2} =
o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right), \quad \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}} \mathcal{F}_{3} = o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right), \quad \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}} \mathcal{F}_{4} = o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right). \tag{3.37}$$ Now similar to the calculations of (3.35), by inequality (A.2), we can deduce $$\begin{split} &\int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(a_{\varepsilon}^{(1)})} E_{\varepsilon,2}\varphi(x)dx \\ &= \frac{2_{\mu}^{*}}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{D_{\varepsilon}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\tilde{\eta}_{\varepsilon}(\xi) \left(u_{\varepsilon}^{(2)}(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*}-1}\varphi(x)}{|x - \xi|^{\mu}} dx d\xi \\ &= 2_{\mu}^{*} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{U_{0,1}^{2_{\mu}^{*}}(\xi)\tilde{\eta}_{\varepsilon}(\xi)U_{0,1}^{2_{\mu}-1}(x)\varphi(x)}{|x - \xi|^{\mu}} dx d\xi + o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right). \end{split} \tag{3.38}$$ On the other hand, from $\|\eta_{\varepsilon}\| = 1$, we have $$\frac{\varepsilon}{(\lambda_{\varepsilon}^{(1)})^2} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \tilde{\eta}_{\varepsilon}(x) \varphi(x) dx = o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right). \tag{3.39}$$ Consequently, in view of (3.34)-(3.39), we obtain $$\begin{split} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \nabla \tilde{\eta}_{\varepsilon}(x) \nabla \varphi(x) dx &= (2_{\mu}^{*} - 1) \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{U_{0,1}^{2_{\mu}^{*}}(\xi) U_{0,1}^{2_{\mu}^{*} - 2}(x) \tilde{\eta}_{\varepsilon}(x) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi \\ &+ 2_{\mu}^{*} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{U_{0,1}^{2_{\mu}^{*}}(\xi) \tilde{\eta}_{\varepsilon}(y) U_{0,1}^{2_{\mu}^{*} - 1}(x) \varphi(x)}{|x - \xi|^{\mu}} dx d\xi + o\Big(\frac{1}{\lambda_{\varepsilon}^{(1)}}\Big). \end{split}$$ Taking $\varepsilon \to 0$ in (3.40), we find that $\tilde{\eta}_0$ satisfies $$-\Delta \tilde{\eta}_{0} = (2_{\mu}^{*} - 1) \left(\int_{\mathbb{R}^{N}} \frac{U_{0,1}^{2_{\mu}^{*}}(\xi)}{|x - \xi|^{\mu}} d\xi \right) U_{0,1}^{2_{\mu}^{*} - 2}(x) \tilde{\eta}_{0}(x)$$ $$+ 2_{\mu}^{*} \left(\int_{\mathbb{R}^{N}} \frac{U_{0,1}^{2_{\mu}^{*} - 1}(\xi) \tilde{\eta}_{0}(\xi)}{|x - \xi|^{\mu}} d\xi \right) U_{0,1}^{2_{\mu}^{*} - 1}, \text{ in } \mathbb{R}^{N}.$$ $$(3.41)$$ From the non-degeneracy results of Lemma 1.1, which gives $\tilde{\eta}_0 = \sum_{k=0}^{N} c_k \phi_k$. Hence the conclusion (3.33) follows by (3.40) and (3.41). The proof of the following lemma is postponed to Sect. 4. **Lemma 3.9** Suppose that the exponents N, μ satisfy the assumptions of Theorem 1.2, there holds $$c_k = 0, \text{ for } k = 0, \dots, N,$$ where c_k are the constants in Lemma 3.8. We are going to prove Theorem 1.2 by using Lemmas 3.8 and 3.9. **Proof of Theorem 1.2** From (3.32), we find that $$|\eta_{\varepsilon}(x)| = O\left(\frac{1}{R^{N-3}}\right) + O\left(\varepsilon\right), \text{ for } x \in \Omega \setminus B_{R(\lambda_{\varepsilon}^{(1)})^{-1}}(x_{\varepsilon}^{(1)}),$$ 217 Page 26 of 51 M. Squassina et al. which means that for any fixed $\theta \in (0, 1)$ and small ε , there exists $\tilde{R} > 0$ such that $$|\eta_{\varepsilon}(x)| \leq \theta$$, for $x \in \Omega \setminus B_{\tilde{R}(\lambda_{\varepsilon}^{(1)})^{-1}}(x_{\varepsilon}^{(1)})$. Also for above fixed \tilde{R} , in view of Lemma 3.9, we know $$|\eta_{\varepsilon}(x)| = o(1), \quad \text{for } x \in B_{\tilde{R}(\lambda^{(1)})^{-1}}(x_{\varepsilon}^{(1)}).$$ (3.42) Then for any fixed $\theta \in (0, 1)$ and small ε , we can deduce that $|\eta_{\varepsilon}(x)| < \theta$ for all $x \in \Omega$. This is a contradiction to $\|\eta_{\varepsilon}\|_{L^{\infty}} = 1$. So $u_{\varepsilon}^{(1)} = u_{\varepsilon}^{(2)}$ for small ε . This finishes the proof of Theorem 1.2. # 4 Proof of Lemma 3.9 This section is devoted to the proof of Lemma 3.9. **Lemma 4.1** For $N \ge 6$ and $\mu \in (0, 4)$, let $\eta_{\varepsilon}(x)$ be the function defined by (3.18). Then we have the following estimate: $$\eta_{\varepsilon}(x) = \left((2_{\mu}^{*} - 1) A_{\varepsilon}^{(1)} + 2_{\mu}^{*} A_{\varepsilon}^{(2)} \right) G(x_{\varepsilon}^{(1)}, x) + \sum_{k=1}^{N} \left((2_{\mu}^{*} - 1) B_{\varepsilon,k}^{(1)} + 2_{\mu}^{*} B_{\varepsilon,k}^{(2)} \right) \partial_{k} G(x_{\varepsilon}^{(1)}, x) + O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}} \right), \quad \text{in } C^{1}(\Omega \setminus B_{2\delta}(x_{\varepsilon}^{(1)})),$$ (4.1) where $\delta > 0$ is any small fixed constant, $\partial_k G(z, x) = \frac{G(z, x)}{\partial z_k}$, $$A_{\varepsilon}^{(1)} = \int_{B_{\varepsilon}(x_{c}^{(1)})} \int_{B_{\varepsilon}(x_{c}^{(1)})} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}} C_{\varepsilon}(z) \eta_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \tag{4.2}$$ $$A_{\varepsilon}^{(2)} = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*}-1}}{|z - \xi|^{\mu}} dz d\xi, \tag{4.3}$$ $$B_{\varepsilon,k}^{(1)} = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_k - x_{\varepsilon,k}^{(1)}) \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^*} C_{\varepsilon}(z) \eta_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \tag{4.4}$$ $$B_{\varepsilon,k}^{(2)} = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_k - x_{\varepsilon,k}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^* - 1}}{|z - \xi|^{\mu}} dz d\xi. \tag{4.5}$$ **Proof** By the potential theory and (3.19), we have $$\eta_{\varepsilon}(x) = \int_{\Omega} G(z, x) g(z, \lambda_{\varepsilon}^{(1)}(z), \lambda_{\varepsilon}^{(2)}(z)) dz$$ $$= (2_{\mu}^{*} - 1) \int_{\Omega} G(z, x) \left(\int_{\Omega} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z - \xi|^{\mu}} d\xi \right) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz$$ $$+ 2_{\mu}^{*} \int_{\Omega} G(z, x) \left(\int_{\Omega} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|x - \xi|^{\mu}} dz \right) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*} - 1} dz$$ $$+ \varepsilon \int_{\Omega} G(z, x) \eta_{\varepsilon}(z) dz.$$ $$(4.6)$$ According to Lemma 3.7, for any $z \in \Omega \setminus B_{2\delta}(a_{\varepsilon}^{(1)})$, we obtain the estimate of the third term in (4.6) as $$\int_{\Omega} G(z, x) \eta_{\varepsilon}(z) dz = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} G(z, x) \eta_{\varepsilon}(z) dz + \int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} G(z, x) \eta_{\varepsilon}(z) dz = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \eta_{\varepsilon}(z) dz + O\left(\int_{\Omega} G(z, x) \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N-2}} dz\right) = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N-2}}\right).$$ (4.7) Decomposing the first term of (4.6) by $$\begin{split} &\int_{\Omega} G(z,x) \bigg(\int_{\Omega} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z-\xi|^{\mu}} d\xi \bigg) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \\ &= \int_{B_{\delta}(x_{\varepsilon}^{(1)})} G(z,x) \bigg(\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|x-\xi|^{\mu}} d\xi \bigg) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \\ &+ 2 \int_{\Omega \setminus B_{\delta}(z_{\varepsilon}^{(1)})} G(z,x) \bigg(\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z-\xi|^{\mu}} d\xi \bigg) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \\ &+ \int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} G(z,x) \bigg(\int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z-\xi|^{\mu}} d\xi \bigg) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \\ &:= G_{1} + 2G_{2} + G_{3}. \end{split}$$ We are going to estimate G_1 , G_2 and G_3 , respectively. By using Hardy–Littlewood–Sobolev inequality, Lemma 3.7 and (3.28), then we have $$\begin{split} G_{1} &= A_{\varepsilon}^{(1)}G(x_{\varepsilon}^{(1)},x) + \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \left(G(z,x) - G(x_{\varepsilon}^{(1)},x)\right) \left(\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z - \xi|^{\mu}} d\xi\right) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \\ &= A_{\varepsilon}^{(1)}G(x_{\varepsilon}^{(1)},x) + \sum_{k=1}^{N} \partial_{k}G(x_{\varepsilon}^{(1)},x) \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_{k} - x_{\varepsilon,k}^{(1)}) \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}} C_{\varepsilon}(z) \eta_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi \\ &+ O\left(\frac{1}{|x - x_{\varepsilon}^{(1)}|^{N}} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} |z - x_{\varepsilon}^{(1)}|^{2} \left(\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z - \xi|^{\mu}} d\xi\right) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \right) \\ &= A_{\varepsilon}^{(1)}G(x_{\varepsilon}^{(1)},x) + \sum_{k=1}^{N} \partial_{k}G(x_{\varepsilon}^{(1)},x) B_{\varepsilon,k}^{(1)} \\ &+ O\left(\frac{1}{|x - x_{\varepsilon}^{(1)}|^{N}} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{|z - x_{\varepsilon}^{(1)}|^{2} U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2_{\mu}}}{|z - \xi|^{\mu}} d\xi \right) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \right) \\ &= A_{\varepsilon}^{(1)}G(x_{\varepsilon}^{(1)},x) + \sum_{k=1}^{N} \partial_{k}G(x_{\varepsilon}^{(1)},x) B_{\varepsilon,k}^{(1)} \\
