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Abstract

For a general class of lower semicontinuous functionals, we prove existence and multiplicity
of critical points, which turn out to be unbounded solutions to the associated Euler equation.
We apply a nonsmooth critical point theory developed in [10,12,13] and applied in [8,9,20] to
treat the case of continuous functionals.
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1. Introduction

The aim of this paper is to prove existence and multiplicity results of unbounded
critical points for a class of lower semicontinuous functionals. Let us consider a
bounded open set Q= RY (N >3) and define the functional 1" : H}(Q) »RuU{+o0} by

f = [ itve 5 = [ G
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where j(x,s,&):Q x R x RY - R is a measurable function with respect to x for all
(s,&)eR x RY, and of class C! with respect to (s, ¢) for a.e. xeQ. We also assume
that for almost every x in Q and every s in R

the function {&—j(x,s, &)} is strictly convex. (1.1)

Moreover, we suppose that there exist a constant op>0 and a positive increasing
function ae C(R) such that the following hypothesis is satisfied for almost every xeQ
and for every (s, &) eR x RV:

a0 E[* <, 5, &) <aulJs)IEP (1.2)

The functions js(x, s, &) and j(x, s, £) denote the derivatives of j(x, s, &) with respect of
the variables s and &, respectively. Regarding the function j,(x, s, £), we assume that
there exist a positive increasing function fe C(R) and a positive constant R
such that the following conditions are satisfied almost everywhere in © and for
every £eRY:

|is(x, 8, &) <B(Is])|E* for every s in R, (1.3)

Js(x,5,8)s=0 for every s in R with |s|>R. (1.4)

Let us notice that, from (1.1) and (1.2), it follows that j:(x, s, &) satisfies the following
growth condition (see Remark 4.1 for more details):

|Je(x,5, &) | <4a(|s])[E]. (1.5)

The function G(x,s) is the primitive with respect to s such that G(x,0) =0 of a
Carathéodory (i.e. measurable with respect to x and continuous with respect to s)
function g(x, s). We will study two different kinds of problems, according to different
nonlinearities g(x,s), that have a main common feature. Indeed, in both cases we
cannot expect to find critical points in L*(Q). In order to be more precise,
let us consider a first model example of nonlinearity and suppose that there exists p
such that

2N
g1(x,s) = a(x)arctg s + | s s, 2<p<m7 (1.6)

2N

where a(x)e LN+2(Q) and a(x)>0. Notice that from hypotheses (1.2) and
(1.6) it follows that f is lower semicontinuous on H}(Q). We will also
assume that

o(]sl)
m ——5=0. 1.7
Isl— oo [P (17)
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Condition (1.7), together with (1.2), allows f* to be unbounded from below, so that we
cannot look for a global minimum. Moreover, notice that g(x, s) is odd with respect to
s, so that it would be natural to expect, if j(x, —s, —&) = j(x, s, &), the existence of
infinitely many solutions as in the semilinear case (see [1]). Unfortunately, we cannot
apply any of the classical results of critical point theory, because our functional /" is not
of class C' on H{(€). Indeed, notice that [, j(x,v, Vv) is not differentiable. More
precisely, since jz(x, s, &) and js(x, s, ) are not supposed to be bounded with respect to
s, the terms jz(x,u, Vu) - Vv and ji(x, u, Vu)v may not be L'(Q) even if ve C5° (Q).
Notice that if j;(x, s, £) and je(x, s, £) were supposed to be bounded with respect to s, f
would be Gateaux derivable for every u in HJ(Q) and along any direction
ve HY(Q)N L™ (Q) (see [2,8,9,19,20] for the study of this class of functionals). On
the contrary, in our case, for every ue H}(Q), f'(u)(v) does not even exist along
directions ve H} (2) " L™ (Q).

In order to deal with the Euler equation of f let us define the following subspace of
H}(Q) for a fixed u in H}(Q):

W, = {veH}(Q) :j:(x,u, Vu) - Voe L'(Q) and j(x,u, Vu)pe L'(Q)}.  (1.8)

We will see that W, is dense in H}(Q). We give the definition of generalized
solution.

Definition 1.1. Let A€ H'(Q) and assume (1.1), (1.2), (1.3). We say that u is a
generalized solution to

{ —div (je(x,u, Vu)) + js(x,u,Vu) = A in Q,
u=20 on 0Q,

if ue H}(Q) and it results

Je(x,u, Vu) - Vue LY(Q),  ji(x,u, Vu)ue L'(Q),
Jode(x,u, Vu) - Vo + [ js(x,u, Vu)p = {A,v)  YveW,.

We will prove the following

Theorem 1.2. Assume conditions (1.1)—(1.4), (1.6), (1.7). Moreover, suppose that there
exist R'>0 and 6 >0 such that

51> R = pj(x,8,8) = js(x, 5, )5 — je(x,8,) - E=06|¢] (1.9)

for a.e. xeQ and all (s,&)eR x RYN. Then, if

j(xa -, _é) :j(x7 S, 5)7
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there exists a sequence {u,} = H}(Q) of generalized solutions of

—div (je(x,u, Vu)) + js(x,u, Vu) = g1 (x,u) in Q,
u=20 on 0Q

such that f(up)— + 0.

