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Abstract. By means of a penalization argument due to del Pino and Felmer, we prove the existence of multi-spike solutions for
a class of quasilinear elliptic equations under natural growth conditions. Compared with the semilinear case some difficulties
arise, mainly concerning the properties of the limit equation. The study of concentration of the solutions requires a somewhat
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1. Introduction and main results

Let £2 be any smooth domain @& with N > 3. Starting from the celebrated paper by Floer and
Weinstein [15], much interest has been directed in recent years to the singularly perturbed semilinear
elliptic problem

—2Au+V(@)u=ui"t in g,
u >0 in {2,
u=20 onof?,

where 2< ¢ < 2N/(N — 2) andV (z) is a positive function bounded from below away from zero.
Typically, there exists a family of solutionsd).~o which exhibits a spike-shaped profile around every
possibly degenerate local minimum Bf(z) and decade elsewhere agoes to zero (see, e.g., [1,11,
13,22,25,32] for the single-peak case and [12,23] for the multi-peak case). A natural question is now
whether these concentration phenomena are a special feature of the semilinear case or we can expect a
similar behavior to hold for more general elliptic equations having a variational structure. The results
concerning the existence of one-peak solutions have been recently extended in [30] to the quasilinear
elliptic equation

N 2 N
5
—&? Z Dj(a;j(z,u)D;u) + 0 Z Dsagj(z,u)DiuDju + V(z)u = u? .
ij=1 4j=1
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In this paper we turn to a more delicate situation, namely the study of the multi-peak case, also for
possibly degenerate operators.
Assume that’ : RV — R is aC? function and there exists a positive constarguch that

V(z) > o foreveryz € RV. (1)
Moreover letAy, ..., A be k disjoint compact subsets 6 andx; € A; with

V(xi):njllinV<raT1/lllzflV, t1=1,...,k. )

Letussetforall =1,...,k

Letl<p< N,p*" = Np/(IN — p) and letWy (£2) be the weighted Banach space
Wy (2) = {u € Wol’p(Q): / V(x)|ulP < +oo}
Q

endovv_ed with the _natural noru|lyy,, = [o |Dul? + [o V(2)|ulP. Forall A, B C RY, let us denote
their distance by dis{, B).
The following is the first of our main results.

Theorem 1.1. Assume thafl) and(2) hold and letl < p < 2, p < ¢ < p*.
Then there existsg > 0 such that, for every € (0,¢g0), there existu. in Wy (£2) N le)f (£2) and k&
pointsz. ; € A; satisfying the following properties

(@) u. is a weak solution of the problem

—ePAyu+ V(z)uP~t =it in g,
u>0 in £, 4
u=0 onaf?;

(b) there existr, o’ €]0, +o0[ such that for every = 1,.. ., k we have

ue(Tei) = SUPUe, 0 < uc(re;) < o, Iimodist(xa,i,m,i) =0,
. E—

(3

whereJt; is as in(3);
(c) for everyr < min{dist(M;, .It;): i # j} we have

iILnO HuaHLOO(Q\Ule Br(zc4)) =0
(d) it results

lim ||ue|lwy, = 0.
e—0

Moreover, ifk = 1 the assertions hold for evefly< p < N.



A. Giacomini and M. Squassina / Multi-peak solutions for degenerate equations 117

Actually, this result will follow by a more general achievement involving a larger class of quasilinear
operators. Before stating it, we make a few assumptions.
Assume that k p < N, f € CYR*) and there exisp < ¢ < p* andp < ¥ < g with

L f(s) o f) _
sILrQJr sp—1 0 s—llrpoo sa=1 0 ®)
0 < 9F(s) < f(s)s foreverys e RT, (6)

whereF(s) = [ f(t)dt for everys € R™.

The functionj(z, s,£) : 2 x Rt x RN — Ris continuous in: and of clas>'! with respect tas and¢,
the function £ — j(x, s, &)} is strictly convex andb-homogeneous and there exist two positive constants
c1, ¢ With

s, O S cléls e 5,9 < ol )

fora.e.xz € 2 and everys € RT, ¢ € RY (j, andj, denote the derivatives gfwith respect ofs and¢
respectively). Let?,» > 0 and 0< v < ¢ — p with

i@, s,8) = g, (8)
Js(@,5,8)s < iz, s,€) 9)

a.e. inf2, for everys € Rt and¢ € R, and

js(x,s,8) >0 foreverys > R (20)
a.e. inf2 and for every¢ € RY. For every fixedz € (2, the limiting equation

— div(je(@, u, Du)) + js(&,u, Du) + V(@)uPt = f(u) inRN (11)
admits a unique positive solution (up to translations). Finally, we assume that

j(xi, 8,8) = min j(x,s,€), i=1,...,k, (12)
TEA;

for everys € RT and¢ € RY, where ther;s are as in (2).

We point out that assumptions (1), (2), (5) and (6) are the same as in [11,12]. Conditions (7)—(10) are
natural assumption, already used, for instance, in [2-5,28,29].

The following result is an extension of Theorem 1.1.

Theorem 1.2. Assume thafl), (2), (5)«12) hold.
Then there existsy > 0 such that, for every € (0,e0), there existu. in Wy (2) N Ci2(£2) and k
pointsz. ; € A; satisfying the following properties
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(@) u. is a weak solution of the problem

—eP div(je(z, u, Du)) + ePjis(z, u, Du) + V(z)uP~t = f(u) in £2,
{ u>0 in 02, (P:)
u=0 onof2;

(b) there existr, o’ €]0, +o0[ such that for every = 1,.. .,k we have

(e ;) = SUPus, o < us(re;) < o', Iimodist(xsli,t/l/tl-) =0,
) Py

1

where.ul; is as in(3);
(c) for everyr < min{dist(M;, .It;): i # j} we have

iIEJO HUEHLOO(Q\Ule Bp(wed) 0

(d) it results
lim {|ue ||, = 0.
e—0

Notice that ifk = 1 assumption (11) can be dropped: in fact following the arguments of [30] it is
possible to prove that the previous result holds without any uniqueness assumption, which instead, as
in the semilinear case, seems to be necessary for thekcasd. This holds true for the-Laplacian
problem (4) and for more general situation we refer the reader to [27].

Various difficulties arise in comparison with the semilinear framework (see also Section 5 of [30]). In
order to study the concentration propertiesugfinside theA;s (see Section 4), inspired by the recent
work of Jeanjean and Tanaka [17], we make a repeated use of a Pucci—Serrin type identity [10] which has
turned out to be a very powerful tool (see Section 3). It has to be pointed out that, in our possibly degen-
erate setting, we cannot hope to h@esolutions, but at most'# solutions (see [14,31]). Therefore,
the classical Pucci—Serrin identity [24] is not applicable in our framework. On the other hand, it has been
recently shown in [10] that, under minimal regularity assumptions, the identity holds for locally Lipschitz
solutions, provided that the operator is strictly convex in the gradient, which, from our viewpoint, is a
very natural requirement (see Theorem 3.1). Under uniqueness assumptions this identity has also turned
out to be useful in characterizing the exact energy level of the solution of (11). More precisely, we prove
that (11) admits a least energy solution having the Mountain—Pass energy level (see Theorem 3.2).

We stress that the functionals we will study, associated with), @e not even locally Lipschitz
continuous (unlesg; = 0) and that tools of nonsmooth critical point theory will be employed (see
[6,9,16,18]).

The plan of the paper is as follows:

— in Section 2, following the approach of [12], we construct the penalized functionahd we prove
that it satisfies the (CPSgondition (cf. Definition A.6);

— in Section 3 we prove two important consequences of a Pucci—Serrin type variational identity (cf.
Theorem 3.2 and Lemma 3.3);

— in Section 4 we study the concentration of the solutienécf. Lemmas 4.1, 4.2, 4.6);
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— in Section 5, finally, we end up the proofs of Theorems 1.1 and 1.2;
— in Appendix we quote some tools of nonsmooth critical point theory.