&+ O\left(\frac{1}{|x - x_{\varepsilon}^{(1)}|^{N}} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} |z - x_{\varepsilon}^{(1)}|^{2} U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{\frac{N-2}{N-2}} (x) \eta_{\varepsilon}(z) dz \right) \\ &= A_{\varepsilon}^{(1)}G(x_{\varepsilon}^{(1)},x) + \sum_{k=1}^{N} \partial_{k}G(x_{\varepsilon}^{(1)},x) B_{\varepsilon,k}^{(1)} + O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}} \frac{1}{|x - x_{\varepsilon}^{(1)}|^{N}}\right), \end{split}$$ 217 Page 28 of 51 M. Squassina et al. where $A_{\varepsilon}^{(1)}$ and $B_{\varepsilon k}^{(1)}$ are defined in (4.2) and (4.4). Moreover, we can also find $$\begin{split} G_{2} &\leq C \int_{\Omega \backslash B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{**}}(\xi) G(z,x) C_{\varepsilon}(z) \eta_{\varepsilon}(z)}{|z-\xi|^{\mu}} dz d\xi \\ &\leq C \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}} \bigg(\int_{\Omega \backslash B_{\delta}(z_{\varepsilon}^{(1)}) \backslash B_{2\delta}(x)} \frac{1}{|z-x|^{N-2}} \frac{1}{|z-x_{\varepsilon}^{(1)}|^{2}} dz \\ &+ \int_{\Omega \backslash B_{\delta}(x_{\varepsilon}^{(1)}) \cap B_{2\delta}(x)} \frac{1}{|z-x|^{N-2}} \frac{1}{|z-x_{\varepsilon}^{(1)}|^{2}} dz \bigg) \\ &\leq C \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N} \delta^{N-2}} \int_{\Omega \backslash B_{\delta}(x_{\varepsilon}^{(1)})} \frac{1}{|z-x_{\varepsilon}^{(1)}|^{2}} dz + C \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N} \delta^{2}} \int_{B_{2\delta}(x)} \frac{1}{|z-x|^{N-2}} dz \\ &= O\bigg(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}}\bigg). \end{split}$$ Analogously, we also have $$G_3 = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^N}\right).$$ For the second term in (4.6), we decompose it by $$\begin{split} &\int_{\Omega} G(z,x) \Big(\int_{\Omega} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|z-\xi|^{\mu}} d\xi \Big) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*}-1} dz \\ &= \int_{B_{\delta}(x_{\varepsilon}^{(1)})} G(z,x) \Big(\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|z-\xi|^{\mu}} d\xi \Big) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*}-1} dz \\ &\quad + 2 \int_{B_{\delta}(x_{\varepsilon}^{(1)})} G_{\varepsilon}(z,x) \Big(\int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|z-\xi|^{\mu}} d\xi \Big) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*}-1} dz \\ &\quad + \int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} G(z,x) \Big(\int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|z-\xi|^{\mu}} d\xi \Big) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*}-1} dz \\ &:= L_{1} + L_{2} + L_{3}. \end{split}$$ Similar to the estimate for G_1 , by Hardy–Littlewood–Sobolev inequality and the fact $|\eta_{\varepsilon}(x)| \leq 1$, (3.28) and (3.31), a direct calculation shows that $$\begin{split} L_{1} &= A_{\varepsilon}^{(2)} G(x_{\varepsilon}^{(1)}, x) + \sum_{k=1}^{N} \partial_{k} G(x_{\varepsilon}^{(1)}, x) \\ &\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_{k} - x_{\varepsilon,k}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*} - 1}}{|z - \xi|^{\mu}} dz d\xi \\ &+ O\left(\frac{1}{|x - x_{\varepsilon}^{(1)}|^{N}} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} |z - x_{\varepsilon}^{(1)}|^{2} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*} - 1}}{|z - \xi|^{\mu}} dz d\xi\right) \\ &= A_{\varepsilon}^{(2)} G(x_{\varepsilon}^{(1)}, x) + \sum_{k=1}^{N} \partial_{k} G(x_{\varepsilon}^{(1)}, x) B_{\varepsilon,k}^{(2)} + O\left(\frac{(\lambda_{\varepsilon}^{(1)})^{N - \mu + 2}}{|x - x_{\varepsilon}^{(1)}|^{N}}\right) \\ &\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{1}{(1 + \lambda_{\varepsilon}^{(1)}|\xi - x_{\varepsilon}^{(1)}|)^{N - \mu + 2}} \frac{1}{|z - \xi|^{\mu}} \frac{|z - x_{\varepsilon}^{(1)}|^{2}}{(1 + \lambda_{\varepsilon}^{(1)}|z - x_{\varepsilon}^{(1)}|)^{N - \mu + 2}} dz d\xi \end{split}$$ $$\begin{split} &=A_{\varepsilon}^{(2)}G(x_{\varepsilon}^{(1)},x)+\sum_{k=1}^{N}\partial_{k}G(x_{\varepsilon}^{(1)},x)B_{\varepsilon,k}^{(2)}+\\ &+O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N}}\frac{1}{|x-x_{\varepsilon}^{(1)}|^{N}}\int_{B_{\delta}(0)}\int_{B_{\delta}(0)}\frac{1}{\left(1+|\xi|\right)^{N-\mu+2}}\frac{1}{|z-\xi|^{\mu}}\frac{|z|^{2}}{\left(1+|z|\right)^{N-\mu+2}}dzd\xi\\ &=A_{\varepsilon}^{(2)}G(x_{\varepsilon}^{(1)},x)+\sum_{k=1}^{N}B_{\varepsilon,k}^{(2)}\partial_{k}G(x_{\varepsilon}^{(1)},x)+O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N}}\frac{1}{|x-x_{\varepsilon}^{(1)}|^{N}}\Big), \end{split}$$ where $A_{\varepsilon}^{(2)}$ and $B_{\varepsilon,k}^{(2)}$ are defined in (4.3)and (4.5). By Lemma 3.7, we can calculate that $$\begin{split} L_{2} &\leq C \int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(\xi) \eta_{\varepsilon}(\xi) U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(z) G(z,x)}{|z-\xi|^{\mu}} dz d\xi \\ &\leq \frac{C \ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \Big(\int_{\Omega \setminus B_{\delta}(x_{\varepsilon}^{(1)})} U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{\frac{2NC_{\mu}^{\mu}-1}{2N-\mu}}(\xi) d\xi \Big)^{\frac{2N-\mu}{2N}} \Big(\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \Big| \frac{1}{|z-x|^{N-2}} U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(z) \Big|^{\frac{2N-\mu}{2N-\mu}} dz \Big)^{\frac{2N-\mu}{2N}} \\ &\leq \frac{C \ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \frac{1}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2N-\mu}}} \Big(\int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{(\lambda_{\varepsilon}^{(1)})^{\frac{N(N-\mu+2)}{2N-\mu}}}{(1+(\lambda_{\varepsilon}^{(1)})^{2}|z-x_{\varepsilon}^{(1)}|^{2})^{\frac{N(N-\mu+2)}{2N-\mu}}} dz \Big)^{\frac{2N-\mu}{2N}} \\ &= O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{2N-4}}\Big). \end{split} \tag{4.8}$$ And similar to the estimate of (4.8), we can also find $$\begin{split} L_{3} &\leq C \int_{\Omega \setminus B_{\delta}(x_{\epsilon}^{(1)})} \int_{\Omega \setminus B_{\delta}(x_{\epsilon}^{(1)})} \frac{U_{x_{\epsilon}^{(1)},\lambda_{\epsilon}^{(1)}}^{2^{**}_{\mu}-1}(\xi) \eta_{\epsilon}(\xi) U_{x_{\epsilon}^{(1)},\lambda_{\epsilon}^{(1)}}^{2^{**}_{\mu}-1}(z) G(z,x)}{|z-\xi|^{\mu}} dz d\xi \\ &\leq \frac{C \ln \lambda_{\epsilon}^{(1)}}{(\lambda_{\epsilon}^{(1)})^{N-2}} \Big(\int_{\Omega \setminus B_{\delta}(x_{\epsilon}^{(1)})} U_{x_{\epsilon}^{(1)},\lambda_{\epsilon}^{(1)}}^{2N-\mu}(\xi) d\xi \Big)^{\frac{2N-\mu}{2N}} \Big(\int_{B_{\delta}(x_{\epsilon}^{(1)})} \Big| \frac{1}{|z-x|^{N-2}} U_{x_{\epsilon}^{(1)},\lambda_{\epsilon}^{(1)}}^{2^{**}_{\mu}-1}(z) \Big|^{\frac{2N-\mu}{2N-\mu}} dz \Big)^{\frac{2N-\mu}{2N}} \\ &\leq \frac{C \ln \lambda_{\epsilon}^{(1)}}{(\lambda_{\epsilon}^{(1)})^{N-2}} \frac{1}{(\lambda_{\epsilon}^{(1)})^{\frac{N-2}{2}}} \Big(\int_{\left(\Omega \setminus B_{\delta}(x_{\epsilon}^{(1)})\right) \setminus B_{2\delta}(x)} \Big| \frac{1}{|z-x|^{N-2}} \frac{(\lambda_{\epsilon}^{(1)})^{\frac{N-\mu+2}{2}}}{(1+(\lambda_{\epsilon}^{(1)})^{2}|z-x_{\epsilon}^{(1)}|^{2})^{\frac{N-\mu+2}{2}}} \Big|^{\frac{2N}{2N-\mu}} dz \Big)^{\frac{2N-\mu}{2N}} \\ &+ \frac{C \ln \lambda_{\epsilon}^{(1)}}{\tilde{\lambda}_{\epsilon}^{(N-2)}} \frac{1}{(\lambda_{\epsilon}^{(1)})^{\frac{N-2}{2}}} \int_{\left(\Omega \setminus B_{\delta}(x_{\epsilon}^{(1)})\right) \cap B_{2\delta}(x)} \Big| \frac{1}{|z-x|^{N-2}} \frac{(\lambda_{\epsilon}^{(1)})^{\frac{N-\mu+2}{2}}}{(1+(\lambda_{\epsilon}^{(1)})^{2}|z-x_{\epsilon}^{(1)}|^{2})^{\frac{N-\mu+2}{2}}} \Big|^{\frac{2N-\mu}{2N-\mu}} dz \Big)^{\frac{2N-\mu}{2N-\mu}} dz \Big)^{\frac{2N-\mu}{2N}} \\ &\leq \frac{C \ln \lambda_{\epsilon}^{(1)}}{(\lambda_{\epsilon}^{(1)})^{N-2}} \frac{1}{(\lambda_{\epsilon}^{(1)})^{N-2}} \Big[\Big(\int_{\Omega \setminus B_{\delta}(x_{\epsilon}^{(1)})} \frac{1}{|z-x_{\epsilon}^{(1)}|^{\frac{2N(N-\mu+2)}{2N-\mu}}} dz \Big)^{\frac{2N-\mu}{2N}} + \int_{B_{2\delta}(x)} \frac{1}{|z-x|^{\frac{2N(N-2)}{2N-\mu}}} dz \Big)^{\frac{2N-\mu}{2N-\mu}} \Big] \\ &= O\Big(\frac{\ln \lambda_{\epsilon}^{(1)}}{(\lambda_{\epsilon}^{(1)})^{2N-\mu}} \Big) + O\Big(\frac{\ln \lambda_{\epsilon}^{(1)}}{(\lambda_{\epsilon}^{(1)})^{2N-\mu}} \Big), \end{aligned}$$ 217 Page 30 of 51 M. Squassina et al. where we using $\frac{2N(N-\mu+2)}{2N-\mu} > N$ and $\frac{2N(N-2)}{2N-\mu} < N$. Combining (4.6)-(4.7) and estimates of $G_1, G_2, G_3, L_1, L_2, L_3$, then we get $$\begin{split} \eta_{\varepsilon}(x) &= \left((2_{\mu}^{*} - 1)A_{\varepsilon}^{(1)} + 2_{\mu}^{*}A_{\varepsilon}^{(2)} \right) G(x_{\varepsilon}^{(1)}, x) + \sum_{k=1}^{N} \left((2_{\mu}^{*} - 1)B_{\varepsilon,k}^{(1)} + 2_{\mu}^{*}B_{\varepsilon,k}^{(2)} \right) \partial_{k}G(x_{\varepsilon}^{(1)}, x) \\ &+ O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}} + \frac{\varepsilon \ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N-2}} + \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N}} + \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{2N-4}} + \frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu}} \right) \\ &= \left((2_{\mu}^{*} - 1)A_{\varepsilon}^{(1)} + 2_{\mu}^{*}A_{\varepsilon}^{(2)} \right) G(x_{\varepsilon}^{(1)}, x) \\ &+ \sum_{k=1}^{N} \left((2_{\mu}^{*} - 1)B_{\varepsilon,k}^{(1)} + 2_{\mu}^{*}B_{\varepsilon,k}^{(2)} \right) \partial_{k}G(x_{\varepsilon}^{(1)}, x) + O\left(\frac{\ln
\lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}} \right), \\ &\text{for } x \in \Omega \setminus B_{2\delta}(x_{\varepsilon}^{(1)}), \end{split}$$ in the last step we have used $\varepsilon = O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-4}}\right) = O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^2}\right)$. On the other hand, from (4.6), we obtain $$\begin{split} \frac{\partial \eta_{\varepsilon}(x)}{\partial x_{i}} &= (2_{\mu}^{*} - 1) \int_{\Omega} D_{x_{i}} G(z, x) \Big(\int_{\Omega} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z - \xi|^{\mu}} d\xi \Big) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \\ &+ 2_{\mu}^{*} \int_{\Omega} D_{x_{i}} G(z, x) \Big(\int_{\Omega} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|z - \xi|^{\mu}} d\xi \Big) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*} - 1} dz + \varepsilon \int_{\Omega} D_{x_{i}} G(z, x) \eta_{\varepsilon}(z) dz. \end{split}$$ Similar to the above estimates of $\eta_{\varepsilon}(x)$, we know for $N \geq 6$, $$\varepsilon \int_{\Omega} D_{x_i} G(z, x) \eta_{\varepsilon}(z) dz = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\left(\lambda_{\varepsilon}^{(1)}\right)^N}\right).$$ By Hardy–Littlewood–Sobolev inequality and the fact that $|\eta_{\varepsilon}(x)| \le 1$, Lemma 3.7, (3.28) and (3.31), then we can get $$\begin{split} &\int_{\Omega} D_{x_{i}} G(z,x) \Big(\int_{\Omega} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}}}{|z - \xi|^{\mu}} d\xi \Big) C_{\varepsilon}(z) \eta_{\varepsilon}(z) dz \\ &= A_{\varepsilon}^{(1)} D_{x_{i}} G(x_{\varepsilon}^{(1)},x) + \sum_{k=1}^{N} D_{x_{i}} (\partial_{k} G(x_{\varepsilon}^{(1)},x) B_{\varepsilon,k}^{(1)}) + O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}}\Big), \end{split}$$ and $$\begin{split} &\int_{\Omega} D_{x_i} G(z,x) \Big(\int_{\Omega} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi)}{|z - \xi|^{\mu}} d\xi \Big) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^* - 1} dz \\ &= A_{\varepsilon}^{(2)} D_{x_i} G(x_{\varepsilon}^{(1)},x) + \sum_{k=1}^{N} B_{\varepsilon,k}^{(2)} D_{x_i} (\partial_k G(x_{\varepsilon}^{(1)},x)) + O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^N}\Big). \end{split}$$ Therefore, we deduce $$\frac{\partial \eta_{\varepsilon}(x)}{\partial x_{i}} = \left((2_{\mu}^{*} - 1)A_{\varepsilon}^{(1)} + 2_{\mu}^{*}A_{\varepsilon}^{(2)} \right) D_{x_{i}} G(x_{\varepsilon}^{(1)}, x) + \sum_{k=1}^{N} \left((2_{\mu}^{*} - 1)B_{\varepsilon,k}^{(1)} + 2_{\mu}^{*}B_{\varepsilon,k}^{(2)} \right) D_{x_{i}} (\partial_{k} G(x_{\varepsilon}^{(1)}, x)) + O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{N}} \right),$$ for $x \in \Omega \setminus B_{2\delta}(x_{\varepsilon}^{(1)})$, According to the above argument of $\eta_{\varepsilon}(x)$ and $\frac{\partial \eta_{\varepsilon}(x)}{\partial x_i}$. Then we