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Abstract

By means of a penalization scheme due to del Pino and Felmer, we prove the existence of
single-peaked solutions for a class of singularly perturbed quasilinear elliptic equations associated
with functionals which lack of smoothness. We do not require neither uniqueness assumptions
on the limiting autonomous equation nor monotonicity conditions on the nonlinearity. Compared
with the semilinear case some di�culties arise and the study of concentration of the solutions
needs a somewhat involved analysis in which the Pucci–Serrin variational identity plays an
important role.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction and the main result

Let � be a possibly unbounded smooth domain of RN with N¿ 3.
Since the pioneering work of Floer and Weinstein [14] in the one space dimen-

sion, much interest has been directed in the last decade to singularly perturbed elliptic
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problems of the form

−�2�u+ V (x)u= f(u) in �

u¿ 0 in �

u= 0 on @�

(1)

for a superlinear and subcritical nonlinearity f with f(s)=s nondecreasing.
Typically, there exists a family of solutions (u�)�¿0 which exhibits a spike shape

around the local minima (possibly degenerate) of the function V (x) and decade else-
where as � goes to zero (see e.g. [1,11–13,16,19,20,23,25,26,29] and references therein).
A natural question is now whether these concentration phenomena are a special feature
of the semilinear case or we can expect a similar behaviour to hold for more general
elliptic equations which possess a variational structure.
In this paper we will give a positive answer to this question for the following class

of singularly perturbed quasilinear elliptic problems:

−�2
N∑

i; j=1

Dj(aij(x; u)Diu) + �2

2

N∑
i; j=1

Dsaij(x; u)DiuDju+ V (x)u= f(u) in �

u¿ 0 in �

u= 0 on @�

(2)

under suitable assumptions on the functions aij, V and f. Notice that if aij(x; s) = �ij

then Eq. (2) reduces to (1), in which case the problem originates from di�erent physical
and biological models and, in particular, in the study of the so called standing waves
for the nonlinear Schr�odinger equation.
Existence and multiplicity results for equations like (2) have been object of a very

careful analysis since 1994 (see e.g. [2–5,27] for the case where � is bounded and
[7,28] for � unbounded). On the other hand, to the author’s knowledge, no result on the
asymptotic behaviour of the solutions (as � vanishes) of (2) can be found in literature.
In particular, no achievement is known so far concerning the concentration phenomena
for the solutions u� of (2) around the local minima, not necessarily nondegenerate,
of V .
We stress that various di�culties arise in comparison with the study of the semilinear

equation (1) (see Section 5 for a list of properties which are not known to hold in our
framework).
A crucial step in proving our main result is to show that the Mountain-Pass energy

level of the functional J associated with the autonomous limiting equation

−
N∑

i; j=1

Dj(aij( x̂; u)Diu) +
1
2

N∑
i; j=1

Dsaij( x̂; u)DiuDju+ V ( x̂)u= f(u) in RN (3)

with x̂∈RN , is the least among other nontrivial critical values (Lemma 3.5). Notice
that, no uniqueness result is available, to our knowledge, for this general equation (on
the contrary in the semilinear case some uniqueness theorems for ground state solutions
have been obtained by performing an ODE analysis in radial coordinates, see e.g. [6]).
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The least energy problem for (3) is also related to the following fact:

u∈H 1(RN ); u¿ 0 and u solution of (3) implies that J (u) = max
t¿0

J (tu) (4)

Unfortunately, as remarked in [7, Section 3], if one assumes that condition (10) holds,
then property (4) cannot hold true even if the map {s �→ f(s)=s} is nondecreasing.
In order to show the minimality property for the Mountain-Pass level and to study

the uniform limit of u� on @�, inspired by the recent work of Jeanjean and Tanaka
[17], we make a repeated use of the Pucci–Serrin identity [21], which has turned out
to be a very powerful tool (Lemmas 3.5 and 3.6).
Notice that the functional associated with (2) (see (15)) is not even locally Lipschitz

and tools of nonsmooth critical point theory will be employed (see [8,9] and references
therein). Also the proof of a suitable Palais–Smale type condition for a modi�cation
of the functional I� becomes more involved.
We assume that f∈C1(R+) and there exist 1¡p¡ (N +2)=(N − 2) and 2¡#6

p+ 1 with

lim
s→+∞

f(s)
sp

= 0; lim
s→0+

f(s)
s
= 0; (5)

0¡#F(s)6f(s)s for every s∈R+; (6)

where F(s) =
∫ s
0 f(t) dt for every s∈R+.

Furthermore, let V :RN → R be a locally H�older continuous function bounded below
away from zero, that is, there exists �¿ 0 with

V (x)¿ � for every x∈RN : (7)

The functions aij(x; s) :�×R+ → R are continuous in x and of class C1 with respect
to s, aij(x; s) = aji(x; s) for every i; j = 1; : : : ; N and there exists a positive constant C
with

|aij(x; s)|6C; |Dsaij(x; s)|6C

for every x∈� and s∈R+. Finally, let R; �¿ 0 and 0¡�¡#− 2 be such that
N∑

i; j=1

aij(x; s)�i�j¿ �|�|2; (8)

N∑
i; j=1

sDsaij(x; s)�i�j6 �
N∑

i; j=1

aij(x; s)�i�j; (9)

s¿R ⇒
N∑

i; j=1

Dsaij(x; s)�i�j¿ 0 (10)

for every x∈�, s∈R+ and �∈RN .
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Hypothesis (5), (6) and (7) on f and V are standard. Observe that neither mono-
tonicity assumptions on the function f(s)=s nor uniqueness conditions on the limiting
equation (3) are considered. Finally, (9) and (10) have already been used, for instance
in [2–5,7], in order to tackle these general equations.
Let HV (�) be the weighted Hilbert space de�ned by

HV (�) =
{
u∈H 1

0 (�):
∫
�
V (x)u2¡+∞

}
;

endowed with the scalar product (u; v)V =
∫
� DuDv+ V (x)uv and denote by ‖ · ‖HV (�)

the corresponding norm.
Let � be a compact subset of � such that there exists x0 ∈� with

V (x0) = min
�

V ¡min
@�

V; (11)

N∑
i; j=1

aij(x0; s)�i�j =min
x∈�

N∑
i; j=1

aij(x; s)�i�j (12)

for every s∈R+ and �∈RN . Moreover, let us set

	 := sup{s¿ 0: f(t)6 tV (x0) for every t ∈ [0; s]} (13)

and

M := {x∈�: V (x) = V (x0)}: (14)

The following is the main result of the paper.

Theorem 1.1. Assume that conditions (5)–(12) hold.
Then there exists �0¿ 0 such that, for every �∈ (0; �0), there exist u� ∈HV (�) ∩

C( ��) and x� ∈� satisfying the following properties:
(a) u� is a weak solution of the problem

(P�)


−�2
N∑

i; j=1

Dj(aij(x; u)Diu) + �2

2

N∑
i; j=1

Dsaij(x; u)DiuDju

+V (x)u= f(u) in �

u¿ 0 in �

u= 0 on @�;

(b) there exists 	′ ¿ 0 such that

u�(x�) = sup
�

u�; 	¡u�(x�)¡	′; lim
�→0

d(x�;M) = 0

where 	 is as in (13) and M is as in (14);
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(c) for every %¿ 0 we have

lim
�→0

‖u�‖L∞(�\B%(x�)) = 0;

(d) we have

lim
�→0

‖u�‖HV (�) = 0

and, as a consequence, lim�→0 ‖u�‖Lq(�) = 0 for every 26 q¡+∞.

