
Research Article

Received 30 November 2014 Published online 11 March 2015 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/mma.3449
MOS subject classification: 34K37; 35Q51; 35Q40

Fractional logarithmic Schrödinger equations

Pietro d’Aveniaa, Marco Squassinab*† and Marianna Zenaric

Communicated by A. Miranville

By means of nonsmooth critical point theory, we obtain existence of infinitely many weak solutions of the fractional
Schrödinger equation with logarithmic nonlinearity. We also investigate the Hölder regularity of the weak solutions.
Copyright © 2015 John Wiley & Sons, Ltd.

Keywords: fractional Schrödinger equations; multiplicity of solutions; regularity of solutions

1. Introduction

Let s 2 .0, 1/ and n > 2s. The nonlinear fractional logarithmic Schrödinger equation

i�t � .��/
s� C � log j�j2 D 0 in R �Rn (1.1)

is a generalization of the classical Nonlinear Schrödinger Equation (NLS) with logarithmic nonlinearity [1]. For power type nonlinearities,
the fractional Schrödinger equation was derived by Laskin [2–4] by replacing the Brownian motion in the path integral approach with
the so called Lévy flights. Although the equation

i�t ��� C � log j�j2 D 0 in R �Rn (1.2)

has been ruled out as a fundamental quantum wave equation by very accurate experiments on neutron diffraction, it is currently
under discussion if this equation can be adopted as a simplified model for some physical phenomena [5–8]. Its relativistic version,
with D’Alembert operator in place of the Laplacian, was first proposed in [9] by Rosen. We refer the reader to [1, 10, 11] for existence
and uniqueness of solutions of the associated Cauchy problem in a suitable functional framework and to a study of orbital stability,
with respect to radial perturbations, of the ground state solution. Although the fractional Laplacian operator .��/s and more gener-
ally pseudodifferential operators have been a classical topic of functional analysis since long ago, the interest for such operator has
constantly increased in the last few years. Nonlocal operators such as .��/s naturally arise in continuum mechanics, phase transition
phenomena, population dynamics, and game theory, as they are the typical outcome of stochastical stabilization of Lévy processes;
see, for example, the work of Caffarelli [12] and the references therein.

In this paper, we aim to study the existence of multiple standing waves solutions to Eq. (1.1), namely �.t, x/ D ei!tu.x/, with ! 2 R,
where u 2 Hs.Rn/ solves the semilinear elliptic problem

.��/suC !u D u log u2 in Rn. (1.3)

Without loss of generality, we can restrict to ! > 0, because if u is a solution of Eq. (1.3), then �u with � ¤ 0 is a solution of .��/sv C
.! C log�2/v D v log v2. From a variational point of view, Eq. 1.3 is formally associated with the functional J on Hs.Rn/ defined by

J.u/ D
1

2

Z
j.��/s=2uj2 C

! C 1

2

Z
u2 �

1

2

Z
u2 log u2.

a Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
b Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
c Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo (TN), Italy
* Correspondence to: Marco Squassina, Dipartimento di Informatica, Università degli Studi di Verona, Strada Le Grazie 15, I-37134 Verona, Italy.
† E-mail: marco.squassina@univr.it

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5207–5216

5
2

0
7



P. D’AVENIA, M. SQUASSINA AND M. ZENARI

The fractional Sobolev space Hs.Rn/ (see [13]) is continuously embedded in Lq.Rn/ for all 2 � q � 2�s , where 2�s :D 2n=.n� 2s/ and its
closed subspace Hs

rad.R
n/ is compactly injected in Lq.Rn/ for 2 < q < 2�s (see [14]). Furthermore, by the fractional logarithmic Sobolev

inequality (see [15]), we have

Z
u2 log

�
u2

kuk2
2

�
C

 
nC

n

s
log aC log

s�
�

n
2

�
�
�

n
2s

�
!
kuk2

2 �
a2

� s
k.��/s=2uk2

2, a > 0, (1.4)

for any u 2 Hs.Rn/. Whence, it is easy to see that J satisfies this inequality

J.u/ �
1

2

"�
1 �

a2

� s

�
k.��/s=2uk2

2 � kuk2
2 log kuk2

2 C

 
! C 1C nC

n

s
log aC log

s�
�

n
2

�
�
�

n
2s

�
!
kuk2

2

#
, (1.5)

for all u 2 Hs.Rn/ and a > 0 small. However, there are elements u 2 Hs.Rn/ such thatZ
u2 log u2 D �1.

