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Abstract. By means of a penalization argument due to del Pino and Felmer, we prove the existence of multi-spike solutions for
a class of quasilinear elliptic equations under natural growth conditions. Compared with the semilinear case some difficulties
arise, mainly concerning the properties of the limit equation. The study of concentration of the solutions requires a somewhat
involved analysis in which a Pucci–Serrin type identity plays an important role.
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1. Introduction and main results

Let Ω be any smooth domain ofRN with N � 3. Starting from the celebrated paper by Floer and
Weinstein [15], much interest has been directed in recent years to the singularly perturbed semilinear
elliptic problem

−ε2∆u + V (x)u = uq−1 in Ω,
u > 0 in Ω,
u = 0 on∂Ω,

where 2< q < 2N/(N − 2) andV (x) is a positive function bounded from below away from zero.
Typically, there exists a family of solutions (uε)ε>0 which exhibits a spike-shaped profile around every
possibly degenerate local minimum ofV (x) and decade elsewhere asε goes to zero (see, e.g., [1,11,
13,22,25,32] for the single-peak case and [12,23] for the multi-peak case). A natural question is now
whether these concentration phenomena are a special feature of the semilinear case or we can expect a
similar behavior to hold for more general elliptic equations having a variational structure. The results
concerning the existence of one-peak solutions have been recently extended in [30] to the quasilinear
elliptic equation

−ε2
N∑

i,j=1

Dj
(
aij(x,u)Diu

)
+

ε2

2

N∑
i,j=1

Dsaij(x,u)DiuDju + V (x)u = uq−1.
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In this paper we turn to a more delicate situation, namely the study of the multi-peak case, also for
possibly degenerate operators.

Assume thatV : RN → R is aC1 function and there exists a positive constantα such that

V (x) � α for everyx ∈ R
N . (1)

Moreover letΛ1, . . . ,Λk bek disjoint compact subsets ofΩ andxi ∈ Λi with

V (xi) = min
Λi

V < min
∂Λi

V , i = 1, . . . ,k. (2)

Let us set for alli = 1, . . . ,k

�i :=
{
x ∈ Λi: V (x) = V (xi)

}
. (3)

Let 1< p < N , p∗ = Np/(N − p) and letWV (Ω) be the weighted Banach space

WV (Ω) :=
{
u ∈ W 1,p

0 (Ω):
∫
Ω
V (x)|u|p < +∞

}
endowed with the natural norm‖u‖pWV

:=
∫
Ω |Du|p +

∫
Ω V (x)|u|p. For allA,B ⊆ R

N , let us denote
their distance by dist(A,B).

The following is the first of our main results.

Theorem 1.1. Assume that(1) and (2) hold and let1 < p � 2, p < q < p∗.
Then there existsε0 > 0 such that, for everyε ∈ (0,ε0), there existuε in WV (Ω) ∩ C1,β

loc (Ω) andk
pointsxε,i ∈ Λi satisfying the following properties:

(a) uε is a weak solution of the problem
−εp∆pu + V (x)up−1 = uq−1 in Ω,
u > 0 in Ω,
u = 0 on∂Ω;

(4)

(b) there existσ,σ′ ∈ ]0,+∞[ such that for everyi = 1, . . . ,k we have

uε(xε,i) = sup
Λi

uε, σ < uε(xε,i) < σ′, lim
ε→0

dist(xε,i, �i) = 0,

where�i is as in(3);
(c) for everyr < min{dist(�i, �j): i 	= j} we have

lim
ε→0

‖uε‖L∞(Ω\
⋃k

i=1
Br(xε,i))

= 0;

(d) it results

lim
ε→0

‖uε‖WV
= 0.

Moreover, ifk = 1 the assertions hold for every1 < p < N .
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Actually, this result will follow by a more general achievement involving a larger class of quasilinear
operators. Before stating it, we make a few assumptions.

Assume that 1< p < N , f ∈ C1(R+) and there existp < q < p∗ andp < ϑ � q with

lim
s→0+

f (s)
sp−1 = 0, lim

s→+∞
f (s)
sq−1 = 0, (5)

0 < ϑF (s) � f (s)s for everys ∈ R
+, (6)

whereF (s) =
∫ s

0 f (t) dt for everys ∈ R
+.

The functionj(x,s, ξ) :Ω×R
+ ×R

N → R is continuous inx and of classC1 with respect tos andξ,
the function {ξ �→ j(x,s, ξ)} is strictly convex andp-homogeneous and there exist two positive constants
c1, c2 with

∣∣js(x,s, ξ)
∣∣ � c1|ξ|p,

∣∣jξ(x,s, ξ)
∣∣ � c2|ξ|p−1 (7)

for a.e.x ∈ Ω and everys ∈ R
+, ξ ∈ R

N (js andjξ denote the derivatives ofj with respect ofs andξ
respectively). LetR,ν > 0 and 0< γ < ϑ− p with

j(x,s, ξ) � ν|ξ|p, (8)

js(x,s, ξ)s � γj(x,s, ξ) (9)

a.e. inΩ, for everys ∈ R
+ andξ ∈ R

N , and

js(x,s, ξ) � 0 for everys � R (10)

a.e. inΩ and for everyξ ∈ R
N . For every fixed̄x ∈ Ω, the limiting equation

− div
(
jξ(x̄,u,Du)

)
+ js(x̄,u,Du) + V (x̄)up−1 = f (u) in R

N (11)

admits a unique positive solution (up to translations). Finally, we assume that

j(xi,s, ξ) = min
x∈Λi

j(x,s, ξ), i = 1, . . . ,k, (12)

for everys ∈ R
+ andξ ∈ R

N , where thexis are as in (2).
We point out that assumptions (1), (2), (5) and (6) are the same as in [11,12]. Conditions (7)–(10) are

natural assumption, already used, for instance, in [2–5,28,29].
The following result is an extension of Theorem 1.1.

Theorem 1.2. Assume that(1), (2), (5)–(12) hold.
Then there existsε0 > 0 such that, for everyε ∈ (0,ε0), there existuε in WV (Ω) ∩ C1,β

loc (Ω) andk
pointsxε,i ∈ Λi satisfying the following properties:
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(a) uε is a weak solution of the problem


−εp div

(
jξ(x,u,Du)

)
+ εpjs(x,u,Du) + V (x)up−1 = f (u) in Ω,

u > 0 in Ω,
u = 0 on∂Ω;

(Pε)

(b) there existσ,σ′ ∈ ]0,+∞[ such that for everyi = 1, . . . ,k we have

uε(xε,i) = sup
Λi

uε, σ < uε(xε,i) < σ′, lim
ε→0

dist(xε,i, �i) = 0,

where�i is as in(3);
(c) for everyr < min{dist(�i, �j): i 	= j} we have

lim
ε→0

‖uε‖L∞(Ω\
⋃k

i=1
Br(xε,i))

= 0;

(d) it results

lim
ε→0

‖uε‖WV
= 0.

Notice that ifk = 1 assumption (11) can be dropped: in fact following the arguments of [30] it is
possible to prove that the previous result holds without any uniqueness assumption, which instead, as
in the semilinear case, seems to be necessary for the casek > 1. This holds true for thep-Laplacian
problem (4) and for more general situation we refer the reader to [27].

Various difficulties arise in comparison with the semilinear framework (see also Section 5 of [30]). In
order to study the concentration properties ofuε inside theΛis (see Section 4), inspired by the recent
work of Jeanjean and Tanaka [17], we make a repeated use of a Pucci–Serrin type identity [10] which has
turned out to be a very powerful tool (see Section 3). It has to be pointed out that, in our possibly degen-
erate setting, we cannot hope to haveC2 solutions, but at mostC1,β solutions (see [14,31]). Therefore,
the classical Pucci–Serrin identity [24] is not applicable in our framework. On the other hand, it has been
recently shown in [10] that, under minimal regularity assumptions, the identity holds for locally Lipschitz
solutions, provided that the operator is strictly convex in the gradient, which, from our viewpoint, is a
very natural requirement (see Theorem 3.1). Under uniqueness assumptions this identity has also turned
out to be useful in characterizing the exact energy level of the solution of (11). More precisely, we prove
that (11) admits a least energy solution having the Mountain–Pass energy level (see Theorem 3.2).

We stress that the functionals we will study, associated with (Pε), are not even locally Lipschitz
continuous (unlessjs = 0) and that tools of nonsmooth critical point theory will be employed (see
[6,9,16,18]).

The plan of the paper is as follows:

– in Section 2, following the approach of [12], we construct the penalized functionalEε and we prove
that it satisfies the (CPS)c condition (cf. Definition A.6);

– in Section 3 we prove two important consequences of a Pucci–Serrin type variational identity (cf.
Theorem 3.2 and Lemma 3.3);

– in Section 4 we study the concentration of the solutionsuε (cf. Lemmas 4.1, 4.2, 4.6);
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– in Section 5, finally, we end up the proofs of Theorems 1.1 and 1.2;
– in Appendix we quote some tools of nonsmooth critical point theory.

Notation.

– ‖ · ‖p and‖ · ‖1,p are the standard norms of the spacesLp(Ω) andW 1,p
0 (Ω);

– dist(x,E) is the distance ofx from a setE ⊂ R
N ;

– 1E is the characteristic function of a setE ⊂ R
N ;

– B�(y) is the ball inR
N of centery and radius' > 0; we setB� := B�(0).