The proof of the theorem is variational and in the spirit of a well-known paper by
del Pino and Felmer [11], where it was successfully developed into a local setting the
global approach initiated by Rabinowitz [23].
We will consider the functional I� :HV (�)→ R associated with the problem (P�),

I�(u) :=
�2

2

N∑
i; j=1

∫
�
aij(x; u)DiuDju+

1
2

∫
�
V (x)u2 −

∫
�
F(u) (15)

and construct a new functional J� which satis�es the Palais–Smale condition (in a
suitable sense) at every level (I� does not, in general) and to which the (nonsmooth)
Mountain-Pass Theorem can be directly applied to get a critical point u� with precise
energy estimates.
Then we will prove that u� goes to zero uniformly on @� as � goes to zero (this is

the hardest step, here we repeatedly use the Pucci–Serrin identity in a suitable form)
and show that u� is actually a solution of the original problem with all of the stated
properties.

Remark 1.2. We do not know whether the solutions of problem (P�) obey to the
following exponential decay

u�(x)6 � exp
{
−


�
|x − x�|

}
for every x∈�; for some �; 
∈R+; (16)

which is a typical feature in the semilinear case. This fact would follow if we had
a suitable Gidas–Ni–Nirenberg [15] type result for Eq. (3) to be combined with
some results by Rabier and Stuart [22] on the exponential decay of second order
elliptic equations.

Remark 1.3. As pointed out in [13], the concentration around the minima of the
potential is, in some sense, a model situation for other phenomena such as concen-
tration around the maxima of d(x; @�). Furthermore it seems to be the technically
simplest case, thus suitable for a �rst investigation in the quasilinear case.

The organization of the paper is as follows:

• In Section 2 we construct the modi�ed functional J� and we prove that it satis�es a
variant of the classical Palais–Smale condition (see De�nition A.6).
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• In Section 3 we study the concentration of the solutions u� around the local minimum
of V (x) as � tends to zero.

• In Section 4 we �nally end up the proof of Theorem 1.1.
• In Section 5 we list a few open problems related to our main result.
• In Section 6 we quote from [5] various tools of nonsmooth critical point theory.

2. The del Pino–Felmer penalization scheme

We now de�ne a suitable modi�cation of the functional I� in order to regain the
(concrete) Palais–Smale condition at any level and apply Proposition A.9 of Appendix
A for every �¿ 0. Let us consider the positive constant

‘ := sup
{
s¿ 0:

f(t)
t
6

�
k
for every 06 t6 s

}

for some k ¿#=(#− 2). We de�ne the function f̃ :R+ → R by setting

f̃(s) :=

{ �
k s if s¿‘

f(s) if 06 s6 ‘

and the maps g; G :� × R+ → R,

g(x; s) := ��(x)f(s) + (1− ��(x))f̃(s); G(x; s) =
∫ s

0
g(x; �) d�

for every x∈�. Then the function g(x; s) is measurable in x, of class C1 in s and it
satis�es the following assumptions:

lim
s→+∞

g(x; s)
sp

= 0; lim
s→0+

g(x; s)
s

= 0 uniformly in x∈�; (17)

0¡#G(x; s)6 g(x; s)s for every x∈� and s∈R+; (18)

06 2G(x; s)6 g(x; s)s6
1
k
V (x)s2 for every x∈�\� and s∈R+: (19)

Without loss of generality, we may assume that

g(x; s) = 0 for every x∈� and s¡ 0;

aij(x; s) = aij(x; 0) for every x∈�; s¡ 0 and i; j = 1; : : : ; N:

Let J� :HV (�)→ R be the functional

J�(u) :=
�2

2

N∑
i; j=1

∫
�
aij(x; u)DiuDju+

1
2

∫
�
V (x)u2 −

∫
�
G(x; u):

The next result provides the link between the critical points of the modi�ed functional
J� and the solutions of the original problem.
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Proposition 2.1. Assume that u� ∈HV (�) is a critical point of J� and that there exists
a positive number �0 such that

u�(x)6 ‘ for every �∈ (0; �0) and x∈�\�:

Then u� is a solution of (P�).

Proof. By assertion (a) of Proposition A.8, it results that u� is a solution of (62).
Since u�6 ‘ on �\�, we have

G(x; u�(x)) = F(u�(x)) for every x∈�:

Moreover, by arguing as in the proof of [28, Lemma 1], one gets u� ¿ 0 in �.
Then u� is a solution of (P�).

The next Lemma—which is nontrivial—provides a local compactness property for
bounded concrete Palais–Smale sequences of J� (see De�nition A.6). For the proof,
we refer the reader to [28, Theorem 2 and Lemma 3].

Lemma 2.2. Assume that conditions (5)–(10) hold. Let �¿ 0. Assume that (uh) ⊂
H 1(RN ) is a bounded sequence and

〈wh; ’〉= �2
N∑

i; j=1

∫
RN

aij(x; uh)DiuhDj’+
�2

2

N∑
i; j=1

∫
RN

Dsaij(x; uh)DiuhDjuh’

for every ’∈C∞
c (RN ), where (wh) is strongly convergent in H−1(�̃) for a given

bounded domain �̃ of RN .
Then (uh) admits a strongly convergent subsequence in H 1(�̃). In particular, if

(uh) is a bounded concrete Palais–Smale condition for J� at level c and u is its weak
limit, then, up to a subsequence, Duh → Du in L2(�̃;RN ) for every bounded subset
�̃ of �.

Since � may be unbounded, in general, the original functional I� does not satisfy
the concrete Palais–Smale condition. In the following Lemma we prove that, instead,
the functional J� satis�es it for every �¿ 0 at every level c∈R.

Lemma 2.3. Assume that conditions (5)–(10), hold. Let �¿ 0.
Then J� satis�es the concrete Palais–Smale condition at every level c∈R.

Proof. Let (uh) ⊂ HV (�) be a concrete Palais–Smale sequence for J� at level c.
We divide the proof into two steps:
Step I: Let us prove that (uh) is bounded in HV (�). Since J�(uh) → c, from

inequalities (18) and (19), we get

#�2

2

N∑
i; j=1

∫
�
aij(x; uh)DiuhDjuh +

#
2

∫
�
V (x)u2h

6
∫
�
g(x; uh)uh +

#
2k

∫
�\�

V (x)u2h + #c + o(1) (20)
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as h → +∞. Moreover, in view of Proposition A.4, we have J ′
� (uh)(uh)=o(‖uh‖HV (�))

as h → +∞. Then, again by virtue of (19), we deduce that,

�2
N∑

i; j=1

∫
�
aij(x; uh)DiuhDjuh +

�2

2

N∑
i; j=1

∫
�
Dsaij(x; uh)uhDiuhDjuh

+
∫
�
V (x)u2h¿

∫
�
g(x; uh)uh + o(‖uh‖HV (�));

as h → +∞, which, by (9), yields
( �
2
+ 1

)
�2

N∑
i; j=1

∫
�
aij(x; uh)DiuhDjuh +

∫
�
V (x)u2h

¿
∫
�
g(x; uh)uh + o(‖uh‖HV (�)) (21)

as h → +∞. Then, in view of (8), by combining inequalities (20) and (21) one gets

min
{(

#
2
− �
2
− 1

)
��2;

#
2
− #
2k

− 1
}∫

�
(|Duh|2 + V (x)u2h)