Thus, in general, the functional fails to be finite as well as of class C1. On the other hand, it is readily seen that J : Hs.Rn/! R [ fC1g
is lower semicontinuous. For this reason, we use the nonsmooth critical point theory developed by Degiovanni and Zani in [16, 17] for
suitable classes of lower semicontinuous functionals, which is based on a generalization of the norm of the differential, the weak slope
[18]. We say that u 2 Hs.Rn/ is a weak solution to Eq. (1.3) ifZ

.��/s=2u.��/s=2v C !

Z
uv D

Z
uv log u2, for all v 2 Hs.Rn/ \ L1c .Rn/. (1.6)

The main result of the paper is the following.

Theorem 1.1
Problem (1.3) admits a sequence of weak solutions .uk/ � Hs

rad.R
n/with J.uk/! C1. Furthermore, uk 2 C0,2sC� .Rn/ for s < 1=2 and

uk 2 C1,2s�1C� .Rn/ for s � 1=2, for some � 2 .0, 1/.

The result extends to the nonlocal case the results obtained in [19] for the existence of multiple bound states .uk/ � H1
rad.R

n/ for
Eq. (1.2). Furthermore, it provides Hölder regularity of the solutions depending upon the value of s, following the strategy outlined in
[20]. We point out that, differently from [20], the nonlinearity g.t/ D t log t2 extended to zero at t D 0 has a very different behavior
at the origin because g.t/=t ! �1 in place of g.t/=t ! 0 for t ! 0, property which also generates, as described earlier, the loss of
smoothness of the functional J over Hs.Rn/. We mention that, in [21], a class of nonautonomous logarithmic Schrödinger equations
with one-periodic potentials was recently investigated, and the existence of multiple solutions was obtained by splitting the energy
functional into the sum of a C1 and a convex lower semicontinuous functional and using the critical point theory of [22].

The paper is organized as follows. In Section 2, we collect some preliminary notions and results. In Section 3, we prove that the func-
tional satisfies the Palais–Smale condition in the sense specified in [17]. In Section 4, we prove the existence and the Hölder regularity
of the radially symmetric weak solutions.

Throughout the proofs, the letter C, unless explicitly stated, will always denote a positive constant whose value may change from
line to line. Moreover, the notation

R
will always denote

R
Rn .

2. Preliminary results

First, for the sake of self-containedness, we recall the definition of fractional Sobolev space and fractional Laplacian. For any s 2 .0, 1/,
the space Hs.Rn/ is defined as

Hs.Rn/ :D

�
u 2 L2.Rn/ :

ju.x/ � u.y/j

jx � yjn=2Cs
2 L2.R2n/

�

and it is endowed with the norm

kuk :D

�Z
juj2 C

Z
R2n

ju.x/ � u.y/j2

jx � yjnC2s

�1=2

.

Let S be the Schwartz space of rapidly decaying C1 functions in Rn. We have

Definition 2.1
For any u 2 S and s 2 .0, 1/, the fractional Laplacian operator .��/s is defined as

.��/su.x/ D �
1

2
C.n, s/

Z
u.x C y/C u.x � y/ � 2u.x/

jyjnC2s
,
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with

C.n, s/ D

�Z
1 � cos �1

j�jnC2s

��1

.

For functions u with local Hölder continuous derivatives of exponent 	 > 2s � 1, the integral defining .��/su exists finite. Observe
that, using [13, Proposition 3.6], for every u, v 2 Hs.Rn/, we have that

Z
.��/s=2u.��/s=2v D

C.n, s/

2

Z
R2n

.u.x/ � u.y//.v.x/ � v.y//

jx � yjnC2s
. (2.1)

We now recall some definitions and results of nonsmooth critical point theory by Degiovanni and Zani [17] (see also the references
therein). Let .X , k � kX/ be a Banach space and f : X ! NR be a function. The (critical point) theory we follow is based on a gener-
alized notion of the norm of the derivative, the weak slope. First, we defined it for continuous functions, and then, we extended it
for all functions.

Definition 2.2
Let f : X ! R be continuous and u 2 X . Then, jdf j.u/ is the supremum of the � ’s in Œ0,C1/ such that there exist ı > 0 and a continuous
map H : Bı.u/ � Œ0, ı
! X , satisfying

d.H.w, t/, w/ � t, f .H.w, t// � f .w/ � � t,

whenever w 2 Bı.u/ and t 2 Œ0, ı
.