Notation.

— |- |l and|| - |1, are the standard norms of the spatég?) andW()l"’(Q);
— dist(z, E) is the distance af from a setF ¢ RY;

— 1p is the characteristic function of a sBtc RV;

— B,(y) is the ball inR” of centery and radiusp > 0; we setB,, := B,(0).

2. Penalization and(CPS). condition

In this section, following the approach of del Pino and Felmer [12], we define a suitable penalization
of the functionall, : Wy (£2) — R associated with the problem (P

I.(u) = ap/gj(x,u,Du)—i—;—;/QV(x)]u\p—/QF(u).

By the growth condition on, it is easily seen thak is a continuous functional. We refer the reader to
the Appendix for more details on the variational formulation in this nonsmooth framework: e
be as in (1) and consider the positive constant

l:= sup{s > 0: &_t)l < 2 for every 0< ¢ < s} (13)
tP K

for some fixedk > ¥/( — p). We define the functiof : Rt — R by setting

_ gsp*l if s>/,
fe)=4%"
f(s) ifO<s</

and the mag : 2 x RT — R as
k
g(x,s) == 1a@)f(s) + (1— La(@)) f(s), A=|] 4,
i=1

for a.e.x € 2 and everys € R*. The functiong(z, s) is measurable i, of classC?! in s and it satisfies
the following properties:

o g(x,s) . g(x,8) . .
SETOO e 0, Sl_l)rg+ o1 0 uniformly inx, (14)
0 < 9G(z,s) < g(x,s)s forx € Aands € RT, (15)
0 < pG(x, s) < g(x,8)s < EV(m)sp forz € 2\ Aands € RT, (16)
K

where we have s&¥(z, s) := [J g(z,7)dr.
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Without loss of generality, we may assume that

g(x,s) =0 fora.ex € 2and everys < 0, a7
gz, s,€) = j(x,0,6) foreveryzr € £2,s < 0and¢ € RV, (18)

Let now J. : Wy, (£2) — R be the functional defined as
, 1
Je(u) = ep/ ](CE,U,DU)+—/ V(w)|u|p—/ G(x,u).
0 pJo 0

If z is in one of thed;s, we also consider the “limit” functionals i 1?(R),

B = [ j@uwng+3 [ V@ - [ Fw (19)
RN p JRN RN
whose positive critical points solve Eq. (11). We denote:pthe Mountain—Pass value &f, namely
cz = inf sup Iz(y(t)), (20)
Y€Pz t€[0,1]
;= {y € C([0,1], W (RN)): 4(0) = 0, I;(y(1)) < 0}. (21)

We setc; = ¢, foreveryi = 1,..., k. Consideringr; > 0 such that

u 1
Zai < =—minf¢;: i =1,...,k},
=1 2

we claim that, up to makingl;s smaller, we may assume that
c; <cz<c+o; foralze A, (22)

In fact¢; < ¢; follows becauser; is a minimum ofV in A; and (12) holds. On the other hand, let us
considerz;, — x; such that lin} cz, = limsup,_,, cz. Lety € Pz be such that max(o 17 I, (7(7)) <

LT—Tq

¢ + o;. Sincelz, — I, uniformly on~, we have that for large enoughy € %z, and there exists
T € [0, 1] such that

cz, < Iz, (V(m)) < Ly, (v(1h)) + 0(1) < ¢ + 0 4+ 0(1).

We deduce that limsyp, . cz < ¢; + o; so that the claim is proved.
If A; denote mutually disjoint open sets compactly containifig we introduce the functionals
J.i WP(A;) — R as
n ) l
Jeatw) = [ jGeu D0+ [ V@l - [ 6w (23)
A; b JA; A

foreveryi =1,...,k.



A. Giacomini and M. Squassina / Multi-peak solutions for degenerate equations 121

Finally, let us define the penalized functioral : Wy, (f2) — R by setting
E.(u) := J:(u) + P.(u), (24)
i 1/2 2
Pe(u) = MY ((Jealu)y) " - eN2(e; + Ui)1/2)+,
=1

whereM > 0 is chosen so that

ca+--Fe
M > — .
mini—1, x{(2¢;)Y? — (¢; + 0:)/?}

The functionals/., J. ; and E, are merely continuous.
The next result provides the link between the critical point&of{see Definition A.2) and the weak
solutions of the original problem.

Proposition 2.1. Letu. € Wy, (£2) be any critical point ofE. and assume that there exists a positive
numbereg such that the following conditions hold

ue(z) < ¢ foreverye € (0,e0) andz € 2\ A, (25)
e NI i(us) < ¢; +0; foreverye € (0,e0) andi = 1,.. ., k. (26)

Then, for every € (0,e0), u. is a solution of(P.).

Proof. Lete € (0,g0). By condition (26) and the definition d?., v, is actually a critical point of/.. In
view of (a) of Proposition A.8y. is a weak solution of

—eP div(je(z, u, Du)) + P js(x, u, Du) + V(2)|ulP~%u = G(z, w).

Moreover, by (25) and the definition df, it resultsG(z, u.(z)) = F(u.(z)) for a.e.z € 2. By (17)
and (18) and arguing as in the proof of [28, Lemma 1], one gets- 0 in £2. Thusu, is a solution
of (P.). O

The next lemma is a variant of a local compactness property for bounded concrete Palais—Smale se-
quences (cf. [28, Theorem 2 and Lemma 3]; see also [5]).

Lemma 2.2. Assume tha(7), (8), (10) hold and let(y»,) c L>®°(R) bounded withyy,(z) > A > 0. Let
e > 0 and assume thdt,,) ¢ WP(RY) is a bounded sequence such that

(wp, p) = P /ﬂ.w Up(@)je (@, up, Dup) - Do + &P /ﬂ.w Yp()js(@, up, Dup)p

for everyp € C°(RY), where(wy,) is strongly convergent il —1#'(2) for a given bounded domaif?
of RV,
Then(u;,) admits a strongly convergent subsequencB/ie(£2).
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Sincef2 may be unbounded, in general the original functiochalloes not satisfy the concrete Palais—
Smale condition (see Definition A.6). In the following lemma we prove that, instead, for ever§ the
functional E. satisfies it at every level € R.

Lemma 2.3. Assume that conditiond), (5)+10) hold. Lete > 0.
ThenkE. satisfies the concrete Palais—Smale condition at every tegeR.

Proof. Let (uy) C Wy (£2) be a concrete Palais—Smale sequence:toat levelc. We divide the proof
into two steps:
Step | We prove thaty,) is bounded iy, (£2). From (15) and (16), we get

g g
1961’/ j(SU,Uh,Duh)+—/ V($)|uh|p</g(w,Uh)Uh+—/ V(@) |up P + 9T (ur)  (27)
0 pJo A Pk Joa

for everyh € N. Moreover, by virtue of Proposition A.4, for evelyc N we can compute (u)(us);
in view of (16) we obtain

/AQ(HC, up)up, + JL(up)un]
<eP /Q Je(@, up, Dup) - Duy, + P /Q Js(@, up, Dup)up, + /Q V() [unl?
for everyh € N. Notice that by (9) and the-homogeneity of the mapt{— j(z, s, £)}, it results
Js(@, up, Dup)up, < vj(w,up, Dup),  je(@,up, Dup) - Dup, = pj(x, up, Dup)

for everyh € N. Therefore, we get

/' g unyun + T (u)un] < (v + p)e? / i@ un, Dup) + / V() up? (28)
A (% (%

for everyh € N. In view of (8), by combining inequalities (27) and (28) one gets

min{w e p)uap,g - ]% - 1} [ (Dwl? + V@) < 07.0) ~ J)nd (29

for everyh € N. In a similar fashion, arguing on the functionals;, it results

. 99
mln{(ﬁ — v —per, o on 1} /A (|IDunlP 4+ V(@)|unlP) < 9Jeiup) — JL ;(up)[un]

foreveryh e Nandi =1,... k. (30)
In particular, notice that one obtains

VJei(up) — J. j(up)[up] >0 foreveryh e Nandi =1,...,k
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and everyy + p < ¥ < 9. Then, after some computations, one gets

k

IP(up) — Plun)lup] = —IMeN2 S (e + o) 2 (e iun) )% — e/%(er + 0)?)

i=1
> —CeN2P.(up)?

which implies, by Young’s inequality, the existence of a constlnt0 such that

OPs(un) — Pl(un)lun] > —de™ (31)
for everyh € N. By combining (29) with (31), since

E.(up) =c+0@),  El(up)[un] = ofljunlw )

ash — +oo, one obtains

Ye+ deN
min{(0 — 7 — p)ver, v /p — 0/ (pr) — 1}

| (Du+ V@) < +0(fluslw,) + o) (32)

ash — +o0o, which yields the boundedness af,] in 1Wy(2).