6#c + o(‖uh‖HV (�)) + o(1) (22)

as h → +∞, which implies the boundedness of (uh) in HV (�).
Step II: By virtue of Step I, there exists u∈HV (�) such that, up to a subsequence,

(uh) weakly converges to u in HV (�).
Let us now prove that actually (uh) converges strongly to u in HV (�). By taking

into account Lemma 2.2 (applied with �̃=B%(0) for every %¿ 0), it su�ces to prove
that for every �¿ 0 there exists %¿ 0 such that

lim sup
h

∫
�\B%(0)

(|Duh|2 + V (x)u2h)¡�: (23)

We may assume that � ⊂ B%=2(0). Consider a cut–o� function  % ∈C∞(�) with  %=0
on B%=2(0),  % =1 on �\B%(0), |D %|6 c=% on � for some positive constant c. Let M
be a positive number such that∣∣∣∣∣∣

1
2

N∑
i; j=1

Dsaij(x; s)�i�j

∣∣∣∣∣∣6M
N∑

i; j=1

aij(x; s)�i�j (24)

for every x∈�, s∈R+, �∈RN and let  :R→ R be the map de�ned by

(s) :=



0 if s¡ 0;

Ms if 06 s¡R;

MR if s¿R;

(25)
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being R¿ 0 the constant de�ned in (10). Notice that

N∑
i; j=1

[
1
2
Dsaij(x; s) + ′(s)aij(x; s)

]
�i�j¿ 0

for every x∈�; s∈R; �∈RN : (26)

By Proposition A.4, we can compute J ′
� (uh)( %uh exp{(uh)}). Since (uh) is bounded

in HV (�) and (26) holds, we get

o(1) = J ′
� (uh)( %uh exp{(uh)})

= �2
N∑

i; j=1

∫
�

aij(x; uh)DiuhDjuh % exp{(uh)}

+ �2
N∑

i; j=1

∫
�

[
1
2
Dsaij(x; uh) + ′(uh)aij(x; uh)

]
DiuhDjuhuh % exp{(uh)}

+ �2
N∑

i; j=1

∫
�

aij(x; uh)uhDiuhDj % exp{(uh)}+
∫
�

V (x)u2h % exp{(uh)}

−
∫
�
g(x; uh)uh % exp{(uh)}¿

∫
�
(�2�|Duh|2 + V (x)u2h) % exp{(uh)}

+ �2
N∑

i; j=1

∫
�

aij(x; uh)uhDiuhDj % exp{(uh)}

−
∫
�
g(x; uh)uh % exp{(uh)}:

Therefore, in view of (19), it results

o(1)¿
∫
�
(�2�|Duh|2 + V (x)u2h) % exp{(uh)}

+ �2
N∑

i; j=1

∫
�
aij(x; uh)uhDiuhDj % exp{(uh)}

− 1
k

∫
�
V (x)u2h % exp{(uh)}

as % → +∞. Taking into account that∣∣∣∣∣∣
N∑

i; j=1

∫
�
aij(x; uh)uhDiuhDj % exp{(uh)}

∣∣∣∣∣∣6
exp{MR}C̃

%
‖Duh‖2‖uh‖2;
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there exists C′ ¿ 0 (which depends only on �; � and k) such that, as % → +∞,

lim sup
h

∫
�\B%(0)

(|Duh|2 + V (x)u2h)6
C′

%
;

which yields (23). Therefore, uh → u strongly in HV (�) and the proof is complete.

3. Energy estimates and concentration

Let us now introduce the functional J0 :H 1(RN )→ R de�ned by

J0(u) :=
1
2

N∑
i; j=1

∫
RN

aij(x0; u)DiuDju+
1
2

∫
RN

V (x0) u2 −
∫
RN

F(u)

where x0 is as in (11). Let us set

�c := inf
�∈P0

sup
t∈[0;1]

J0(�(t));

where P0 is the family de�ned by

P0 := {�∈C([0; 1]; HV (RN )): �(0) = 0; J0(�(1))¡ 0}: (27)

Let us also set

P� := {�∈C([0; 1]; HV (�)): �(0) = 0; J�(�(1))¡ 0}: (28)

In the following, if necessary, we will assume that, for every �∈P�, for every t ∈ [0; 1]
the map �(t) is extended to zero outside �.
In the next Lemma we get a critical point u� of J� with a precise energy upper

bound.

Lemma 3.1. For �¿ 0 su�ciently small J� admits a critical point u� ∈HV (�) such
that

J�(u�)6 �N �c + o(�N ): (29)

Proof. Let �¿ 0. By Lemma 2.3 the functional J� satis�es the concrete Palais–Smale
condition at every level c∈R. Moreover, since g(x; s) = o(s) as s → 0 uniformly in
x, it is readily seen that there exist %� ¿ 0 and �� ¿ 0 such that J� veri�es condition
(63). Finally, if z is a positive function in HV (�)\{0} such that supt(z) ⊂ �, by (6)
it results J�(tz) → −∞ as t → +∞. Therefore, by Proposition A.9, minimaxing over
the family (28), the functional J� admits a nontrivial critical point u� ∈HV (�) such
that

J�(u�) = inf
�∈P�

sup
t∈[0;1]

J�(�(t)):
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Since �c is the Mountain-Pass value of the limiting functional J0, for every �¿ 0 there
exists a continuous path � : [0; 1]→ HV (RN ) such that

�c6 sup
t∈[0;1]

J0(�(t))6 �c + �; �(0) = 0; J0(�(1))¡ 0: (30)

Let ∈C∞
c (RN ) be a cut–o� function with =1 in a neighbourhood U of x0 in �. We

de�ne the continuous path �� : [0; 1] → HV (�) by setting ��(�)(x) := (x)�(�)((x −
x0)=�) for every �∈ [0; 1] and x∈�. Then, for every �∈ [0; 1], after extension to zero
outside �, we have

J�(��(�)) =
�2

2

N∑
i; j=1

∫
RN

aij

(
x; (x)�(�)

(
x − x0

�

))
DiDj�2(�)

(
x − x0

�

)

+
1
2

N∑
i; j=1

∫
RN

aij

(
x; (x)�(�)

(
x − x0

�

))

×(Di�(�))
(
x − x0

�

)
(Dj�(�))

(
x − x0

�

)
2

+ �
N∑

i; j=1

∫
RN

aij

(
x; (x)�(�)

(
x − x0

�

))

×Di(Dj�(�))
(
x − x0

�

)
�(�)

(
x − x0

�

)

+
1
2

∫
RN

V (x)2(x)�2(�)
(
x − x0

�

)

−
∫
RN

G
(
x; (x)�(�)

(
x − x0

�

))
:

Then, after the change of coordinates, for every �∈ [0; 1] we get

J�(��(�))

=
�N+2

2

N∑
i; j=1

∫
RN

aij(�y + x0; (�y + x0)�(�)(y))

×Di(�y + x0)Dj(�y + x0)�2(�)(y)

+ �N+1
N∑

i; j=1

∫
RN

aij(�y + x0; (�y + x0)�(�)(y))

×Di(�y + x0)Dj�(�)(y)(�y + x0)�(�)(y)
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+
�N

2

N∑
i; j=1

∫
RN

aij(�y + x0; (�y + x0)�(�)(y))

×Di�(�)(y)Dj�(�)(y)2(�y + x0)

+
�N

2

∫
RN

V (�y + x0)2(�y + x0)�2(�)(y)