In the nonsymmetric case we consider a different class of nonlinearities g(x,s). A
simple model example can be the following:

2N
g2(x, ) = d(x)arctg (s7) + |s]" s, 2<p<m, (1.10)

N
where d(x)e L2(Q) and d(x)>0.
We will prove the following

Theorem 1.3. Assume conditions (1.1)—(1.4), (1.7), (1.9), (1.10). Then there exists a
nontrivial generalized solution of the problem
—div (ji(xv u, vu)) +]'S(X, u, vu) = g2(x7 Ll) in Qa
(P)
u=20 on 09Q.

Since the functions «(|s|) and fS(|s]) in (1.2) and (1.3) are not supposed to be
bounded, we are dealing with integrands j(x,s,¢) which may be unbounded with
respect to s. This class of functionals has also been treated in [3-5]. In these papers
the existence of a nontrivial solution ue L* () is proved when g(x,s) = |s|”~*s. Note
that, in this case it is natural to expect solutions in L* (Q). In order to prove the
existence result, in [4,5], a fundamental step is to prove that every cluster point of a
Palais—Smale sequence belongs to L™ (Q). That is, to prove that u is bounded before
knowing that it is a solution. Notice that if u is in L (Q) and ve C;°(Q) then
Jje(x,u, Vu) - Vo and jy(x, u, Vu)v are in L'(Q). Therefore, if g(x,s) = |s|” s, it would
be possible to define a solution as a function ue L* (Q) that satisfies the equation
associated to (Py) (or (P,)) in the distributional sense. In our case the function a(x)
in (1.6) belongs to L*N/(V+2)(Q), so that we can only expect to find solutions in
H}(Q). In the same way, the function d(x) in (1.10) is in L¥/?(Q) and also in this case
the solutions are not expected to be in L* (Q). For these reasons, we have given a
definition of solution weaker than the distributional one and we have considered the
subspace W, as the space of the admissible test functions. Notice that if ue H}(Q) is
a generalized solution of problem (P;) (resp. (P;)) and ueL*(Q), then u is a
distributional solution of (P;) (resp. (P2)).

We want to stress that we have considered here particular nonlinearities (i.e. ¢g;
and g,) just to present—in a simple case—the main difficulties we are going to tackle.
Indeed, Theorems 1.2 and 1.3 will be proved as consequences of two general results
(Theorems 2.1 and 2.3). In order to prove these general results we will use an abstract
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critical point theory for lower semicontinuous functionals developed in [10,12,13].
So, firstly, we will show that the functional f can be studied by means of this theory
(see Theorem 3.11). Then, we will give a definition of a Palais—Smale sequence {u, }
suitable to this situation (Definition 6.3), and we will prove that u, is compact in
H}(Q) (Theorems 5.1 and 6.9). In order to do this we will follow the arguments of
[8,9,19,20] where the case in which o(s) and f(s) are bounded is studied. In our case
we will have to modify the test functions used in these papers in order to get the
compactness result. Indeed, here the main difficulty is to find suitable approxima-
tions of u, that belong to W, , in order to choose them as test functions. For this
reason a large amount of work (Theorems 4.7-4.10) is devoted to find possible
improvements of the class of allowed test functions.

The paper is organized as follows.

In Section 2, we define our general functional, we set the general problem
(Problem (P) that we will study and we state the main existence results that we will
prove.

In Section 3, we recall (from [10,12,13]) the principal abstract notions and results
that we will apply. Moreover, we will study the functional J : H}(Q) > RuU {+ 0}
defined as

70) = [ jx.0.50)

and we will prove (see Theorem 3.11) that J satisfies a fundamental condition (cf.
(3.3)) required in order to apply all the abstract results of Section 3.

In Section 4, we find the conditions under which we can compute the directional
derivatives of J (Proposition 4.4). Then, we will prove a fundamental inequality
regarding the directional derivatives (Proposition 4.5). Moreover, we will obtain
some Brezis—Browder [7] type results (see Theorems 4.7—4.10). These results will be
important when determining the class of admissible test functions for Problem (P).
In particular, in Theorems 4.9 and 4.10 we study the conditions under which we can
give a distributional interpretation to Problem (P).

In Section 5, we obtain a compactness result for J (Theorem 5.1). This theorem
will be used to prove that f satisfies our generalized Palais—Smale condition.

In Section 6, we give the proofs of our general results, Theorems 2.1 and 2.3. Then,
we will prove Theorems 1.2 and 1.3.

Finally, in Section 7, we prove a summability result (Theorem 7.1) for a
generalized solution in dependence of the summability of the function g(x, s).