Step Il By virtue of step |, there exista € Wy (§2) such that, up to a subsequence; )(weakly
converges ta, in Wy (£2). Let us now prove that actually:) converges strongly ta in Wy (£2). If we
define for everyh € N the weights

On: = M[(Je,i(uh)Jr)l/z — eN2(e; + Ui)l/2]+(<]€,i(uh)+)_l/2! i=1,...,k,

and putd,(z) = Zle thijl/ii(x) with 0 < 6;,; < M, after a few computations, one gets

(i) =<7 [ L+ 0)jelavun, Dun) - Do+ [ (14 0)iu(e,un Dun)i
for everyp € C2°(12), where
wp = (L+ 0n)g(@, un) — (L4 0p)V (@) unlP~2up + &,
with &, — 0 strongly inW ~1#'(£2). Since, up to a subsequencey,] strongly converges to :=

(L + O)gl(x,u) — (1 + OV (x)|u[P~2u in WP (B,) for every o > 0, by applying Lemma 2.2 with
(2 = B,N 2 andyy(x) = 1+ 0,(x), it suffices to show that for evey> 0 there existp > 0 such that

lim sup / (IDupl? + V(@)|upl?) < 6. (33)
oo,
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Consider a cut-off function, € C*(R") with 0 < x, < 1, x, = 00nB,2, x, = 1 onRY \ B, and
|Dx,| < a/p for somea > 0. By takingp large enough, we have

k
| 4i nsuptty,) = 0. (34)
=1

Let now( :R — R be the map defined by
0 if s <O,
C(s) := {Ms if0 <s <R, (35)
MR if s> R,

being R > 0 the constant defined in (10) aid a positive number (which exists by the growths (7)
and (8)) such that

|s(@,5,6)| < pMj(z, 5,€) (36)
for everyz € 2, s € Rand¢ € RY. Notice that, by combining (10) and (36), we obtain
Js(x,5,8) + pl'(s)j(x,s,€) >0 foreveryz € 2, s € Rand¢ € RY. (37)

By (34) it is easily proved thaP’(up)(x,un ecwn)y = 0 for everyh. Therefore, since the sequence
(x our, €)Y is bounded iri¥y,(£2), taking into account (37) and (18) we obtain

o(1) = J(up) (x  up, €@)

:ﬁp/gjg(%uh,Duh) - Duyx, €1) —|—€p/9j§(x,uh,Duh) - D pup €60n)
+eP /Q [js(@, up, Dup) + p¢'(up)j(@, un, Dup)|upX,o S un)
+ /Q V(@) |up[Pxo €01 — /Q g(, up)up X, €40
2 /Q(P*Epj(ﬂﬂ,uh,Duh) + V(@) up|P) x, €4
T /Q Je(w,un, Dup) - Dxgup &) — /Q 9@, up)upx, €
ash — +4o0. Therefore, in view of (16) and (34), it results
o(1)= /Q (pePv| Dup |P + V (@) up|P) x , €0

1
+€p/ jg(x,uh,Duh)-DXQuhe((”h)——/ V(x)\uh\pxge((“h)
1o} K Jo
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ash — +oo for g large enough. Since by (7) we have

SHEQN

. C _
[ dewrun, Dun) - Dxcgun ) < S [Du s <
there exists a positive constafit such that
!
lim sup/ (|Dup P + V(@)|upl?) < —
h 2\B,
which yields (33). The proof is now completed

OO(RN).

3. Two consequences of a Pucci—Serrin type identity
Let2:RY xR x RY — R be a function of clas§'* such that the function — £(z, s, £)} is strictly
loc

convex for every £, s) € RY x R, and lety € L

We now recall a Pucci—Serrin variational identity for locally Lipschitz continuous solutions of a general
class of Euler equations, recently obtained in [10]. Notice that the classical identity [24] is not applicable
here, since it requires th@? regularity of the solutions while in our degenerate setting the maximal

regularity isCi5? (see [14,31]).
Theorem 3.1. Letu:RY — R be a locally Lipschitz solution of

—div(De%(z, u, Du)) + Ds&(x,u, Du) = ¢ in @' (RV).

Then
(38)

N . _
Zl/RN DWW D¢, %(x,u, Du)Dju — /RN [(dlv h) $(x,u, Du) + h - Dmi(ac,u,Du)}

= / (h - Du)p
RN
for everyh € CHRY,RN).
We want to derive two important consequences of the previous variational identity.
In the first we show that the Mountain—Pass value associated with a large class of elliptic autonomous
equations is the minimal among other nontrivial critical values.
Theorem 3.2. Letz € RY and assume that conditiorfs), (5)<10) hold. Then the equation
—div(je(z, u, Du)) + js(@,u, Du) + V(@)uP~t = f(u) inRY (39)

admits a least energy solutianc W1P(RY), that is
Iz (u) = inf{ Iz(w): w € W?(RY) \ {0} is a solution of(39)},

wherel; is as in(19). Moreover,/z(u) = ¢z, that isu is at the Mountain—Pass level.
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Proof. We divide the proof into two steps.

Step | Letu be any nontrivial solution of (39), and let us prove thgt) > cz. By the assumptions on
V andf, itis readily seen that there exigg > 0 anddg > 0 such thafz(v) > do for everyv € WP(RY)
with ||v]]1, = eo. In particular; has a Mountain—Pass geometry. As we will $ég + (), so thatc; is
well defined. Let now: be a positive solution of (39) and consider the dilation path

x .
o= (5) 1eeo
0 ift=0.

Notice that|y(t)||7,, = t" 7| Dul[5 + t" ||u||5 for everyt € RT, which implies that the curve belongs
to C(R*, WiP(RN)). For the sake of simplicity, we consider the continuous funcibnR™ — R
defined by

H(s) = /0 Th(t)dt,  whereh(s) = —V(z)sP1 + f(s).
For everyt ¢ R it results that
LGO) = [ i@A0.090) - [ H6O) =7 [y - [ )

which yields, for every € Rt
SLG0) = = [ Duy - NE [ ), (40)
dt RN RN

By virtue of (8) and (10), a standard argument yieldss L>(RY) (see [26, Theorem 1]); by the

loc

regularity results of [14,31], it follows thai < Cﬁ'ﬂ(RN) for some O0< 8 < 1. Then, since { —

ocC
j(x, s, &)} is strictly convex, we can use Theorem 3.1 by choosing in (38) 0 and

%(s,€) = j(z,s,&) — H(s) foreverys € RT and¢ € RY, (41)
Mz) = hi(z) =T <%> x foreveryx € RN andk > 1,

beingT € CHRY) such thatl'(z) = 1 if |#| < 1 andT'(z) = 0if || > 2. In particular, for every; we
have thath;, € CY(RY,R") and

Dihi(m) = DZ-T(%)% + T(%)éij foreveryz ¢ RN, i, =1,...,N,

(div hy)(x) = DT(%) : % - NT<%> for everyz ¢ RV,
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Then, sinceD,.%(u, Du) = 0, it follows by (38) that

ijzl/RN DZT(k) . DjuDg,%(u, Du) +/RNT(]<;)D£$(U’DU) Du

_ /RN DT(%) 2 S, D)~ /RN NT(%)SE(U,Du) _0

for everyk > 1. Since there exist§' > 0 with

DZ-T(%)% < C foreveryr e RV, k>1andi,j=1,...,N,

by the Dominated Convergence Theorem, letting> +oo, we obtain
/[S&N [N¥(u, Du) — D¢&(u, Du) - Du| = 0,

namely, by (41) and the-homogeneity of £ — j(x, s, &)},

(N = p) /RN (@, u, Du) = N/RN H(u).