can finish the proof of Lemma 4.1. **Lemma 4.2** Assume that $N \ge 6$, $\mu \in (0,4)$ and $u_{\varepsilon}^{(j)}$ with j=1,2 be the solutions of (1.1). Then we have $$u_{\varepsilon}^{(j)}(x) = \frac{G(x_{\varepsilon}^{(1)}, x)}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}} A_{N,\mu}$$ $$+ O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{N+2}{2}}}\right) \text{ in } C^{1}\left(\Omega \setminus B_{2\delta}(x_{\varepsilon}^{(1)})\right), \tag{4.9}$$ where $A_{N,\mu}$ is from Lemma 2.3. **Proof** Firstly, in view of Lemma 3.1, we know that (4.9) holds for j = 1 and $$u_{\varepsilon}^{(2)}(x) = \frac{G(x_{\varepsilon}^{(2)}, x)}{(\lambda_{\varepsilon}^{(2)})^{\frac{N-2}{2}}} A_{N,\mu}$$ $$+ O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{N+2}{2}}}\right) \text{ in } C^{1}\left(\Omega \setminus B_{2\delta}(x_{\varepsilon}^{(2)})\right). \tag{4.10}$$ By a direct calculate shows that $$\begin{split} &\frac{G(x_{\varepsilon}^{(2)}, x)}{(\lambda_{\varepsilon}^{(2)})^{\frac{N-2}{2}}} = \frac{G(x_{\varepsilon}^{(1)}, x)}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}} \\ &+ O\left(\frac{|x_{\varepsilon}^{(1)} - x_{\varepsilon}^{(2)}|}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}}\right) + O\left(\frac{|\lambda_{\varepsilon}^{(1)} - \lambda_{\varepsilon}^{(2)}|}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}}\right). \end{split}$$ Since $B_{\delta}(x_{\varepsilon}^{(1)}) \subset B_{2\delta}(x_{\varepsilon}^{(1)})$ for small ε , we deduce that (4.9) for j=2 from Lemma 3.3 and (4.10). **Lemma 4.3** For $\eta_{\varepsilon}(x)$ defined by (3.18), we have the following pohozaev identities: $$\begin{split} &-\int_{\partial\Omega'}\frac{\partial u_{\varepsilon}^{(1)}}{\partial x_{j}}\frac{\partial \eta_{\varepsilon}}{\partial \nu}ds - \int_{\partial\Omega'}\frac{\partial u_{\varepsilon}^{(2)}}{\partial \nu}\frac{\partial \eta_{\varepsilon}}{\partial x_{j}}ds + \frac{1}{2}\int_{\partial\Omega'}\left\langle\nabla(u_{\varepsilon}^{(1)} + u_{\varepsilon}^{(2)}), \nabla\eta_{\varepsilon}\right\rangle\nu_{j}ds \\ &= \frac{1}{2_{\mu}^{*}}\int_{\partial\Omega'}\int_{\Omega}\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}}\tilde{C}_{\varepsilon}(x)\eta_{\varepsilon}(x)\nu_{j}}{|x - \xi|^{\mu}}d\xi ds + \frac{1}{2_{\mu}^{*}}\int_{\partial\Omega'}\int_{\Omega}\frac{D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}\nu_{j}}{|x - \xi|^{\mu}}d\xi ds \end{split}$$ 217 Page 32 of 51 M. Squassina et al. $$\begin{split} &+\frac{1}{2^{*}_{\mu}}\int_{\partial\Omega'}\int_{\Omega'}\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2^{*}_{\mu}}\tilde{C}_{\varepsilon}(x)\eta_{\varepsilon}(x)\nu_{j}}{|x-\xi|^{\mu}}d\xi ds + \frac{1}{2^{*}_{\mu}}\int_{\partial\Omega'}\int_{\Omega'}\frac{D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|u_{\varepsilon}^{(1)}(x)|^{2^{*}_{\mu}}\nu_{j}}{|x-\xi|^{\mu}}d\xi ds \\ &+\frac{\mu}{2^{*}_{\mu}}\int_{\Omega'}\int_{\Omega\backslash\Omega'}(x_{j}-\xi_{j})\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2^{*}_{\mu}}\tilde{C}_{\varepsilon}(x)\eta_{\varepsilon}(x)}{|x-\xi|^{\mu+2}}dx d\xi \\ &+\frac{\mu}{2^{*}_{\mu}}\int_{\Omega'}\int_{\Omega\backslash\Omega'}(x_{j}-\xi_{j})\frac{D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|u_{\varepsilon}^{(1)}(x)|^{2^{*}_{\mu}}}{|x-\xi|^{\mu+2}}dx d\xi \\ &+\frac{\varepsilon}{2}\int_{\partial\Omega'}\left(u_{\varepsilon}^{(1)}+u_{\varepsilon}^{(2)}\right)\eta_{\varepsilon}\nu_{j}ds, \end{split} \tag{4.11}$$ and $$\begin{split} &-\int_{\partial\Omega'} \frac{\partial \eta_{\varepsilon}}{\partial \nu} \langle x - x_{\varepsilon}^{(1)}, \nabla u_{\varepsilon}^{(1)} \rangle ds - \int_{\partial\Omega'} \frac{\partial u_{\varepsilon}^{(2)}}{\partial \nu} \langle x - x_{\varepsilon}^{(1)}, \nabla \eta_{\varepsilon} \rangle ds \\ &+ \frac{1}{2} \int_{\partial\Omega'} \left\langle \nabla (u_{\varepsilon}^{(1)} + u_{\varepsilon}^{(2)}), \nabla \eta_{\varepsilon} \right\rangle \langle x - x_{\varepsilon}^{(1)}, \nu \rangle ds + \frac{2 - N}{2} \int_{\partial\Omega'} \left[\frac{\partial \eta_{\varepsilon}}{\partial \nu} u_{\varepsilon}^{(1)} + \frac{\partial u_{\varepsilon}^{(2)}}{\partial \nu} \eta_{\varepsilon} \right] ds \\ &= -\frac{\mu}{2} \left[\int_{\Omega'} \int_{\Omega \setminus \Omega'} \frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}} \tilde{C}_{\varepsilon}(x) \eta_{\varepsilon}(x)}{|x - \xi|^{\mu}} d\xi dx + \int_{\Omega'} \int_{\Omega \setminus \Omega'} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} d\xi dx \right] \\ &+ \mu \left[\int_{\Omega'} \int_{\Omega \setminus \Omega'} x \cdot (x - \xi) \frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}} \tilde{C}_{\varepsilon}(x) \eta_{\varepsilon}(x)}{|x - \xi|^{\mu+2}} d\xi dx \right] \\ &+ \int_{\Omega'} \int_{\Omega \setminus \Omega'} x \cdot (x - \xi) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu+2}} d\xi dx \right] \\ &+ \int_{\partial\Omega'} \int_{\Omega \setminus \Omega'} \frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}} \tilde{C}_{\varepsilon}(x) \eta_{\varepsilon}(x)}{|x - \xi|^{\mu}} \langle x - x_{\varepsilon}^{(1)}, \nu \rangle d\xi ds \\ &+ \int_{\partial\Omega'} \int_{\Omega \setminus \Omega'} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} \langle x - x_{\varepsilon}^{(1)}, \nu \rangle d\xi ds \\ &+ 2 \int_{\partial\Omega'} \int_{\Omega'} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} \langle x - x_{\varepsilon}^{(1)}, \nu \rangle d\xi ds \\ &+ 2 \int_{\partial\Omega'} \int_{\Omega'} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} \langle x - x_{\varepsilon}^{(1)}, \nu \rangle d\xi ds \\ &+ \frac{\varepsilon}{2} \int_{\partial\Omega'} (u_{\varepsilon}^{(1)} + u_{\varepsilon}^{(2)}) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}} \langle x - x_{\varepsilon}^{(1)}, \nu \rangle ds - \varepsilon \int_{\Omega'} (u_{\varepsilon}^{(1)} + u_{\varepsilon}^{(2)}) \eta_{\varepsilon} dx, \end{cases} \tag{4.12}$$ where $\Omega' \subset \Omega$ is a smooth domain, v = v(x) denotes the unit outward normal to the boundary $\partial \Omega'$ and $$\tilde{C}_{\varepsilon}(x) = \int_{0}^{1} \left(t u_{\varepsilon}^{(1)}(x) + (1 - t) u_{\varepsilon}^{(2)}(x) \right)^{2_{\mu}^{*} - 1} dt,$$ $$D_{\varepsilon}(\xi) = \int_{0}^{1} \left(t u_{\varepsilon}^{(1)}(\xi) + (1 - t) u_{\varepsilon}^{(2)}(\xi) \right)^{2_{\mu}^{*} - 1} dt.$$ **Proof** In view of Lemma 2.1, taking $u_{\varepsilon} = u_{\varepsilon}^{(j)}$ with j = 1, 2 in (2.2), and then making a difference between those respectively. By a direct calculations, we can obtain (4.11). Similarly, taking $u_{\varepsilon} = u_{\varepsilon}^{(j)}$ with j = 1, 2 in (2.1), and then making a difference between those respectively, we can also derive that (4.12). Now we are ready to prove Lemma 3.9 by using the local Pohozaev identities. **Proof of Lemma 3.9** We divide the argument into
two steps: **Step 1.** We prove that $c_k = 0$, k = 1, ..., N. We define the following quadratic form $$\mathcal{P}(\eta, u, \tau) = \mathcal{P}(\eta, u, B_{\tau}(x_{\varepsilon}^{(1)})) = -\int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \frac{\partial u}{\partial x_{j}} \frac{\partial \eta}{\partial \nu} ds - \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \frac{\partial u}{\partial \nu} ds - \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \frac{\partial u}{\partial \nu} ds + \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \langle \nabla \eta, \nabla u \rangle v_{j} ds.$$ For $N \ge 6$, taking $\Omega' = B_{\tau}(x_{\varepsilon}^{(1)})$ in (4.11), by (4.1) and (4.9), we know LHS of (4.11) = $$\frac{A_{N,\mu} \left((2_{\mu}^* - 1) A_{\varepsilon}^{(1)} + 2_{\mu}^* A_{\varepsilon}^{(2)} \right) \mathcal{P} \left(G(x_{\varepsilon}^{(1)}, x), G(x_{\varepsilon}^{(1)}, x), \tau \right)}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}} + \sum_{l=1}^{N} \frac{A_{N,\mu} \left((2_{\mu}^* - 1) B_{\varepsilon,l}^{(1)} + 2_{\mu}^* B_{\varepsilon,l}^{(2)} \right) \mathcal{P} \left(G(x_{\varepsilon}^{(1)}, x), \partial_l G(x_{\varepsilon}^{(1)}, x), \tau \right)}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}} + O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-2}{2}}} \right).$$ (4.13) We next estimate $A_{\varepsilon}^{(1)}$ and $A_{\varepsilon}^{(2)}$, respectively. In fact, $$A_{\varepsilon}^{(1)} = O\Big(\int_{B_{\tau}(x_{\varepsilon}^{(1)})} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \frac{U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}^{2_{\mu}^{*}}}{|x - \xi|^{\mu}} dx d\xi\Big) = O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}}\Big),$$ since $$\begin{split} &\int_{B_{\tau}(x_{\varepsilon}^{(1)})} \frac{(\lambda_{\varepsilon}^{(1)})^2}{(1+\lambda_{\varepsilon}^{(1)}|x-x_{\varepsilon}^{(1)}|)^{N+2}} dx \\ &= O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \int_0^{\lambda_{\varepsilon}^{(1)}\tau} \frac{r^{N-1}}{(1+r)^{N+2}} dr\Big) = O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}}\Big), \end{split}$$ Also, we have $$\begin{split} A_{\varepsilon}^{(2)} &= O\Big(\int_{B_{\tau}(x_{\varepsilon}^{(1)})} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) (U_{x_{\varepsilon}^{(2)}, \lambda_{\varepsilon}^{(2)}}(x))^{2_{\mu}^{2}-1}}{|x-\xi|^{\mu}} dx d\xi \Big) \\ &= O\left(\Big(\int_{B_{\tau}(x_{\varepsilon}^{(1)})} (D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi))^{\frac{2N}{2N-\mu}} d\xi\Big)^{\frac{2N-\mu}{2N}} \left(\int_{B_{\tau}(x_{\varepsilon}^{(1)})} U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}^{\frac{2N(2_{\mu}^{*}-1)}{2N-\mu}} (x) dx\right)^{\frac{2N-\mu}{2N}} \right) \\ &= O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \Big(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \frac{1}{(1+|x|^{2})^{\frac{N(N-\mu+2)}{2N-\mu}}} dx\Big)^{\frac{2N-\mu}{N}} \Big) \\ &= O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \Big), \end{split}$$ by $\frac{2N(N-\mu+2)}{2N-\mu} > N$. On the other hand, from [11], we know $$\mathcal{P}\Big(G(x_{\varepsilon}^{(1)}, x), G(x_{\varepsilon}^{(1)}, x), \tau\Big) = -\frac{\partial \mathcal{R}(x_{\varepsilon}^{(1)})}{\partial x_{i}}.