Now, we define the function Gf : epi.f / 7! R, where epi.f / :D f.u,�/ 2 X �R j f .u/ � �g, by Gf .u,�/ D �. If on X � R, we consider
the norm k � kX�R D

�
k � k2

X C j � j
2
�1=2

and we denote with Bı.u,�/ the open ball of center .u,�/ and radius ı > 0, we have that
the function Gf is continuous and Lipschitzian of constant 1, and it allows to generalize the notion of weak slope for noncontinuous
functions f as follows (see [23, Proposition 2.3]).

Proposition 2.3
For all u 2 X with f .u/ 2 R, we have

jdf j.u/ D

(
jdGf j.u,f.u//p

1�jdGf j.u,f.u//2
if jdGf j.u, f .u// < 1,

C1 if jdGf j.u, f .u// D 1.

This equivalent definition allows us to study the continuous function Gf instead of the function f . In some cases, it is also useful the
notion of equivariant weak slope.

Definition 2.4
Let f be even with f .0/ 2 R. For every � � f .0/, we denote jdZ2Gf j.0,�/ the supremum of the � ’s in Œ0,C1Œ such that there exist ı > 0
and a continuous map H D .H1,H2/ : .Bı.0,�/ \ epi.f // � Œ0, ı
! epi.f /, satisfying

kH..w,�/, t/ � .w,�/kX�R � t, H2..w,�/, t/ � � � � t, H1..�w,�/, t/ D �H1..w,�/, t/,

whenever .w,�/ 2 Bı.0,�/ \ epi.f / and t 2 Œ0, ı
.

Then we can give the following:

Definition 2.5
Let c 2 R. The function f satisfies (epi)c condition if there exists " > 0 such that

inffjdGf j.u,�/ j f .u/ < �, j� � cj < "g > 0.

In this framework, we have the following definitions.

Definition 2.6
u 2 X is a (lower) critical point of f if f .u/ 2 R and jdf j.u/ D 0.

Definition 2.7
Let c 2 R. A sequence fukg � X is a Palais–Smale sequence for f at level c if f .uk/ ! c and jdf j.uk/ ! 0. Moreover f satisfies the
Palais-Smale condition at level c if every Palais–Smale sequence for f at level c admits a convergent subsequence in X .

We will apply the following abstract result (see [17, Theorem 2.11]) that is an adaptation of the classical theorem of Ambrosetti–
Rabinowitz.

Theorem 2.8
Let X be a Banach space and f : X ! NR a lower semicontinuous even functional. Assume that f .0/ D 0 and there exists a strictly
increasing sequence fVkg of finite-dimensional subspaces of X with the following properties:

1. There exist a closed subspace Z of X , � > 0 and ˛ > 0 such that X D V0 ˚ Z and for every u 2 Z with kukX D �, f .u/ � ˛;
2. There exists a sequence fRkg �
�,C1Œ such that for any u 2 Vk with kukX � Rk , f .u/ � 0;
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3. For every c � ˛, the function f satisfies the Palais–Smale condition at level c and (epi)c condition;
4. jdZ2Gf j.0,�/ ¤ 0, whenever � � ˛.

Then there exists a sequence fukg of critical points of f such that f .uk/!C1.

Of course, here, we need to review some theorems in [17] for the space Hs.Rn/. The following result is useful to prove that our
functional satisfies the hypothesis of Theorem 2.8. We know that Hs.Rn/\L1c .Rn/ is dense in Hs.Rn/. Now, we prove that every function
in Hs.Rn/ can be seen as the limit of a particular sequence in Hs.Rn/ \ L1c .Rn/.

Lemma 2.9
For every v 2 Hs.Rn/ there exists a sequence fvkg in Hs.Rn/ \ L1c .Rn/ strongly convergent to v in Hs.Rn/ with �v� � vk � vC

a.e. in Rn.

Proof
Assume first v 2 Hs.Rn/ \ L1c .Rn/. Let #k : R ! Œ0, 1
 in C0,1 with Lipschitz constant �k D C=k, supt.#k/ � Œ�2k, 2k
, #k.s/ D 1 on
Œ�k, k
. Let us set vk :D #k.v/v. Then, observe that vk.x/! v.x/ as k!1 and�v� � vk � vC a.e. in Rn. We have jvk.x/j � jv.x/j and

jvk.x/ � vk.y/j
2 D j.#k.v.x// � #k.v.y///v.x/C .v.x/ � v.y//#k.v.y//j

2

� 2.Cjv.x/ � v.y/j2kvk2
1 C jv.x/ � v.y/j2/ � Cjv.x/ � v.y/j2.