2. General setting and main results

Let us consider  a bounded open set in RY (N >3). Throughout the paper, we
will denote by || -||,, [| - |l;, and [[ - [|_; , the standard norms of the spaces L({2),

H}(Q) and H™'(Q), respectively.
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Let us define the functional J : H}(Q)>Ru{+w} by

J(u):/Qj(x,v,Vv)7 (2.1)

where j(x,s,&) satisfies hypotheses (1.1)-(1.4). We will prove existence
and multiplicity results of generalized solutions (see Definition 1.1) of the
problem

{ —div (Je(x,u, Vu)) + js(x,u, Vu) = g(x,u) in Q, ®)

u=20 on 0Q.

In order to do this, we will use variational methods, so that we will study the
functional /: H}(Q) >RuU {+ o0} defined as

f@zuw—AGwm

where G(x,s) = [; g(x, 1) dt is the primitive of the function g(x, s) with G(x,0) = 0.

In order to state our multiplicity result let us suppose that g(x,s) satisfies the
following conditions. Assume that for every &>0 there exists a,eL*N/(N*+2)(Q)
such that

N+2
9(x,5)| <ap(x) + els|V2 (2.2)

for a.e. xeQ and every seR. Moreover, there exist p>2 and functions

_ 2N
ap(x), a(x)e LY(Q), bo(x), b(x)e LN+2(Q) and k(x)e L™ (Q) with k(x)>0 almost
everywhere, such that

PG(x,5)<g(x,5)s + ao(x) + bo(x)ls], (2.3)

G(x,8)Zk(x)|sl" — a(x) — b(x)s] (2:4)

for a.e. xeQ and every se R (the constant p is the same as the one in (1.9)).
In this case, we will prove the following

Theorem 2.1. Assume conditions (1.1)—(1.4), (1.7), (1.9), (2.2)~«(2.4). Moreover,
let

J(x, =5, =) =j(x,5,¢) and g(x,—s) = —g(x,5) (2.5)

for a.e. xeQ and every (s, )R x RY. Then there exists a sequence {uy} = H}(Q) of
generalized solutions of problem (P) with f(uy) — + 0.

Remark 2.2. In the classical results of critical point theory different conditions from
(2.2)~(2.4) are usually supposed. Indeed, as a growth condition on g(x,s), it is
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assumed that

2N
lg(x, )| <alx) + bls|” " 2<a<%, beR*, a(x)eLN12(Q).  (2.6)

Note that (2.6) implies (2.2). Indeed, suppose that g(x,s) satisfies (2.6), then Young
inequality implies that (2.2) is satisfied with a,(x) = a(x) + C(b,¢). Moreover, as a
superlinearity condition, it is usually assumed that there exist p>2 and R>0 with

0<pG(x,s)<g(x,s)s for every s in R with |s|>=R. (2.7)

Note that this condition is stronger than conditions (2.3), (2.4). Indeed, suppose that
g(x,s) satisfies (2.7) and notice that this implies that there exists ape L' () such that

pG(x,5)<g(x,s)s+ap(x) for every s in R.
Then (2.3) is satisfied with bo(x) = 0. Moreover, from (2.7) we deduce that there
exists a(x)e L'(Q) such that
G(x,s) >%min{G(x, R),G(x,—R),1}|s]" — a(x)
so that also (2.4) is satisfied.

In order to state our existence result in the nonsymmetric case, assume that the
function g satisfies the following condition:
lg(x, )| <ar (x)[s| + bls| ",

2 ¥
2<0<%, a(x)eL2(Q), beR". (2.8)

We will prove the following

Theorem 2.3. Assume conditions (1.1)—(1.4), (1.7), (1.9), (2.3), (2.4), (2.8). Moreover,
let

e

s—0 S

=0 a.e in Q. (2.9)

Then there exists a nontrivial generalized solution of problem (P). In addition, there
exist >0 such that for every Ae H™'(Q) with ||A||_, , <& the problem

{ —div (jz(x,u, Vu)) +js(x,u, Vu) = g(x,u) + A in Q,

P
u=20 on 09, (P4)

has at least two generalized solutions uy,uy with f(u)) <0<f(u2).
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Remark 2.4. Notice that, in order to have g(x,v)ve L'(Q) for every ve H}(Q), the

function @ (x) has to be in L%(Q) Nevertheless, also in this case we cannot expect to
find bounded solution of problem (P). The situation is even worse in problem (P,),
indeed in this case we can only expect to find solutions that belong to
H} (Q) ~ndom(J).

Remark 2.5. Notice that condition (2.8) implies (2.2). Indeed, suppose that g(x,s)
satisfies (2.8). Then Young inequality implies that, for every ¢>0, we have

N2 N+

N42 2
lg(x,8)[<p(e)(ar(x)) + +&ls|V-2+y(e, b),
where f(¢) and y(e, b) are positive constants depending on ¢ and b. Now, since we
N
have a;(x)e L2(Q), there holds

N2 2N
a;(x) = (B(e)(ar(x)) 4 + (¢, b)) e LNT2(Q),

which yields (2.2).

3. Abstract results of critical point theory

In this section, we will recall the principal abstract notions and results that
we will use in the sequel. We refer the reader to [10,12,13], where this theory is
developed. Moreover, we will prove that our functional f satisfies a fundamental
property (see condition (3.3) and Theorem 3.11) requested to apply the abstract
results.