2. Penalization and(CPS)c condition

In this section, following the approach of del Pino and Felmer [12], we define a suitable penalization
of the functionalIε :WV (Ω) → R associated with the problem (Pε),

Iε(u) := εp
∫
Ω
j(x,u,Du) +

1
p

∫
Ω
V (x)|u|p −

∫
Ω
F (u).

By the growth condition onj, it is easily seen thatIε is a continuous functional. We refer the reader to
the Appendix for more details on the variational formulation in this nonsmooth framework. Letα > 0
be as in (1) and consider the positive constant

) := sup
{
s > 0:

f (t)
tp−1 � α

κ
for every 0� t � s

}
(13)

for some fixedκ > ϑ/(ϑ− p). We define the functioñf : R+ → R by setting

f̃ (s) :=


α

κ
sp−1 if s > ),

f (s) if 0 � s � )

and the mapg :Ω × R
+ → R as

g(x,s) := 1Λ(x)f (s) +
(
1− 1Λ(x)

)
f̃ (s), Λ =

k⋃
i=1

Λi,

for a.e.x ∈ Ω and everys ∈ R
+. The functiong(x,s) is measurable inx, of classC1 in s and it satisfies

the following properties:

lim
s→+∞

g(x,s)
sq−1 = 0, lim

s→0+

g(x,s)
sp−1 = 0 uniformly inx, (14)

0 < ϑG(x,s) � g(x,s)s for x ∈ Λ ands ∈ R
+, (15)

0 � pG(x,s) � g(x,s)s � 1
κ
V (x)sp for x ∈ Ω \ Λ ands ∈ R

+, (16)

where we have setG(x,s) :=
∫ s

0 g(x, τ ) dτ .
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Without loss of generality, we may assume that

g(x,s) = 0 for a.e.x ∈ Ω and everys < 0, (17)

j(x,s, ξ) = j(x, 0,ξ) for everyx ∈ Ω, s < 0 andξ ∈ R
N . (18)

Let nowJε :WV (Ω) → R be the functional defined as

Jε(u) := εp
∫
Ω
j(x,u,Du) +

1
p

∫
Ω
V (x)|u|p −

∫
Ω
G(x,u).

If x̄ is in one of theΛis, we also consider the “limit” functionals onW 1,p(RN ),

Ix̄(u) :=
∫

RN
j(x̄,u,Du) +

1
p

∫
RN

V (x̄)|u|p −
∫

RN
F (u) (19)

whose positive critical points solve Eq. (11). We denote bycx̄ the Mountain–Pass value ofIx̄, namely

cx̄ := inf
γ∈�x̄

sup
t∈[0,1]

Ix̄
(
γ(t)

)
, (20)

�x̄ :=
{
γ ∈ C

(
[0, 1],W 1,p(

R
N)): γ(0) = 0, Ix̄

(
γ(1)

)
< 0

}
. (21)

We setci := cxi for everyi = 1, . . . ,k. Consideringσi > 0 such that

k∑
i=1

σi <
1
2

min{ci: i = 1, . . . ,k},

we claim that, up to makingΛis smaller, we may assume that

ci � cx̄ � ci + σi for all x̄ ∈ Λi. (22)

In fact ci � cx̄ follows becausexi is a minimum ofV in Λi and (12) holds. On the other hand, let us
considerx̄h → xi such that limh cx̄h

= lim sup̄x→xi
cx̄. Let γ ∈ �x̄ be such that maxτ∈[0,1] Ixi(γ(τ )) �

ci + σi. SinceIx̄h
→ Ixi uniformly onγ, we have that forh large enough,γ ∈ �x̄h

and there exists
τh ∈ [0, 1] such that

cx̄h
� Ix̄h

(
γ(τh)

)
� Ixi

(
γ(τh)

)
+ o(1) � ci + σi + o(1).

We deduce that lim sup̄x→xi
cx̄ � ci + σi so that the claim is proved.

If Λ̂i denote mutually disjoint open sets compactly containingΛi, we introduce the functionals
Jε,i :W 1,p(Λ̂i) → R as

Jε,i(u) := εp
∫
Λ̂i

j(x,u,Du) +
1
p

∫
Λ̂i

V (x)|u|p −
∫
Λ̂i

G(x,u) (23)

for everyi = 1, . . . ,k.
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Finally, let us define the penalized functionalEε :WV (Ω) → R by setting

Eε(u) := Jε(u) + Pε(u), (24)

Pε(u) := M
k∑
i=1

((
Jε,i(u)+

)1/2 − εN/2(ci + σi)
1/2)2

+,

whereM > 0 is chosen so that

M >
c1 + · · · + ck

mini=1,...,k{(2ci)1/2 − (ci + σi)1/2}
.

The functionalsJε, Jε,i andEε are merely continuous.
The next result provides the link between the critical points ofEε (see Definition A.2) and the weak

solutions of the original problem.

Proposition 2.1. Let uε ∈ WV (Ω) be any critical point ofEε and assume that there exists a positive
numberε0 such that the following conditions hold

uε(x) < ) for everyε ∈ (0,ε0) andx ∈ Ω \ Λ, (25)

ε−NJε,i(uε) < ci + σi for everyε ∈ (0,ε0) andi = 1, . . . ,k. (26)

Then, for everyε ∈ (0,ε0), uε is a solution of(Pε).

Proof. Let ε ∈ (0,ε0). By condition (26) and the definition ofPε, uε is actually a critical point ofJε. In
view of (a) of Proposition A.8,uε is a weak solution of

−εp div
(
jξ(x,u,Du)

)
+ εpjs(x,u,Du) + V (x)|u|p−2u = G(x,u).

Moreover, by (25) and the definition of̃f , it resultsG(x,uε(x)) = F (uε(x)) for a.e.x ∈ Ω. By (17)
and (18) and arguing as in the proof of [28, Lemma 1], one getsuε > 0 in Ω. Thusuε is a solution
of (Pε). �

The next lemma is a variant of a local compactness property for bounded concrete Palais–Smale se-
quences (cf. [28, Theorem 2 and Lemma 3]; see also [5]).

Lemma 2.2. Assume that(7), (8), (10) hold and let(ψh) ⊂ L∞(RN ) bounded withψh(x) � λ > 0. Let
ε > 0 and assume that(uh) ⊂ W 1,p(RN ) is a bounded sequence such that

〈wh,ϕ〉 = εp
∫

RN
ψh(x)jξ(x,uh,Duh) ·Dϕ + εp

∫
RN

ψh(x)js(x,uh,Duh)ϕ

for everyϕ ∈ C∞
c (RN ), where(wh) is strongly convergent inW−1,p′(Ω̃) for a given bounded domaiñΩ

of R
N .

Then(uh) admits a strongly convergent subsequence inW 1,p(Ω̃).
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SinceΩ may be unbounded, in general the original functionalIε does not satisfy the concrete Palais–
Smale condition (see Definition A.6). In the following lemma we prove that, instead, for everyε > 0 the
functionalEε satisfies it at every levelc ∈ R.

Lemma 2.3. Assume that conditions(1), (5)–(10) hold. Letε > 0.
ThenEε satisfies the concrete Palais–Smale condition at every levelc ∈ R.

Proof. Let (uh) ⊂ WV (Ω) be a concrete Palais–Smale sequence forEε at levelc. We divide the proof
into two steps:

Step I. We prove that (uh) is bounded inWV (Ω). From (15) and (16), we get

ϑεp
∫
Ω
j(x,uh,Duh) +

ϑ

p

∫
Ω
V (x)|uh|p �

∫
Λ
g(x,uh)uh +

ϑ

pκ

∫
Ω\Λ

V (x)|uh|p + ϑJε(uh) (27)

for everyh ∈ N. Moreover, by virtue of Proposition A.4, for everyh ∈ N we can computeJ ′
ε(uh)(uh);

in view of (16) we obtain∫
Λ
g(x,uh)uh + J ′

ε(uh)[uh]

� εp
∫
Ω
jξ(x,uh,Duh) ·Duh + εp

∫
Ω
js(x,uh,Duh)uh +

∫
Ω
V (x)|uh|p

for everyh ∈ N. Notice that by (9) and thep-homogeneity of the map {ξ �→ j(x,s, ξ)}, it results

js(x,uh,Duh)uh � γj(x,uh,Duh), jξ(x,uh,Duh) ·Duh = pj(x,uh,Duh)

for everyh ∈ N. Therefore, we get∫
Λ
g(x,uh)uh + J ′

ε(uh)[uh] � (γ + p)εp
∫
Ω
j(x,uh,Duh) +

∫
Ω
V (x)|uh|p (28)

for everyh ∈ N. In view of (8), by combining inequalities (27) and (28) one gets

min
{

(ϑ − γ − p)νεp,
ϑ

p
− ϑ

pκ
− 1

}∫
Ω

(
|Duh|p + V (x)|uh|p

)
� ϑJε(uh) − J ′

ε(uh)[uh] (29)

for everyh ∈ N. In a similar fashion, arguing on the functionalsJε,i, it results

min
{

(ϑ − γ − p)νεp,
ϑ

p
− ϑ

pκ
− 1

}∫
Λ̂i

(
|Duh|p + V (x)|uh|p

)
� ϑJε,i(uh) − J ′

ε,i(uh)[uh]

for everyh ∈ N andi = 1, . . . ,k. (30)