$$ (4.14) 217 Page 34 of 51 M. Squassina et al. Hence it follow from (3.9) that $$\frac{\left((2_{\mu}^{*}-1)A_{\varepsilon}^{(1)}+2_{\mu}^{*}A_{\varepsilon}^{(2)}\right)\mathcal{P}\left(G(x_{\varepsilon}^{(1)},x),G(x_{\varepsilon}^{(1)},x),\tau\right)}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}}=O\left(\frac{\ln\lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-2}{2}}}\right). \quad (4.15)$$ Next we are going to estimate each term of the right hand side of (4.11) with $\Omega' = B_{\tau}(x_{\varepsilon}^{(1)})$. We define $$\begin{split} P_{1} &:= \frac{1}{2_{\mu}^{*}} \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \int_{\Omega} \frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}} \tilde{C}_{\varepsilon}(x) \eta_{\varepsilon}(x) \nu_{j}}{|x - \xi|^{\mu}} d\xi ds, \\ P_{2} &:= \frac{1}{2_{\mu}^{*}} \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \int_{\Omega} \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}} \nu_{j}}{|x - \xi|^{\mu}} d\xi ds, \\ P_{3} &:= \frac{1}{2_{\mu}^{*}} \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \left[\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}} \tilde{C}_{\varepsilon}(x) \eta_{\varepsilon}(x) \nu_{j}}{|x - \xi|^{\mu}} + \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}} \nu_{j}}{|x - \xi|^{\mu}} \right] d\xi ds, \\ P_{4} &:= \frac{\mu}{2_{\mu}^{*}} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \int_{\Omega \setminus B_{\tau}(x_{\varepsilon}^{(1)})} (x_{j} - \xi_{j}) \frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}} \tilde{C}_{\varepsilon}(x) \eta_{\varepsilon}}{|x - \xi|^{\mu + 2}} dx d\xi, \\ P_{5} &:= \frac{\varepsilon}{2} \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} (u_{\varepsilon}^{(1)} + u_{\varepsilon}^{(2)}) \eta_{\varepsilon} \nu_{j} ds, \\ P_{6} &:= \frac{\mu}{2_{\mu}^{*}} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \int_{\Omega \setminus B_{\tau}(x_{\varepsilon}^{(1)})} (x_{j} - \xi_{j}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) |u_{\varepsilon}^{(1)}(x)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} dx d\xi. \end{split}$$ Firstly, we can deduce $$\tilde{C}_{\varepsilon}(x) \leq C \frac{(\lambda_{\varepsilon}^{(1)})^{\frac{N-\mu+2}{2}}}{\left(1+(\lambda_{\varepsilon}^{(1)})^{2}|x-x_{\varepsilon}^{(1)}|^{2}\right)^{\frac{N-\mu+2}{2}}} \quad \text{and} \quad D_{\varepsilon}(\xi) \leq C \frac{(\lambda_{\varepsilon}^{(1)})^{\frac{N-\mu+2}{2}}}{\left(1+(\lambda_{\varepsilon}^{(1)})^{2}|\xi-x_{\varepsilon}^{(1)}|^{2}\right)^{\frac{N-\mu+2}{2}}}.$$ Then we have $$\tilde{C}_{\varepsilon}(x) = O\left(\frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N-\mu+2}{2}}}\right) \text{ and } D_{\varepsilon}(\xi) = O\left(\frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N-\mu+2}{2}}}\right), \text{ in } \Omega \setminus B_{\tau}(x_{\varepsilon}^{(1)}).$$ (4.16) Together with (2.17), (3.25) and (3.27), we obtain $$\begin{split} P_1 &= O\Big(\int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \int_{\Omega} \frac{|U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}(\xi)|^{2_{\mu}^{*}} \tilde{C}_{\varepsilon}(x) \eta_{\varepsilon}(x) \nu_{j}}{|x - \xi|^{\mu}} d\xi ds\Big) \\ &= O\Big(\int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \frac{(\lambda_{\varepsilon}^{(1)})^{\frac{N+2}{2}}}{\left(1 + \lambda_{\varepsilon}^{(1)}|x - x_{\varepsilon}^{(1)}|\right)^{N+2}} \eta_{\varepsilon}(x) \nu_{j} ds\Big) \\ &= O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-2}{2}}}\Big), \end{split}$$ and $$\begin{split} P_2 &= O\left(\left(\int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \left(U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2_{\mu}^{*}} \nu_i\right)^{\frac{2N}{2N-\mu}} ds\right)^{\frac{2N-\mu}{2N}} \left(\int_{\Omega} |D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|^{\frac{2N}{2N-\mu}} dx\right)^{\frac{2N-\mu}{2N}} \right) \\ &= O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N}}\right) \left(\int_{\Omega} \frac{(\lambda_{\varepsilon}^{(1)})^{\frac{N(N-\mu+2)}{2N-\mu}}}{\left(1+(\lambda_{\varepsilon}^{(1)})|x-x_{\varepsilon}^{(1)}|\right)^{\frac{2N(N-\mu+2)}{2N-\mu}}} dx\right)^{\frac{2N-\mu}{2N}} \\ &= O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-2}{2}}}\right). \end{split}$$ Similar to the above estimates, we can also prove $$P_3 = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-2}{2}}}\right).$$ Moreover, we can find $$\int_{B_{\tau}(x_{\varepsilon}^{(1)})} (x_{j} - \xi_{j}) \frac{|U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}(\xi)|^{2_{\mu}^{*}}}{|x - \xi|^{\mu + 2}} d\xi = \int_{\Omega \backslash B_{\tau}(x_{\varepsilon}^{(1)})} \frac{x_{j} - \xi_{j}}{\left(1 + |\xi - x_{\varepsilon}^{(1)}|\right)^{2N - \mu}} d\xi = 0.$$ This means that $P_4 = P_6 = 0$. Furthermore, note that $\varepsilon = O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-4}}\right) = O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^2}\right)$ if $N \ge 6$, so we have $$P_5 = O\left(\frac{1}{(\lambda_c^{(1)})^{\frac{3N-2}{2}}}\right).$$ Hence we know that RHS of (4.11) = $$O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-2}{2}}}\right)$$. Then it follows from (4.13) that $$\sum_{l=1}^{N} \frac{A_{N,\mu} \left((2_{\mu}^{*} - 1) B_{\varepsilon,l}^{(1)} + 2_{\mu}^{*} B_{\varepsilon,l}^{(2)} \right) \mathcal{P} \left(G(x_{\varepsilon}^{(1)}, x), \partial_{l} G(x_{\varepsilon}^{(1)}, x), \tau \right)}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}} = o \left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-4}{2}}} \right).$$ Using the estimate (see [11]) $$\mathcal{P}\left(G(x_{\varepsilon}^{(1)}, x), \partial_{l}G(x_{\varepsilon}^{(1)}, x), \tau\right) = -\frac{\partial^{2}\mathcal{R}(x_{\varepsilon}^{(1)})}{\partial x_{\varepsilon} \partial x_{l}}$$ (4.17) and x_0 is a nondegenerate critical point of Robin function $\mathcal{R}(x)$, we see that $$(2_{\mu}^* - 1)B_{\varepsilon,l}^{(1)} + 2_{\mu}^* B_{\varepsilon,l}^{(2)} = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right). \tag{4.18}$$ On the other hand, we consider that the estimates of $B_{\varepsilon,l}^{(1)}$ and $B_{\varepsilon,l}^{(2)}$ in (4.4)-(4.5). Using the elementary inequality (A.2) in Appendix A, then we know that $$B_{\varepsilon,l}^{(1)} = \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} (z_{l} - x_{\varepsilon,l}^{(1)}) \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}} C_{\varepsilon}(z) \eta_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi$$ $$= \frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N - \mu + 1}} \Big(\mathcal{G}_{1} + 2_{\mu}^{*} \mathcal{G}_{2} + \frac{2_{\mu}^{*} (2_{\mu}^{*} - 1)}{2} \mathcal{G}_{3} + O(\mathcal{G}_{4}) \Big), \tag{4.19}$$ where $$\begin{split} \mathcal{G}_{1} &=
\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{\left(PU_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*}} C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \\ \mathcal{G}_{2} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{\left(PU_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*} - 1} w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \\ \mathcal{G}_{3} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{\left(PU_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*} - 2} \left(w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2} C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \\ \mathcal{G}_{4} &= \int_{B_{\varepsilon}(1)} \int_{B_{\varepsilon}(1)} \left(0\right) \int_{B_{\varepsilon}(1)} \left(0\right) z_{l} \frac{\left(w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\right)^{2_{\mu}^{*}} C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi. \end{aligned} \tag{4.20}$$ Then by Lemmas B.1, B.2 and B.3 in Appendix B, we get $$B_{\varepsilon,l}^{(1)} = -\frac{c_l}{2^* - 1} \frac{N(N - 2)}{A_{H,L}} \frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{N-1}} \int_{\mathbb{R}^N} U_{0,1}^{\frac{N+2}{N-2}}(z) dz + o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right), \text{ for } l = 1, 2, \dots, N.$$ $$(4.21)$$ Noting that $$B_{\varepsilon,l}^{(2)} = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_{l} - x_{\varepsilon,l}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) (u_{\varepsilon}^{(2)}(z))^{2_{\mu}^{*} - 1}}{|z - \xi|^{\mu}} dz d\xi$$ $$= \mathcal{H}_{1} + (2_{\mu}^{*} - 1)\mathcal{H}_{2} + O(\mathcal{H}_{3}), \tag{4.22}$$ where $$\mathcal{H}_{1} = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_{l} - x_{\varepsilon,l}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) \left(PU_{x_{\varepsilon}^{(2)}, \lambda_{\varepsilon}^{(2)}}(z)\right)^{2_{\mu}^{*} - 1}}{|z - \xi|^{\mu}} dz d\xi, \mathcal{H}_{2} = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_{l} - x_{\varepsilon,l}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) \left(PU_{x_{\varepsilon}^{(2)}, \lambda_{\varepsilon}^{(2)}}(z)\right)^{2_{\mu}^{*} - 2} w_{\varepsilon}^{(2)}(z)}{|z - \xi|^{\mu}} dz d\xi, \mathcal{H}_{3} = \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} (z_{l} - x_{\varepsilon,l}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) \left(w_{\varepsilon}^{(2)}(z)\right)^{2_{\mu}^{*} - 1}}{|z - \xi|^{\mu}} dz d\xi. \tag{4.23}$$ Then by Lemma C.1 in Appendix C, we get $$B_{\varepsilon,l}^{(2)} = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right). \tag{4.24}$$ Thus by (4.18), (4.21) and (4.24) imply $c_k = 0, k = 1, 2, ..., N$. **Step 2.** We prove that $c_0 = 0$. First we define the following quadratic form $$\begin{split} \mathcal{Q}(\eta, u, \tau) &= -\int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \left\langle \nabla \eta, \nu \right\rangle \left\langle x - x_{\varepsilon}^{(1)}, \nabla u \right\rangle ds \\ &+ \frac{1}{2} \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \left\langle \nabla \eta, \nabla u \right\rangle \left\langle x - x_{\varepsilon}^{(1)}, \nu \right\rangle ds + \frac{2 - N}{2} \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \left\langle \nabla \eta, \nu \right\rangle u ds. \end{split}$$ Taking $\Omega' = B_{\tau}(x_{\varepsilon}^{(1)})$ in (4.12), from (4.1) and (4.9), we have LHS of (4.12) = $$\frac{2A_{N,\mu} \left((2_{\mu}^* - 1)A_{\varepsilon}^{(1)} + 2_{\mu}^* A_{\varepsilon}^{(2)} \right) \mathcal{Q} \left(G(x_{\varepsilon}^{(1)}, x), G(x_{\varepsilon}^{(1)}, x), \tau \right)}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}}.$$ Since we have the estimate (see [11]) $$\mathcal{Q}\left(G(x_{\varepsilon}^{(1)}, x), G(x_{\varepsilon}^{(1)}, x), \tau\right) = -\frac{(N-2)}{2} \mathcal{R}(x_{\varepsilon}^{(1)}),$$ which implies that LHS of (4.12) = $$-\frac{A_{N,\mu} \left((2_{\mu}^* - 1) A_{\varepsilon}^{(1)} + 2_{\mu}^* A_{\varepsilon}^{(2)} \right) (N - 2) \mathcal{R}(x_{\varepsilon}^{(1)})}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}}.$$ Note that by (3.15), we know $$A_{N,\mu} = \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^N} U_{0,1}^{2^*-1}(z) dz + o(1).$$ On the other hand, from Lemma D.1 in Appendix D, we can find $$\begin{split} A_{\varepsilon}^{(1)} + A_{\varepsilon}^{(2)} &= \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\delta}(x_{\varepsilon}^{(1)})} \frac{(u_{\varepsilon}^{(1)}(\xi))^{2_{\mu}^{*}} C_{\varepsilon}(z) \eta_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi \\ &= \frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{N-2}} \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^{N}} U_{0,1}^{\frac{4}{N-2}}(z) c_{0} \phi_{0} dz + o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}}\right). \end{split}$$ A direct calculation, we can also find $$(2^* - 1) \int_{\mathbb{R}^N} U_{0,1}^{\frac{4}{N-2}} \phi_0 dz = -\frac{N-2}{2} \int_{\mathbb{R}^N} U_{0,1}^{2^*-1}(z) dz.