Let X be a metric space and let f: X >Ru{+c0} be a lower semicontinuous
function. We set

dom(f)={ueX :f(u)<+ oo} and epi(f)={(u,n)eX x R:f(u)<n}.

The set epi( f) is endowed with the metric

d((u,n), (v, 1)) = (d(u,v)* + (n — w)*)".

Let us define the function %, : epi(f)— R by setting
Gr(u,n) =n. (3.1)

Note that %, is Lipschitz continuous of constant 1.

From now on we denote with B(u, d) the open ball of center « and of radius 6. We
recall the definition of the weak slope for a continuous function introduced in
[10,12,15,16].
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Definition 3.1. Let X be a complete metric space, g: X —»R a continuous function,
and ue X. We denote by |dg|(u) the supremum of the real numbers ¢ in [0, c0) such
that there exist 0 >0 and a continuous map

H: B(u,d) x [0,0] > X,
such that, for every v in B(u,d), and for every ¢ in [0, 0] it results
d(H(v,1),v)< t,
g(A (v, 1)< g(v) — ot.
The extended real number |dg|(u) is called the weak slope of g at u.

According to the previous definition, for every lower semicontinuous function f
we can consider the metric space epi( /) so that the weak slope of %, is well defined.
Therefore, we can define the weak slope of a lower semicontinuous function f* by

using [d%;|(u./ (u)).
More precisely, we have the following

Definition 3.2. For every uedom(f) let

A%/ ()
A1) = 3 /1~ 1% | (. ()
+o if |d% 7| (u,f () = 1.

if |d%s|(u.f () <1,

The previous notions allow us to give the following

Definition 3.3. Let X be a complete metric space and f: X >Ru{+ow} a lower
semicontinuous function. We say that uedom( f) is a (lower) critical point of f if
|df |(u) = 0. We say that ceR is a (lower) critical value of f if there exists a (lower)
critical point uedom(f) of f with f(u) = c.

Definition 3.4. Let X be a complete metric space, f: X —>Ru{+o0} a lower

semicontinuous function and let ceR. We say that f satisfies the Palais—Smale
condition at level ¢ ((PS), in short), if every sequence {u,} in dom(f) such that

|df | (un) = 0,
Sfun)— ¢

admits a subsequence {u,, } converging in X.
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For every neR, let us define the set
fT={ueX: f(u)<n}. (3.2)
The next result gives a criterion to obtain an estimate from below of |df'|(u) (cf. [12]).

Proposition 3.5. Let f: X >Ru{+0o0} be a lower semicontinuous function defined on
the complete metric space X, and let uedom( f'). Let us assume that there exist >0,
n>f(u), 6>0 and a continuous function H : B(u,0) nf" x [0,0] > X such that

d(A (v,t),v)<t YveB(u,o)nf",
f(A(v,0)<f(v) — ot YoeB(u,0)nf".
Then |df |(u)=0.
We will also use the notion of equivariant weak slope (see [9]).

Definition 3.6. Let X be a normed linear space and f': X >Ru{+ o0} an even lower
semicontinuous function with f(0)< + oo. For every (0,7)eepi(f) we denote by
|dz,%/](0,1) the supremum of the numbers ¢ in [0, c0) such that there exist 6 >0 and
a continuous map

A= (A1, H2): (B((0,0), 9) vepi(£) x [0, 0] > epi(f)
satisfying
d(A((w, ), 1), w,u))<t, Ha((w,p),1)<u— at,
HA(—w,10),1) = =1 (w, 12, 1)
for every (w,u)eB((0,1),0) nepi(f) and z€]0,d].
In order to compute |d%y|(u,n), the next result will be useful (cf. [12]).

Proposition 3.7. Let X be a normed linear space, J:X—>Ru{+o} a lower
semicontinuous functional, I:X —-R a C' functional and let f =J + 1. Then the
Sfollowing facts hold:

(a) for every (u,n)eepi(f) we have
dGs|(u,n) = 1< |dG,|(u,n — I(u)) =1,

(b) if J and I are even, for every n=f(0), we have
ldz,%7(0,1) = 1< |dz,%,](0,n — 1(0)) = 1,
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(c) if uedom(f) and I'(u) = 0, then
|df |(u) = |dT|(u).

Proof. Assertions (a) and (c) follow by arguing as in [12]. Assertion (b) can be
reduced to (a) after observing that, since 7 is even, it results I'(0) = 0. O

In [10,12] variational methods for lower semicontinuous functionals are
developed. Moreover, it is shown that the following condition is fundamental
in order to apply the abstract theory to the study of lower semicontinuous
functions:

V(u,n)eepi(f) - f () <n = |d%|(u,n) = 1. (3.3)

In the next section, we will prove that the functional f satisfies (3.3).
The next result gives a criterion to verify condition (3.3) (cf. [13, Corollary 2.11]).