In particular, notice that one obtains

ϑ̄Jε,i(uh) − J ′
ε,i(uh)[uh] � 0 for everyh ∈ N andi = 1, . . . ,k



A. Giacomini and M. Squassina / Multi-peak solutions for degenerate equations 123

and everyγ + p < ϑ̄ < ϑ. Then, after some computations, one gets

ϑ̄Pε(uh) − P ′
ε(uh)[uh] � −ϑ̄MεN/2

k∑
i=1

(ci + σi)
1/2((Jε,i(uh)+

)1/2 − εN/2(ci + σi)
1/2)

+

� −CεN/2Pε(uh)1/2

which implies, by Young’s inequality, the existence of a constantd > 0 such that

ϑPε(uh) − P ′
ε(uh)[uh] � −dεN (31)

for everyh ∈ N. By combining (29) with (31), since

Eε(uh) = c + o(1), E′
ε(uh)[uh] = o

(
‖uh‖WV

)
ash → +∞, one obtains

∫
Ω

(
|Duh|p + V (x)|uh|p

)
� ϑc + dεN

min{(ϑ− γ − p)νεp,ϑ/p− ϑ/(pκ) − 1}
+ o

(
‖uh‖WV

)
+ o(1) (32)

ash → +∞, which yields the boundedness of (uh) in WV (Ω).
Step II. By virtue of step I, there existsu ∈ WV (Ω) such that, up to a subsequence, (uh) weakly

converges tou in WV (Ω). Let us now prove that actually (uh) converges strongly tou in WV (Ω). If we
define for everyh ∈ N the weights

θh,i = M
[(
Jε,i(uh)+

)1/2 − εN/2(ci + σi)
1/2]

+

(
Jε,i(uh)+

)−1/2
, i = 1, . . . ,k,

and putθh(x) =
∑k

i=1 θh,i1Λ̂i
(x) with 0 � θh,i � M , after a few computations, one gets

〈wh,ϕ〉 = εp
∫
Ω

(1 + θh)jξ(x,uh,Duh) ·Dϕ + εp
∫
Ω

(1 + θh)js(x,uh,Duh)ϕ

for everyϕ ∈ C∞
c (Ω), where

wh = (1 + θh)g(x,uh) − (1 + θh)V (x)|uh|p−2uh + ξh,

with ξh → 0 strongly inW−1,p′(Ω). Since, up to a subsequence, (wh) strongly converges tow :=
(1 + θ̄)g(x,u) − (1 + θ̄)V (x)|u|p−2u in W−1,p′(B�) for every' > 0, by applying Lemma 2.2 with
Ω̃ = B� ∩Ω andψh(x) = 1+ θh(x), it suffices to show that for everyδ > 0 there exists' > 0 such that

lim sup
h

∫
Ω\B	

(
|Duh|p + V (x)|uh|p

)
< δ. (33)
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Consider a cut-off functionχ� ∈ C∞(RN ) with 0 � χ� � 1, χ� = 0 onB�/2, χ� = 1 onR
N \B� and

|Dχ�| � a/' for somea > 0. By taking' large enough, we have

k⋃
i=1

Λ̂i ∩ supt(χ�) = ∅. (34)

Let nowζ : R → R be the map defined by

ζ(s) :=


0 if s < 0,
Ms if 0 � s < R,
MR if s � R,

(35)

beingR > 0 the constant defined in (10) andM a positive number (which exists by the growths (7)
and (8)) such that

∣∣js(x,s, ξ)
∣∣ � pMj(x,s, ξ) (36)

for everyx ∈ Ω, s ∈ R andξ ∈ R
N . Notice that, by combining (10) and (36), we obtain

js(x,s, ξ) + pζ ′(s)j(x,s, ξ) � 0 for everyx ∈ Ω, s ∈ R andξ ∈ R
N . (37)

By (34) it is easily proved thatP ′
ε(uh)(χ�uh eζ(uh)) = 0 for everyh. Therefore, since the sequence

(χ�uh eζ(uh)) is bounded inWV (Ω), taking into account (37) and (18) we obtain

o(1)= J ′
ε(uh)

(
χ�uh eζ(uh))

= εp
∫
Ω
jξ(x,uh,Duh) ·Duhχ� eζ(uh) + εp

∫
Ω
jξ(x,uh,Duh) ·Dχ�uh eζ(uh)

+ εp
∫
Ω

[
js(x,uh,Duh) + pζ ′(uh)j(x,uh,Duh)

]
uhχ� eζ(uh)

+
∫
Ω
V (x)|uh|pχ� eζ(uh) −

∫
Ω
g(x,uh)uhχ� eζ(uh)

�
∫
Ω

(
pεpj(x,uh,Duh) + V (x)|uh|p

)
χ� eζ(uh)

+ εp
∫
Ω
jξ(x,uh,Duh) ·Dχ�uh eζ(uh) −

∫
Ω
g(x,uh)uhχ� eζ(uh)

ash → +∞. Therefore, in view of (16) and (34), it results

o(1)�
∫
Ω

(
pεpν|Duh|p + V (x)|uh|p

)
χ� eζ(uh)

+ εp
∫
Ω
jξ(x,uh,Duh) ·Dχ�uh eζ(uh) − 1

κ

∫
Ω
V (x)|uh|pχ� eζ(uh)
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ash → +∞ for ' large enough. Since by (7) we have∣∣∣∣∫
Ω
jξ(x,uh,Duh) ·Dχ�uh eζ(uh)

∣∣∣∣ � C

'
‖Duh‖p−1

p ‖uh‖p � C̃

'
,

there exists a positive constantC ′ such that

lim sup
h

∫
Ω\B	

(
|Duh|p + V (x)|uh|p

)
� C ′

'

which yields (33). The proof is now complete.�

3. Two consequences of a Pucci–Serrin type identity

Let � : RN ×R×R
N → R be a function of classC1 such that the function {ξ �→ �(x,s, ξ)} is strictly

convex for every (x,s) ∈ R
N × R, and letϕ ∈ L∞

loc(R
N ).

We now recall a Pucci–Serrin variational identity for locally Lipschitz continuous solutions of a general
class of Euler equations, recently obtained in [10]. Notice that the classical identity [24] is not applicable
here, since it requires theC2 regularity of the solutions while in our degenerate setting the maximal
regularity isC1,β

loc (see [14,31]).

Theorem 3.1. Letu : RN → R be a locally Lipschitz solution of

− div
(
Dξ�(x,u,Du)

)
+ Ds�(x,u,Du) = ϕ in �′(

R
N
)
.

Then

N∑
i,j=1

∫
RN

Dih
jDξi�(x,u,Du)Dju−

∫
RN

[
(divh) �(x,u,Du) + h ·Dx�(x,u,Du)

]
=
∫

RN
(h ·Du)ϕ (38)

for everyh ∈ C1
c (RN ,RN ).

We want to derive two important consequences of the previous variational identity.
In the first we show that the Mountain–Pass value associated with a large class of elliptic autonomous

equations is the minimal among other nontrivial critical values.

Theorem 3.2. Let x̄ ∈ R
N and assume that conditions(1), (5)–(10) hold. Then the equation

− div
(
jξ(x̄,u,Du)

)
+ js(x̄,u,Du) + V (x̄)up−1 = f (u) in R

N (39)

admits a least energy solutionu ∈ W 1,p(RN ), that is

Ix̄(u) = inf
{
Ix̄(w): w ∈ W 1,p(

R
N
)
\ {0} is a solution of(39)

}
,

whereIx̄ is as in(19). Moreover,Ix̄(u) = cx̄, that isu is at the Mountain–Pass level.
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Proof. We divide the proof into two steps.
Step I. Letu be any nontrivial solution of (39), and let us prove thatIx̄(u) � cx̄. By the assumptions on

V andf , it is readily seen that there exist'0 > 0 andδ0 > 0 such thatIx̄(v) � δ0 for everyv ∈ W 1,p(RN )
with ‖v‖1,p = '0. In particularIx̄ has a Mountain–Pass geometry. As we will see,�x̄ 	= ∅, so thatcx̄ is
well defined. Let nowu be a positive solution of (39) and consider the dilation path

γ(t)(x) :=

u

(
x

t

)
if t > 0,

0 if t = 0.

Notice that‖γ(t)‖p1,p = tN−p‖Du‖pp + tN‖u‖pp for everyt ∈ R
+, which implies that the curveγ belongs

to C(R+,W 1,p(RN )). For the sake of simplicity, we consider the continuous functionH : R+ → R

defined by

H(s) :=
∫ s

0
h(t) dt, whereh(s) := −V (x̄)sp−1 + f (s).