In particular notice thaf,~ H(u) > 0. By plugging this formula into (40), we obtain

%Iz () = Na = [

which yields & I;(4(t)) > 0 for 0< ¢ < 1 and$ I;((#)) < O for ¢ > 1, namely

sup Iz (v(t)) = Iz (v(1)) = Iz(uw).
te[0,4o00[
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(42)

Moreover, observe that(0) = 0 andz(v(T)) < 0 for T > 0 sufficiently large. Then, after a suitable

scale change in v € ?; and the assertion follows.

Step Il Let us now prove that (39) has a nontrivial solutiore W1P(RY) such thatc; > I;(u). Let
(uy) be a Palais—Smale sequence fpat the levek;. Since (i;) is bounded in¥1P(RY), considering

the testu;, €®») with ¢ as in (35), and recalling (37), we have
pes + 0(1) = pIa(up) — I (up) [upe»]

:/ p(l—eC(“h))j(gE,uh,Duh)—i—/ (1_e<(uh))V(i-)‘uh‘p
RN RN
B /RN [p¢! (up)j(®, un, Dup) + js (&, un, Dup)]uy, €©r)
= [ pF@)+ [y, e
RN RN

é—/ PF(Uh)+/ Fup)uy, €@ < C/ lup [P + Jup|?
RN RN RN
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for someC > 0. By [21, Lemma I.1], we conclude thaty) may not vanish in.?, that is there exists
z, € RN, R > 0and\ > 0 such that for, large

[ (43)
$h+BR

Let vy,(x) = up(zp + ) and letu € WEP(RY) be such that, — u weakly inW1P(RYN). Sincevy, is
a Palais—Smale sequence fgrat levelcz, by Lemma 2.2, we have that, — w« strongly inW,cl,f(]RN).
By (43), we deduce that is a nontrivial solution of (39). Lei > 0; we claim that there exists > 0
such that

lim inf/ {j(i,vh,Dvh) + }V(:E)|vh|p — F(vp)| = —o. (44)
h RN\ B, p

In fact, letpo > 0, and lety, be a smooth function such thatQ 7, < 1,7, = 00onB,_1, 1, = 1 on
RN\ B, and||Dn,|l~ < 2. By Proposition A.4, testing with,v;,, we get

<wh! 779”h> - / [ji(j', Uh! Dvh) : D(ngvh) + jS('f! Uhi Dvh)ngvh
BQ\BQ,]_

+ V(@) |vn[P1, — f(un)onn,)

= Javs, [e(@, vp, Dup) - D(novn) + js(@, v, Dup)novn + V(@) oaPn, — f(on)unn,),
wherew;, — 0 strongly inW ~1#'(RY). For the right-hand side we have
/RN\ 5 [je(@, vn, Dog) - D(novn) + Js(Z, vi, Do)novn + V(@) vnlPn, — f(on)vrmno)
= /RN\BQ [pj(Z, vh, Dvp) + js(Z, vn, Dop)vp, + V(Z)|on|P — f(on)vn],
and by (9) we have
/RN\BQ [pj(Z, vp, Dvp) + js(Z, v, Dop)vp, + V(Z)|on|P — f(on)on]
<@+1) /R ", 3z, v, Dup) + /R s, V(@)|vn? = f(on)on

=+ [ pmmem+5wm%W—ﬂwﬂ
]RN\BQ P

P+ _ -
0 v, V(@)|on|P + /RN\BQ V(@)|on|P + /RN\BQ [(p + ) F(vn) — fwp)vn]

<@+ VamﬂwnfvaW—Fmﬂ+/ [0+ 7)F(vn) — 9F(on)]
]RN\BQ P RN\BQ

<+ [ pmmem+5wm%W—ﬂwﬁ
]RN\BQ P
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We conclude that
' L 1
G+ [, i@ o Do)+ V@l - P
RN\ B, p

> (wp, Nyvn) —/ [7e(Z, vp, Dup) - D(noun) + js(&, vn, Dup)nevn
BQ\BQ—l
+ V(@) |vnlPno — f(on)onn,)-

Since by Lemma 2.2 we havg — u strongly inW12(B,), we get

lim Bos (@, vn, Dw) - D(gvn) + Js(T, v, Don)ngvn 4+ V(@) vnlPne — f(on)vnng)
o o—1

- / [e@,u, Du) - D) + js(F u, Duyngu + V(@) ulPn, — flu)un,),
Bo\B,-1

and so we deduce that for evefy> 0 there existg > 0 such that for alb > g we have

. ' 1
lim inf / {](f, vp, Dup) + =V (Z)|vp|P — F(Uh)] > —0.
h RN\ B, p
Furthermore we have
. L 1
“m/ [](vahaDUh)+ —V(Z)[vn | —F(Uh)} = Iz(u, By),
h JB, p
where
S 1
I:(u, By) = / [](x,u,Du) + =V (@)|ulP - F(u)},
B, p
and so we conclude that for all> g
Cx 2 IE(U,BQ) — 0.
Letting o — +oo and since is arbitrary, we get
cz = Iz(u),

and the proof is concluded.O

The second result can be considered as an extension (also with a different proof) of [12, Lemma 2.3]
to a general class of elliptic equations. Again we stress that, in this degenerate setting, Theorem 3.1 plays
an important role.
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Lemma 3.3. Letu € W1P(RY) be a positive solution of the equation
— div(je(@, u, Dw)) + js(, u, Du) + V (z)uP~*
= Liay<0p () f (1) + Lgay>0) (@) f(w) INRY. (45)
Thenu is actually a solution of the equation
— div(je(Z, u, Du)) + j5(Z, u, Du) + V(@)uP ™t = f(u) in RV, (46)

Proof. Let us first show that:(x) < ¢ on the set {1 = 0}. As in the proof of Theorem 3.2 it follows
thatu € C&)f(RN) for some 0< 3 < 1. Then we can apply again Theorem 3.1 by choosing this time
in (38):

L(s,8) :i=j(z,s,&) + @sp for everys ¢ Rt and¢ € RY,
() = {py<0p (@) f (u(@)) + Lzys0p(@) f (u(x)) for everyz € RV,

X

h(zx) = hi(x) = <T<—

/<:>00> for everyz € RY andk > 1

beingT € CXRYN) such thafl'(z) = 1if |z| < 1 andT'(x) = 0if |2| > 2. Thenh;, € CLRY,RY) and,
taking into account thab,¥(u, Du) = 0, we have

/RN l% ﬁ;DiT(%)DluD&SB(u, Du) - DlT(%) % Pu, Du)] = /RN T(%)w(x)plu

for every k > 1. Again by the Dominated Convergence Theorem, letting— oo, it follows
Jr~ @(x)Dyu = 0, that is, after integration by parts,

/ [F(u(0,2")) — F(u(0,2"))] dz’ = 0.
RN-1

Taking into account thak'(s) > F(s) with equality only ifs < ¢, we get

u(0,2) < ¢ foreveryz’ € RV-1, (47)
To prove that actually

u(zy, ') < ¢ foreveryz; > 0ands’ € RV-1, (48)
let us test equation (45) with the function

( ) . 0 if x1 <0,
T =N (wlwg, o) — 0) T @) if 51 >0,
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where¢ :RT™ — R is the map defined in (35). Notice that, in view of (47), the functiobelongs to
Wir(RN). After some computations, one obtains