Theorem 3.8. Let (u,n)eepi(f) with f(u) <n. Assume that, for every ¢ >0, there exist
0>0 and a continuous map

H {weBu,0):f(w)<n+9d} x[0,0] > X
satisfying
A (w0, w) <t and  f(A(w,0) < (1= 0 (9) + /() + o)
whenever we B(u,0), f(w)<n+0 and te€[0,5]. Then we have |d%,|(u,n)=1.
In addition, if f is even, u=0 and H(—w,t)=—H(w,t), then we have
|dz,%y1(0,n) = 1.

Let us now recall from [10] the following

Theorem 3.9. Let X be a Banach space and f : X - Ru{+ 00} a lower semicontinuous
function satisfying (3.3). Assume that there exist vy,v1€X and r>0 such that
[loi — vol|>r and

inf{f (u) : we X, Ju — vol] = r} >max{f (w).f (01)}. (3.4
Let us set

I'={y:[0,1]>dom(f), y continuous, y(0) = vy and y(1) =v,}
and assume that

¢y = inf supfoy< 4+ oo
el fo.1)
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and that f satisfies the Palais—Smale condition at the level ci. Then, there exists a
critical point uy of f such that f(u) = c,. If, moreover,

co = inf f(B,(v9)) > — 0

and f satisfies the Palais—Smale condition at the level ¢, then there exists another
critical point ugy of f with f(up) = co.

In the equivariant case we shall apply the following result (see [17]).

Theorem 3.10. Let X be a Banach space and f:X—->Ru{4+w} a lower
semicontinuous even function. Let us assume that there exists a strictly
increasing sequence (W) of finite-dimensional subspaces of X with the following
properties:

(a) there exist p>0, y>f(0) and a subspace V < X of finite codimension such that

Vue V:[lull = p = ()=,

(b) there exists a sequence (Ry) in (p, 00) such that

Vue Wy ||ul| = Ry = f(u) <f(0),

(c) f satisfies (PS), for any c=v and f satisfies (3.3),
(d) |dz,%¢|(0,n)#0 for every n>£(0).

Then there exists a sequence {uy} of critical points of f such that f (u;) - + 0.

Let us now set X = H}(Q) and consider the functional J: H}(Q)>Ru{+w}
defined in (2.1). From hypothesis (1.2), we immediately obtain that J
is lower semicontinuous. We will now prove that J satisfies (3.3). To this

aim, for every k=1, we define the truncation 7;:R—R at height k,
defined as

Ti(s) = s if |s|<k, Ti(s) = kﬁ if |5 > . (3.5)

We will prove the following

Theorem 3.11. Assume conditions (1.1), (1.2), (1.4). Then, for every (u,n) €epi(J) with
J(u)<n, there holds

A%, (u,n) = 1.

Moreover, if j(x,—s,—&) = j(x,s,&), Vin>J(0)(=0) it results |dz,%|(0,n) = 1.
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Proof. Let (u,n)eepi(J) with J(u)<n and let ¢9>0. Then, there exists de(0, 1],
0 =9(g), and k=1, k = k(g), such that k>R (where R is as in (1.4)) and

[|Tk(v) —v|[;,<e for every ve B(u,0). (3.6)
From (1.2) we have
J(x,0, VTi(0)) <a(k)| Vol

Then, up to reducing J, we get the following inequalities:

/j(x,v,VTk(u))</j(x,u,VTk(u))+Q</j(x,u,Vu)+g (3.7)
Q Q Q

for each ve B(u, §). We now prove that, for every 1€0, 6] and ve B(u, d), there holds
J((1 =)o+ 1T (v)< (1 = 0)J(v) + 1(J(u) + 0). (3.8)

From (1.1) and since j(x, s, &) is of class C' with respect to the variable s, there exists
0€l0,1] such that

JOo, (1 = v+ tTi(v), (1 — )Vo+ tVTr(v)) — j(x,v, Vo)
=j(x,(1 =)o+ T (v), (1 — O)Vo+ VT (v)) —j(x,v, (1 = )V + VT (v))
+ j(x,v, (1 = )V + tVTi(v)) — j(x,v, Vo)
<ys(x, v+ 0(Tr(v) — v), (1 — )Vo + (VTr(v)) (T (v) — v)
+ 1(j(x,0, VTi(v)) —j(x,v, Vv)).
Notice that there holds
v(x) =k = v(x) + 0t(Tr(v(x)) — v(x)) =k =R,
v(x)< —k = v(x)+ 0t(Tr(v(x)) —v(x))< —k< — R
Then, in light of (1.4) one has
Js(x, 0+ 0t(Ty(v) — v), (1 = O)Vo + (VT (v))(Ti(v) — v)<0.
It follows that
Jox, (1 =)o+ tTr(v), (1 — O)Vo+ (VT (v)) < (1 = 0)j(x, 0, Vv) + tj(x,v, VTi(v)).
Therefore from (3.6) one gets (3.8). In order to apply Theorem 3.8 we define

A {veB(u,d): J(v)<n+ 6} x [0,6] - Hy (Q)
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by setting
H(v, 1) = (1 — t)o+ tTi(v).
Hence, taking into account (3.7) and (3.8), it results
d(H(v,1),v)<ot and J(H(v,1))<(l —1)J(v) + t(J(u) + 0)
for veB(u,0), J(v)<n+9J and t€[0,9]. The first assertion now follows from

,0]. Th
Theorem 3.8. Finally, since #'(—v,t) = #(v,t) one also has |dz,%,|(0,n) =1,
whenever j(x, —s, —¢) = j(x,s,&). O

4. The variational setting

This section regards the relations between |dJ|(u) and the directional derivatives of
the functional J. Moreover, we will obtain some Brezis—Browder (see [7]) type
results.