− �N
∫
RN

G(�y + x0; (�y + x0)�(�)(y)):

Taking into account that for every �∈ [0; 1] we have
lim
�→0

∫
RN

V (�y + x0)2(�y + x0)�2(�)(y) =
∫
RN

V (x0)�2(�)(y);

lim
�→0

∫
RN

G(�y + x0; (�y + x0)�(�)(y)) =
∫
RN

F(�(�)(y))

and also

lim
�→0

N∑
i; j=1

∫
RN

aij(�y + x0; (�y + x0)�(�)(y))Di�(�)(y)Dj�(�)(y)2(�y + x0)

=
N∑

i; j=1

∫
RN

aij(x0; �(�)(y))Di�(�)(y)Dj�(�)(y);

we obtain

J�(��(�)) = �N


12

N∑
i; j=1

∫
RN

aij(x0; �(�)(y))Di�(�)(y)Dj�(�)(y)

+
1
2

∫
RN

V (x0)�2(�)(y)−
∫
RN

F(�(�)(y))
}
+ o(�N )

as � → 0, namely

J�(��(�)) = �N J0(�(�)) + o(�N ) (31)

as � → 0, where o(�N ) is independent of � (by a compactness argument). Then, by
(30) and (31), it follows that �� ∈P� for every �¿ 0 su�ciently small and,

J�(u�) = inf
�∈P�

sup
t∈[0;1]

J�(�(t))6 sup
t∈[0;1]

J�(��(t))

= �N sup
t∈[0;1]

J0(�(t)) + o(�N )

6 �N �c + o(�N ) + ��N for every �¿ 0:

By the arbitrariness of � one concludes the proof.

In the following result we get some a priori estimates for the rescalings of u�.
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Corollary 3.2. Let (�h) ⊂ R+, (xh) ⊂ � and assume that (u�h) ⊂ HV (�) is as in
Lemma 3.1. Let us set

vh ∈HV (�h); �h := �−1h (� − xh); vh(x) := u�h(xh + �hx)

and put vh = 0 outside �h.
Then there exists a positive constant C such that

‖vh‖H 1(RN )6C (32)

for every h∈N.

Proof. We consider the functional Jh :HV (�h)→ R given by

Jh(v) :=
1
2

N∑
i; j=1

∫
�h

aij(xh + �hx; v)DivDjv

+
1
2

∫
�h

V (xh + �hx)v2 −
∫
�h

G(xh + �hx; v): (33)

Since Jh(vh) = �−N
h J�h(u�h), by virtue of Lemma 3.1 we have Jh(vh)6 �c + o(1) as

h → +∞. Therefore, if we set �h = �−1h (�− xh), from inequalities (18) and (19), we
get

#
2

N∑
i; j=1

∫
RN

aij(xh + �hx; vh)DivhDjvh +
#
2

∫
RN

V (xh + �hx)v2h

6
∫
�h

g(xh + �hx; vh)vh +
#
2k

∫
RN\�h

V (xh + �hx)v2h + # �c + o(1) (34)

as h → +∞. Moreover, since by Proposition A.4 it results J ′
h(vh)(vh) = 0 for every

h∈N, again by (19), we get
N∑

i; j=1

∫
RN

aij(xh + �hx; vh)DivhDjvh +
1
2

N∑
i; j=1

∫
RN

Dsaij(xh + �hx; vh)vhDivhDjvh

+
∫
RN

V (xh + �hx)v2h¿
∫
�h

g(xh + �hx; vh)vh;

which, in view of (9), yields

( �
2
+ 1

) N∑
i; j=1

∫
RN

aij(xh + �hx; vh)DivhDjvh

+
∫
RN

V (xh + �hx)v2h¿
∫
�h

g(xh + �hx; vh)vh: (35)
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Then, recalling (7) and (8), by combining inequality (34) and (35) one gets

min
{(

#
2
− �
2
− 1

)
�;
(
#
2
− #
2k

− 1
)

�
}∫

RN
(|Dvh|2 + v2h)6# �c + o(1) (36)

as h → +∞, which yields the assertion.

Corollary 3.3. Assume that (u�)�¿0 ⊂ HV (�) is as in Lemma 3.1.
Then we have

lim
�→0

‖u�‖HV (�) = 0:

Proof. We may argue as in Step I of Lemma 2.3 with uh replaced by u� and c replaced
by J�(u�). Thus, from inequality (22), for every �¿ 0 we get∫

�
(|Du�|2 + V (x)u2� )6

#
min{(#=2− �=2− 1)��2; #=2− #=2k − 1} J�(u�):

By virtue of Lemma 3.1, this yields∫
�
(|Du�|2 + V (x)u2� )6

2# �c
(#− �− 2)� �N−2 + o(�N−2)

for every � su�ciently small, which implies the assertion.

Let L :RN × R × RN → R be a function of class C1 such that the function
∇�L is of class C1 and let ’∈L∞

loc(RN ). We now recall the Pucci–Serrin variational
identity [21].

Lemma 3.4. Let u :RN → R be a C2 solution of

−div (D�L(x; u; Du)) + DsL(x; u; Du) = ’ in D′(RN ):

Then we have

N∑
i; j=1

∫
RN

DihjD�iL(x; u; Du)Dju

−
∫
RN
[(div h)L(x; u; Du) + h · DxL(x; u; Du)] =

∫
RN
(h · Du)’ (37)

for every h∈C1c (RN ;RN ).

We refer also to [10], where the above variational relation is proved for C1 solutions.
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We now derive an important consequence of the previous identity which will play
an important role in the proof of Lemma 3.6.

Lemma 3.5. Let �¿ 0 and h; H :R+ → R be the continuous functions de�ned by

h(s) =−�s+ f(s); H (s) =
∫ s

0
h(t) dt;

where f satis�es (5) and (6). Moreover, let bij ∈C1(R+)∩L∞(R+) with b′ij ∈L∞(R+)
and assume that there exist �′ ¿ 0 and R′ ¿ 0 with

N∑
i; j=1

bij(s)�i�j¿ �′|�|2; s¿R′ ⇒
N∑

i; j=1

b′ij(s)�i�j¿ 0 (38)

for every s∈R+ and �∈RN .
Let u∈H 1(RN ) be any nontrivial positive solution of the equation

−
N∑

i; j=1

Dj(bij(u)Diu) +
1
2

N∑
i; j=1

b′ij(u)DiuDju= h(u) in RN : (39)

We denote by Ĵ the associated functional

Ĵ (u) :=
1
2

N∑
i; j=1

∫
RN

bij(u)DiuDju−
∫
RN

H (u): (40)

Then it results Ĵ (u)¿ b, where

b := inf
�∈P̂

sup
t∈[0;1]

Ĵ (�(t));

P̂ := {�∈C([0; 1]; H 1(RN )): �(0) = 0; Ĵ (�(1))¡ 0}:

Proof. By condition (38), it results

Ĵ (v)¿
1
2
min{�′; �}‖v‖2H 1(RN ) −

∫
RN

F(v) for every v∈H 1(RN ):

Then, since for every �¿ 0 there exists C� ¿ 0 with

06F(s)6 �s2 + C�|s|2N=(N−2); for every s∈R+;
it is readily seen that there exist %0¿ 0 and �0¿ 0 such that Ĵ (v)¿ �0 for every v
with ‖v‖1;2=%0. In particular, Ĵ has a Mountain-Pass geometry. As we will see, P̂ �= ∅,
so that b is well de�ned. Let u be a nontrivial positive solution of (39) and consider
the dilation path