/' pj (2w, D(u — £)7) €@ 4 / [o(@ 1w, Du) + p¢’(w)j(E, u, Du)] (u — £ €@
{z1>0} {z1>0}
- / | [V(:z) - g]““(u -nte=o (49)
{$1>0} K

By (1) and (37) all the terms in (49) must be equal to zero. We concludewithat)t = 0 on {z; > 0},
namely (48) holds. In particulas(z) = f(u(x)) for everyz € RY, so thatu is a solution of (46). O

4. Energy estimates

Let d.; be the Mountain—Pass critical value which corresponds to the functibpalefined in (23).
More precisely,

dei = inf sup J.;(v(t)), (50)
€L +¢[0,1]

where

I = {7 € C([0, 1], WP (4;)): 7(0) = 0, J.;(v(1)) < O}.
Then the following result holds.
Lemma 4.1. We have

lim €_Nd5i =
e—0t '

foreveryi =1,... k.
Proof. The inequality
dei < Ve; + o(eN) (51)

can be easily derived (see the first part of the proof of Lemma 4.2). Let us prove the opposite inequality,
which is harder. To this aim, we divide the proof into two steps.
Step | Let w. be a Mountain—Pass critical point fdg ;. We havew. > 0, and by regularity results
w. € L®(A;) N Cpl(Ay). Let us define
M, = supw.(x) < o0,
z€A;

and for all§ > 0 define the set

Us:={xz e Ay we(x) > M, — 5}
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By Proposition A.4, we may use the following nontrivial test for the equation satisfied by
5 = [we — (M. — 0)] " &),

where the mag : R™ — R is defined as in (35). We have
Dyps = &) D, 1y, + ¢5¢’ (w:) D,

and so we obtain
& /U pj(x, we, Dw,) eC(wE) +eP /U [pgl(ME)j(% We, Dwe) + js(x, we, Dws)] s
) 5
= [ Fv@ut + gl
Us
Then, by (37), it results

/U [~V (@)w?™t + gz, we)]ps > &P / pj(x, we, Dw.) €W > 0. (52)
)

Us

Suppose that/s N A; = () for somed > 0; we have thay(x, w.) = f(w.) on Uy, so that
[ V@4 fwes >0 (53)
8

On the other hand, we note that by constructfgn,) < %V(x)w?*l with strict inequality on an open
subset ofl/;. We deduce that (53) cannot hold, andlgon A; # ( for all §. SinceA; is compact, we
conclude thatv. admits a maximum point. in A;. Moreover, we havev.(z.) > ¢, wherelis as in (13),
since otherwise (52) cannot hold.

Let us now consider the functions(y) = w.(z. + €y) and lete; — 0. We have that, up to a
subsequence;., — 7 € A;. Sincew. is a Mountain—Pass critical point ot ;, arguing as in step | of
Lemma 2.3 there exist§ > 0 such that

L, @Dup + Vi) < Cdy,

which, by (51) implies, up to subsequences, — v weakly in WiP(RN). We now prove that # 0.
Let us set

9(ze; + €5y, v, (y))
vé’jjl » if ve;(y) # 0,

0 if ve; (y) = 0,
Ay, s,8) = je(e; + €5y, 5,6),
B(y, s,€) = d;(y)s" ",
C(y, s) = js(we; + €5y, 8, Dve,(y)

Vi(z.. ) —
HOESE Sl
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for everyy € RV, s € Rt and¢ € RY. Taking into account the growth of condition gn the strict
convexity ofj in £ and condition (8), we get

Aly,s,8) €= vlEP, AW s, <Pt |B.s, 8| < |d;j@)|sPPh
Moreover, by condition (10) we have
s>2R=C(y,s) =0

for everyy € RN ands € R*. By the growth of conditions op, we have that fop sufficiently small
d; € LN/®=9)(B,,) for everyp > 0 and

S = supl|d;l| /-, < D(l + sup|v., HL,,*(BZQ)) < 400
J jeN

for someD = D(p) > 0. Since we have diA(y, vc,, Dve;)) = B(y,ve;, Dve;) + Cly, ve;) for every
j € N, by virtue of [26, Theorem 1 and Remark at p. 261] there exists a raditsO and a positive
constantM = M (v, co, So°) such that

supmax|ve, ()| < M(20)~ ™ supllve, || Lr(B,,) < +o0
jENYEB, jEN

so that {. ) is uniformly bounded inB,. Then, by [26, Theorem 8], up to a subsequence) Converges

uniformly to v in a small neighbourhood of zero. This yield®) = lim; v.;(0) = lim; w, (zc;) > £.
Without loss of generality we may assume thas a positive solution of

—div(je(#, v, Dv)) + js(@, v, Dv) + V(@)P ™ = Lz, <0} f(0) + Lizy>0) F(0)-
By Lemma 3.3 it follows that is actually a nontrivial solution of
—div(je(z, v, Dv)) + js(Z, v, Dv) + V(@WP ™t = f(v).

Then, by Theorem 3.2 and (22), we hai€v) = ¢z > ¢;. In order to conclude the proof, it is sufficient
to prove that

Iimjinf e Ndey i = Iimjinf ;N e, i(we,) = Ix(v). (54)

Step Il We prove (54). It results
gj_NJé‘j,i(ij)

) 1 n n
= [ e e Do)+ [ Ve wen - [ Gl ),
€51t €5t

&j )t
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whereA. ; = {y € RV: a., + ¢;y € A;}. By Lemma 2.2, we have., — v strongly inWs2(RN).
Following the same computations of Theorem 3.2, step Il, we deduce that sor-al there existg > 0
such that for alb > g we have

o ) 1

“mjmf //isj,i\BQ |:.]('I€j + €Y, Ve;y Dvey) + ]_)V(xEj + 6jy)v§j =Gz, + 5]'%”@)} > —0.
Furthermore we have

. ) 1 »

|I5n /Bg ](xej + 5jy1UajaDUaj) + Z;V(xaj +€jy)v€j - G(xaj + 5jyavaj) = Iz(v, By),
where

o 1
Iz(v, By) = / |:j(1‘,?),D1)) + =V (@)W — F()|.
B, p

We conclude that for alp > o

Iimjinf ;N ey i(we,) = Is(v, By) — 6,

and (54) follows lettingg — +ooc andé — 0. O
Let us now consider the class
I.:={y € C([0,1]F, Wy (£2)): v satisfies conditions (a)—(})

where:

(@) (1) = Xi_1 vi(t) for everyt € 3[0, 1], with v; € C([0, 1], Wy (£2));
(b) suptfy;(t;)) C A; foreveryt; € [0,1] andi = 1,...,k;

(¢) v(0) =0andJ.(y;(1)) < Oforeveryi = 1,...,k;

(d) e NE.(y(t)) < XF_; ¢; 4 o for everyt € 9]0, 11,

where 0< o < 3min{c;: i = 1,..., k}. We set

c. ;== inf sup E.(v(t)). (55)
yel: tc[o,1]*

Lemma 4.2. For € small enough’. # () and

k
gin(’)L e Ne, = z; G- (56)
P
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Proof. Firstly, let us prove that for small . # () and
k
ce < €NZCZ' +o(eV).
i=1
By definition ofc;, for all § > 0 there existsy; € P; with

; < max I (v <c¢+ —,
& re[o] xi ('YZ(T)) ci + ok

where thex;s are as in (2) and
P, = {v; € C([0,1], WP (RM)): 4,(0) = 0, I, (v:(1)) < O}.
We choose so thatd < min{c, ko;}. Let us set

Tr — Iy

¥i(T)(x) == m(m)fyi(T)( ) for everyr € [0, 1] andz € 2,
wheren; € CRY), 0 < n; < 1, supt;) € A;, andz; € int({n; = 1}). We have

o [ it o) Daoy s L
Jmm»5éﬁ@mm0m»+pkwm

%mﬁ—kem%my

Since it results

D) = D) (T ) + Zn@D(n) (),
and for all¢ég, & € RN there exists € [0, 1] with

gz, 5,81+ &2) = j(x,5,82) + je(x, 5,61 + &2) - &1,
taking into account thge-homogeneity ofj, the term

e [ @30, D)
has the same behavior of

[ i(wnteme) (S5 ) @ () )

up to an error given by

&Lkwmmﬂmam+&m»am,

135

(57)

(58)

(59)

(60)

(61)
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where we have set

@)= 0@, 6@ =D (T ) = Sn@ue) (T,

andt(z) is a function with 0< #(x) < 1 for everyz € (2.
We proceed in the estimation of (61). We obtain

P

kkummﬂmam+@my&m

<o [ @l + o [ e awl,
Making the change of variable= (x — z;)/e, we obtain

P

kkummﬂmam+@my&m

<a™ [ Dutei+ el o)

™ [ e+ ) DU Dt + )] ()6 = oY)

where o) is independent of, sincey; has compact values W ?(RY). Changing the variable also
in (60) yields

[ () (S5 ) m@piun ()

=l /]RN J (@i + ey, mi(zi + ey)vi(m) W), ni(z: + ey)Dyi(T)(y)).