First of all, we make a few observations.

Remark 4.1. It is readily seen that hypothesis (1.1) and the right inequality of (1.2)
imply that there exists a positive increasing function &(|s|) such that

[Je(x, 5, &) < a(ls]¢] (4.1)
for a.e. xeQ and every (s,&)eR x R". Indeed, from (1.1) one has
Voe RN : o] <1 = j(x,s, &+ [Ev) =j(x, s, &) +je(x, s, E) - v]€].
This, and (1.2) yield
Je(x, 5, €) - vle] <da(ls]) I

From the arbitrariness of v, (4.1) follows. On the other hand, if (4.1) holds
we have

1

1
s )< /0 x5, 18) - Elde <2 (s

NS}

As a consequence, it is not restrictive to suppose that the functions in the
right-hand side of (1.2) and (4.1) are the same. Notice that, in particular, there holds
Je(x,5,0) =0.
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Remark 4.2. It is not restrictive to suppose that the functions «(s) and f(s) are both
increasing. Indeed, if this is not the case, we can consider the functions

Ar(ls]) = sup a(|s|) and  B(|s|) = sup S(|s]),

ls|<r ls|<r
which are increasing.

Remark 4.3. The assumption of strict convexity on the function {&—j(x,s,¢)}
implies that, for almost every x in Q and for every s in R, we have

[Je(x,5, &) —je(x,8,E)] - (€= &) >0 (4.2)
for every ¢, &*eRY, with é#¢*. Moreover, hypotheses (1.1) and (1.2) imply that,
Je(x,s,8) - E00lEf. (4.3)

Indeed, we have
0 Zj(X,S, 0) Zj(X,S, 6) +ji(xasv é) ' (0 - é)

so that inequality (4.3) follows by virtue of (1.2).

Now, for every ue H}(Q), we define the subspace
V= {veH}(Q)NL"(Q):ueL” ({xeQ:v(x)#0})}. (4.4)

As proved in [14], V, is a vector space dense in Hé (Q). Since V, = W, also W, (see
the Introduction) is dense in H|}(Q). In the following proposition we study the
conditions under which we can compute the directional derivatives of J.

Proposition 4.4. Assume conditions (1.2), (1.3), (1.5). Then there exists J'(u)(v) for
every uedom(J) and ve V,. Furthermore, we have

Js(x,u, Vuyve L' (Q)  and  j:(x,u,Vu) - Vve L' (Q)
and
J' (u)(v) = /Qjé(x, u,Vu) - Vo + /st(x,u, Vu)v.
Proof. Let uedom(J) and ve V. For every reR and a.e. xeQ, we set
F(x,t) =j(x,u(x) + to(x), Vu(x) + tVo(x)).

Since ve V, and by using (1.2), it follows that F(x,?)e L' (Q). Moreover, it results

F
E(x, 1) = jo(x,u + tv, Vu + tV0)v + jz(x,u + tv, Vu + tVv) - Vo.
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From hypotheses (1.3) and (1.5) we get that for every xeQ with v(x)#0, it results

‘8F

57 0 D < ol BCllel o + llolloo )([Vul + Vo))’

+ alfull, + ol ) (IVul + [Vo])[Vol.

Since the function in the right-hand side of the previous inequality belongs to L' (<),
the assertion follows. [

In the sequel we will often use the cut-off function He C* (R) given by
H(s)=1 on [-1,1], H(s) =0 outside [-2,2], |H'(s)|<2. (4.5)
Now, we can prove a fundamental inequality regarding the weak slope of J.

Proposition 4.5. Assume conditions (1.2), (1.3), (1.5). Then we have
|d(J = w)|(u)
Zsup{/gjg(x,u, Vu) - VU—&-/QjS(X,u,VM)U— {wyv) iveVy, ||v||172<1}
for every uedom(J) and every we H™'(Q).
Proof. If it results |d(J — w)|(u) = oo, or if it holds
sup{/gjg(x,u, Vu) - Vv—i—/gjs(x, u, Vu)o — {w,v) 1vel,, ||v|112<1} =0,

the inequality holds. Otherwise, let uedom(J) and let 7€ R™ be such that J(u) <.
Moreover, let us consider ¢>0 and eV, such that |[7]|, ,<1 and

/jg(x, u,Vu) - Vi + /js(x, u, Vu)o — {w, by < — 6. (4.6)
Q Q

Let us fix é>0 and let us prove that there exists ko> 1 such that

(i)