�(t)(x) :=




u
(x
t

)
if t ¿ 0

0 if t = 0:
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Notice that ‖�(t)‖2H 1 = tN−2‖Du‖22 + tN‖u‖22 for every t ∈R+, which implies that the
curve � belongs to C([0;+∞[; H 1(RN )). For every t ∈R+ it results that

Ĵ (�(t)) =
1
2

N∑
i; j=1

∫
RN

bij(�(t))Di�(t)Dj�(t)−
∫
RN

H (�(t))

=
tN−2

2

N∑
i; j=1

∫
RN

bij(u)DiuDju− tN
∫
RN

H (u)

which yields, for every t ∈R+

d
dt

Ĵ (�(t)) =
N − 2
2

tN−3
N∑

i; j=1

∫
RN

bij(u)DiuDju− NtN−1
∫
RN

H (u): (41)

By (38), arguing like at the end of Step I of Lemma 3.6 (namely using the local
Serrin estimates) it results that u∈L∞

loc(RN ). Hence by the regularity results of [18], it
follows that u is of class C2. Then we can use Lemma 3.4 by choosing ’= 0,

L(s; �) :=
1
2

N∑
i; j=1

bij(s)�i�j − H (s) for every s∈R+ and �∈RN ; (42)

h(x) := hk(x) = T
( x
k

)
x for every x∈RN and k¿ 1;

being T ∈C1c (RN ) such that T (x) = 1 if |x|6 1 and T (x) = 0 if |x|¿ 2. In particular,
it results that hk ∈C1c (RN ;RN ) for every k¿ 1 and

Dih
j
k(x) = DiT

( x
k

) xj
k
+ T

( x
k

)
�ij for every x∈RN and i; j = 1; : : : ; N

(div hk)(x) = DT
( x
k

)
· x
k
+ NT

( x
k

)
for every x∈RN :

Then, since DxL(u; Du) = 0, it follows by (37) that for every k¿ 1
n∑

i; j=1

∫
RN

DiT
( x
k

) xj
k

DjuD�iL(u; Du) +
∫
RN

T
( x
k

)
D�L(u; Du) · Du

−
∫
RN

DT
( x
k

)
· x
k
L(u; Du)−

∫
RN

NT
( x
k

)
L(u; Du) = 0:

Since there exists C ¿ 0 with

DiT
( x
k

) xj
k
6C for every x∈RN ; k¿ 1 and i; j = 1; : : : ; N;

by the Dominated Convergence Theorem, letting k → +∞, we obtain∫
RN
[NL(u; Du)− D�L(u; Du) · Du] = 0;
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namely, by (42),

N − 2
2

N∑
i; j=1

∫
RN

bij(u)DiuDju= N
∫
RN

H (u): (43)

By plugging this formula into (41), we obtain

d
dt

Ĵ (�(t)) = N (1− t2)tN−3
∫
RN

H (u);

which yields (d=dt)Ĵ (�(t))¿ 0 for t ¡ 1 and (d=dt)Ĵ (�(t))¡ 0 for t ¿ 1, i.e.

sup
t∈[0;L]

Ĵ (�(t)) = Ĵ (�(1)) = Ĵ (u):

Moreover, observe that

�(0) = 0 and Ĵ (�(T ))¡ 0 for T ¿ 0 su�ciently large:

Then, after a suitable scale change in t, �∈ P̂ and the assertion follows.

The following is one of the main tools of the paper.

Lemma 3.6. Assume that (u�)�¿0 ⊂ HV (�) is as in Lemma 3.1.
Then we have

lim
�→0

max
@�

u� = 0: (44)

Proof. The following auxiliary fact is su�cient to prove assertion (44): if �h → 0 and
(xh) ⊂ � are such that u�h(xh)¿ c for some c¿ 0, then

lim
h

V (xh) = min
�

V: (45)

Indeed, assume by contradiction that there exist (�h) ⊂ R+ with �h → 0 and (xh) ⊂ @�
such that u�h(xh)¿ c for some c¿ 0. Up to a subsequence, we have xh → �x∈ @�.
Then by (45) it results

min
@�

V 6V ( �x) = lim
h

V (xh) = min
�

V

which contradicts assumption (11).
We divide the proof of (45) into four steps:
Step I: Up to a subsequence, xh → x̂ for some x̂∈�. By contradiction, we assume

that

V ( x̂)¿min
�

V = V (x0):

Since for every h∈N the function u�h solves (P�h), the sequence

vh ∈HV (�h); �h = �−1h (� − xh); vh(x) = u�h(xh + �hx)
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satis�es

−
N∑

i; j=1

Dj(aij(xh + �hx; vh)Divh) +
1
2

N∑
i; j=1

Dsaij(xh + �hx; vh)DivhDjvh = wh in �h;

vh ¿ 0 in �h and vh = 0 on @�h, where we have set

wh := g(xh + �hx; vh)− V (xh + �hx)vh for every h∈N:

Setting vh = 0 outside RN , by Corollary 3.2, up to a subsequence, vh → v weakly in
H 1(RN ). Notice that the sequence (��(xh+ �hx)) converges weak

∗ in L∞ to a measur-
able function 06 �6 1. In particular, taking into account that |wh|6 c1|vh|+ c2|vh|p,
(wh) is strongly convergent in H−1(�̃) for every bounded subset �̃ of RN . Therefore,
by a simple variant of Lemma 2.2, we conclude that (vh) is strongly convergent to v in
H 1(�̃) for every bounded subset �̃ ⊂ RN (actually, as we will see, vh → v uniformly
over compacts). Then it follows that the limit v is a solution of the equation

−
N∑

i; j=1

Dj(aij( x̂; v)Div)

+
1
2

N∑
i; j=1

Dsaij( x̂; v)DivDjv+ V ( x̂)v= g0(x; v) in RN (46)

where g0(x; s) := �(x)f(s) + (1− �(x))f̃(s) for every x∈RN and s∈R+.
We now prove that v �= 0. Let us set

dh(x) :=




V (xh + �hx)− g(x; vh(x))
vh(x)

if vh(x) �= 0;

0 if vh(x) = 0;

Aj(x; s; �) :=
N∑
i=1

aij(xh + �hx; s)�i for j = 1; : : : ; N;

B(x; s; �) := dh(x)s;

C(x; s) :=
1
2

N∑
i; j=1

Dsaij(xh + �hx; s)Divh(x)Djvh(x)

for every x∈RN , s∈R+ and �∈RN . Taking into account the assumptions on the
coe�cients aij(x; s), it results that

A(x; s; �) · �¿ �|�|2; |A(x; s; �)|6 c|�|; |B(x; s; �)|6dh(x)|s|:
Moreover, by (10) we have

s¿R ⇒ C(x; s)s¿ 0
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for every x∈RN and s∈R+. By the growth condition on g, dh ∈L
N
2−� (B2%(0)) for

every %¿ 0 and

S = sup
h

‖dh‖
L

N
2−� (B2%(0))