For everyt ∈ R
+ it results that

Ix̄
(
γ(t)

)
=
∫

RN
j
(
x̄,γ(t),Dγ(t)

)
−
∫

RN
H
(
γ(t)

)
= tN−p

∫
RN

j(x̄,u,Du) − tN
∫

RN
H(u)

which yields, for everyt ∈ R
+

d
dt

Ix̄
(
γ(t)

)
= (N − p)tN−p−1

∫
RN

j(x̄,u,Du) −NtN−1
∫

RN
H(u). (40)

By virtue of (8) and (10), a standard argument yieldsu ∈ L∞
loc(R

N ) (see [26, Theorem 1]); by the
regularity results of [14,31], it follows thatu ∈ C1,β

loc (RN ) for some 0< β < 1. Then, since {ξ �→
j(x,s, ξ)} is strictly convex, we can use Theorem 3.1 by choosing in (38)ϕ = 0 and

�(s, ξ) := j(x̄,s, ξ) −H(s) for everys ∈ R
+ andξ ∈ R

N , (41)

h(x) = hk(x) := T

(
x

k

)
x for everyx ∈ R

N andk � 1,

beingT ∈ C1
c (RN ) such thatT (x) = 1 if |x| � 1 andT (x) = 0 if |x| � 2. In particular, for everyk we

have thathk ∈ C1
c (RN ,RN ) and

Dih
j
k(x) = DiT

(
x

k

)
xj
k

+ T

(
x

k

)
δij for everyx ∈ R

N , i, j = 1, . . . ,N ,

(divhk)(x) = DT

(
x

k

)
· x
k

+ NT

(
x

k

)
for everyx ∈ R

N .
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Then, sinceDx�(u,Du) = 0, it follows by (38) that

n∑
i,j=1

∫
RN

DiT

(
x

k

)
xj
k

DjuDξi�(u,Du) +
∫

RN
T

(
x

k

)
Dξ�(u,Du) ·Du

−
∫

RN
DT

(
x

k

)
· x
k

�(u,Du) −
∫

RN
NT

(
x

k

)
�(u,Du) = 0

for everyk � 1. Since there existsC > 0 with

DiT

(
x

k

)
xj
k

� C for everyx ∈ R
N , k � 1 andi, j = 1, . . . ,N ,

by the Dominated Convergence Theorem, lettingk → +∞, we obtain∫
RN

[
N�(u,Du) −Dξ�(u,Du) ·Du

]
= 0,

namely, by (41) and thep-homogeneity of {ξ �→ j(x,s, ξ)},

(N − p)
∫

RN
j(x̄,u,Du) = N

∫
RN

H(u). (42)

In particular notice that
∫

RN H(u) > 0. By plugging this formula into (40), we obtain

d
dt

Ix̄
(
γ(t)

)
= N (1− tp)tN−p−1

∫
RN

H(u)

which yields d
dtIx̄(γ(t)) > 0 for 0< t < 1 and d

dtIx̄(γ(t)) < 0 for t > 1, namely

sup
t∈[0,+∞[

Ix̄
(
γ(t)

)
= Ix̄

(
γ(1)

)
= Ix̄(u).

Moreover, observe thatγ(0) = 0 andIx̄(γ(T )) < 0 for T > 0 sufficiently large. Then, after a suitable
scale change int, γ ∈ �x̄ and the assertion follows.

Step II. Let us now prove that (39) has a nontrivial solutionu ∈ W 1,p(RN ) such thatcx̄ � Ix̄(u). Let
(uh) be a Palais–Smale sequence forIx̄ at the levelcx̄. Since (uh) is bounded inW 1,p(RN ), considering
the testuh eζ(uh) with ζ as in (35), and recalling (37), we have

pcx̄ + o(1)= pIx̄(uh) − I ′x̄(uh)
[
uheζ(uh)]

=
∫

RN
p
(
1− eζ(uh))j(x̄,uh,Duh) +

∫
RN

(
1− eζ(uh))V (x̄)|uh|p

−
∫

RN

[
pζ ′(uh)j(x̄,uh,Duh) + js(x̄,uh,Duh)

]
uh eζ(uh)

−
∫

RN
pF (uh) +

∫
RN

f (uh)uh eζ(uh)

� −
∫

RN
pF (uh) +

∫
RN

f (uh)uh eζ(uh) � C

∫
RN

|uh|p + |uh|q
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for someC > 0. By [21, Lemma I.1], we conclude that (uh) may not vanish inLp, that is there exists
xh ∈ R

N , R > 0 andλ > 0 such that forh large∫
xh+BR

|uh|p � λ. (43)

Let vh(x) := uh(xh + x) and letu ∈ W 1,p(RN ) be such thatvh ⇀ u weakly inW 1,p(RN ). Sincevh is
a Palais–Smale sequence forIx̄ at levelcx̄, by Lemma 2.2, we have thatvh → u strongly inW 1,p

loc (RN ).
By (43), we deduce thatu is a nontrivial solution of (39). Letδ > 0; we claim that there exists' > 0
such that

lim inf
h

∫
RN\B	

[
j(x̄,vh,Dvh) +

1
p
V (x̄)|vh|p − F (vh)

]
� −δ. (44)

In fact, let' > 0, and letη� be a smooth function such that 0� η� � 1, η� = 0 onB�−1, η� = 1 on
R
N \B� and‖Dη�‖∞ � 2. By Proposition A.4, testing withη�vh, we get

〈wh,η�vh〉 −
∫
B�\B	−1

[
jξ(x̄,vh,Dvh) ·D(η�vh) + js(x̄,vh,Dvh)η�vh

+V (x̄)|vh|pη� − f (vh)vhη�
]

=
∫

RN\B	

[
jξ(x̄,vh,Dvh) ·D(η�vh) + js(x̄,vh,Dvh)η�vh + V (x̄)|vh|pη� − f (vh)vhη�

]
,

wherewh → 0 strongly inW−1,p′(RN ). For the right-hand side we have∫
RN\B	

[
jξ(x̄,vh,Dvh) ·D(η�vh) + js(x̄,vh,Dvh)η�vh + V (x̄)|vh|pη� − f (vh)vhη�

]
=
∫

RN\B	

[
pj(x̄,vh,Dvh) + js(x̄,vh,Dvh)vh + V (x̄)|vh|p − f (vh)vh

]
,

and by (9) we have∫
RN\B	

[
pj(x̄,vh,Dvh) + js(x̄,vh,Dvh)vh + V (x̄)|vh|p − f (vh)vh

]
� (p + γ)

∫
RN\B	

j(x̄,vh,Dvh) +
∫

RN\B	

V (x̄)|vh|p − f (vh)vh

= (p + γ)
∫

RN\B	

[
j(x̄,vh,Dvh) +

1
p
V (x̄)|vh|p − F (vh)

]

− p + γ

p

∫
RN\B	

V (x̄)|vh|p +
∫

RN\B	

V (x̄)|vh|p +
∫

RN\B	

[
(p + γ)F (vh) − f (vh)vh

]
� (p + γ)

∫
RN\B	

[
j(x̄,vh,Dvh) +

1
p
V (x̄)|vh|p − F (vh)

]
+
∫

RN\B	

[
(p + γ)F (vh) − ϑF (vh)

]
� (p + γ)

∫
RN\B	

[
j(x̄,vh,Dvh) +

1
p
V (x̄)|vh|p − F (vh)

]
.
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We conclude that

(p + γ)
∫

RN\B	

[
j(x̄,vh,Dvh) +

1
p
V (x̄)|vh|p − F (vh)

]

� 〈wh,η�vh〉 −
∫
B�\B	−1

[
jξ(x̄,vh,Dvh) ·D(η�vh) + js(x̄,vh,Dvh)η�vh

+V (x̄)|vh|pη� − f (vh)vhη�
]
.

Since by Lemma 2.2 we havevh → u strongly inW 1,p(B�), we get

lim
h

∫
B�\B	−1

[
jξ(x̄,vh,Dvh) ·D(η�vh) + js(x̄,vh,Dvh)η�vh + V (x̄)|vh|pη� − f (vh)vhη�

]
=
∫
B�\B	−1

[
jξ(x̄,u,Du) ·D(η�u) + js(x̄,u,Du)η�u + V (x̄)|u|pη� − f (u)uη�

]
,

and so we deduce that for everyδ > 0 there exists̄' > 0 such that for all' > '̄ we have

lim inf
h

∫
RN\B	

[
j(x̄,vh,Dvh) +

1
p
V (x̄)|vh|p − F (vh)

]
� −δ.

Furthermore we have

lim
h

∫
B	

[
j(x̄,vh,Dvh) +

1
p
V (x̄)|vh|p − F (vh)

]
= Ix̄(u,B�),

where

Ix̄(u,B�) :=
∫
B	

[
j(x̄,u,Du) +

1
p
V (x̄)|u|p − F (u)

]
,

and so we conclude that for all' > '̄

cx̄ � Ix̄(u,B�) − δ.

Letting' → +∞ and sinceδ is arbitrary, we get

cx̄ � Ix̄(u),

and the proof is concluded.�

The second result can be considered as an extension (also with a different proof) of [12, Lemma 2.3]
to a general class of elliptic equations. Again we stress that, in this degenerate setting, Theorem 3.1 plays
an important role.
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Lemma 3.3. Letu ∈ W 1,p(RN ) be a positive solution of the equation

− div
(
jξ(x̄,u,Du)

)
+ js(x̄,u,Du) + V (x̄)up−1

= 1{x1<0} (x)f (u) + 1{x1>0} (x)f̃ (u) in R
N . (45)

Thenu is actually a solution of the equation

− div
(
jξ(x̄,u,Du)

)
+ js(x̄,u,Du) + V (x̄)up−1 = f (u) in R

N . (46)

Proof. Let us first show thatu(x) � ) on the set {x1 = 0}. As in the proof of Theorem 3.2 it follows
thatu ∈ C1,β

loc (RN ) for some 0< β < 1. Then we can apply again Theorem 3.1 by choosing this time
in (38):

�(s, ξ) := j(x̄,s, ξ) +
V (x̄)
p

sp for everys ∈ R
+ andξ ∈ R

N ,

ϕ(x) := 1{x1<0} (x)f
(
u(x)

)
+ 1{x1>0} (x)f̃

(
u(x)

)
for everyx ∈ R

N ,

h(x) = hk(x) :=
(
T

(
x

k

)
, 0,. . . , 0

)
for everyx ∈ R

N andk � 1

beingT ∈ C1
c (RN ) such thatT (x) = 1 if |x| � 1 andT (x) = 0 if |x| � 2. Thenhk ∈ C1

c (RN ,RN ) and,
taking into account thatDx�(u,Du) = 0, we have

∫
RN

[
1
k

N∑
i=1

DiT

(
x

k

)
D1uDξi�(u,Du) −D1T

(
x

k

)
1
k

�(u,Du)

]
=
∫

RN
T

(
x

k

)
ϕ(x)D1u

for every k � 1. Again by the Dominated Convergence Theorem, lettingk → +∞, it follows∫
RN ϕ(x)Dx1u = 0, that is, after integration by parts,∫

RN−1

[
F
(
u(0,x′)

)
− F̃

(
u(0,x′)

)]
dx′ = 0.