By the Dominated Convergence Theorem we get

lim [ gz + ey, ni(zi + ey)vi(D) W), ni(z; + ey)Dvi(r)(y)) = /R L J@s (), Di(r)(y)

e—0 /RrN

uniformly with respect ta-. Reasoning in a similar fashion for the other terms in (59), we conclude that
for € small enough

J: (3i(7)) = N I, (vi(r)) + o(e™) (62)

for everyr € [0, 1] with o”) independent of. Let us now set

k
70(7—11 e !Tk) = Z’AYZ(TZ)
i=1

Since supt{;(7)) C A, for everyr, we have that/. ;(7;(7)) = J-(%:(7)); then, by the choice af, we get
for e small
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N 1/2 N 1/2
[Jei(Gu(m) )2 = N2 + o) 2 = [T (3a(0) )72 = eVP(cs + o)
= V2[L, (1) + o) 2 = V(e + 03)

1/2
<eN? [cz - 2% - 0(1)] —eN(e; + 0)? <0,

and

k
E-(yo(rw, - 7)) = Je(vo(re, -, 7)) = D Je(5i(7)).
i1

By (58) and (62) we obtain that farsmall enough

’YO(T) eV Z(Cz ) < eV (sz; ¢ + U)

so that the clas$: is not empty. Moreover, we have

lim sup <. ~ Zcﬁ-é

e—0t

and, by the arbitrariness 6f we have conclude that (57) holds. Let us now prove that
k
ce > eV Z ci +o(eN). (63)
i=1

Given~ € I., by a variant of [7, Proposition 3.4] there exists [0, 1]* such that

Je,i (7(73)) = d
foralli =1,...,k, where thel. ;s are as in (50). Then we have by Lemma 4.1
k k
sup J-(y(t)) = sup Z Jei((®) 2D dei =V D i+ o(eV
tel0,1]% tel0,1]F j—1 i=1 i=1
which implies the assertion.O

Corollary 4.3. For everye > Qthere exists a critical point. € Wy (£2) of the functionalE. such that
¢. = E-(uc). Moreover|u.||w, — O0ase — O.

Proof. By combining Lemma 2.3 with (b) of Proposition A.8 it results thatsatisfies the Palais—Smale
condition for everyc € R (see Definition A.3). Then, taking into account Lemma 4.2, for every O
the (nonsmooth) Mountain—Pass Theorem (see [6]) for the €lapsovides the desired critical poiat
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of E.. To prove the second assertion we may argue as in step | of Lemma 2.3,witblaced by.. and
c replaced byF. (u.). Thus, from inequality (32), for every> 0 we get

VE.(u.) + dev
min{(J — 7 — pv=r,0/p — /(o) — 1}

/Q (|Duel? + V(@)uel?) < (64)

By virtue of Lemma 4.2, this yields

19(61+"'+Ck)+d
W —~v—pv

| (up vl < { b r 1 o),

ase — 0, which implies the assertion.O
Let us now set:

2. ={yeRV: ey 2}, vy) = uley) € WHP(12),
Aii={yeRV:eyec &}, A:={yecRN: eye 4}

Lemma 4.4. The functiorw, is a solution of the equation

—div((1+ 0-(cy)) je(ey, v, Dv)) + (1 + b-(cy)) js(ey, v, Dv)
+ (14 0-(en)) VEyv" ™t = (1+ 0(ey)) gey,v) i 82, (65)

where for every > 0

k
es(x) = 96,@']1 A,(x)’ 9€,i € [O,M],
2 i, (66)

95’Z‘ = M[(ngi(u5)+)l/2 — €N/2(CZ' + O'i)l/z]Jr(Ja,i(ua)-f—)il/z'
Proof. It suffices to expand’(u:)(p) = O for everyp € C°(£2). O
Corollary 4.5. The sequencg.) is bounded iV 1?(RY).

Proof. It suffices to combine Lemma 4.2 with the inequality

196_NC€ +d
/RN (Del" +VOIl) < == P 0/p— 976m —

which follows by (64). O

The following lemma “kills” the second penalization termigf.
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Lemma 4.6. We have
lim e N J.i(ue) = ¢ (67)
e—0

foreveryi =1,... k.

Proof. Let us first prove that, as — +oo,

lim sup (|Dve|P + |ve|P) = o(1), (68)
e—0t J2:\Np(Ae)

where N,(4.) = {y € RY: dist(z/ A:) < o}. By Proposition A.4, we can test equation (65) with
¢€ gvs eC(UE) WhereT/)e Q - l Z =1 ¢€ o’ ¢€ o € COO(RN)

vl =1 ifdisty, A.;) < g Wi, =0 ifdisty, A.;) > o

and the functior( is defined as in (35). By virtue of (1), (7), the boundednes:9fia W1P(RY) and
(37) there exist”, C’ > 0 such that

¢ (1 DveP + [ve]”)
2:\N(Ae)

<, @ oeten) piteyve Do) + {Vien - fi He gl
- —/ u (1+ 6:(y)) [s(ev, ve, Dve) + p¢ (ve)ii(ey, ve, Dve) vepe o €0

- / u (1+ 0(cv)) je(ey, ve, Dve) - D yve €602)

Wi . C _ C
< ZeMR/ ‘Dwa,g“]ﬁ(gyfvasta)‘Ue < _HDUSHg lHUe?HP < —,
02:\Ae 0 0

which implies (68). Now, to prove (67), we adapt the argument of [12, Lemma 2.1] to our context. It is
sufficient to prove that

l@oe_NJe,i(ue) <oy (69)

foreveryi = 1,...,k. Then (67) follows by arguing exactly as in [12, Lemma 2.4]. By contradiction, let
us suppose that for sorae — 0 we have

limsupe; V., i(ue,) > ¢ + 0. (70)
J
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Then there exists > 0 with

[ Do+ o) >

sJ-,i

and so by (68) there exists> 0 such that forj large enough
/ (IDve [P + [, P) > 2.
No(Ae0) ! ! 2

Following [12, Lemma 2.1], P.-L. Lions’ concentration compactness argument [21] yields the existence
of S > 0,p > 0 and a sequenag € A, ; such that forj large enough

[z (71)
Bs(y;)

Let us seb;(y) := ve,;(y; +y), and lete;y; — = € A;. By Corollary 4.5, we may assume thgtweakly

converges to somein W12(RY). By Lemma 2.2, we have thaj — v strongly inWo?(RV); note that
v # 0 by (71). In the case disff, 0/.; ;) — +oo, sincev; satisfies in-y; + A, ; the equation

—div(je(ejyj + €5y, v, Dvj)) + js(ejy; + €5y, v, Dvj) + V(ejy; + gy’ = f(v),
v satisfies oiRY the equation