6D%sup
h∈N

‖vh‖L2∗ (B2%(0))¡+∞

for some �¿ 0 su�ciently small. Since we have div (A(x; vh; Dvh)) = B(x; vh; Dvh) +
C(x; vh) for every h∈N, by virtue of [24, Theorem 1 and Remark at p. 261] there
exists a positive constant M (�; N; c; %�S) and a radius %¿ 0, su�ciently small, such
that

sup
h∈N

max
x∈B%(0)

|vh(x)|6M (�; N; c; %�S)(2%)−N=2sup
h∈N

‖vh‖L2(B2%(0))¡+∞

so that (vh) is uniformly bounded in B%(0). Then, by [24, Theorem 8], (vh) is bounded
in some C1; �(B%=2(0)). Up to a subsequence this implies that (vh) converges uniformly
to v in B%=2(0). This yields v(0) = limh vh(0) = limh u�h(xh)¿ c¿ 0.
In a similar fashion one shows that vh → v uniformly over compacts.
Step II: We prove that v actually solves the following equation

−
N∑

i; j=1

Dj(aij( x̂; v)Div) +
1
2

N∑
i; j=1

Dsaij( x̂; v)DivDjv+ V ( x̂)v= f(v) in RN :(47)

In general, the function � of Step I is given by �= �T�( x̂), where T�( x̂) is the tangent
cone of � at x̂. On the other hand, since we may assume without loss of generality
that � is smooth, it results (up to a rotation) that �(x) = �{x1¡0}(x) for every x∈RN .
In particular, v is a solution of the following problem:

−
N∑

i; j=1

Dj(aij( x̂; v)Div) +
1
2

N∑
i; j=1

Dsaij( x̂; v)DivDjv

+V ( x̂)v= �{x1¡0}(x)f(v) + �{x1¿0}(x)f̃(v) in RN : (48)

Let us �rst show that v(x)6 ‘ on {x1 = 0}. To this aim, let us use again Lemma 3.4,
by choosing this time

’(x) := �{x1¡0}(x)f(v(x)) + �{x1¿0}(x)f̃(v(x)) for every x∈RN

L(s; �) :=
1
2

N∑
i; j=1

aij( x̂; s)�i�j +
V ( x̂)
2

s2 for every s∈R and �∈RN ;

h(x) := hk(x) =
(
T
( x
k

)
; 0; : : : ; 0

)
for every x∈RN and k¿ 1:

Then hk ∈C1c (RN ;RN ) and, since DxL(v; Dv) = 0, for every k¿ 1 it results∫
RN

[
1
k

N∑
i=1

DiT
( x
k

)
D1vD�iL(v; Dv)− D1T

( x
k

) 1
k
L(v; Dv)

]

=
∫
RN

T
( x
k

)
’(x; v)D1v:
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Again by the Dominated Convergence Theorem, letting k → +∞, it results∫
RN

’(x; v)D1v= 0;

that is, after integration by parts,∫
RN−1

[
F(v(0; x′))− F̃(v(0; x′))

]
dx′ = 0:

Taking into account that F(s)¿ F̃(s) with equality only if s6 ‘, we get v(0; x′)6 ‘ for
every x′ ∈RN−1. To prove that actually v(x1; x′)6 ‘ for every x1¿ 0 and x′ ∈RN−1,
we test (48) with

�(x) :=

{
0 if x1¡ 0;

(v(x1; x′)− ‘)+ exp{(v(x1; x′))} if x1¿ 0;

where (s) is as in (25) and then we argue as in Section 4 (see the computations in
formula (55)). In particular,

’(x; v(x)) = f(v(x)) for every x∈RN ; (49)

so that v is a nontrivial solution of (47).
Step III: If Jh :HV (�h)→ R is as in (33), the function vh is a critical point of Jh and

Jh(vh) = �−N
h J�h(u�h) for every h∈N. Let us consider the functional J x̂ :H 1(RN )→ R

de�ned as

J x̂(u) :=
1
2

N∑
i; j=1

∫
RN

aij( x̂; u)DiuDju+
1
2

∫
RN

V ( x̂)u2 −
∫
RN

F(u):

We now want to prove that

J x̂(v)6 lim inf
h

Jh(vh): (50)

Let us set for every h∈N and x∈�h

�h(x) :=
1
2

N∑
i; j=1

aij(xh + �hx; vh)DivhDjvh

+
1
2
V (xh + �hx)v2h − G(xh + �hx; vh): (51)

Since vh → v in H 1 over compact sets, in view of (49), for every %¿ 0 one gets

lim
h

∫
B%(0)

�h(x) =
1
2

∫
B%(0)


 N∑

i; j=1

aij( x̂; v)DivDjv+ V ( x̂)v2


−

∫
B%(0)

F(v):
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Moreover, as v belongs to H 1(RN ),

1
2

∫
B%(0)


 N∑

i; j=1

aij( x̂; v)DivDjv+ V ( x̂)v2


−

∫
B%(0)

F(v) = J x̂(v)− o(1)

as % → +∞. Therefore, it su�ces to show that for every �¿ 0 there exists %¿ 0 with

lim inf
h

∫
�h\B%(0)

�h(x)¿− �: (52)

Consider a function �% ∈C∞(RN ) such that 06 �%6 1, �% = 0 on B%−1(0), �% = 1 on
RN\B%(0) and |D�%|6 c. Let us set for every h∈N


h(%) :=
N∑

i; j=1

∫
B%(0)\B%−1(0)

aij(xh + �hx; vh)DivhDj(�%vh)

+
1
2

N∑
i; j=1

∫
B%(0)\B%−1(0)

Dsaij(xh + �hx; vh)�%vhDivhDjvh

+
∫
B%(0)\B%−1(0)

V (xh + �hx)v2h�% −
∫
B%(0)\B%−1(0)

g(xh + �hx; vh)�%vh:

After some computations, in view of (9), (51) and Proposition A.4, one gets

−
h(%) + J ′
h(vh)(�%vh)

6 (�+ 2)
∫
�h\B%(0)

�h(x)− �
2

∫
�h\B%(0)

V (xh + �hx)v2h

+(�+ 2)
∫
�h\B%(0)

G(xh + �hx; vh)−
∫
�h\B%(0)

g(xh + �hx; vh)vh

Notice that, by virtue of (18), for % large enough, setting �h = �−1h (�− xh), we get

− �
2

∫
�h\B%(0)

V (xh + �hx)v2h + (�+ 2)
∫
�h\B%(0)

G(xh + �hx; vh)

−
∫
�h\B%(0)

g(xh + �hx; vh)vh6− (#− 2− �)
∫
�h\B%(0)

G(xh + �hx; vh)6 0:

Analogously, in view of (19), we obtain

− �
2

∫
�h\(B%(0)∪�h)

V (xh + �hx)v2h + (�+ 2)
∫
�h\(B%(0)∪�h)

G(xh + �hx; vh)

−
∫
�h\(B%(0)∪�h)

g(xh + �hx; vh)vh

6− �
2

∫
�h\(B%(0)∪�h)

V (xh + �hx)v2h +
�
2k

∫
�h\(B%(0)∪�h)

V (xh + �hx)v2h6 0:
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Therefore, since J ′
h(vh)(�%vh) = 0 for every h∈N and

lim sup
h


h(%) = o(1) as % → +∞;

inequality (52) follows and thus (50) holds true.
Step IV: In this step we get the desired contradiction. By combining Lemma 3.1

with the inequality (50), one immediately gets

J x̂(v)6 �c = inf
�∈P0

sup
t∈[0;1]

J0(�(t)): (53)

Since v is a nontrivial solution of (47), by applying Lemma 3.5 with

� = V ( x̂); �′ = �; R′ = R; bij(s) = aij( x̂; s);

being P̂ ⊆ P0, V ( x̂)¿V (x0) and, by (12),

N∑
i; j=1

aij( x̂; s)�i�j¿
N∑

i; j=1

aij(x0; s)�i�j for every s∈R+ and �∈RN ;

it follows that

J x̂(v)¿ inf
�∈P̂

sup
t∈[0;1]

J x̂(�(t))¿ inf
�∈P0

sup
t∈[0;1]

J0(�(t)) = �c; (54)

which contradicts (53).