Taking into account thatF (s) � F̃ (s) with equality only ifs � ), we get

u(0,x′) � ) for everyx′ ∈ R
N−1. (47)

To prove that actually

u(x1,x′) � ) for everyx1 > 0 andx′ ∈ R
N−1, (48)

let us test equation (45) with the function

η(x) =

{
0 if x1 < 0,(
u(x1,x′) − )

)+
eζ(u(x1,x′)) if x1 > 0,
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whereζ : R+ → R is the map defined in (35). Notice that, in view of (47), the functionη belongs to
W 1,p(RN ). After some computations, one obtains∫

{x1>0}
pj
(
x̄,u,D(u− ))+

)
eζ(u) +

∫
{x1>0}

[
js(x̄,u,Du) + pζ ′(u)j(x̄,u,Du)

]
(u− ))+ eζ(u)

+
∫

{x1>0}

[
V (x̄) − α

κ

]
up−1(u− ))+ eζ(u) = 0. (49)

By (1) and (37) all the terms in (49) must be equal to zero. We conclude that (u− ))+ = 0 on {x1 > 0},
namely (48) holds. In particularϕ(x) = f (u(x)) for everyx ∈ R

N , so thatu is a solution of (46). �

4. Energy estimates

Let dε,i be the Mountain–Pass critical value which corresponds to the functionalJε,i defined in (23).
More precisely,

dε,i := inf
γi∈Γi

sup
t∈[0,1]

Jε,i
(
γi(t)

)
, (50)

where

Γi :=
{
γi ∈ C

(
[0, 1],W 1,p(Λ̂i)): γi(0) = 0,Jε,i

(
γi(1)

)
< 0

}
.

Then the following result holds.

Lemma 4.1. We have

lim
ε→0+

ε−Ndε,i = ci

for everyi = 1, . . . ,k.

Proof. The inequality

dε,i � εNci + o
(
εN
)

(51)

can be easily derived (see the first part of the proof of Lemma 4.2). Let us prove the opposite inequality,
which is harder. To this aim, we divide the proof into two steps.

Step I. Let wε be a Mountain–Pass critical point forJε,i. We havewε � 0, and by regularity results
wε ∈ L∞(Λ̂i) ∩ C1,α

loc (Λ̂i). Let us define

Mε := sup
x∈Λ̂i

wε(x) < +∞,

and for allδ > 0 define the set

Uδ :=
{
x ∈ Λ̂i: wε(x) > Mε − δ

}
.
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By Proposition A.4, we may use the following nontrivial test for the equation satisfied bywε

ϕδ :=
[
wε − (Mε − δ)

]+
eζ(wε),

where the mapζ : R+ → R is defined as in (35). We have

Dϕδ = eζ(wε)Dwε1Uδ
+ ϕδζ

′(wε)Dwε,

and so we obtain

εp
∫
Uδ

pj(x,wε,Dwε) eζ(wε) + εp
∫
Uδ

[
pζ ′(wε)j(x,wε,Dwε) + js(x,wε,Dwε)

]
ϕδ

=
∫
Uδ

[
−V (x)wp−1

ε + g(x,wε)
]
ϕδ.

Then, by (37), it results∫
Uδ

[
−V (x)wp−1

ε + g(x,wε)
]
ϕδ � εp

∫
Uδ

pj(x,wε,Dwε) eζ(wε) > 0. (52)

Suppose thatUδ ∩ Λi = ∅ for someδ > 0; we have thatg(x,wε) = f̃ (wε) onUδ, so that∫
Uδ

[
−V (x)wp−1

ε + f̃ (wε)
]
ϕδ > 0. (53)

On the other hand, we note that by constructionf̃ (wε) � 1
kV (x)wp−1

ε with strict inequality on an open
subset ofUδ. We deduce that (53) cannot hold, and soUδ ∩ Λi 	= ∅ for all δ. SinceΛi is compact, we
conclude thatwε admits a maximum pointxε in Λi. Moreover, we havewε(xε) � ), where) is as in (13),
since otherwise (52) cannot hold.

Let us now consider the functionsvε(y) := wε(xε + εy) and letεj → 0. We have that, up to a
subsequence,xεj → x̄ ∈ Λi. Sincewε is a Mountain–Pass critical point ofJε,i, arguing as in step I of
Lemma 2.3 there existsC > 0 such that∫

RN

(
εp|Dwε|p + V (x)|wε|p

)
� Cdε,i,

which, by (51) implies, up to subsequences,vεj ⇀ v weakly inW 1,p(RN ). We now prove thatv 	= 0.
Let us set

dj(y) :=

V (xεj + εjy) −
g(xεj + εjy,vεj (y))

vp−1
εj (y)

if vεj (y) 	= 0,

0 if vεj (y) = 0,

A(y,s, ξ) := jξ(xεj + εjy,s, ξ),

B(y,s, ξ) := dj(y)sp−1,

C(y,s) := js
(
xεj + εjy,s,Dvεj (y)

)
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for everyy ∈ R
N , s ∈ R

+ andξ ∈ R
N . Taking into account the growth of condition onjξ, the strict

convexity ofj in ξ and condition (8), we get

A(y,s, ξ) · ξ � ν|ξ|p,
∣∣A(y,s, ξ)

∣∣ � c2|ξ|p−1,
∣∣B(y,s, ξ)

∣∣ � ∣∣dj(y)
∣∣|s|p−1.

Moreover, by condition (10) we have

s � R ⇒ C(y,s) � 0

for everyy ∈ R
N ands ∈ R

+. By the growth of conditions ong, we have that forδ sufficiently small
dj ∈ LN/(p−δ)(B2�) for every' > 0 and

S = sup
j

‖dj‖LN/(p−δ)(B2	) � D
(
1 + sup

j∈N

‖vεj‖Lp∗ (B2	)

)
< +∞

for someD = D(') > 0. Since we have div(A(y,vεj ,Dvεj )) = B(y,vεj ,Dvεj ) + C(y,vεj ) for every
j ∈ N, by virtue of [26, Theorem 1 and Remark at p. 261] there exists a radius' > 0 and a positive
constantM = M (ν, c2,S'δ) such that

sup
j∈N

max
y∈B	

∣∣vεj (y)
∣∣ � M (2')−N/p sup

j∈N

‖vεj‖Lp(B2	) < +∞

so that (vεj ) is uniformly bounded inB�. Then, by [26, Theorem 8], up to a subsequence (vεj ) converges
uniformly tov in a small neighbourhood of zero. This yieldsv(0) = limj vεj (0) = limj wεj (xεj ) � ).

Without loss of generality we may assume thatv is a positive solution of

− div
(
jξ(x̄,v,Dv)

)
+ js(x̄,v,Dv) + V (x̄)vp−1 = 1{x1<0}f (v) + 1{x1>0} f̃ (v).

By Lemma 3.3 it follows thatv is actually a nontrivial solution of

− div
(
jξ(x̄,v,Dv)

)
+ js(x̄,v,Dv) + V (x̄)vp−1 = f (v).

Then, by Theorem 3.2 and (22), we haveIx̄(v) = cx̄ � ci. In order to conclude the proof, it is sufficient
to prove that

lim inf
j

ε−Nj dεj ,i = lim inf
j

ε−Nj Jεj ,i(wεj ) � Ix̄(v). (54)

Step II. We prove (54). It results

ε−Nj Jεj ,i(wεj )

=
∫
Λ̂εj ,i

j(xεj + εjy,vεj ,Dvεj ) +
1
p

∫
Λ̂εj ,i

V (xεj + εjy)vpεj
−
∫
Λ̂εj ,i

G(xεj + εjy,vεj ),
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whereΛ̂εj ,i = { y ∈ R
N : xεj + εjy ∈ Λ̂i}. By Lemma 2.2, we havevεj → v strongly inW 1,p

loc (RN ).
Following the same computations of Theorem 3.2, step II, we deduce that for allδ > 0 there exists̄' > 0
such that for all' > '̄ we have

lim inf
j

∫
Λ̂εj ,i\B	

[
j(xεj + εjy,vεj ,Dvεj ) +

1
p
V (xεj + εjy)vpεj

−G(xεj + εjy,vεj )
]

� −δ.

Furthermore we have

lim
j

∫
B	

[
j(xεj + εjy,vεj ,Dvεj ) +

1
p
V (xεj + εjy)vpεj

−G(xεj + εjy,vεj )
]

= Ix̄(v,B�),

where

Ix̄(v,B�) :=
∫
B	

[
j(x̄,v,Dv) +

1
p
V (x̄)vp − F (v)

]
.