—div(je(@, v, Dv)) + js(z,v, Dv) + V(@)P L = f(v). (72)
If dist(y;, 04, ;) < C < +o0, we deduce that satisfies an equation of the form (45), and by Lemma 3.3,
we conclude that satisfies Eq. (72). Sinaeis a nontrivial critical point for/z, by (11) and Theorem 3.2,

recalling thatc; < ¢z < ¢; + 0y, we gete; < Iz(v) < ¢; + 0. Then we can find a sequen&g — +o0
such that

, ' . 1
lim 35y, ve;y Dve,) + =V(ejy)|ve; [P — Glejy, ve;) = 1z(v) < ¢ + 03
J JBr;(y5) p

Then by (70) we deduce that fgiarge enough

/ (IDve, P + v, [7) > A > 0.
Ae; i\Br; (y;)

Reasoning as above, there exdsp > 0 and a sequengg € A, ; \ Bg,(y;) such that

AR B (73)
B(45)
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Lete;g; — & € Ay; then we havey;(y) := v.,(§; +y) — 0 weakly inW!?(R”Y), whereg is a nontrivial
solution of the equation

— div(je(&, v, Dv)) + jis(F, v, Dv) + V(@) = f(v).
As before we gef;(?) > ¢;. We are now in a position to deduce that

H@Mgﬂam@>gm+@m>k%
In fact, v, satisfies in/igj,i the equation

— div(je(ejy, ve;, Dve;)) + Js(ejy, ve,, Do) + V(ajy)q%’]fl = g(ejy ve,)- (74)

Sincey;,y; € A, for j large enoughB; r := B(y;, k) U B(y;, R) C /isj,l-, and so we can test (74)
with
o(y) = {w<%) + w<%) - 1] ij(y)1

wherey) € C°(R) with 0 < ¢ < 1,¢(s) = 0 for s < 1 andy(s) = 1fors > 2. Reasoning as in
Lemma 4.1, we have that for all> 0 there exist9? such that for allR > R we have

. 1
/AAW\BM [y(ajy, vey1 Do) + SV (el P G(sjy,vgp} > 5

so that
liminf &> NJ. i(uc,) = Iz (v, Br) + Ix(8, Br) — 6.
J

Letting R — +oo0 andd — 0, we get

H%WQW@M%Q>%p (75)

The same arguments apply to the functiofialwe have that
|@Wgwkm@>%ﬁ (76)
Then by combining (75) and (76) we obtain
HWM@W@@ﬁ}%+MW@W—@+@Wﬁ
By Lemma 4.2, we have

k
M[(2c:)? — (i + Uz‘)l/z]i <
-1

against the choice af/. O
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5. Proofs of the main results
We are now ready to prove the main results of the paper.

Proof of Theorem 1.2. Let us consider the sequenee Y of critical points ofE. given by Corollary 4.3.
We have thatu. |lw, — 0. Sinceu. satisfies

—div((1+ 0-(2)) je(x, v, Dv)) + (1 + () js(x, v, Dv)
+(1+0(2)) V(@) = (14 0.(2)) g(z,v) in £,

with 6. defined as in (66), by the regularity results of [26]is locally Holder continuous ifi2. We claim
that there exists > 0 such that

ue(xe,i) = SuUpu, > o > 0 (77)

A
for everye sufficiently small and = 1,.. ., k: moreover
Iimodist(xeli,ﬂ/ti) =0 (78)
E—
for everyi = 1,..., k, where thell;s are the sets of minima &f in A;. In fact, let us assume that there
existsig € {1, ..., k} such thatu.(z.;,) — 0 ase — 0. Thereforepu. — 0 uniformly onA;, ase — 0,

which implies that

sup v:(y) — 0 ase — 0, (79)
yeAs,io

wherev.(y) := u.(ey). On the other hand, since by (67) we have

liinoafNngio(ug) =c, > 0,

consideringA,, relatively compact in;,, following the proof of Lemma 4.6, we finfl > 0 andp > 0
such that

s [ 2o
yeAE,io Bs(y)

for everye € (0,2p), which contradicts (79). We conclude that (77) holds. In order to prove (78), it is
sufficient to prove that

l@ov(%’i) - n)llinV
for everyi = 1,..., k. Assume by contradiction that for somg

lim V(zci) > minV = by,.
e—0 AiO
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Then, up to a subsequence,, ;, — =;, € A;, andV(z;)) > b;,. Then, arguing as in the proof of
Lemma 4.6 and using Theorem 3.2, we would get

lim inf gj*Njaiyio(uai) 2 Iy, (v) = o) > 4
i . .
which is impossible, in view of (67).
We now prove that
k
lim u. =0 uniformly ons2\ ] int(4;). (80)
e—0

i=1
Let us first prove that

lim supu. =0 foreveryi =1,...,k.
=094,

By contradiction, letp € {1, ..., k}and o > O with u.(z;) > o for (z;) C 94;,. Up to a subsequence,

xj — xo € 04;,. Therefore, taking into account Lemma 3.3 and the local regularity estimates of [26]
see also the end of step | of Lemma 4.1), the sequern@s := u..(z; + £;y) converges weakly to a
YA J

nontrivial solutionv € W1P(RYN) of

— div(je(zo, v, Dv)) + js(xo,v, Dv) + V(zo)o?t = f(v) InRVN.
As V(zg) > V(z;,), we have

Iimjinf &5 N e io(ue;) = Lug(v) > ci,
which violates (67). Testing the equation with

(ug — miaX§91ipuS)+1Q\A eC(us)’

as in Lemma 3.3, this yields that(x) < max sup, 4, u. for everyz € 2\ 4, so that (80) holds.
By Proposition 2.1y, is actually a solution of the original problem.(jfbecause the penalization terms
are neutralized by the facts ;(u.) < ¢; + o; andu. < £ on 2\ A for e small. By regularity results, it

follows u. € C,%f (£2), and so point (a) is proved. Taking into account (77) and (80), we get.tHads a
maximumz. € {2 which coincides with one of the. ;s. Consideringi.(y) := u-(x-; + €y), Sincev; is

uniformly bounded irWlég’(RN ), by the local regularity estimates [26], there existsvith

ue(xe,i) < o
foralli = 1,...,k. In view of (77), (78) and Corollary 4.3, we conclude that points (b) and (d) are
proved. Let us now come to point (c). Let us assume by contradiction that therereXisisands; — 0
such that there existg € A;, \ Bi(xe; i) With

lim supue; (y;) = 9.
J
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We may assume thagy — ¥, ¢, i, — T, andv;(y) = ue, (yj+€;9) — 0, 05(y) = ue, (e, i +€5y) — v
strongly inWéf(RN): then, arguing as in Lemma 4.6, it turns out that

Iimjinf ;N e io(ue) = Iz(v) + I5(0) > 2¢;,

which is against (67). We conclude that point (c) holds, and the proof is concludgd.
Proof of Theorem 1.1. If 1 < p < 2 andp < ¢ < p*, the equation
~DNu+ V@t =ut inRY (81)
admits a unique positive€'* solution (up to translations).
Indeed, a solutiom. € C*(R™) of (81) exists by Theorem 3.2. By [20, Theorem 1] we ha(e) — 0
as|x| — oo. Moreover, by [8, Theorem 1.1], the solutienis radially symmetric about some point
zo € RY and radially decreasing. Thenis a radial ground state solution of (81). By [27, Theorem 1],
u IS unigue (up to translations). Then (11) is satisfied and the assertions follow by Theorem 1.2 applied
to the functionsj(z, 5, &) = 1[¢[P and f(s) = s~ O
Appendix. Recalls of nonsmooth critical point theory
In this section we quote from [4,6] some tools of nonsmooth critical point theory which we use in the
paper.
Let us first recall the definition of weak slope for a continuous function.
Definition A.1. Let X be a complete metric spacg; X — R be a continuous function, ande X. We
denote byldf|(u) the supremum of the real numbers> 0 such that there exist> 0 and a continuous
map
%: B(u, ) x [0,d] — X,
such that, for every in B(u, d), and for everyt in [0, 4] it results
d(¥(v,t),v) <t,  f(¥#(v,1) < f(v) —at.
The extended real numbgtf|(u) is called the weak slope gfatw.