4. Proof of the main result

We are now ready to prove Theorem 1.1.
Step I: We prove that (a) holds. By Lemma 3.6 there exists �0¿ 0 such that

u�(x)¡‘ for every �∈ (0; �0) and x∈ @�:

Then, since u� ∈HV (�), for every �∈ (0; �0), if  is de�ned as in (25), the function

v�(x) :=

{
0 if x∈�

(u�(x)− ‘)+ exp{(u�(x))} if x∈�\�
belongs to H 1

0 (�) and (by Proposition A.4) it is an admissible test for the equation

−�2
N∑

i; j=1

Dj(aij(x; u�)Diu�) +
�2

2

N∑
i; j=1

Dsaij(x; u�)Diu�Dju� + V (x)u� = g(x; u�):

After some computations, one obtains

�2
N∑

i; j=1

∫
�\�

aij(x; u�)Di[(u� − ‘)+]Dj[(u� − ‘)+] exp{(u�)}
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+ �2
N∑

i; j=1

∫
�\�

[
1
2
Dsaij(x; u�) + ′(u�)aij(x; u�)

]
Diu�Dju�(u� − ‘)+ exp{(u�)}

+
∫
�\�

��(x)[(u� − ‘)+]2 exp{(u�)}

+
∫
�\�

��(x)‘(u� − ‘)+ exp{(u�)}= 0; (55)

where �� :� → R is the function given by

��(x) := V (x)− g(x; u�(x))
u�(x)

:

Notice that, by virtue of condition (19), one has

��(x)¿ 0 for every x∈�\�:

Therefore, taking into account (26), all the terms in (55) must be equal to zero. We
conclude that (u� − ‘)+ = 0 on �\�, namely,

u�(x)6 ‘ for every �∈ (0; �0) and x∈�\�: (56)

Hence, by Proposition 2.1, u� is a positive solution of the original problem (P�). More-
over, by virtue of (10), using again the argument at the end of Step I of Lemma 3.6
it results that u� ∈L∞

loc(�), which, by the regularity results of [18], yields u� ∈C( ��).
Notice that by arguing in a similar fashion testing with

v�(x) :=

{
0 if x∈�

(u�(x)− sup@� u�)+ exp{(u�(x))} if x∈�\�
it results u� → 0 uniformly outside �.
Step II: We prove that (b) holds. If x� denotes the maximum of u� in �, since

u� → 0 uniformly outside �, it results that u�(x�) = sup� u�. By arguing as at the
end of Step I of Lemma 3.6, setting v�(x) = u�(x� + �x) it results that the sequence
(v�(0)) is bounded in R. Then there exists 	′ ¿ 0 such that u�(x�)=v�(0)6 	′. Assume
now by contradiction that u�(x�)6 	 for some �∈ (0; �0). Then, taking into account the
de�nition of 	 and that u� → 0 uniformly outside �, it holds (with strict inequality in
some subset of �)

V (x)− f(u�(x))
u�(x)

¿ 0 for every x∈�: (57)

Let  :R+ → R be the map de�ned in (25). Then, in view of Proposition A.4, the
function u� exp{(u�)} can be chosen as an admissible test in the equation

−�2
N∑

i; j=1

Dj(aij(x; u�)Diu�) +
�2

2

N∑
i; j=1

Dsaij(x; u�)Diu�Dju� + V (x)u� = f(u�):
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After some computations, one obtains

�2
N∑

i; j=1

∫
�
aij(x; u�)Diu�Dju� exp{(u�)}

+ �2
N∑

i; j=1

∫
�

[
1
2
Dsaij(x; u�) + ′(u�)aij(x; u�)

]
Diu�Dju�u� exp{(u�)}

+
∫
�

(
V (x)− f(u�)

u�

)
u2� exp{(u�)}= 0: (58)

Then, by (8), (26) and (57) all the terms in equation (58) must be equal to zero,
namely u� ≡ 0, which is not possible. Then u�(x�)¿ 	 for every �∈ (0; �0) and by
(45) we also get d(x�;M)→ 0 as � → 0.
Step III: We prove that (c) holds. Assume by contradiction that there exists %¿ 0,

�¿ 0, �h → 0 and yh ∈�\B%(x�h) such that

lim sup
h

u�h(yh)¿ �: (59)

Then, arguing as in Lemma 3.6, we can assume that yh → y, x�h → ỹ and vh(y) :=
u�h(yh + �hy) → v, ṽh(y) := u�h(x�h + �hy) → ṽ strongly in H 1

loc(RN ), where v is a
solution of

−
N∑

i; j=1

Dj(aij(y; v)Div) +
1
2

N∑
i; j=1

Dsaij(y; v)DivDjv+ V (y)v= f(v) in RN

and ṽ is a solution of

−
N∑

i; j=1

Dj(aij(ỹ; v)Div) +
1
2

N∑
i; j=1

Dsaij(ỹ; v)DivDjv+ V (ỹ)v= f(v) in RN :

Observe that v �= 0 and ṽ �= 0. Indeed, arguing as in Step I of Lemma 3.6 it results
that (vh) and (ṽh) converge uniformly in a neighbourhood of zero, so that from (59)
and u�h(x�h)¿ 	 we get v(0)¿ � and ṽ(0)¿ 	. Now, setting zh := (x�h − yh)=�h and

�h(y) :=
1
2

N∑
i; j=1

aij(yh + �hy; vh)DivhDjvh

+
1
2
V (yh + �hy)v2h − G(yh + �hy; vh);

if  ∈C∞(R), 06  6 1,  (s) = 0 for s6 1 and  (s) = 1 for s¿ 2, arguing as in
Lemma 3.6 by testing the equation satis�ed by vh with

’h;R(y) = vh(y)
[
 
( |y|

R

)
+  

( |y − zh|
R

)
− 1

]
;

taking into account that

lim
h

∣∣∣∣∣
∫
B2R(0)∪B2R(zh)\(BR(0)∪BR(zh))

�h(y)

∣∣∣∣∣= o(1)
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as R → +∞, it turns out that for every �¿ 0 there exists R¿ 0 with

lim inf
h

∫
�h\(BR(0)∪BR(zh))

�h(y)¿− �:

Moreover, for every R¿ 0 we have

lim inf
h

∫
BR(0)∪BR(zh)

�h(y)

= lim inf
h

∫
BR(0)

1
2

N∑
i; j=1

aij(yh + �hy; vh)DivhDjvh

+
1
2
V (yh + �hy)v2h − G(yh + �hy; vh)

+ lim inf
h

∫
BR(0)

1
2

N∑
i; j=1

aij(x�h + �hy; ṽh)DiṽhDjṽh

+
1
2
V (x�h + �hy)ṽ2h − G(x�h + �hy; ṽh)

=
∫
BR(0)

1
2

N∑
i; j=1

aij(y; v)DivDjv+
1
2
V (y)v2 − F(v)

+
∫
BR(0)

1
2

N∑
i; j=1

aij(ỹ; ṽ)DiṽDjṽ+
1
2
V (ỹ)ṽ2 − F(ṽ):

Therefore, we deduce that

lim inf
h

�−N
h J�h(u�h) = lim infh

∫
�h

�h(y)¿ Jy(v) + Jỹ(ṽ):

If by and bỹ denote the Mountain-Pass values of the functionals Jy and Jỹ respectively,
by Lemma 3.5, (11) and (12) we have Jy(v)¿ by¿ �c and Jỹ(ṽ)¿ bỹ¿ �c. Therefore
we conclude that lim inf h �−N

h J�h(u�h)¿ 2 �c, which contradicts Lemma 3.1.
Step IV: We prove that (d) holds. By Corollary 3.3, we have ‖u�‖HV (�) → 0. In

particular, u� → 0 in Lq(�) for every 26 q6 2∗. As a consequence u� → 0 in Lq(�)
also for every q¿ 2∗. Indeed, if q¿ 2∗, we have∫

�
|u�|q =

∫
�
|u�|q−2∗ |u�|2∗ 6 	′q−2∗

∫
�
|u�|2∗ → 0

as � → 0.
The proof is now complete.
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5. A few related open problems

We quote here a few (open) problems related to the main result of the paper.