We conclude that for all' > '̄

lim inf
j

ε−Nj Jεj ,i(wεj ) � Ix̄(v,B�) − δ,

and (54) follows letting' → +∞ andδ → 0. �

Let us now consider the class

Γε :=
{
γ ∈ C

(
[0, 1]k,WV (Ω)

)
: γ satisfies conditions (a)–(d)

}
,

where:

(a) γ(t) =
∑k

i=1 γi(ti) for everyt ∈ ∂[0, 1]k, with γi ∈ C([0, 1],WV (Ω));
(b) supt(γi(ti)) ⊂ Λi for everyti ∈ [0, 1] andi = 1, . . . ,k;
(c) γi(0) = 0 andJε(γi(1)) < 0 for everyi = 1, . . . ,k;
(d) ε−NEε(γ(t)) � ∑k

i=1 ci + σ for everyt ∈ ∂[0, 1]k,

where 0< σ < 1
2 min{ci: i = 1, . . . ,k}. We set

cε := inf
γ∈Γε

sup
t∈[0,1]k

Eε
(
γ(t)

)
. (55)

Lemma 4.2. For ε small enoughΓε 	= ∅ and

lim
ε→0+

ε−Ncε =
k∑
i=1

ci. (56)
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Proof. Firstly, let us prove that forε smallΓε 	= ∅ and

cε � εN
k∑
i=1

ci + o
(
εN
)
. (57)

By definition ofci, for all δ > 0 there existsγi ∈ �i with

ci � max
τ∈[0,1]

Ixi

(
γi(τ )

)
� ci +

δ

2k
, (58)

where thexis are as in (2) and

�i :=
{
γi ∈ C

(
[0, 1],W 1,p(

R
N)): γi(0) = 0, Ixi

(
γi(1)

)
< 0

}
.

We chooseδ so thatδ < min{σ,kσi}. Let us set

γ̂i(τ )(x) := ηi(x)γi(τ )
(
x− xi

ε

)
for everyτ ∈ [0, 1] andx ∈ Ω,

whereηi ∈ C∞
c (RN ), 0 � ηi � 1, supt(ηi) ⊆ Λi, andxi ∈ int({ ηi = 1}). We have

Jε
(
γ̂i(τ )

)
=
∫
Ω
εpj
(
x, γ̂i(τ ),Dγ̂i(τ )

)
+

1
p

∫
Ω
V (x)

∣∣γ̂i(τ )
∣∣p − ∫

Ω
G
(
x, γ̂i(τ )

)
. (59)

Since it results

Dγ̂i(τ ) = Dηi(x)γi(τ )
(
x− xi

ε

)
+

1
ε
ηi(x)Dγi(τ )

(
x− xi

ε

)
,

and for allξ1, ξ2 ∈ R
N there existst ∈ [0, 1] with

j(x,s, ξ1 + ξ2) = j(x,s, ξ2) + jξ(x,s, tξ1 + ξ2) · ξ1,

taking into account thep-homogeneity ofj, the term

εp
∫
Ω
j
(
x, γ̂i(τ ),Dγ̂i(τ )

)
has the same behavior of∫

Ω
j

(
x,ηi(x)γi(τ )

(
x− xi

ε

)
,ηi(x)Dγi

(
x− xi

ε

))
(60)

up to an error given by

εp
∫
Ω
jξ
(
x,s(x), t(x)ξ1(x) + ξ2(x)

)
· ξ1(x), (61)
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where we have set

s(x) := γ̂i(τ )(x), ξ1(x) := Dηi(x)γi(τ )
(
x− xi

ε

)
, ξ2(x) :=

1
ε
ηi(x)Dγi(τ )

(
x− xi

ε

)
,

andt(x) is a function with 0� t(x) � 1 for everyx ∈ Ω.
We proceed in the estimation of (61). We obtain

εp
∣∣∣∣∫
Ω
jξ
(
x,s(x), t(x)ξ1(x) + ξ2(x)

)
· ξ1(x)

∣∣∣∣ � c̃2ε
p
∫
Ω

∣∣ξ1(x)
∣∣p + c̃2ε

p
∫
Ω

∣∣ξ2(x)
∣∣p−1∣∣ξ1(x)

∣∣.
Making the change of variabley = (x− xi)/ε, we obtain

εp
∣∣∣∣∫
Ω
jξ
(
x,s(x), t(x)ξ1(x) + ξ2(x)

)
· ξ1(x)

∣∣∣∣ � c̃2ε
p+N

∫
RN

∣∣Dηi(xi + εy)
∣∣p∣∣γi(τ )(y)

∣∣p
+ c̃2ε

N+1
∫

RN

∣∣ηi(xi + εy)
∣∣p−1∣∣Dγi(τ )(y)

∣∣p−1∣∣Dηi(xi + εy)
∣∣∣∣γi(τ )(y)

∣∣ = o
(
εN
)
,

where o(εN ) is independent ofτ , sinceγi has compact values inW 1,p(RN ). Changing the variable also
in (60) yields

∫
Ω
j

(
x,ηi(x)γi(τ )

(
x− xi

ε

)
,ηi(x)Dγi(τ )

(
x− xi

ε

))
= εN

∫
RN

j
(
xi + εy,ηi(xi + εy)γi(τ )(y),ηi(xi + εy)Dγi(τ )(y)

)
.

By the Dominated Convergence Theorem we get

lim
ε→0

∫
RN

j
(
xi + εy,ηi(xi + εy)γi(τ )(y),ηi(xi + εy)Dγi(τ )(y)

)
=
∫

RN
j
(
xi,γi(τ )(y),Dγi(τ )(y)

)
uniformly with respect toτ . Reasoning in a similar fashion for the other terms in (59), we conclude that
for ε small enough

Jε
(
γ̂i(τ )

)
= εN Ixi

(
γi(τ )

)
+ o

(
εN
)

(62)

for everyτ ∈ [0, 1] with o(εN ) independent ofτ . Let us now set

γ0(τ1, . . . , τk) :=
k∑
i=1

γ̂i(τi).

Since supt(̂γi(τ )) ⊆ Λi for everyτ , we have thatJε,i(γ̂i(τ )) = Jε(γ̂i(τ )); then, by the choice ofδ, we get
for ε small
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[
Jε,i
(
γ̂i(τ )

)
+

]1/2 − εN/2(ci + σi)
1/2 =

[
Jε
(
γ̂i(τ )

)
+

]1/2 − εN/2(ci + σi)
1/2

= εN/2[Ixi

(
γi(τ )

)
+ o(1)

]1/2 − εN/2(ci + σi)
1/2

� εN/2
[
ci +

δ

2k
+ o(1)

]1/2

− εN/2(ci + σi)
1/2 � 0,

and

Eε
(
γ0(τ1, . . . , τk)

)
= Jε

(
γ0(τ1, . . . , τk)

)
=

k∑
i=1

Jε
(
γ̂i(τi)

)
.

By (58) and (62) we obtain that forε small enough

Eε

(
γ0(τ )

)
� εN

k∑
i=1

(
ci +

δ

2k

)
� εN

(
k∑
i=1

ci + σ

)

so that the classΓε is not empty. Moreover, we have

lim sup
ε→0+

cε
εN

�
k∑
i=1

ci + δ

and, by the arbitrariness ofδ, we have conclude that (57) holds. Let us now prove that

cε � εN
k∑
i=1

ci + o
(
εN
)
. (63)

Givenγ ∈ Γε, by a variant of [7, Proposition 3.4] there existst̄ ∈ [0, 1]k such that

Jε,i
(
γ(t̄)

)
� dε,i

for all i = 1, . . . ,k, where thedε,is are as in (50). Then we have by Lemma 4.1

sup
t∈[0,1]k

Jε
(
γ(t)

)
� sup

t∈[0,1]k

k∑
i=1

Jε,i
(
γ(t)

)
�

k∑
i=1

dε,i = εN
k∑
i=1

ci + o
(
εN
)
,

which implies the assertion.�

Corollary 4.3. For everyε > 0 there exists a critical pointuε ∈ WV (Ω) of the functionalEε such that
cε = Eε(uε). Moreover‖uε‖WV

→ 0 asε → 0.

Proof. By combining Lemma 2.3 with (b) of Proposition A.8 it results thatEε satisfies the Palais–Smale
condition for everyc ∈ R (see Definition A.3). Then, taking into account Lemma 4.2, for everyε > 0
the (nonsmooth) Mountain–Pass Theorem (see [6]) for the classΓε provides the desired critical pointuε
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of Eε. To prove the second assertion we may argue as in step I of Lemma 2.3 withuh replaced byuε and
c replaced byEε(uε). Thus, from inequality (32), for everyε > 0 we get

∫
Ω

(
|Duε|p + V (x)|uε|p

)
� ϑEε(uε) + dεN

min{(ϑ− γ − p)νεp,ϑ/p− ϑ/(pκ) − 1}
. (64)

By virtue of Lemma 4.2, this yields

∫
Ω

(
|Duε|p + V (x)|uε|p

)
�
{
ϑ(c1 + · · · + ck) + d

(ϑ− γ − p)ν

}
εN−p + o

(
εN−p),

asε → 0, which implies the assertion.�

Let us now set:

Ωε :=
{
y ∈ R

N : εy ∈ Ω
}
, vε(y) := uε(εy) ∈ W 1,p(Ωε),

Λ̂ε,i :=
{
y ∈ R

N : εy ∈ Λ̂i
}
, Λε :=

{
y ∈ R

N : εy ∈ Λ
}
.