Whence, vk 2 Hs.Rn/ \ L1c .Rn/ and, by Lebesgue’s theorem, vk ! v in Hs.Rn/. The general case boils down to the previous case by
arguing on max

˚
min

˚
'j , vC

�
,�v�

�
in place of v, where, by density, 'j 2 C1c .Rn/ converges strongly to v in Hs.Rn/.

Remark 2.10
Arguing as in the proof of Lemma 2.9, we can get that, for every u 2 Hs

loc.R
n/,

Hs
loc.R

n/ :D
n

u 2 L2
loc.R

n/ : k.��/s=2uk2 < C1
o

,

and v 2 Hs.Rn/, there exists a sequence fvkg � Vu,

Vu :D
˚

w 2 Hs.Rn/ \ L1c .Rn/ : u 2 L1 .fx 2 Rn : w.x/ ¤ 0g/
�

,

strongly convergent to v in Hs.Rn/with�v� � vk � vC a.e. (see also [16, Theorem 2.3]).

Usually, it is not easy to compute the weak slope of a function. Thus, it is often useful to work with a subdifferential, for which calculus
rules hold.

Definition 2.11
For all u 2 X with f .u/ 2 R, v 2 X and 
 > 0, we denote by f 0

� the infimum of r 2 R such that there exist ı > 0 and a continuous map

V : .Bı.u, f .u// \ epi.f //�
0, ı
! B�.v/,

such that

f .wC tV..w,�t// � �C rt,

whenever .w,�/ 2 Bı.u, f .u// \ epi.f / and t 2
0, ı
. Then we define

f 0.u; v/ :D sup
�>0

f 0
� .u, v/.

As shown in [23, Corollary 4.6], the function f 0.u; �/ is convex, lower semicontinuous, and positively homogeneous of degree 1. We
can now state the definition of the aforementioned subdifferential.

Definition 2.12
For all u 2 X with f .u/ 2 R, we define

@f .u/ D
˚
˛ 2 X0 : h˛, vi � f 0.u; v/, 8v 2 X

�
.

Now, let us define the continuous functions

g.s/ :D

�
s log s2 s ¤ 0
0 s D 0

and G.s/ :D

�
s2 log s2 s ¤ 0
0 s D 0

and let

f .u/ :D
1

2

Z
G.u/dx. (2.2)

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5207–5216
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Note that

G.s/ D 2

Z s

0
.g.t/C t/dt.

We have the following preliminary result.

Proposition 2.13
If u 2 Hs

loc.R
n/, we have that

1. For every v 2 Hs.Rn/ \ L1c .Rn/, g.u/v 2 L1.Rn/;
2. Let v 2 Hs.Rn/ and assume that .g.u/v/C 2 L1.Rn/ or .g.u/v/� 2 L1.Rn/, then there exists a sequence fvkg in Hs.Rn/ \ L1c .Rn/

strongly convergent to v in Hs.Rn/with

lim
k!1

Z
g.u/vk D

Z
g.u/v.

Proof
If v 2 Hs.Rn/ \ L1c .Rn/, for ı 2

	
0, NC2s

N�2s



, we have

Z
jg.u/vj � kvk1

�Z
spt.v/\juj�1

jg.u/j C

Z
spt.v/\juj>1

jg.u/j

�

� C

�
1C

Z
spt.v/\juj>1

juj1Cı
�
< C1,

then we have Eq. (1). To prove Eq. (2), we argue as in [16, Theorem 2.7]. Let us assume for instance that .g.u/v/C 2 L1.Rn/ (if .g.u/v/� 2
L1.Rn/ the proof is similar). By Lemma 2.9, there is a sequence fvkg in Hs.Rn/\L1c .Rn/ such that vk ! v in Hs.Rn/ and�v� � vk � vC

a.e. in Rn and, by Eq. (1), for every k, g.u/vk 2 L1.Rn/. But

g.u/vk D g.u/Cvk � g.u/�vk � g.u/CvC C g.u/�v� D .g.u/v/C 2 L1.Rn/

and by Fatou’s lemma, we have

lim sup
k

Z
g.u/vk �

Z
g.u/v.

Hence, if
R

g.u/v D �1, we conclude, otherwise we have, that g.u/v 2 L1.Rn/ becauseZ
jg.u/vj D

Z
.g.u/v/C C

Z
.g.u/v/� D 2

Z
.g.u/v/C �

Z
g.u/v,

and jg.u/vkj � jg.u/vj. Thus, by Lebesgue’s theorem we conclude.

Moreover, we have the following theorem, whose proof is the same of [17, Theorem 3.1].