$$ Therefore, together with the above estimates, we can deduce LHS of (4.12) = $$\frac{N^2(N-2)^4(N-\mu+2)\mathcal{R}(x_{\varepsilon}^{(1)})}{2(A_{H,L})^2(N+2)} \frac{1}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-6}{2}}} \left(\int_{\mathbb{R}^N} U_{0,1}^{2^*-1}(z) dz \right)^2 c_0 + o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{\frac{N-2}{2}}}\right).$$ From Lemma D.2 in Appendix D, we know RHS of (4.12) = $$\frac{2\varepsilon}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N+2}{2}}} \left(\int_{\mathbb{R}^N} U_{0,1}^2(z) dz \right) c_0 + o\left(\frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N-2}{2}}}\right).$$ As a result, $$\frac{N^{2}(N-2)^{4}(N-\mu+2)\mathcal{R}(x_{\varepsilon}^{(1)})}{2(A_{H,L})^{2}(N+2)} \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \left(\int_{\mathbb{R}^{N}} U_{0,1}^{2^{*}-1}(z)dz\right)^{2} c_{0} = \frac{2\varepsilon}{\left(\lambda_{\varepsilon}^{(1)}\right)^{2}} \left(\int_{\mathbb{R}^{N}} U_{0,1}^{2}(z)dz\right) c_{0} + o(1).$$ (4.25) 217 Page 38 of 51 M. Squassina et al. Notice that, from the proof of Lemma 3.9 in Sect. 3, we can find the basic estimate $$\frac{N^{2}(N-2)^{3}\mathcal{R}(x_{\varepsilon}^{(1)})}{2(A_{H,L})^{2}} \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}} \left(\int_{\mathbb{R}^{N}} U_{0,1}^{2^{*}-1}(z) dz + O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2}}\right) \right)^{2}$$ $$= \frac{\varepsilon}{(\lambda_{\varepsilon}^{(1)})^{2}} \left(\int_{\mathbb{R}^{N}} U_{0,1}^{2}(z) dz + O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2}}\right) \right)$$ $$+ O\left(\frac{\varepsilon}{(\lambda_{\varepsilon}^{(1)})^{N-2}} + \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N}}\right).$$ (4.26) Then (4.25) and (4.26) imply that $c_0 = 0$. This finishes the proof of Lemma. **Acknowledgements** The authors would like to thank the anonymous referee for his/her useful comments and suggestions which help to improve the presentation of the paper greatly. Funding Open access funding provided by Università Cattolica del Sacro Cuore within the CRUI-CARE Agreement. #### Declarations **Conflict of interest** There is no conflict of interest between the authors and all data generated or analysed during this study are included in this published article. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. ## Appendix A. Estimates of $A_{N,\mu}$ and \mathcal{F}_2 , \mathcal{F}_3 , \mathcal{F}_4 in (3.35) In this section, we give that have been used in the previous sections. Let recall that $$\psi_{z,\lambda}(x) = U_{z,\lambda} - PU_{z,\lambda}, \quad U_{z,\lambda}(x) = \left(\frac{\lambda}{1 + \lambda^2 |x - z|^2}\right)^{\frac{N-2}{2}}.$$ Some basic estimates as follow: #### Lemma A.1 $$\begin{split} &\frac{\partial U_{z,\lambda}(x)}{\partial z_j} = (N-2)\lambda^{\frac{N+2}{2}} \frac{x_j - z_j}{\left(1 + \lambda^2 |x - z|^2\right)^{\frac{N}{2}}} = O\left(\lambda U_{z,\lambda}\right), \\ &\frac{\partial U_{z,\lambda}(x)}{\partial \lambda} = \frac{N-2}{2}\lambda^{\frac{N-4}{2}} \frac{1 - \lambda^2 |x - z|^2}{\left(1 + \lambda^2 |x - z|^2\right)^{\frac{N}{2}}} = O\left(\frac{U_{z,\lambda}}{\lambda}\right), \\ &\|\psi_{z,\lambda}\|_{L^{\infty}} = O\left(\frac{1}{\lambda^{\frac{N-2}{2}}d^{N-2}}\right), \end{split}$$ where where $d = dist(x, \partial\Omega)$ is the distance between x and the boundary of Ω . **Proof** This follows
from the definition of $U_{z,\lambda}$, $PU_{z,\lambda}$, $\psi_{z,\lambda}$ and direct computations. See also [34]. Lemma A.2 It holds $$\psi_{x_{\varepsilon},\lambda_{\varepsilon}} = O\left(\frac{1}{(\lambda_{\varepsilon})^{\frac{N-2}{2}}}\right), \quad \text{in } C^{1}(\Omega) \quad \text{and} \quad PU_{x_{\varepsilon},\lambda_{\varepsilon}} = O\left(\frac{1}{(\lambda_{\varepsilon})^{\frac{N-2}{2}}}\right), \quad \text{in } C^{1}(\Omega \setminus B_{\delta}(x_{\varepsilon})),$$ where $\delta > 0$ is any small fixed constant. **Proof** For a proof of this lemma, we refer to [34]. Lemma A.3 It holds $$\|w_{\varepsilon}\|_{H_{0}^{1}} = \begin{cases} O\left(\frac{1}{\lambda_{\varepsilon}^{N-2}} + \frac{\varepsilon}{\frac{N-2}{N-2}}\right), & \text{if } N < 6 - \mu, \\ O\left(\frac{(\ln \lambda_{\varepsilon})^{\frac{N-2}{12-\mu}}}{\lambda_{\varepsilon}^{4-\mu}} + \frac{\varepsilon(\ln \lambda_{\varepsilon})^{\frac{4-\mu}{6-\mu}}}{\frac{4-\mu}{\lambda_{\varepsilon}^{2}}}\right), & \text{if } N = 6 - \mu, \\ O\left(\frac{1}{\frac{N-\mu+2}{\lambda_{\varepsilon}^{2}}} + \frac{\varepsilon}{\lambda_{\varepsilon}^{\frac{4-\mu}{2}}}\right), & \text{if } N > 6 - \mu. \end{cases}$$ $$(A.1)$$ **Proof** See Lemma 4.1 in [40]. **Lemma A.4** For any a > 0, b > 0, one has $$(a+b)^{r} = a^{r} + ra^{r-1}b + O(b^{r}), \quad \text{if } 1 < r \le 2,$$ $$(a+b)^{r} = a^{r} + ra^{r-1}b + \frac{r(r-1)}{2}a^{r-2}b^{2} + O(b^{r}), \quad \text{if } r > 2.$$ (A.2) **Proof** This follows from a direct calculation. **Lemma A.5** *For* $N \ge 4$, $\mu \in (0, 4]$, *it holds* $$A_{N,\mu} = \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^N} U_{0,1}^{2^*-1} dx + O\left(\frac{1}{\lambda_{\varepsilon}^2}\right),\tag{A.3}$$ where $A_{N,\mu}$ and $A_{H,L}$ from (1.14) and Lemma 2.3, respectively. **Proof** We have $$A_{N,\mu} = \int_{B_{\tau\lambda_{\varepsilon}}(0)} \int_{B_{\tau\lambda_{\varepsilon}}(0)} \frac{v_{\varepsilon}^{2\mu}(\xi)v_{\varepsilon}^{2\mu-1}(x)}{|x-\xi|^{\mu}} d\xi dx$$ $$= \lambda_{\varepsilon}^{\frac{N-2}{2}} \Big(B_{1} - 2B_{2} - B_{3} \Big), \tag{A.4}$$ where $$\begin{split} B_1 &= \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{u_{\varepsilon}^{2_{\mu}^*}(\xi) u_{\varepsilon}^{2_{\mu}^*-1}(z)}{|x - \xi|^{\mu}} d\xi dx, \quad B_2 = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N \setminus B_{\tau}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^*}(\xi) u_{\varepsilon}^{2_{\mu}^*-1}(x)}{|x - \xi|^{\mu}} d\xi dx, \\ B_3 &= \int_{\mathbb{R}^N \setminus B_{\tau}(x_{\varepsilon})} \int_{\mathbb{R}^N \setminus B_{\tau}(x_{\varepsilon})} \frac{u_{\varepsilon}^{2_{\mu}^*}(\xi) u_{\varepsilon}^{2_{\mu}^*-1}(x)}{|x - \xi|^{\mu}} d\xi dx. \end{split}$$ Combining (A.2) and a direct calculation shows that $$B_1 = \frac{N(N-2)}{A_{H,L}} \cdot \frac{1}{\lambda_E^{\frac{N-2}{2}}} \int_{\mathbb{R}^N} U_{0,1}^{2^*-1} dx + O\left(\frac{1}{\lambda_E^{\frac{N+2}{2}}}\right),\tag{A.5}$$ 217 Page 40 of 51 M. Squassina et al. where the estimate of (A.5) follows by the following some computations. Firstly we remark that $$\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(PU_{x_{\varepsilon},\lambda_{\varepsilon}}(\xi))^{2_{\mu}^{*}} (PU_{x_{\varepsilon},\lambda_{\varepsilon}}(x))^{2_{\mu}^{*}-1}}{|x-\xi|^{\mu}} d\xi dx = \frac{N(N-2)}{A_{H,L}} \cdot \frac{1}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} \int_{\mathbb{R}^{N}} U_{0,1}^{2^{*}-1} dx + O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right), \tag{A.6}$$ since $$\begin{split} &\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{U_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}^{2\mu}(\xi) U_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}^{2\mu-2}(x) \psi_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}}{|x-\xi|^{\mu}} d\xi dx = \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^N} U_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}^{2^*-2}(x) \psi_{x_{\mathcal{E}},\lambda_{\mathcal{E}}} dx = O\Big(\frac{1}{\frac{N+2}{\lambda_{\mathcal{E}}}}\Big), \\ &\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{U_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}^{2^*\mu-1}(\xi) \psi_{x_{\mathcal{E}},\lambda_{\mathcal{E}}} U_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}^{2^*\mu-2}(x) \psi_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}}{|x-\xi|^{\mu}} d\xi dx = \\ &\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{U_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}^{2^*\mu-2}(\xi) \psi_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}^{2^*\mu-1}(x)}{|x-y|^{\mu}} d\xi dx = O\Big(\frac{1}{\frac{N+2}{\lambda_{\mathcal{E}}}}\Big), \end{split}$$ and $$\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{U_{x_\varepsilon,\lambda_\varepsilon}^{2^*_\mu-2}(\xi)\psi_{x_\varepsilon,\lambda_\varepsilon}^2U_{x_\varepsilon,\lambda_\varepsilon}^{2^*_\mu-2}(x)\psi_{x_\varepsilon,\lambda_\varepsilon}}{|x-\xi|^\mu}d\xi dx=O\Big(\frac{1}{\lambda_\varepsilon^{\frac{N+2}{2}}}\Big).$$ Secondly, we have $$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(PU_{x_{\varepsilon},\lambda_{\varepsilon}}(\xi))^{2_{\mu}^*} (PU_{x_{\varepsilon},\lambda_{\varepsilon}}(x))^{2_{\mu}^* - 2} w_{\varepsilon}}{|x - \xi|^{\mu}} d\xi dx = O\Big(\|w_{\varepsilon}\|_{H_0^1}\Big). \tag{A.7}$$ Moreover, we deduce $$\begin{split} & \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(PU_{x_{\varepsilon},\lambda_{\varepsilon}}(\xi))^{2_{\mu}^{*}-1} w_{\varepsilon} (PU_{x_{\varepsilon},\lambda_{\varepsilon}}(x))^{2_{\mu}^{*}-1}}{|x-\xi|^{\mu}} d\xi dx \\ & = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N-2}{2}}} \left(\int_{0}^{+\infty} \frac{r^{N-1}}{(1+r^{2})^{\frac{N(N-\mu+2)}{2N-\mu}}} dr\right)^{\frac{2N-\mu}{2N}} \|w_{\varepsilon}\|_{H_{0}^{1}}\right) \\ & = O\left(\frac{1}{\lambda_{\varepsilon}^{N}}\right), \end{split} \tag{A.8}$$ and $$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{(PU_{x_{\varepsilon},\lambda_{\varepsilon}}(\xi))^{2_{\mu}^*-1} w_{\varepsilon} (PU_{x_{\varepsilon},\lambda_{\varepsilon}}(x))^{2_{\mu}^*-2} w_{\varepsilon}}{|x-\xi|^{\mu}} d\xi dx = O\Big(\|w_{\varepsilon}\|_{H_0^1}^2\Big). \tag{A.9}$$ Similar to the calculation of (A.7), (A.8) and (A.9), we find $$\begin{split} &\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \left[\frac{(PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}})^{2\mu^{2}-2} w_{\mathcal{E}}^{2} (PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}(x))^{2\mu^{2}-1}}{|x-\xi|^{\mu}} \right] d\xi dx = O\left(\frac{1}{\frac{N+2}{\lambda_{\mathcal{E}}^{2}}}\right), \\ &+ \frac{(PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}})^{2\mu^{2}-2} w_{\mathcal{E}}^{2} (PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}(x))^{2\mu^{2}-2} w_{\mathcal{E}}}{|x-\xi|^{\mu}} \right] d\xi dx = O\left(\frac{1}{\frac{N+2}{\lambda_{\mathcal{E}}^{2}}}\right), \\ &\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{w_{\mathcal{E}}^{2\mu} (PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}(x))^{2\mu^{2}-1}}{|x-\xi|^{\mu}} d\xi dx + \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{w_{\mathcal{E}}^{2\mu} (PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}(x))^{2\mu^{2}-2} w_{\mathcal{E}}}{|x-\xi|^{\mu}} d\xi dx = O\left(\frac{1}{\frac{N+2}{\lambda_{\mathcal{E}}^{2}}}\right), \\ &\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}(\xi))^{2\mu^{2}-2} w_{\mathcal{E}}^{2\mu^{2}-1}}{|x-\xi|^{\mu}} d\xi dx + \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}(\xi))^{2\mu^{2}-1} w_{\mathcal{E}} w_{\mathcal{E}}^{2\mu^{2}-1}}{|x-\xi|^{\mu}} d\xi dx = O\left(\frac{1}{\frac{N+2}{\lambda_{\mathcal{E}}^{2}}}\right), \\ &\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{(PU_{x_{\mathcal{E}},\lambda_{\mathcal{E}}}(\xi))^{2\mu^{2}-2} w_{\mathcal{E}}^{2}(\xi) w_{\mathcal{E}}^{2\mu^{2}-1}}{|x-\xi|^{\mu}} d\xi dx + \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{w_{\mathcal{E}}^{2\mu} (\xi) w_{\mathcal{E}}^{2\mu^{2}-1}}{|x-\xi|^{\mu}} d\xi dx = O\left(\frac{1}{\frac{N+2}{\lambda_{\mathcal{E}}^{2}}}\right). \end{split}$$ Combining (A.6) and (A.7)-(A.9), the estimate (A.5) is reached. Using $|u_{\varepsilon}(x)| \le CU_{x_{\varepsilon},\lambda_{\varepsilon}}$, we compute $$B_{2} \leq C \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N} \setminus B_{\tau}(x_{\varepsilon})} \frac{U_{x_{\varepsilon}, \lambda_{\varepsilon}}^{2_{\mu}^{*}}(\xi) U_{x_{\varepsilon}, \lambda_{\varepsilon}}^{2_{\mu}^{*}-1}(x)}{|x - \xi|^{\mu}} d\xi dx = O\left(\int_{\mathbb{R}^{N} \setminus B_{\tau}(x_{\varepsilon})} U_{x_{\varepsilon}, \lambda_{\varepsilon}}^{2^{*}-1}(x) dx\right)$$ $$= O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}}} \int_{\mathbb{R}^{N} \setminus B_{\tau}(x_{\varepsilon})} \frac{1}{|x - x_{\varepsilon}|^{N+2}} dx\right) = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right).