<l+e¢ (4.7)
12

and
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Let us set vy = H(u/k)?, where H (s) is defined as in (4.5). Since &€ V,, we deduce that
v eV, for every k=1 and v, converges to ¥ in H(}(Q). This, together with the fact
that [|3|[, <1, implies (4.7). Moreover, Proposition 4.4 implies that we can consider
J'(u)(vr). In addition, as k goes to infinity, we have

Js(x,u(x), Vu(x))vr (x) = js(x, u(x), Vu(x))d(x) for a.e. xeQ,
Je(x,u(x), Vu(x)) - Vor(x) —>je(x, u(x), Vu(x)) - Vi(x) for a.e. xeQ.
Moreover, we get
. u\ _ . _
Js(x, u, Vu)H(E>v’ < | Js(x, u, Vu)o|,
ij(x7 u, Vu) . VUk| < ‘jé(xv u, VLI)| |V1—J| + 2|l_)| |j5(xa u, vu) ' vu‘

Since 7€V, and by using (1.3) and (1.5), we can apply Lebesgue Dominated
Convergence Theorem to obtain

lim [ ji(x,u, Vi), = /js(x,u,Vu)ﬁ,
Q Q

k— o0

k— o0

lim [ je(x,u,Vu) -V, = /jg(x7 u, Vu) - Vi,
Q Q

which, together with (4.6), implies (4.8). Since we want to apply Proposition 3.5, let
us consider J" as defined in (3.2). Let us now show that there exists §; >0 such that

()

/Q Je(x, z, VZ)-V<H<kZ—O) 17)
+ /st(x,z vZ)H<kiO)r;— <W,H<kio)z7>< ~d (4.10)

for every ze B(u, 1) nJ". Indeed, take u,eJ" such that u, »u in H}(Q) and set

<l+e, (4.9)

as well as

We have that v, — H(u/ko)d in H}(Q), so that (4.9) follows from (4.7). Moreover,
note that v,€V,,, so that from Proposition 4.4 we deduce that we can consider
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J'(uy)(vy). From (1.3) and (1.5) it follows

a5ty Vi) ] < B[], [Vt
) 2 _
e (5 4y Vi) - V| < 2(2k0)| Vit [k— o1l [Vl + |Vv].

Then, we obtain

lim [ Jji(x, uy, Viy)v, = /js(x, u, Vu)H<£> 7,

n— oo Q Q kO

lim [ je(x,u,, Vu,) - Vv, = /jg (x,u,Vu) -V [H (i) 1’)} )
n=o Jo o ko

which, together with (4.8), implies (4.10). Now, observe that (4.10) is equivalent to
say that J'(z) (H (£)5) — {(w, H(£)t» < — 6. Thus, there exists d <, with

J(z—|— 1 igH(%)ﬁ) —J() - <w,1—i8H(%)ﬁ>< —%z 4.11)

for every r€(0,0] and ze B(u,5) nJ". Finally, let us define the continuous function
A B(u,0) nJ" x [0,8] > H} (Q) given by

t z
A = H({—|b.
H(z,1) Z+1+e <k0>v

From (4.9) and (4.11) we deduce that s satisfies all the hypotheses of
Proposition 3.5. Then, |d(J — w)|(u)>1%;, and the conclusion follows from the
arbitrariness of ¢. [

The next lemma will be useful in proving two Brezis—Browder type results for J.

Lemma 4.6. Assume conditions (1.1)—(1.4) and let uedom(J). Then
/jg()g u, Vi) - Vu + /js(x, u, Ve < || ()] . (4.12)
Q Q
In particular, if |dJ|(u) < oo, there holds

Je(x,u, Vu) - Vue L'(Q)  and  jy(x,u, Vu)ue L' (Q).

Proof. First, notice that if u is such that |dJ|(u) = oo, or

/jc;(x,u,Vu)-Vu+/js(x,u,Vu)u<0
Q Q



B. Pellacci, M. Squassina | J. Differential Equations 201 (2004) 25-62 43

then the conclusion holds. Otherwise, let k=1, uedom(J) with |dJ|(u) < co, and
0>0 be such that

/jg(x,u,Vu)-VTk(u)—|—/js(x,u,Vu)Tk(u)>a||Tk(u)||1,2,
Q Q

where Ty(s) is defined in (3.5). We will prove that |dJ|(#)>0. Fixed ¢>0, we first
want to show that there exists 6; >0 such that

Tl 2 < (T4 ) Ti()]] 5, (4.13)

/jg(x, w, Vw) - VT (w) +/jy(x, w, Vw) Ty (w) > o | Ty ()] , (4.14)
Q Q

for every we Hy (Q) with [|w — u||, , <4. Indeed, take w, € Hj () such that w, —u in
H& (Q). Then, (4.13) follows directly. Moreover, notice that from (1.3) and (1.4) there
holds

Js (6 Wi (x), V(X)) wu(x) = — RB(R)|Vw,(x) |2.