Theorem 2.14
Let u 2 Hs.Rn/with f .u/ 2 R. If @.�f /.u/ ¤ ;, then

sup

�Z
.�g.u/ � u/v : v 2 Hs.Rn/ \ L1c .Rn/, kvk � 1

�
< C1,

and hence�g.u/� u 2 H�s.Rn/ upon identification of�g.u/� u with its unique extension. Furthermore, @.�f /.u/ D f�g.u/� ug and
for all v 2 Hs.Rn/with .g.u/v/C 2 L1.Rn/ or .g.u/v/� 2 L1.Rn/, it holds

h�g.u/ � u, vi D

Z
.�g.u/ � u/v.

In particular, this holds true for every v 2 Hs.Rn/ \ L1c .Rn/.

Finally, in our case, the (epi)c condition and Eq. (3) of Theorem 2.8 is easy to prove thanks to the following theorem.

Theorem 2.15
Let .u,�/ 2 epi.f /with � > f .u/. Then jdGf j.u,�/ D 1 and, furthermore, jdZ2Gf j.0,�/ D 1 for all � > f .0/.

The proof can be obtained arguing as in [17, Theorem 3.4].

3. Palais–Smale condition

In this section, we prove that J satisfies the Palais–Smale condition, thus we can apply Theorem 2.8 to prove the existence of infinitely
many weak solutions to Eq. (1.3), namely functions u 2 Hs.Rn/ such that Eq. (1.6) holds for any v 2 Hs.Rn/ \ L1c .Rn/. Notice that, that
if u 2 Hs.Rn/ and v 2 Hs.Rn/ \ L1c .Rn/, by Proposition 2.13, we can consider

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 5207–5216
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hJ0.u/, vi D

Z
.��/s=2u.��/s=2v C !

Z
uv �

Z
uv log u2. (3.1)

We will need the following:

Proposition 3.1
Let u 2 Hs.Rn/with J.u/ 2 R and jdJj.u/ < C1. Then the following facts hold:

1. g.u/ 2 L1
loc.R

n/ \ H�s.Rn/ and jh˛u, vij � jdJj.u/kvk for all v 2 Hs.Rn/, where

h˛u, vi :D

Z
.��/s=2u.��/s=2v C .! C 1/

Z
uv C h�g.u/ � u, vi. (3.2)

In particular, for every v 2 Hs.Rn/ \ L1c .Rn/, we have

jhJ0.u/, vij � jdJj.u/kvk.

2. if v 2 Hs.Rn/ is such that .g.u/v/C 2 L1.Rn/ or .g.u/v/� 2 L1.Rn/, then g.u/v 2 L1.Rn/ and identity (3.1) holds.

Proof
As in the proof of Eq. (1) in Proposition 2.13, we have g 2 L1

loc.R
n/. Moreover, we can write our functional as J.u/ D S.u/� f .u/, where f

is as in (2.2) and

S.u/ D
1

2

Z
j.��/s=2uj2 C

! C 1

2

Z
u2.

Using the properties of the weak slope (see, e.g., [23, Theorem 4.13]), we can see that @J.u/ ¤ ; and, by the calculus rule, @J.u/ �
@S.u/ C @.�f /.u/ (see [23, Corollary 5.3]), the @.�f /.u/ is nonempty too. By Theorem 2.14, we obtain that @.�f /.u/ D f�u � g.u/g.
Because S is C1, again by [23, Corollary 5.3], @S.u/ D fS0.u/g and then by [23, Theorem 4.13, (iii)], we have @J.u/ D f˛ug and

jdJj.u/kvk � min fkˇkH�s : ˇ 2 @J.u/g kvk D k˛ukH�skvk � jh˛u, vij.

The second part follows by using Eq. (3.2) and assertion (2) of Proposition 2.13.

Remark 3.2
It is readily seen that J is lower semicontinuous; see, for example, [19, Proposition 2.2] for the details. Alternatively, one can observe that
there exist q > 2 and C > 0 such that G.s/ � Cjsjq for all s 2 R. Then the assertion follows by a variant of Fatou’s lemma.

Finally, we can prove the following:

Proposition 3.3
J
ˇ̌̌

Hs
rad.R

n/ satisfies the Palais–Smale condition at level c for every c 2 R.