$$ (A.10) And similar to the estimate of (A.10), we can also obtain $$B_3 = O\left(\frac{1}{\lambda_{\varepsilon}^{\frac{N+2}{2}}}\right). \tag{A.11}$$ Then (A.4), (A.5) and (A.10)-(A.11) imply that (A.3). **Lemma A.6** *For any fixed small* $\delta > 0$, *it holds* $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}}\mathcal{F}_2 = o\Big(\frac{1}{\lambda_{\varepsilon}^{(1)}}\Big), \quad \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}}\mathcal{F}_3 = o\Big(\frac{1}{\lambda_{\varepsilon}^{(1)}}\Big), \quad \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}}\mathcal{F}_4 = o\Big(\frac{1}{\lambda_{\varepsilon}^{(1)}}\Big).$$ **Proof** Notice that $$(PU_{z,\lambda})^{2_{\mu}^{*}-1} = U_{z,\lambda}^{2_{\mu}^{*}-1} + O\left(U_{z,\lambda}^{2_{\mu}^{*}-2}\psi_{z,\lambda}\right).$$ 217 Page 42 of 51 M. Squassina et al. Let us write $\mathcal{F}_2 = \mathcal{F}_{2,1} + \mathcal{F}_{2,2}$. Now by Lemma 3.4 and (A.1), we can calculate that $$\begin{split} &\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}}\mathcal{F}_{2,1} \\ &= \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}_{\mu}-1}(\frac{y}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}_{\mu}-2}(\frac{x}{\lambda_{\varepsilon}^{(1)}}
+ x_{\varepsilon}^{(1)})\tilde{\eta}_{\varepsilon}(x)\varphi(x)}{|x-\xi|^{\mu}} dxd\xi \\ &+ O\left(\frac{\ln\lambda_{\varepsilon}^{(1)}}{\lambda_{\varepsilon}^{(1)}}\right) \\ &\int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}_{\mu}-1}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}_{\mu}-2}(\frac{x}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\tilde{\eta}_{\varepsilon}(x)\varphi(x)}{|x-\xi|^{\mu}} dxd\xi \\ &+ O\left(\int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \int_{B_{\lambda_{\varepsilon}^{(1)}\delta}(x_{\varepsilon}^{(1)})} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}_{\mu}-1}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})\sum_{j=1}^{2} |w_{\varepsilon}^{(j)}|^{2^{*}_{\mu}-2}\tilde{\eta}_{\varepsilon}(x)\varphi(x)}{|x-\xi|^{\mu}} dxd\xi \right) \\ &= o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right). \end{split}$$ $$(A.12)$$ Next, similar to the calculations of (A.12), by Lemma A.2, we can also get $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}}\mathcal{F}_{2,2} = o\left(\frac{1}{\lambda_{\varepsilon}^{(1)}}\right).$$ Hence we prove that $\frac{1}{(\lambda_k^{(1)})^{N-\mu+2}}\mathcal{F}_2 = o\left(\frac{1}{\lambda_k^{(1)}}\right)$. Analogously, we have $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}}\mathcal{F}_3 = o\Big(\frac{1}{\lambda_{\varepsilon}^{(1)}}\Big), \quad \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-\mu+2}}\mathcal{F}_4 = o\Big(\frac{1}{\lambda_{\varepsilon}^{(1)}}\Big).$$ This finishes the proof. ### Appendix B. Estimates of \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{G}_3 and \mathcal{G}_4 in (4.20) **Lemma B.1** *For any* $N \ge 6$ *and* $\mu \in (0, 4)$ *, it holds that* $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}} \mathcal{G}_{1}$$ $$= -\frac{c_{l}}{2^{*}-1} \frac{N(N-2)}{A_{H,L}} \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}} \int_{\mathbb{R}^{N}} U_{0,1}^{\frac{N+2}{N-2}}(z) dz + o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right), \text{ for } l = 1, 2, \dots, N.$$ (B.1) **Proof** In view of $PU_{z,\lambda} = U_{z,\lambda} - \psi_{z,\lambda}$, we know $$(PU_{z,\lambda})^{2_{\mu}^{*}}=U_{z,\lambda}^{2_{\mu}^{*}}-2_{\mu}^{*}U_{z,\lambda}^{2_{\mu}^{*}-1}\psi_{z,\lambda}+O\left(U_{z,\lambda}^{2_{\mu}^{*}-2}\psi_{z,\lambda}^{2}\right)$$ Then \mathcal{G}_1 can be written as follows: $$G_1 = G_{1,1} - 2^*_{\mu}G_{1,2} + O(G_{1,3}),$$ (B.2) where $$\begin{split} \mathcal{G}_{1,1} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \\ \mathcal{G}_{1,2} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \psi_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \\ \mathcal{G}_{1,3} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) (\psi_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}))^{2} C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi. \end{split}$$ Combining (2.17), (3.33), (3.23) and oddness of the function, we can prove that as $\varepsilon \to 0$ $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}} \mathcal{G}_{1,1} \to \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}} \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} y_{l} \frac{U_{0,1}^{2^{*}}(\xi) U_{0,1}^{4-\mu}(z) \left(\sum_{k=0}^{N} c_{k} \phi_{k}(z)\right)}{|x-y|^{\mu}} dz d\xi$$ $$= \frac{N(N-2)}{A_{H,L}} \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}} c_{l} \int_{\mathbb{R}^{N}} z_{l} U_{0,1}^{\frac{4}{N-2}} \frac{\partial U_{0,1}(z)}{\partial z_{l}} dz$$ $$= -\frac{c_{l}}{2^{*}-1} \frac{N(N-2)}{A_{H,L}} \frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}} \int_{\mathbb{R}^{N}} U_{0,1}^{\frac{N+2}{N-2}}(z) dz, \text{ for } l = 1, 2, \dots, N.$$ (B.3) Together with (3.23), (A.1), Lemma A.1, oddness of the function, Hardy–Littlewood–Sobolev, Hölder and Sobolev inequalities, we can prove $$\begin{split} &\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\mathcal{G}_{1,2} \\ &\leq \frac{\|\psi_{\chi_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}\|_{L^{\infty}}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N}{2}-2}} \int_{B_{\lambda_{\varepsilon}^{(1)},\tau}^{(0)}} \int_{B_{\lambda_{\varepsilon}^{(1)},\tau}^{(0)}} z_{l} \frac{U_{0,1}^{2^{**}-1}(\xi)U_{0,1}^{\frac{4-\mu}{N-2}}(z)\left(\sum\limits_{k=1}^{N}c_{k}\frac{\partial U_{0,1}}{\partial z_{k}}\right)}{|z-\xi|^{\mu}} dz d\xi \\ &+ O\left(\frac{\|\psi_{\chi_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}\|_{L^{\infty}}\ln\lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N}{2}-1}}\right) \int_{B_{\lambda_{\varepsilon}^{(1)},\tau}^{(0)}} \int_{B_{\lambda_{\varepsilon}^{(1)},\tau}^{(0)}} z_{l} \frac{U_{0,1}^{2^{**}-1}(\xi)U_{0,1}^{\frac{4-\mu}{N-2}}(z)\left(\sum\limits_{k=1}^{N}c_{k}\frac{\partial U_{0,1}}{\partial z_{k}}\right)}{|z-\xi|^{\mu}} dz d\xi \\ &+ O\left(\frac{\|\psi_{\chi_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}\|_{L^{\infty}}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N}{2}-\frac{\mu}{2}}}\right) \int_{B_{\lambda_{\varepsilon}^{(1)},\tau}^{(0)}} \int_{B_{\lambda_{\varepsilon}^{(1)},\tau}^{(0)}} \frac{U_{0,1}^{2^{**}-1}(\xi)\left(\sum\limits_{j=1}^{2}|w_{\varepsilon}^{(j)}|^{2^{**}+2}\right)\left(\sum\limits_{k=1}^{N}c_{k}\frac{\partial U_{0,1}}{\partial z_{k}}\right)}{|z-\xi|^{\mu}} dz dy \\ &=: \mathcal{G}_{1,2,3} \\ &= O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-2}}\right) + O\left(\frac{(\ln\lambda_{\varepsilon}^{(1)})^{N-2}}{(\lambda_{\varepsilon}^{(1)})^{2N-\frac{\mu}{2}-1}+\frac{(N-\mu+2)(4-\mu)}{2(N-2)}}\right), \end{split}$$ 217 Page 44 of 51 M. Squassina et al. by $$\begin{split} \mathcal{G}_{1,2,1} &= O\Big(\frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{2N-3}}\Big) \Big(\int_{0}^{\lambda_{\varepsilon}^{(1)}\tau} \frac{r^{N-1}}{\left(1+r\right)^{\frac{2N(N-\mu+2)}{2N-\mu}}} dr \Big)^{\frac{2N-\mu}{2N}} \Big(\int_{0}^{\lambda_{\varepsilon}^{(1)}\tau} \frac{r^{\frac{4N}{2N-\mu}} \cdot r^{N-1}}{\left(1+r\right)^{\frac{2N(N-\mu+4)}{2N-\mu}}} dr \Big)^{\frac{2N-\mu}{2N}} \\ &= O\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-3}}\Big), \end{split}$$ where we have used $\frac{2N(N-\mu+2)}{2N-\mu} > N$ and $\frac{2N(N-\mu+4)}{2N-\mu} > N + \frac{4N}{2N-\mu}$. $$\begin{split} \mathcal{G}_{1,2,2} &= O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{\left(\lambda_{\varepsilon}^{(1)}\right)^{2N-2}}\Big) \Big(\int_{0}^{\lambda_{\varepsilon}^{(1)}\tau} \frac{r^{N-1}}{\left(1+r\right)^{\frac{2N(N-\mu+2)}{2N-\mu}}} dr \Big)^{\frac{2N-\mu}{2N}} \Big(\int_{0}^{\lambda_{\varepsilon}^{(1)}\tau} \frac{r^{\frac{4N}{2N-\mu}} \cdot r^{N-1}}{\left(1+r\right)^{\frac{2N(N-\mu+4)}{2N-\mu}}} dr \Big)^{\frac{2N-\mu}{2N}} \\ &= O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{2N-2}}\Big), \end{split}$$ and $$\begin{split} \mathcal{G}_{1,2,3} &= O\Big(\frac{\sum_{j=1}^{2} \left\|w_{\varepsilon}^{(j)}\right\|_{H_{0}^{1}}^{\frac{4-\mu}{N-2}}}{\left(\lambda_{\varepsilon}^{(1)}\right)^{2N-\frac{\mu}{2}-1}}\Big) \Big(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \frac{1}{\left(1+|z|\right)^{\frac{2N(N-\mu+2)}{2N-\mu}}} dz\Big)^{\frac{2N-\mu}{2N}} \\ &\times \Big(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \frac{|z|^{\frac{2N}{N-2}}}{\left(1+|z|\right)^{\frac{N^{2}}{N-2}}} dz\Big)^{\frac{N-2}{N}} \\ &= O\Big(\frac{(\ln \lambda_{\varepsilon}^{(1)})^{\frac{N}{N-2}}}{(\lambda_{\varepsilon}^{(1)})^{2N-\frac{\mu}{2}-1+\frac{(N-\mu+2)(4-\mu)}{2(N-2)}}}\Big). \end{split}$$ And analogously, from $0 \le \psi_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}} \le U_{x_{\varepsilon}^{(1)}, \lambda_{\varepsilon}^{(1)}}$, we have $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\mathcal{G}_{1,3} = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right),\tag{B.5}$$ since $\frac{2N(N-\mu+2)}{2N-\mu} > N$ and $\frac{2N(N-\mu+4)}{2N-\mu} > N + \frac{4N}{2N-\mu}$. Then (B.2), (B.3), (B.4) and (B.5) imply (B.1). **Lemma B.2** For any $N \ge 6$ and $\mu \in (0, 4)$, it holds that $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}} \mathcal{G}_2 = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right). \tag{B.6}$$ **Proof** Firstly, G_2 can be written as follows: $$\mathcal{G}_2 = \mathcal{G}_{2,1} + O(\mathcal{G}_{2,2}), \tag{B.7}$$ where $$\begin{split} \mathcal{G}_{2,1} &= \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}_{\mu}-1}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi, \\ \mathcal{G}_{2,2}