Lemma 4.4. The functionvε is a solution of the equation

− div
((

1 + θε(εy)
)
jξ(εy,v,Dv)

)
+
(
1 + θε(εy)

)
js(εy,v,Dv)

+
(
1 + θε(εy)

)
V (εy)vp−1 =

(
1 + θε(εy)

)
g(εy,v) in Ωε, (65)

where for everyε > 0

θε(x) :=
k∑
i=1

θε,i1Λ̂i
(x), θε,i ∈ [0,M ],

θε,i := M
[(
Jε,i(uε)+

)1/2 − εN/2(ci + σi)
1/2]

+

(
Jε,i(uε)+

)−1/2
.

(66)

Proof. It suffices to expandE′
ε(uε)(ϕ) = 0 for everyϕ ∈ C∞

c (Ω). �

Corollary 4.5. The sequence(vε) is bounded inW 1,p(RN ).

Proof. It suffices to combine Lemma 4.2 with the inequality

∫
RN

(
|Dvε|p + V (x)|vε|p

)
� ϑε−N cε + d

min{(ϑ− γ − p)ν,ϑ/p− ϑ/(pκ) − 1}

which follows by (64). �

The following lemma “kills” the second penalization term ofEε.
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Lemma 4.6. We have

lim
ε→0

ε−NJε,i(uε) = ci (67)

for everyi = 1, . . . ,k.

Proof. Let us first prove that, as' → +∞,

lim sup
ε→0+

∫
Ωε\N	(Λε)

(
|Dvε|p + |vε|p

)
= o(1), (68)

whereN�(Λε) := { y ∈ R
N : dist(y,Λε) < '}. By Proposition A.4, we can test equation (65) with

ψε,�vε eζ(vε), whereψε,� := 1−∑k
i=1 ψ

i
ε,�, ψ

i
ε,� ∈ C∞(RN ),

ψiε,� = 1 if dist(y,Λε,i) <
'

2
, ψiε,� = 0 if dist(y,Λε,i) > '

and the functionζ is defined as in (35). By virtue of (1), (7), the boundedness of (vε) in W 1,p(RN ) and
(37) there existC,C ′ > 0 such that

C

∫
Ωε\N	(Λε)

(
|Dvε|p + |vε|p

)
�
∫
Ωε\Λε

(
1 + θε(εy)

)[
pj(εy,vε,Dvε) +

{
V (εy) − f̃ (vε)

vp−1
ε

}
vpε

]
ψε,� eζ(vε)

= −
∫
Ωε\Λε

(
1 + θε(εy)

)[
js(εy,vε,Dvε) + pζ ′(vε)j(εy,vε,Dvε)

]
vεψε,� eζ(vε)

−
∫
Ωε\Λε

(
1 + θε(εy)

)
jξ(εy,vε,Dvε) ·Dψε,�vε eζ(vε)

� 2 eMR
∫
Ωε\Λε

|Dψε,�|
∣∣jξ(εy,vε,Dvε)

∣∣vε � C̃

'
‖Dvε‖p−1

p ‖vε‖p � C ′

'
,

which implies (68). Now, to prove (67), we adapt the argument of [12, Lemma 2.1] to our context. It is
sufficient to prove that

lim
ε→0

ε−NJε,i(uε) � ci + σi (69)

for everyi = 1, . . . ,k. Then (67) follows by arguing exactly as in [12, Lemma 2.4]. By contradiction, let
us suppose that for someεj → 0 we have

lim sup
j

ε−Nj Jεj ,i(uεj ) > ci + σi. (70)
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Then there existsλ > 0 with∫
Λ̂εj ,i

(
|Dvεj |p + |vεj |p

)
� λ,

and so by (68) there exists' > 0 such that forj large enough

∫
N	(Λεj ,i)

(
|Dvεj |p + |vεj |p

)
� λ

2
.

Following [12, Lemma 2.1], P.-L. Lions’ concentration compactness argument [21] yields the existence
of S > 0, ρ > 0 and a sequenceyj ∈ Λεj ,i such that forj large enough

∫
BS (yj)

vpεj
� ρ. (71)

Let us setvj(y) := vεj (yj + y), and letεjyj → x̄ ∈ Λi. By Corollary 4.5, we may assume thatvj weakly

converges to somev in W 1,p(RN ). By Lemma 2.2, we have thatvj → v strongly inW 1,p
loc (RN ); note that

v 	= 0 by (71). In the case dist(yj,∂Λεj ,i) → +∞, sincevj satisfies in−yj + Λεj ,i the equation

− div
(
jξ(εjyj + εjy,vj,Dvj)

)
+ js(εjyj + εjy,vj,Dvj) + V (εjyj + εjy)vp−1 = f (vj),

v satisfies onRN the equation

− div
(
jξ(x̄,v,Dv)

)
+ js(x̄,v,Dv) + V (x̄)vp−1 = f (v). (72)

If dist(yj ,∂Λεj ,i) � C < +∞, we deduce thatv satisfies an equation of the form (45), and by Lemma 3.3,
we conclude thatv satisfies Eq. (72). Sincev is a nontrivial critical point forIx̄, by (11) and Theorem 3.2,
recalling thatci � cx̄ � ci + σi, we getci � Ix̄(v) � ci + σi. Then we can find a sequenceRj → +∞
such that

lim
j

∫
BRj

(yj )
j(εjy,vεj ,Dvεj ) +

1
p
V (εjy)|vεj |p −G(εjy,vεj ) = Ix̄(v) � ci + σi.

Then by (70) we deduce that forj large enough∫
Λ̂εj ,i\BRj

(yj )

(
|Dvεj |p + |vεj |p

)
� λ > 0.

Reasoning as above, there existS̃, ρ̃ > 0 and a sequencẽyj ∈ Λεj ,i \BRj (yj) such that

∫
B

S̃
(ỹj)

vpεj
� ρ̃ > 0. (73)
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Let εj ỹj → x̃ ∈ Λi; then we havẽvj(y) := vεj (ỹj +y) ⇀ ṽ weakly inW 1,p(RN ), whereṽ is a nontrivial
solution of the equation

− div
(
jξ(x̃,v,Dv)

)
+ js(x̃,v,Dv) + V (x̃)vp−1 = f (v).

As before we getIx̃(ṽ) � ci. We are now in a position to deduce that

lim inf
j

ε−Nj Jεj ,i(uε) > Ix̄(v) + Ix̃(ṽ) � 2ci.

In fact,vεj satisfies inΛ̂εj ,i the equation

− div
(
jξ(εjy,vεj ,Dvεj )

)
+ js(εjy,vεj ,Dvεj ) + V (εjy)vp−1

εj
= g(εjy,vεj ). (74)

Sinceyj , ỹj ∈ Λεj ,i, for j large enoughBj,R := B(yj,R) ∪ B(ỹj,R) ⊂ Λ̂εj ,i, and so we can test (74)
with

ϕ(y) =
[
ψ

( |y − yj|
R

)
+ ψ

( |y − ỹj|
R

)
− 1

]
vεj (y),

whereψ ∈ C∞(R) with 0 � ψ � 1, ψ(s) = 0 for s � 1 andψ(s) = 1 for s � 2. Reasoning as in
Lemma 4.1, we have that for allδ > 0 there exists̄R such that for allR > R̄ we have∫

Λ̂εj ,i\Bj,R

[
j(εjy,vεj ,Dvεj ) +

1
p
V (εjy)|vεj |p −G(εjy,vεj )

]
� −δ

so that

lim inf
j

ε−Nj Jεj ,i(uεj ) � Ix̄(v,BR) + Ix̃(ṽ,BR) − δ.

LettingR → +∞ andδ → 0, we get

lim inf
j

ε−Nj Jεj ,i(uεj ) > 2ci. (75)

The same arguments apply to the functionalJε: we have that

lim inf
j

ε−Nj Jεj (uεj ) � 2ci. (76)

Then by combining (75) and (76) we obtain

lim inf
j

ε−Nj Eεj (uεj ) � 2ci + M
[
(2ci)

1/2 − (ci + σi)
1/2]2

+.

By Lemma 4.2, we have

M
[
(2ci)

1/2 − (ci + σi)
1/2]2

+ �
k∑
i=1

ci,

against the choice ofM . �
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5. Proofs of the main results

We are now ready to prove the main results of the paper.