Proof
Let fukg � Hs.Rn/ be a Palais–Smale sequence of J, that is, J.uk/ ! c and jdJj.uk/ ! 0; thus, by Proposition 3.1, we have that
hJ0.uk/, vi D o.1/kvk for any v 2 Hs.Rn/ \ L1c .Rn/. It is easy to see that if u 2 Hs.Rn/, then .u2 log u2/C 2 L1.Rn/; thus by
Proposition 3.1, uk is an admissible test function in Eq. 3.1 and

kukk
2
2 D 2J.uk/ � hJ

0.uk/, uki � 2cC o.1/kukk. (3.3)

Using Eq. (1.4), we have that

kukk
2 D 2J.uk/ � !kukk

2
2 C

Z
u2

k log u2
k

� 2cC
a2

� s

���.��/s=2uk

���2

2
C kukk

2
2 log kukk

2
2 �

 
! C nC

n

s
log aC log

s�
�

n
2

�
�
�

n
2s

�
!
kukk

2
2.

Thus, for a > 0 and ı > 0 small and by Eq. (3.3), we have

kukk
2 � C C o.1/kukk

1Cı C o.1/kukk

and so fukg is bounded in Hs.Rn/. Let fukg now be a Palais–Smale sequence for J in Hs
rad.R

n/. By the boundedness of fukg and thanks to
the compact embedding Hs

rad.R
n/ ,! Lp.Rn/ for 2 < p < 2�s , we have that up to a subsequence, there exists u 2 Hs

rad.R
n/ such that

uk * u in Hs
rad.R

n/, uk ! u in Lp.Rn/, 2 < p < 2�s , uk ! u a.e. in Rn.
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We want to prove that for all v 2 Hs.Rn/ \ L1c .Rn/

Z
.��/s=2u.��/s=2v C !

Z
uv D

Z
uv log u2. (3.4)

So fixed v 2 Hs.Rn/ \ L1c .Rn/; let us consider #R.uk/v, where, given R > 0, #R : R ! Œ0, 1
 is a C0,1 function such that #R.s/ D 1 for
jsj � R, #R.s/ D 0 for jsj � 2R and j# 0R.s/j � C=R in R. Obviously, as in Lemma 2.9, we have that #R.uk/v 2 Hs.Rn/ \ L1c .Rn/. Thus, by
Eqs. (3.1) and (2.1), we have

hJ0.uk/,#R.uk/vi D

Z
.��/s=2uk.��/

s=2.#R.uk/v/C !

Z
#R.uk/ukv �

Z
#R.uk/ukv log u2

k

D
C.n, s/

2

Z
R2n

.uk.x/ � uk.y//.#R.uk.x//v.x/ � #R.uk.y//v.y//

jx � yjnC2s

C !

Z
#R.uk/ukv �

Z
#R.uk/ukv log u2

k

D
C.n, s/

2

Z
R2n

#R.uk.x//.uk.x/ � uk.y//

jx � yj
nC2s

2

.v.x/ � v.y//

jx � yj
nC2s

2

C
C.n, s/

2

Z
R2n

v.y/.#R.uk.x// � #R.uk.y///.uk.x/ � uk.y//

jx � yjnC2s

C !

Z
#R.uk/ukv �

Z
#R.uk/ukv log u2

k .

Then, we obtain

ˇ̌̌
ˇ̌C.n, s/

2

Z
R2n

#R.uk.x//.uk.x/ � uk.y//

jx � yj
nC2s

2

.v.x/ � v.y//

jx � yj
nC2s

2

C !

Z
Rn
#R.uk/ukv �

Z
Rn
#R.uk/ukv log u2

k

� hJ0.uk/,#R.uk/vi

ˇ̌̌
ˇ� kvk1

C

R

Z
R2n

juk.x/ � uk.y/j2

jx � yjnC2s
�

C

R
.

Because

#R.uk.x//
.uk.x/ � uk.y//

jx � yj
nC2s

2

is bounded in L2.R2n/,
.v.x/ � v.y//

jx � yj
nC2s

2

2 L2.R2n/,

and

#R.uk.x//
.uk.x/ � uk.y//

jx � yj
nC2s

2

! #R.u.x//
.u.x/ � u.y//

jx � yj
nC2s

2

a.e. .x, y/ 2 R2n as k!C1

then Z
R2n

.v.x/ � v.y//

jx � yj
nC2s

2

#R.uk.x//
.uk.x/ � uk.y//

jx � yj
nC2s

2

!

Z
R2n

#R.u.x//.u.x/ � u.y//

jx � yj
nC2s

2

.v.x/ � v.y//

jx � yj
nC2s

2

as k ! C1. In the same way, taking into account that
˚
#R.uk/uk log u2

k

�
is bounded in L2

loc.R
n/ and because #R.uk/uk log u2

k !

#R.u/u log u2 a.e. in Rn, we have

ˇ̌̌
ˇ̌C.n, s/

2

Z
R2n

#R.u.x//.u.x/ � u.y//

jx � yj
nC2s

2

.v.x/ � v.y//

jx � yj
nC2s

2

C !