&= \int_{B_{\varepsilon,(1)}} \int_{B_{\varepsilon,(1)}} 0_{0} z_{l} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2^{*}_{\mu}-2}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \psi_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) w_{\varepsilon}^{(1)}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) C_{\varepsilon}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \tilde{\eta}_{\varepsilon}(z)}{|z - \xi|^{\mu}} dz d\xi. \end{split}$$ Now by (3.23), and Lemma A.1, we have $$\begin{split} &\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\mathcal{G}_{2,1} \\ &= \underbrace{\frac{1}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N}{2}-2}} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{U_{0,1}^{2^{*}-1}(\xi)w_{\varepsilon}^{(1)}U_{0,1}^{\frac{4-\mu}{N-2}}(z) \left(\sum\limits_{k=1}^{N} c_{k} \frac{\partial U_{0,1}}{\partial z_{k}}\right)}{|z-\xi|^{\mu}} dz d\xi} \\ &+ O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N}{2}-1}}\right) \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} y_{l} \frac{U_{0,1}^{2^{*}-1}(\xi)w_{\varepsilon}^{(1)}U_{0,1}^{\frac{4-\mu}{N-2}}(z) \left(\sum\limits_{k=1}^{N} c_{k} \frac{\partial U_{0,1}}{\partial z_{k}}\right)}{|z-\xi|^{\mu}} dz d\xi} \\ &+ O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N}{2}-\frac{\mu}{2}}}\right) \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} y_{l} \frac{U_{0,1}^{2^{*}-1}(\xi)w_{\varepsilon}^{(1)}\left(\sum\limits_{j=1}^{2} |w_{\varepsilon}^{(j)}|^{2^{*}_{\mu}-2}\right) \left(\sum\limits_{k=1}^{N} c_{k} \frac{\partial U_{0,1}}{\partial z_{k}}\right)}{|z-\xi|^{\mu}} dz d\xi} \\ &= o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right), \end{split}$$ by $$\begin{split} \mathcal{G}_{2,1,1} &= O\Big(\frac{\left\|w_{\varepsilon}^{(1)}\right\|_{H_{0}^{1}}}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{3N}{2}-2}}\Big)\Big(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} U_{0,1}^{2^{*}}(\xi)d\xi\Big)^{\frac{N-\mu+2}{2N}} \Big(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \frac{|z|^{\frac{4N}{2N-\mu}}}{\left(1+|z|\right)^{\frac{2N(N-\mu+4)}{2N-\mu}}}dz\Big)^{\frac{2N-\mu}{2N}} \\ &= o\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\Big), \end{split}$$ $$G_{2,1,2} = o\left(\frac{1}{(\lambda_{c}^{(1)})^{N-1}}\right),$$ and $$\begin{split} \mathcal{G}_{2,1,3} &= O\Big(\frac{\|w_{\varepsilon}^{(1)}\|_{H_{0}^{1}}}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{3N}{2}-\frac{\mu}{2}}}\Big)\Big(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} U_{0,1}^{2^{*}}(\xi)d\xi\Big)^{\frac{N-\mu+2}{2N}} \\ &\qquad \Big(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \Big(\frac{\partial U_{0,1}(z)}{\partial z_{l}}|z|\Big)^{\frac{N}{N-2}}dy\Big)^{\frac{N-2}{N}}\Big(\sum_{j=1}^{2} \|w_{\varepsilon}^{(j)}\|_{H_{0}^{1}}^{\frac{4-\mu}{N-2}}\Big) \\ &= o\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\Big). \end{split}$$ Next similar to the calculations of $A_{2,1}$, we know $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\mathcal{G}_{2,2} = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right). \tag{B.9}$$ Then (B.7), (B.8) and (B.9) imply (B.6). Similar to the proof of Lemmas B.1 and B.2, we can find following two estimates. 217 Page 46 of 51 M. Squassina et al. **Lemma B.3** For any $N \ge 6$ and $\mu \in (0, 4)$, it holds that $$\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\mathcal{G}_3 = o\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\Big), \quad \frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\mathcal{G}_4 = o\Big(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\Big).$$ ## Appendix C. Estimates of \mathcal{H}_1 , \mathcal{H}_2 and \mathcal{H}_3 in (4.23) **Lemma C.1** For any $N \ge 6$ and $\mu \in (0, 4)$, it holds that $$\mathcal{H}_1 = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right), \quad \mathcal{H}_2 = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right), \quad \mathcal{H}_3 = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right). \tag{C.1}$$ **Proof** Firstly, let us write \mathcal{B}_1 $\mathcal{H}_1 = \mathcal{H}_{1,1} + O(\mathcal{H}_{1,2})$, where $$\begin{split} \mathcal{H}_{1,1} &= \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} (z_{l} - x_{\varepsilon,l}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) U_{x_{\varepsilon}^{(2)}, \lambda_{\varepsilon}^{(2)}}^{2_{\mu}^{*} - 1}}{|z - \xi|^{\mu}} dz d\xi, \\ \mathcal{H}_{1,2} &= \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \int_{B_{\tau}(x_{\varepsilon}^{(1)})} (z_{l} - x_{\varepsilon,l}^{(1)}) \frac{D_{\varepsilon}(\xi) \eta_{\varepsilon}(\xi) U_{x_{\varepsilon}^{(2)}, \lambda_{\varepsilon}^{(2)}}^{2_{\mu}^{*} - 2}}{|z - \xi|^{\mu}} dz d\xi. \end{split}$$ Now, let us write $$\mathcal{H}_{1,1} = \underbrace{O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\right) \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(\frac{x}{\lambda_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \tilde{\eta}_{\varepsilon}(x) U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})}{|z - \xi|^{\mu}} dz d\xi } \\ + \underbrace{O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+2}}\right) \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(\frac{\xi}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)}) \tilde{\eta}_{\varepsilon}(\xi) U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})}{|z - \xi|^{\mu}} dz d\xi } \\ + \underbrace{O\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{2N-\mu+1}}\right) \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} z_{l} \frac{\left(\sum_{j=1}^{2} |w_{\varepsilon}^{(j)}|^{2\mu-1}\right) \tilde{\eta}_{\varepsilon} U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2\mu-1}(\frac{z}{\lambda_{\varepsilon}^{(1)}} + x_{\varepsilon}^{(1)})}{|z - \xi|^{\mu}} dz d\xi } \\ = o\left(\frac{1}{G^{(1)}N-1}\right). \tag{C.2}$$ Note that, we have $$\int_{B_{\lambda^{(1)}_{\tau}}(0)}\frac{z_{l}U_{x_{\varepsilon}^{(1)},\lambda_{\varepsilon}^{(1)}}^{2_{\mu}^{\ast}-1}(\frac{z}{\lambda_{\varepsilon}^{(1)}}+x_{\varepsilon}^{(1)})}{|z-\xi|^{\mu}}d\xi=0,$$ which imply $$\mathcal{H}_{1,1,1} = \mathcal{H}_{1,1,2} = 0.$$ (C.3) On the other hand, we divide our argument into three cases: (1). For $0<\mu<2$, and $\frac{2N(N-\mu+2)}{2N-\mu}>\frac{2N}{2N-\mu}+N$, $$\Big(\int_{B_{\lambda^{(1)}_c}(0)} \big||z| U_{0,1}^{2^*_\mu - 1}(z)\big|^{\frac{2N}{2N-\mu}} dz\Big)^{\frac{2N-\mu}{2N}} \leq C.$$ Using Hardy-Littlewood-Sobolev, Hölder inequality and (A.1), then we have $$\mathcal{H}_{1,1,3} = O\left(\frac{\sum_{j=1}^{2} \|w_{\varepsilon}^{(j)}\|_{H_{0}^{1}}^{\frac{N-\mu+2}{N-2}}}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{3N-\mu+2}{2}}} \left(\int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \left||z| U_{0,1}^{2^{*}_{\mu}-1}(z)\right|^{\frac{2N}{2N-\mu}} dz\right)^{\frac{2N-\mu}{2N}}\right)$$ $$= O\left(\frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{3N-\mu+2}{2}} + \frac{(N-\mu+2)^{2}}{2(N-2)}}\right).$$ (C.4) (2). For $\mu = 2$, and $\frac{2N(N-\mu+2)}{2N-\mu} = \frac{2N}{2N-\mu} + N$, $$\left(\int_{B_{\lambda^{(1)}_{\varepsilon}}(0)} \left| |z| U_{0,1}^{2^*_{\mu}-1}(z) \right|^{\frac{2N}{2N-\mu}} dz \right)^{\frac{2N-\mu}{2N}} = O\left(\ln \lambda_{\varepsilon}^{(1)}\right).$$ Using the definition of $\mathcal{H}_{1,1,3}$ and (A.1), we can also obtain $$\mathcal{H}_{1,1,3} = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right). \tag{C.5}$$ (3). For $2 < \mu < 4$, and $\frac{2N(N-\mu+2)}{2N-\mu} < \frac{2N}{2N-\mu} + N$, $$\Big(\int_{B_{\mathbf{1}^{(1)}_{\tau}}(0)} \left||z| U_{0,1}^{2_{\mu}^{*}-1}(z)\right|^{\frac{2N}{2N-\mu}} dz\Big)^{\frac{2N-\mu}{2N}} = O\Big((\lambda_{\varepsilon}^{(1)})^{\frac{\mu-2}{2}}\Big).$$ Using the definition of $\mathcal{H}_{1,1,3}$ and (A.1), we can also get $$\mathcal{H}_{1,1,3} = o\left(\frac{1}{(\lambda_c^{(1)})^{N-1}}\right).$$ (C.6) Thus, from (C.4), (C.5) and (C.6) imply $\mathcal{H}_{1,1} = o(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}})$. Similarly, we can also prove $$\mathcal{H}_{1,2} = o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-1}}\right).$$ Similar to the above argument of \mathcal{H}_1 , we can also get $$\mathcal{H}_2 = o\left(\frac{1}{(\lambda_c^{(1)})^{N-1}}\right), \quad \mathcal{H}_3 = o\left(\frac{1}{(\lambda_c^{(1)})^{N-1}}\right). \tag{C.7}$$ Then the conclusion follows by the above estimates. 217 Page 48 of 51 M. Squassina et al. # Appendix D. Estimates of $A_{\varepsilon}^{(1)}$ and $A_{\varepsilon}^{(2)}$ in (4.2)-(4.3) and RHS of (4.12) when $\Omega' = B_{\tau}(x_c^{(1)})$ **Lemma D.1** For any N > 6 and $\mu \in (0, 4)$, it holds that $$A_{\varepsilon}^{(1)} + A_{\varepsilon}^{(2)} = \frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{N-2}} \frac{N(N-2)}{A_{H,L}} \int_{\mathbb{R}^{N}} U_{0,1}^{\frac{4}{N-2}}(z) c_{0} \phi_{0} dz + o\left(\frac{1}{(\lambda_{\varepsilon}^{(1)})^{N-2}}\right). \quad (D.1)$$ **Proof** The proof is similar to that of Lemmas B.1, B.2 and B.3. Then we can estimate (D.1) by (2.17), (3.23), (3.24), (3.31), (3.27), (3.33), (4.2), (4.3) and (A.3). **Lemma D.2** For any $N \ge 6$ and $\mu \in (0, 4)$, it holds that RHS of (4.12) = $$\frac{2\varepsilon}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N+2}{2}}} \left(\int_{\mathbb{R}^N} U_{0,1}^2(z) dz \right) c_0 + o\left(\frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N-2}{2}}}\right).$$ **Proof** Taking