Proof of Theorem 1.2. Let us consider the sequence (uε) of critical points ofEε given by Corollary 4.3.
We have that‖uε‖WV

→ 0. Sinceuε satisfies

− div
((

1 + θε(x)
)
jξ(x,v,Dv)

)
+
(
1 + θε(x)

)
js(x,v,Dv)

+
(
1 + θε(x)

)
V (x)vp−1 =

(
1 + θε(x)

)
g(x,v) in Ω,

with θε defined as in (66), by the regularity results of [26]uε is locally Hölder continuous inΩ. We claim
that there existsσ > 0 such that

uε(xε,i) = sup
Λi

uε > σ > 0 (77)

for everyε sufficiently small andi = 1, . . . ,k: moreover

lim
ε→0

dist(xε,i, �i) = 0 (78)

for everyi = 1, . . . ,k, where the�is are the sets of minima ofV in Λi. In fact, let us assume that there
existsi0 ∈ {1, . . . ,k} such thatuε(xε,i0) → 0 asε → 0. Therefore,uε → 0 uniformly onΛi0 asε → 0,
which implies that

sup
y∈Λε,i0

vε(y) → 0 asε → 0, (79)

wherevε(y) := uε(εy). On the other hand, since by (67) we have

lim
ε→0

ε−NJε,i0(uε) = ci0 > 0,

consideringΛ̃i0 relatively compact inΛi0, following the proof of Lemma 4.6, we findS > 0 and' > 0
such that

sup
y∈Λ̃ε,i0

∫
BS (y)

vpε � '

for everyε ∈ (0,ε0), which contradicts (79). We conclude that (77) holds. In order to prove (78), it is
sufficient to prove that

lim
ε→0

V (xε,i) = min
Λi

V

for everyi = 1, . . . ,k. Assume by contradiction that for somei0

lim
ε→0

V (xε,i0) > min
Λi0

V = bi0.
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Then, up to a subsequence,xεj ,i0 → xi0 ∈ Λi0 andV (xi0) > bi0. Then, arguing as in the proof of
Lemma 4.6 and using Theorem 3.2, we would get

lim inf
j

εj
−NJεj ,i0(uεj ) � Ixi0

(v) = cxi0
> ci0

which is impossible, in view of (67).
We now prove that

lim
ε→0

uε = 0 uniformly onΩ \
k⋃
i=1

int(Λi). (80)

Let us first prove that

lim
ε→0

sup
∂Λi

uε = 0 for everyi = 1, . . . ,k.

By contradiction, leti0 ∈ {1, . . . ,k} and σ > 0 with uεj (xj) � σ for (xj) ⊂ ∂Λi0. Up to a subsequence,
xj → x0 ∈ ∂Λi0. Therefore, taking into account Lemma 3.3 and the local regularity estimates of [26]
(see also the end of step I of Lemma 4.1), the sequencevj(y) := uεj (xj + εjy) converges weakly to a
nontrivial solutionv ∈ W 1,p(RN ) of

− div
(
jξ(x0,v,Dv)

)
+ js(x0,v,Dv) + V (x0)vp−1 = f (v) in R

N .

As V (x0) > V (xi0), we have

lim inf
j

ε−Nj Jεj ,i0(uεj ) � Ix0(v) > ci0,

which violates (67). Testing the equation with(
uε − max

i
sup
∂Λi

uε
)+

1Ω\Λ eζ(uε),

as in Lemma 3.3, this yields thatuε(x) � maxi sup∂Λi
uε for everyx ∈ Ω \ Λ, so that (80) holds.

By Proposition 2.1,uε is actually a solution of the original problem (Pε) because the penalization terms
are neutralized by the factsJε,i(uε) < ci + σi anduε < ) onΩ \ Λ for ε small. By regularity results, it
follows uε ∈ C1,β

loc (Ω), and so point (a) is proved. Taking into account (77) and (80), we get thatuε has a
maximumx̄ε ∈ Ω which coincides with one of thexε,is. Considerinḡvε(y) := uε(xε,i + εy), sincev̄ε is
uniformly bounded inW 1,p

loc (RN ), by the local regularity estimates [26], there existsσ′ with

uε(xε,i) � σ′

for all i = 1, . . . ,k. In view of (77), (78) and Corollary 4.3, we conclude that points (b) and (d) are
proved. Let us now come to point (c). Let us assume by contradiction that there existsr̄, δ, i0 andεj → 0
such that there existsyj ∈ Λi0 \Br̄(xεj ,i0) with

lim sup
j

uεj (yj) � δ.
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We may assume thatyj → ȳ, xεj ,i0 → x̄, andv̄j(y) := uεj (yj+εjy) → v̄, vj(y) := uεj (xεj ,i0+εjy) → v

strongly inW 1,p
loc (RN ): then, arguing as in Lemma 4.6, it turns out that

lim inf
j

ε−Nj Jεj ,i0(uεj ) � Ix̄(v) + Iȳ(v̄) � 2ci0

which is against (67). We conclude that point (c) holds, and the proof is concluded.�

Proof of Theorem 1.1. If 1 < p � 2 andp < q < p∗, the equation

−∆pu + V (x̄)up−1 = uq−1 in R
N (81)

admits a unique positiveC1 solution (up to translations).
Indeed, a solutionu ∈ C1(RN ) of (81) exists by Theorem 3.2. By [20, Theorem 1] we haveu(x) → 0

as |x| → ∞. Moreover, by [8, Theorem 1.1], the solutionu is radially symmetric about some point
x0 ∈ R

N and radially decreasing. Thenu is a radial ground state solution of (81). By [27, Theorem 1],
u is unique (up to translations). Then (11) is satisfied and the assertions follow by Theorem 1.2 applied
to the functionsj(x,s, ξ) = 1

p |ξ|p andf (s) = sq−1. �

Appendix. Recalls of nonsmooth critical point theory

In this section we quote from [4,6] some tools of nonsmooth critical point theory which we use in the
paper.

Let us first recall the definition of weak slope for a continuous function.

Definition A.1. LetX be a complete metric space,f :X → R be a continuous function, andu ∈ X. We
denote by|df |(u) the supremum of the real numbersσ � 0 such that there existδ > 0 and a continuous
map

� :B(u, δ) × [0, δ] → X,

such that, for everyv in B(u, δ), and for everyt in [0, δ] it results

d
(
�(v, t),v

)
� t, f

(
�(v, t)

)
� f (v) − σt.

The extended real number|df |(u) is called the weak slope off atu.

The previous notion allows us to give the following definitions.

Definition A.2. We say thatu ∈ X is a critical point off if |df |(u) = 0. We say thatc ∈ R is a critical
value off if there exists a critical pointu ∈ X of f with f (u) = c.

Definition A.3. Let c ∈ R. We say thatf satisfies the Palais–Smale condition at levelc ((PS)c in short),
if every sequence (uh) in X such that|df |(uh) → 0 andf (uh) → c admits a subsequence converging
in X.
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Let us now return to the concrete setting and chooseX = WV (Ω). Let ε > 0 and consider the
functionalf :WV (Ω) → R defined by setting

f (u) = εp
∫
Ω
j(x,u,Du) +

1
p

∫
Ω
V (x)|u|p −

∫
Ω
G(x,u), (82)

whereG(x,s) =
∫ s

0 g(x, t) dt andg :Ω × R → R is now any Carathéodory function. Althoughf is a
nonsmooth functional, its directional derivatives exist along some special directions.

Proposition A.4. Letu,ϕ ∈ WV (Ω) be such that[js(x,u,Du)ϕ]− ∈ L1(Ω).
Then we havejs(x,u,Du)ϕ ∈ L1(Ω), the directional derivativef ′(u)(ϕ) exists and

f ′(u)(ϕ) = εp
∫
Ω
jξ(x,u,Du) ·Dϕ + εp

∫
Ω
js(x,u,Du)ϕ +

∫
Ω
V (x)|u|p−2uϕ−

∫
Ω
g(x,u)ϕ.

In particular, if (10) holds, for everyϕ ∈ L∞(Ω), ϕ � 0, we havejs(x,u,Du)ϕu ∈ L1(Ω) and the
derivativef ′(u)(ϕu) exists.

Definition A.5. We say thatu is a (weak) solution of the problem{−εp div
(
jξ(x,u,Du)

)
+ εpjs(x,u,Du) + V (x)|u|p−2u = g(x,u) in Ω,

u = 0 on∂Ω
(83)

if u ∈ WV (Ω) and

−εp div
(
jξ(x,u,Du)

)
+ εpjs(x,u,Du) + V (x)|u|p−2u = g(x,u)

is satisfied in�′(Ω).

We now introduce a useful variant of the classical Palais–Smale condition.

Definition A.6. Let ε > 0 andc ∈ R. We say that (uh) ⊂ WV (Ω) is a concrete Palais–Smale sequence
at levelc ((CPS)c-sequence, in short) forf , if f (uh) → c and

js(x,uh,Duh) ∈
(
WV (Ω)

)′
ash → +∞,

− εp div
(
jξ(x,uh,Duh)

)
+ εpjs(x,uh,Duh) + V (x)|uh|p−2uh − g(x,uh) → 0

strongly in (WV (Ω))′. We say thatf satisfies the concrete Palais–Smale condition at levelc ((CPS)c
condition), if every (CPS)c-sequence forf admits a strongly convergent subsequence inWV (Ω).

Proposition A.7. Letε > 0. Then for everyu in WV (Ω) with |df |(u) < +∞ we have

−εp div
(
jξ(x,u,Du)

)
+ εpjs(x,u,Du) ∈

(
WV (Ω)

)′
and setting

wε
u := −εp div

(
jξ(x,u,Du)

)
+ εpjs(x,u,Du) + V (x)|u|p−2u− g(x,u)

it results‖wε
u‖(WV (Ω))′ � |dJε|(u).
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As a consequence of the previous proposition we have the following result.

Proposition A.8. Letu ∈ WV (Ω), c ∈ R and let(uh) ⊂ WV (Ω).
Then the following facts hold:

(a) if u is a critical point off , thenu is a weak solution of(83);
(b) if f satisfies the(CPS)c condition, thenf satisfies the(PS)c condition.

For suitable versions of the Mountain–Pass theorem in the nonsmooth framework we refer the reader
to [4].
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