Z
#R.u/uv �

Z
#R.u/uv log u2

ˇ̌̌
ˇ̌ � C

R
.

Thus, letting R!1, (2.1) yields Equation (3.4). Moreover, see again Remark 3.2, we have that

lim sup
k

Z
u2

k log u2
k �

Z
u2 log u2.

Hence, because hJ0.uk/, uki ! 0 and choosing v D u in (3.4), we obtain

lim sup
k

����.��/ s
2 uk

���2

2
C !kukk

2
2

�
D lim sup

k

Z
u2

k log u2
k �

Z
u2 log u2 D

���.��/ s
2 u
���2

2
C !kuk2

2,

which implies the convergence of uk ! u in Hs
rad.R

n/.
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4. Proof of Theorem 1.1

4.1. Proof for existence

To prove the existence of sequence fukg � Hs.Rn/ of weak solutions to Eq. (1.3) with J.uk/ ! C1, we will apply Theorem 2.8 with
X D Hs

rad.R
n/. By Proposition 3.3, we know that J satisfies the Palais–Smale condition. Furthermore, by Theorem 2.15, we have that

J satisfies (epi)c and (4) of Theorem 2.8. Hence, we only have to prove that J satisfies also the geometrical assumptions. Obviously,
J.0/ D 0, and by Eq. (1.5), J.u/ � ckuk2, for a suitable a and if kuk2 are sufficiently small. Then, if we take Z D Hs

rad.R
n/ and V0 D f0g, we

have (1). Finally, let fVkg be a strictly increasing sequence of finite-dimensional subspaces of Hs
rad.R

n/. Because any norm is equivalent
on any Vk , if fumg � Vk is such that kumk ! C1, then also�m :D kumk2 !C1. Set now um D �mwm, where wm D kumk

�1
2 um. Thus,

kwmk2 D 1,
��.��/s=2wm

��
2
� C and kwmk1 � C, and so

J.um/ D
�2

m

2

����.��/s=2wm

���2

2
C ! C 1 � log�2

m �

Z
w2

m log w2
m

�
�
�2

m

2

�
C � log�2

m

�
! �1.

Thus, there exist fRkg �
�,C1Œ such that for u 2 Vk with kuk � Rk , J.u/ � 0 and the condition (2) is satisfied.

4.2. Proof for regularity

To prove the regularity, we follow [20]. First of all, we define

Wˇ,p.Rn/ D
n

u 2 Lp.Rn/ : F�1
h	

1C j�jˇ


Ou
i
2 Lp.Rn/

o
.

For the properties of this space, we refer to [20]. Now, let u 2 Hs.Rn/ be a solution of Eq. (1.3) and frig be a strictly decreasing sequence
of positive constants with r0 D 1. Let Bi D B.0, ri/, and define

h.x/ D u.x/ log u2.x/.

We have that

jhj � Cı
	
juj1�ı C juj1Cı



(4.1)

for all ı 2 .0, 1/. Now, let �1 2 C1.Rn/, 0 � �1 � 1, �1 D 0 in Bc
0, �1 D 1 in B1=2 :D B.0, r1=2/ with r1 < r1=2 < r0, and u1 be the

solution of
.��/su1 C !u1 D �1h in Rn

namely, u1 D K 	 .�1h/, where K.x/ D F�1.1=.! C j�j2s// is the Bessel kernel. Then

.��/s.u � u1/C !.u � u1/ D .1 � �1/h in Rn

and so
u � u1 D K 	 Œ.1 � �1/h
.

By Sobolev embedding theorem, u 2 Lq0.Rn/ with q0 D 2n=.n � 2s/. Moreover, by Eq. (4.1), [20, Theorem 3.3] and Hölder inequality,
we have that for a.e. x 2 B1

ju.x/ � u1.x/j � C

�
kKk

Ls0
	

Bc
r1=2�r1


 ���.1 � �1/
1=.1�ı/u

���1�ı

q0

C kKk
Ls1
	

Bc
r1=2�r1


 ���.1 � �1/
1=.1Cı/u

���1Cı

q0

�
(4.2)

where s0 D q0=.q0 � 1C ı/, s1 D q0=.q0 � 1 � ı/ and ı < minf1, .nC 2s/=.n � 2s/g. In fact,