The previous notion allows us to give the following definitions.

Definition A.2. We say that: € X is a critical point off if |df|(u) = 0. We say that € R is a critical
value of f if there exists a critical point € X of f with f(u) = c.

Definition A.3. Letc € R. We say thalf satisfies the Palais—Smale condition at lev@PS). in short),
if every sequenceu(,) in X such thatdf|(u,) — 0 andf(up) — ¢ admits a subsequence converging
in X.
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Let us now return to the concrete setting and cho@ise= Wy (f2). Lete > 0 and consider the
functional f : Wy, (£2) — R defined by setting

f@) = [ @D+ [ vEr - [ G (82)

whereG(z,s) = [5 g(z,t)dt andg: 2 x R — R is now any Carathéodory function. Althoughis a
nonsmooth functional, its directional derivatives exist along some special directions.

Proposition A.4. Letu, ¢ € Wy (£2) be such thafj,(z, u, Du)e]~ € LY(f2).
Then we haveé,(x, u, Du)p € L'(£2), the directional derivativef’(u)(¢) exists and

F(u)(g) = e /Q je(w,u, Du) - Dy + & /Q s, u, Du)p + /Q V(@)|ulP~2up — /Q o w)e.

In particular, if (10) holds, for everyp € L>®(£2), ¢ > 0, we havej,(z, u, Du)pu € LY(£2) and the
derivative f'(u)(pu) exists.

Definition A.5. We say that is a (weak) solution of the problem

—eP div(je(z, u, Du)) + ePjis(z, u, Du) + V(2)|u[P~2u = g(z,u) in £,
u=20 onas?

(83)
if uw € Wy (£2)and
—eP div(je(x, u, D)) + Pjs(z, u, Du) + V(@) uP~2u = g(z,u)
is satisfied irty’(£2).
We now introduce a useful variant of the classical Palais—Smale condition.

Definition A.6. Lete > 0 andc € R. We say that«;) C Wy (£2) is a concrete Palais—-Smale sequence
at levelc ((CPS).-sequence, in short) fof, if f(u;) — cand

js(x, up, Dup) € (WV(Q))/ ash — +oo,
— P div(je(a, up, Dup)) + €Pjs(x, up, Dup) + V(x)]uh\p_zuh — g(z,up) — 0

strongly in (¥1/(£2))'. We say thatf satisfies the concrete Palais—Smale condition at le(¢CPS).
condition), if every (CPS}sequence fof admits a strongly convergent subsequenc@/in((?).

Proposition A.7. Lete > 0. Then for every: in Wy, (£2) with |df|(u) < +o00 we have
—e? div(je(z, u, Du)) + ePjs(x, u, Du) € (Wi (£2))'

and setting
w, = —eP div(je(z, u, Du)) + P js(z, u, Du) + V(w)|u|p72u — g(z,u)

it results||wé ||y 2y < |dJ:|(u).
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As a consequence of the previous proposition we have the following result.

Proposition A.8. Letu € Wy (£2), ¢ € R and let(uy) C Wy (£2).
Then the following facts hoid

(a) if wis a critical point of f, thenu is a weak solution o{83);
(b) if f satisfies thCPS). condition, thenf satisfies th€PS). condition.

For suitable versions of the Mountain—Pass theorem in the nonsmooth framework we refer the reader
to [4].

References

[1] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrédinger equataimsRational
Mech. Anal140(1997), 285-300.
[2] D. Arcoya and L. Boccardo, Critical points for multiple integrals of the calculus of variatims$,. Rational Mech. Anal.
134(1996), 249-274.
[3] A. Canino, Multiplicity of solutions for quasilinear elliptic equatio@pol. Methods Nonlinear Ang.(1995), 357-370.
[4] A.Canino and M. Degiovanni, Nonsmooth critical point theory and quasilinear elliptic equatiomepiological Methods
in Differential Equations and Inclusion®ontreal, PQ, 1994, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 472,
Kluwer Academic, Dordrecht, 1995, pp. 1-50.
[5] M. Conti and F. Gazzola, Positive entire solutions of quasilinear elliptic problems via nonsmooth critical point theory,
Topol. Methods Nonlinear AnaB.(1996), 275—-294.
[6] J.N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point
theory, Topol. Methods Nonlinear Anal (1993), 151-171.
[7] V. Coti Zelati and P. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic
potentialsJ. Amer. Math. Soct (1991), 693—727.
[8] L. Damascelli and M. Ramaswamy, Symmetry@t solutions ofp-Laplace equations iR", Adv. Nonlinear Studl
(2001), 40-64.
[9] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth function&fs). Mat. Pura Appl. (4167(1994),
73-100.
[10] M. Degiovanni, A. Musesti and M. Squassina, On the regularity of solutions in the Pucci—Serrin idesitityyar. Partial
Differential Equationsin press.
[11] M. Del Pino and P. Felmer, Local mountain passes for semilinear elliptic problems in unbounded d&a&in¥ar.
Partial Differential Equationst (1996), 121-137.
[12] M. Del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrédinger equa&iomsnst. H. Poincaré Anal.
Non Linéairel5 (1998), 127-149.
[13] M. Del Pino and P. Felmer, Semi-classical states for nonlinear Schrodinger equatfeuns;t. Anal149(1997), 245-265.
[14] E. DiBenedetto,C** local regularity of weak solutions of degenerate elliptic equatiddslinear Anal.7 (1983),
827-850.
[15] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrddinger equation with a bounded potential,
J. Funct. Anal69 (1986), 397-408.
[16] A. loffe and E. Schwartzman, Metric critical point theory 1. Morse regularity and homotopic stability of a minimum,
J. Math. Pures Appl75 (1996), 125-153.
[17] L. Jeanjean and K. Tanaka, A remark on least energy solutidR$’irProc. Amer. Math. Sod 31 (2003), 2399-2408.
[18] G. Katriel, Mountain pass theorems and global homeomorphism theofamsinst. H. Poincaré Anal. Non Linéaidel
(1994), 189-209.
[19] O.A. Ladyzhenskaya and N.N. Uraltset@near and Quasilinear Elliptic Equationg\cademic Press, New York, 1968.
[20] G.B. Li, Some properties of weak solutions of nonlinear scalar field equattons, Acad. Sci. Fenn. Ser. A Mattb
(1990), 27-36.
[21] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact Aaseltist.
H. Poincaré Anal. Non Linéairé (1984), 223-283.
[22] Y.-G. Oh, Existence of semiclassical bound states of nonlinear Schrédinger equations with potentials of thé glass (
Comm. Partial Differential Equation$3 (1988), 1499-1519.



A. Giacomini and M. Squassina / Multi-peak solutions for degenerate equations 147

[23] Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrédinger equations under multiple well poBzmtied,
Math. Phys131(1990), 223-253.

[24] P. Pucci and J. Serrin, A general variational identitgiana Univ. Math. J35 (1986), 681-703.

[25] P.H. Rabinowitz, On a class of nonlinear Schrédinger equatibnsngew. Math. Phy€l3 (1992), 270-291.

[26] J. Serrin, Local behavior of solutions of quasi-linear equatifeta Math.111(1964), 247-302.

[27] J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equatidiasia Univ. Math. J49 (2000),
897-923.

[28] M. Squassina, On the existence of positive entire solutions of nonlinear elliptic equatpos,Methods Nonlinear Anal.
17(2001), 23-39.

[29] M. Squassina, Weak solutions to general Euler's equations via nonsmooth critical point feoryac. Sci. Toulouse
Math. 9 (2000), 113-131.

[30] M. Squassina, Spike solutions for a class singularly perturbed quasilinear elliptic equitiofisear Anal.54 (2003),
1307-1336.

[31] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equatiomsifferential Equations$1 (1984),
126-150.

[32] X. Wang, On concentration of positive bound states of nonlinear Schrédinger equétions). Math. Phys153(1993),
229-244.