Problem 5.1. Under suitable assumptions, does a Gidas–Ni–Nirenberg [15] type result
(radial symmetry) hold for the solutions of autonomous equations of the type

−
N∑

i; j=1

Dj(bij(u)Diu) +
1
2

N∑
i; j=1

b′ij(u)DiuDju= h(u) in RN ? (60)

Problem 5.2. Under suitable assumptions on bij and h, is it possible to prove, as in
the semilinear case, a uniqueness result for the solutions of equation (60)?

Problem 5.3. Under suitable assumptions on bij and h, is it possible to prove, as in
the semilinear case, that there exists a least energy solution of equation (60)? In other
words, is there a positive solution !∈H 1(RN ) such that

J̃ (!) = inf{J̃ (u): u∈H 1(RN )\{0} is a solution of (60)};
being J̃ the functional associated with (60)? We believe so, and in particular that this
solution correspond exactly to the Mountain-Pass solution.

Problem 5.4. Is it true that for each �¿ 0 the solution u� of problem (P�) admits a
unique maximum point inside �?

Problem 5.5. Is it true that the solutions u� of problem (P�) decay exponentially as
for the semilinear case (see formula (16))?
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Appendix A. recalls of nonsmooth critical point theory

In this section we quote from [8,9] some tools of nonsmooth critical point theory
that are used in the paper.
For the sake of completeness, let us recall the de�nition of weak slope.

De�nition A.1. Let X be a complete metric space, f :X → R be a continuous function,
and u∈X . We denote by |df|(u) the supremum of the real numbers 	¿ 0 such that
there exist �¿ 0 and a continuous map H :B(u; �) × [0; �] → X such that, for every
v in B(u; �), and for every t in [0; �] it results

d(H(v; t); v)6 t; f(H(v; t))6f(v)− 	t:

The extended real number |df|(u) is called the weak slope of f at u.
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De�nition A.2. We say that u∈X is a critical point of f if |df|(u) = 0. We say that
c∈R is a critical value of f if there exists a critical point u∈X of f with f(u) = c.

De�nition A.3. Let c∈R. We say that f satis�es the Palais–Smale condition at level
c ((PS)c in short), if every sequence (uh) in X such that |df|(uh)→ 0 and f(uh)→ c
admits a subsequence converging in X .

Let us now return to the concrete setting and choose X = HV (�). Let �¿ 0 and
consider the functional f :HV (�)→ R de�ned by setting

f(u) =
�2

2

N∑
i; j=1

∫
�
aij(x; u)DiuDju+

1
2

∫
�
V (x)u2 −

∫
�
G(x; u); (61)

where g :�×R→ R is now any Carath�eodory map and G(x; s)=
∫ s
0 g(x; t) dt. Although

f is merely continuous, its directional derivatives exist along some special directions.

Proposition A.4. Let u; ’∈HV (�) be such that


 N∑

i; j=1

Dsaij(x; u)DiuDju


’



−

∈L1(�):

Then 
 N∑

i; j=1

Dsaij(x; u)DiuDju


’∈L1(�);

the directional derivative f′(u)(’) exists, and it holds

f′(u)(’) = �2
N∑

i; j=1

∫
�
aij(x; u)DiuDj’+

�2

2

N∑
i; j=1

∫
�
Dsaij(x; u)DiuDju’

+
∫
�
V (x)u’−

∫
�
g(x; u)’:

In particular, if (10) holds, for every ’∈L∞(�), ’¿ 0 the derivative f′(u)(’u)
exists.

De�nition A.5. We say that u is a weak solution of the problem

−�2
N∑

i; j=1

Dj(aij(x; u)Diu) +
�2

2

N∑
i; j=1

Dsaij(x; u)DiuDju

+V (x)u= g(x; u) in �

u= 0 on @�

(62)
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if u∈HV (�) and

−�2
N∑

i; j=1

Dj(aij(x; u)Diu) +
�2

2

N∑
i; j=1

Dsaij(x; u)DiuDju+ V (x)u= g(x; u)

is satis�ed in D′(�).

We now introduce a variant of the classical Palais–Smale condition, suitable for
our purposes.

De�nition A.6. Let c∈R. We say that (uh) ⊂ HV (�) is a concrete Palais–Smale
sequence at level c ((CPS)c-sequence, in short) for the f, if f(uh)→ c and

N∑
i; j=1

Dsaij(x; uh)DiuhDjuh ∈ (HV (�))′ as h → +∞;

−�2
N∑

i; j=1

Dj(aij(x; uh)Diuh) +
�2

2

N∑
i; j=1

Dsaij(x; uh)DiuhDjuh + V (x)uh − g(x; uh)→0

strongly in (HV (�))′. We say that f satis�es the concrete Palais–Smale condition
at level c ((CPS)c condition), if every (CPS)c-sequence for f admits a strongly
convergent subsequence in HV (�).

The next result allows us to connect the critical points of f (as in De�nition A.2)
with the weak solutions of problem (62).

Proposition A.7. For every u in HV (�) we have

|df|(u)¿ sup{〈wu; ’〉: ’∈C∞
c (�); ‖’‖HV 6 1}

where

wu =−�2
N∑

i; j=1

Dj(aij(x; u)Diu) +
�2

2

N∑
i; j=1

Dsaij(x; u)DiuDju+ V (x)u− g(x; u):

In particular, if |df|(u)¡+∞, it follows that

−�2
N∑

i; j=1

Dj(aij(x; u)Diu) +
�2

2

N∑
i; j=1

Dsaij(x; u)DiuDju∈ (HV (�))′

and ‖wu‖(HV (�))′ 6 |df|(u).

As a consequence of the previous proposition we have the following result.

Proposition A.8. Let u∈HV (�), c∈R and let (uh) be a sequence in HV (�).
Then the following facts hold:

(a) if u is a critical point of f, then u is a weak solution of (62);
(b) if f satis�es (CPS)c, then f satis�es (PS)c.
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Finally, we recall a suitable version of the nonsmooth Mountain-Pass Theorem.

Proposition A.9. Let us consider the class of paths (28). Assume that there exist
%� ¿ 0 and �� ¿ 0 such that

‖u‖HV (�) = %� ⇒ f(u)¿ ��: (63)

Then, if f satis�es the concrete Palais–Smale condition at level

c� = inf
�∈P�

sup
t∈[0;1]

f(�(t));

there exists a nontrivial critical point u� ∈HV (�) of f at the level c�.
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