ju.x/ � u1.x/j �

Z
Bc

1=2

jK.x � y/jj.1 � �1.y//h.y/jdy

� C

 Z
Bc

1=2.x/
jKjs0

!1=s0 ���.1 � �1/
1=.1�ı/u

���1�ı

q0

C C

 Z
Bc

1=2.x/
jKjs1

!1=s1 ���.1 � �1/
1=.1Cı/u

���1Cı

q0

and Bc
1=2.x/ � Bc

r1=2�r1
. Notice that, the same argument shows that for all z 2 Rn and for a.e. x 2 B1.z/

ju.x/ � u1.x/j � C

�
kKk

Ls0
	

Bc
r1=2�r1


kuk1�ı
q0
C kKk

Ls1
	

Bc
r1=2�r1


kuk1Cı
q0

�
.
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and thus, in turn, because the right-hand side is independent of the point z, it follows that u � u1 2 L1.Rn/. Because u 2 Lq0.Rn/ and
B0 is bounded, we have that �1h 2 Lp1.Rn/with p1 D q0=.1C ı/. Then u1 2W2s,p1.Rn/.

If n < 6s, then, in Eq. (4.1), we take

ı < min

�
1,

6s � n

n � 2s

�

and so p1 > n=.2s/.
If n � 6s, we have that p1 < n=.2s/, and we proceed as follows. By Sobolev embedding and Eq. (4.2), we have that u 2 Lq1.B1/

with q1 D p1n=.n � 2sp1/. Then we repeat the procedure, namely, we consider �2 2 C1.Rn/, 0 � �2 � 1, �2 D 0 in Bc
1, �1 D 1 in

B3=2 :D B.0, r3=2/with r2 < r3=2 < r1, getting that u2 D K 	 .�2h/ 2W2s,p2.Rn/with p2 D q1=.1C ı/.
If n < 10s, then in Eq. (4.1), we take

ı <
�.n � 4s/C

p
4s.n � s/

n � 2s

and we have that p2 > n=.2s/.
If n � 10s, then p2 < n=.2s/, and we iterate this procedure. Straightforward calculations show that

1

qjC1
D

1

q1
C

�
1

q1
�

1

q0

� jX
iD1

.1C ı/i D
.1C ı/jC1

q0
�

2s

n

jX
iD0

.1C ı/i (4.3)

and, using Eq. (4.3), that pj > n=.2s/ is equivalent to

.n � 2s/.1C ı/j � 4s
j�1X
iD1

.1C ı/i � 4s < 0. (4.4)

From Eq. (4.4), we get that, if
2.2j � 1/s � n < 2.2jC 1/s, (4.5)

then we can take ı small enough such that pj > n=.2s/. Of course, this procedure stops in j steps with j that satisfies Eq. (4.5).
Thus, if ` is such that p` > n=.2s/, because u` 2 W2s,p`.Rn/, by Sobolev imbeddings (see [20, Theorem 3.2]), we have that u` 2

C0,�.Rn/ for � > 0 small enough. Moreover, we can estimate ju � u`j in B` as in Eq. (4.2), and using the smoothness of K away from
the origin (see [20, Theorem 3.3]) and because jx � yj � C > 0 for x 2 B` and y 2 Bc

`�1=2, we have that for x 2 B`

jr.u � u`/.x/j �

Z
Bc
`�1=2

jrK.x � y/j.ju.y/j1�ı C ju.y/j1Cı/ � C.n, s, kuk/.

Then u � u` 2 W1,1.B`/, and so u � u` 2 C0,�.B`/. Then u 2 C0,�.B`/ and the C0,�-norm depends on n, s, kukHs and on the finite
sequence r0, : : : , r`. Moving B` around Rn, we can recover it, obtaining that u 2 C0,�.Rn/, and because in addition u 2 Lq0.Rn/, we get
that u.x/! 0 as jxj ! C1.
We now claim that for all a, b 2 R with a < b and any ı 2 .0, 1/, we have g 2 C0,1�ı.Œa, b
/. Indeed, if s, t 2 Œa, b
 with, for example,
t > s > 0, then we have

jg.t/ � g.s/j �

Z t

s
jg0.�/jd� � 2

Z t

s
.j log �j C 1/d� � C

Z t

s
��ı D C.t1�ı � s1�ı/ � C.t � s/1�ı .

By symmetry, the same inequality holds for negative s, t 2 Œa, b
. If s, t 2 Œa, b
with, for example, s � 0 � t, we obtain

jg.t/ � g.s/j � jg.t/j C jg.s/j � Ct1�ı C C.�s/1�ı � C.t � s/1�ı ,

proving the claim. Then the regularity assertions of Theorem 1.1 follow by arguing as in [20, p. 1251].
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