$\Omega' = B_{\tau}(x_{\varepsilon}^{(1)})$ in (4.12), RHS of (4.12) can be written as follows: RHS of $$(4.12) = \mathcal{J}_1 + \mathcal{J}_2 + \mathcal{J}_3 + \mathcal{J}_4 + \mathcal{J}_5 + \mathcal{J}_6 + \mathcal{E}_7 + \mathcal{J}_8 + \mathcal{J}_9$$ where $$\begin{split} &\mathcal{J}_{1}+\mathcal{J}_{2}:=-\frac{\mu}{2}\int_{B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\int_{\Omega\backslash B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\left[\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}}\tilde{C}_{\varepsilon}(\boldsymbol{x})\eta_{\varepsilon}(\boldsymbol{x})}{|\boldsymbol{x}-\xi|^{\mu}}+\frac{D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|u_{\varepsilon}^{(1)}(\boldsymbol{x})|^{2_{\mu}^{*}}}{|\boldsymbol{x}-\xi|^{\mu}}\right]d\boldsymbol{x}d\xi,\\ &\mathcal{J}_{3}+\mathcal{J}_{4}:=\mu\int_{B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\int_{\Omega\backslash B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\left[\boldsymbol{x}\cdot(\boldsymbol{x}-\xi)\right]\\ &\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}}\tilde{C}_{\varepsilon}(\boldsymbol{x})\eta_{\varepsilon}(\boldsymbol{x})}{|\boldsymbol{x}-\xi|^{\mu+2}}+\boldsymbol{x}\cdot(\boldsymbol{x}-\xi)\frac{D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|u_{\varepsilon}^{(1)}(\boldsymbol{x})|^{2_{\mu}^{*}}}{|\boldsymbol{x}-\xi|^{\mu+2}}\right]d\boldsymbol{x}d\xi,\\ &\mathcal{J}_{5}+\mathcal{J}_{6}:=\int_{\partial B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\int_{\Omega\backslash B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\left[\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}}\tilde{C}_{\varepsilon}(\boldsymbol{x})\eta_{\varepsilon}(\boldsymbol{x})}{|\boldsymbol{x}-\xi|^{\mu}}\langle\boldsymbol{x}-\boldsymbol{x}_{\varepsilon}^{(1)},\boldsymbol{\nu}\rangle+\frac{D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|u_{\varepsilon}^{(1)}(\boldsymbol{x})|^{2_{\mu}^{*}}}{|\boldsymbol{x}-\xi|^{\mu}}\langle\boldsymbol{x}-\boldsymbol{x}_{\varepsilon}^{(1)},\boldsymbol{\nu}\rangle\right]d\xi ds,\\ &\mathcal{J}_{7}+\mathcal{J}_{8}:=2\int_{\partial B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\int_{B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\left[\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}}\tilde{C}_{\varepsilon}(\boldsymbol{x})\eta_{\varepsilon}(\boldsymbol{x})}{|\boldsymbol{x}-\xi|^{\mu}}\langle\boldsymbol{x}-\boldsymbol{x}_{\varepsilon}^{(1)},\boldsymbol{\nu}\rangle\right]d\xi ds,\\ &\frac{|u_{\varepsilon}^{(2)}(\xi)|^{2_{\mu}^{*}}\tilde{C}_{\varepsilon}(\boldsymbol{x})\eta_{\varepsilon}(\boldsymbol{x})}{|\boldsymbol{x}-\xi|^{\mu}}\langle\boldsymbol{x}-\boldsymbol{x}_{\varepsilon}^{(1)},\boldsymbol{\nu}\rangle+\frac{D_{\varepsilon}(\xi)\eta_{\varepsilon}(\xi)|u_{\varepsilon}^{(1)}(\boldsymbol{x})|^{2_{\mu}^{*}}}{|\boldsymbol{x}-\xi|^{\mu}}\langle\boldsymbol{x}-\boldsymbol{x}_{\varepsilon}^{(1)},\boldsymbol{\nu}\rangle\right]d\xi ds,\\ &\mathcal{J}_{9}:=\frac{\varepsilon}{2}\int_{\partial B_{\tau}(\boldsymbol{x}_{\varepsilon}^{(1)})}\left(u_{\varepsilon}^{(1)}+u_{\varepsilon}^{(2)})\eta_{\varepsilon}\langle\boldsymbol{x}-\xi_{\varepsilon}^{(1)},\boldsymbol{\nu}\rangle ds-\varepsilon\int_{B_{\varepsilon}(\boldsymbol{x}_{\varepsilon}^{(1)})}\left(u_{\varepsilon}^{(1)}+u_{\varepsilon}^{(2)})\eta_{\varepsilon}(\boldsymbol{x})d\boldsymbol{x}. \end{split}$$ Using Lemmas 3.27, 3.8, 4.1, (3.31) and Hardy-Littlewood-Sobolev inequality, we can calculate that $$\begin{split} \mathcal{J}_{1} &= O\Big((\lambda_{\varepsilon}^{(1)})^{\frac{3N-2\mu+2}{2}}\Big) \int_{B_{\tau}(x_{\varepsilon}^{(1)})} \\ &\int_{\Omega \backslash B_{\tau}(x_{\varepsilon}^{(1)})} \frac{1}{\left(1+\lambda_{\varepsilon}^{(1)}|\xi-x_{\varepsilon}^{(1)}|\right)^{2N-\mu}} \frac{1}{|x-\xi|^{\mu}} \frac{\eta_{\varepsilon}(x)}{\left(1+\lambda_{\varepsilon}^{(1)}|x-x_{\varepsilon}^{(1)}|\right)^{N-\mu+2}} dx d\xi \\ &= O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-6}{2}}}\Big) \int_{B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{\Omega \backslash B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \frac{1}{\left(1+|\xi|\right)^{2N-\mu}} \frac{1}{|x-\xi|^{\mu}} \frac{1}{\left(1+|x|\right)^{N-\mu+2}} dx d\xi \\ &= O\Big(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-6}{2}}}\Big), \end{split}$$ and analogously $$\mathcal{J}_2 = \mathcal{J}_3 = \mathcal{J}_4 = O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-6}{2}}}\right).$$ Using Hardy-Littlewood-Sobolev inequality, we obtain $$\begin{split} \mathcal{J}_{5} &= O\left((\lambda_{\varepsilon}^{(1)})^{\frac{3N-2\mu+2}{2}}\right) \int_{\partial B_{\tau}(x_{\varepsilon}^{(1)})} \int_{\Omega \backslash B_{\tau}(x_{\varepsilon}^{(1)})} \frac{1}{\left(1+\lambda_{\varepsilon}^{(1)}|\xi-x_{\varepsilon}^{(1)}|\right)^{2N-\mu}} \\ &\times \frac{1}{|x-y|^{\mu}} \frac{\eta_{\varepsilon}(x) \langle x-x_{\varepsilon}^{(1)}|, \nu \rangle}{\left(1+\lambda_{\varepsilon}^{(1)}|x-x_{\varepsilon}^{(1)}|\right)^{N-\mu+2}} d\xi ds \\ &= O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-4}{2}}}\right) \int_{\partial B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \int_{\Omega \backslash B_{\lambda_{\varepsilon}^{(1)}\tau}(0)} \frac{1}{\left(1+|\xi|\right)^{2N-\mu}} \frac{1}{|x-\xi|^{\mu}} \frac{1}{\left(1+|x|\right)^{N-\mu+2}} \langle x, \nu \rangle d\xi ds \\ &= O\left(\frac{\ln \lambda_{\varepsilon}^{(1)}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-4}{2}}}\right). \end{split}$$ Similarly, we can also obtain $$\mathcal{J}_6 = \mathcal{E}_7 = \mathcal{E}_8 = O\left(\frac{\ln \lambda_{\varepsilon}^{((1))}}{(\lambda_{\varepsilon}^{(1)})^{\frac{3N-4}{2}}}\right).$$ Moreover, we know $$\int_{\mathbb{R}^N} U_{0,1}(z)\phi_0(z)dz = -\int_{\mathbb{R}^N} U_{0,1}^2(z)dz.$$ Combining (3.33), then we get $$\mathcal{J}_9 = -\frac{2\varepsilon}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N+2}{2}}} \left(\int_{\mathbb{R}^N} U_{0,1}(z) c_0 \phi_0 dz + o(1) \right).$$ $$= \frac{2\varepsilon}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N+2}{2}}} \left(\int_{\mathbb{R}^N} U_{0,1}^2(z) dz \right) c_0 + o\left(\frac{1}{\left(\lambda_{\varepsilon}^{(1)}\right)^{\frac{N-2}{2}}}\right).$$ The conclusion can be reached by the above estimates \mathcal{J}_1 , \mathcal{J}_2 , \mathcal{J}_3 , \mathcal{J}_4 , \mathcal{J}_5 , \mathcal{J}_6 , \mathcal{J}_7 , \mathcal{J}_8 , and \mathcal{J}_9 . 217 Page 50 of 51 M. Squassina et al. #### References Atkinson, F., Peletier, L.: Emder–Fowler equations involving critical exponents. Nonlinear Anal. TMA 10, 755–776 (1986) - Bahri, A., Coron, J.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Commun. Pure Appl. Math. 41, 253–294 (1988) - Bahri, A., Li, Y., Rey, O.: On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc. Var. Partial. Differ. Equ. 3, 67–93 (1995) - Brezis, H., Nirenberg, L.: Positive solutions of nonlinears of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983) - 5. Brezis, H., Peletier, L.: Asympotics for elliptic equations involving critical growth. Birkhäuser, Basel, [Dedicated to E. De Giorgi] - Cerqueti, K., Grossi, M.: Local estimates for a semilinear elliptic equation with Sobolev critical exponent and application to a uniqueness result. NoDEA Nonlinear Differ. Equ. Appl. 8, 251–283 (2001) - Cao, D., Guo, Y., Peng, S., Yan, S.: Local uniqueness for vortex pathch problem in incompressible planar steady flow. J. Math. Pures Appl. 131, 251–289 (2019) - Cao, D., Heinz, H.: Uniqueness of positive multi-lump bound states of nonlinear Schrödinger equations. Math. Z. 243, 599–642 (2003) - 9. Cao, D., Luo, P., Peng, S.: The number of positive solutions to the Brezis–Nirenberg problem. Trans. Am. Math. Soc. **374**, 1947–1985 (2021) - Cao, D., Noussair, E., Yan, S.: Existence and uniqueness results on single-peaked solutions of a semi-linear problem. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 73–111 (1998) - Cao, D., Peng, S., Yan, S.: Singularly Perturbed Methods for Nonlinear Elliptic Problems. Cambridge University Press, Cambridge (2021) - Cerqueti, K.: A uniqueness result for a semilinear elliptic equation involving the critical Sobolev exponent in symmetric domains. Asymptotic Anal. 21, 99–115 (1999) - Del Pino, M., Dolbeault, J., Musso, M.: The Brezis-Nirenberg problem near critical in dimension 3. J. Math. Pures Appl. 83, 1405-1456 (2004) - Del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the supercritical Bahri Coron's problem. Calc. Var. Partial Differ. Equ. 16, 113–145 (2003) - 15. Del Pino, M., Felmer, P., Musso, M.: Multi-peak solutions for supercritical elliptic problems in domains with small holes. J. Differ. Equ. **182**, 511–540 (2002) - Deng, Y., Lin, C., Yan, S.: On the prescribed scalar curvature problem in R N, local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015) - Du, L., Yang, M.: Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin. Dyn. Syst. 39, 5847–5866 (2019) - Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin (1983) - 19. Gao, F., Moroz, V., Yang, M., Zhao, S.: Construction of infinitely many solutions for a critical Choquard equation via local Pohožaev identities. Calc. Var. Partial. Differ. Equ. 61, 222 (2022) - Gao, F., Yang, M.: The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018) - Gao, F., Liu, H., Moroz, V., Yang, M.: High energy positive solutions for acoupled Hartree system with Hardy–Littlewood–Sobolev critical exponents. J. Differ. Equ. 287, 329–375 (2021) - Glangetas, L.: Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent. Nonlinear Anal. TMA 20, 571–603 (1993) - Guo, L., Hu, T., Peng, S., Shuai, W.: Existence and uniqueness of solutions for Choquard
equation involving Hard–Littlewood–Sobolev critical exponent. Calc. Var. Partial Differ. Equ. 58, 128, 34 pp (2019) - Grossi, M.: A uniqueness result for a semilinear elliptic equation in symmetric domains. Adv. Differ. Equ. 5, 1397–1420 (2000) - Grossi, M.: On the number of single-peak solutions of the nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéùaire, 19, 261–280 (2002) - Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. 114, 1005–1043 (2017) - Han, Z.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Analyse Non linéaire. 8, 159–174 (1991) - Li, X., Liu, C., Tang, X., Xu, G.: Nondegeneracy of positive bubble solutions for generalized energycritical Hartree equations. Preprint. arXiv:2304.04139 [math.AP] - Lieb, E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983) - Li, Y.: Prescribing scalar curvature on S^N and related problems, part I. J. Differ. Equ. 120, 319 –410 (1995) - Musso, M., Pistoia, A.: Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ. Math. J. 51, 541–579 (2002) - Musso, M., Pistoia, A.: Double blow-up soutions for a Brezis-Nirenberg type problem. Commun. Contemp. Math. 5, 775–802 (2003) - 33. Pohozaev, S.: Eigenfunctions of the equation $\Delta u = \lambda f(u)$. Soviet Math. Dokl. 6, 1408–1411 (1965) - 34. Rey, O.: The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent. J. Funct. Anal. **89**, 1–52 (1990) - 35. Rey, O.: Proof of two conjectures of H. Brezis and L. A. Peletier. Manus. Math., 65, 19-37 (1989) - Rey, O.: Blow-up points of solutions to elliptic equations with limiting nonlinearity. Differ. Integral Equ. 4, 1155–1167 (1991) - 37. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura. Appl. 110, 353–372 (1976) - 38. Wei, J.: Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical exponent. J. Math. Soc. Jpn. **50**, 139–153 (1998) - Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on S^N. J. Funct. Anal. 258, 3048–3081 (2010) - 40. Yang, M., Zhao, S.: Blow-up behavior of solutions to critical Hartree equations on bounded domain. J. Geom. Anal. 33, 191 (2023) - 41. Yang, M., Ye, W., Zhao, S.: Existence of concentrating solutions of the Hartree type Brezis-Nirenberg problem. J. Differ. Equ. 344, 260–324 (2023) Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.