Since w, »u in H}(Q), from (4.3) and by applying Fatou Lemma we get

lim inf {/jg(x, Wn, V) - VT (wy) + /js(x, Wi, VW) T (wy)
Q Q

n— oo

> / Je (x,t, V) - VT (1) + / o6, V) Te() > o Te W) o,
Q Q

which yields (4.14). Consider now the continuous map # : B(u,81) x [0,5] > H}(Q)
defined as

t
Tk (@)]]1 2(1 +¢)

H(w,t) =w— Tr(w).

From (4.13) and (4.14) we deduce that there exists 6 <J; such that
d(A(w,t),w)< t,

[

J(H (w, 1)) — J(w) < 1o

for every t€(0,6] and we Hy(Q) with [[w — ||, , <6 and J(w)<J(u) + 6. Then, the
arbitrariness of ¢ yields |dJ|(u) >o. Therefore, for every k=1 we get

/ Jalor, Vi) T () + / o0, V) - VT (1) <[00 | Te(w) | .
Q Q

Taking the limit as k— oo, the Monotone Convergence Theorem yields (4.12). [
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Notice that a generalized solution u (see Definition 1.1) is not, in general, a
distributional solution. This, because a test function ve W, may not belong to Cj”.
Thus, it is natural to study the conditions under which it is possible to enlarge the

class of admissible test functions. This kind of argument was introduced in [7].
More precisely, suppose we have a function ue H} (Q) such that

/jé(x,u,Vu)~Vz+/js(x,u,Vu)z: {w,zy VzelV,, (4.15)
Q Q

where V,, is defined in (4.4) and we H~'(Q). A natural question is whether or not we
can take as test function ve H} (Q) N L* (Q). The next result gives an answer to this
question.

Theorem 4.7. Assume that conditions (1.1)~(1.3) hold. Let we H~'(Q) and ue H}(Q)
that satisfies (4.15). Moreover, suppose that j:(x,u,Vu) - Vue L'(Q) and there exist
ve HY(Q)n L™ (Q) and ne L' (Q) such that

Js(x,u, Vu)o + je(x,u, Vu) - Vozn. (4.16)

Then j:(x,u, Vu) - Vo + js(x,u, Vu)ve L' (Q) and
/jg(x,u,Vu)~Vv+/js(x,u7 Vu)o = {w,v).
Q Q

Proof. Since ve H}(Q)NL™ (), then H(%)ve V,. From (4.15) we have

/Qjé(x,u,Vu) . V[H(%) U] + /st(x, u, Vu)H(%)v = <w,H(%)v> (4.17)
for every k>=1. Note that
/Q‘jé(x, u, Vu) - VuH’(%)%‘ S% o], /Qjé(x7 u, Vu) - Vu.

Since j:(x,u, Vu) - Vue L'(Q), the Lebesgue Dominated Convergence Theorem
yields

lim [ je(x,u,Vu) - VuH' (E)B =0,
Q

k— o0 k/k
i 1 (2)e) = <o

As far as concerns the remaining terms in (4.17), notice that from (4.16) it follows

[Js (o, u, Vu)o + je(x,u, Vu) - Vu]H(%) >H(%>n> —n eL'(Q).
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Thus, we can apply Fatou Lemma and obtain
/st(x7 u, Vu)v + jz(x,u, Vu) - Vo< (w, v).
The previous inequality and (4.16) imply that
Js(,u, Vv + je (x, u, Vu) - Voe L'(Q). (4.18)
Now, notice that
[js(x, u, Vi) + je(x,u, Vu) - VU]H(%) ‘ <|js(x,u, Vu)o + je(x,u, Vu) - Vo).

From (4.18) we deduce that we can use Lebesgue Dominated Convergence Theorem
to pass to the limit in (4.17) and obtain the conclusion. [

In the next result, we find the conditions under which we can use ve H}(Q) in
(4.15). Moreover, we prove, under suitable hypotheses, that if u satisfies (4.15) then u

is a generalized solution (see Definition 1.1) of the corresponding problem.

Theorem 4.8. Assume that conditions (1.1)~(1.4) hold. Let we H-'(Q), and let
ue H (Q) be such that (4.15) is satisfied. Moreover, suppose that j:(x,u,Vu) -
VueL'(Q), and that there exist ve H}(Q) and ne L'(Q) such that

Js(x,u, Vu) o=y and  j:(x,u,Vu) - Vozy. (4.19)
Then ji(x,u, Vu)ve L1(Q), j:(x,u, Vu) - Vve L}(Q) and

/jg(x, u, Vu)-VlH—/jS(x, u, Vu)v = {w,v). (4.20)
Q o

In particular, it results j(x,u, Vu)u, j(x,u, Vu)e L'(Q) and

/jg(x,u,Vu)~Vu+/js(x7u7Vu)u: <w,ud.
Q Q

Moreover, u is a generalized solution of the problem

(4.21)

{ —div (je(x,u, Vu)) + js(x,u, Vu) =w  in Q,
u=0 on 0Q.

Proof. Let k>1 be fixed. For every ve H}(Q) we have that Ty (v) e H}(Q) N L™ (Q)
and —v~ < Ty (v)<v'. Then, from (4.19), we get

Js(x,u, Vu) T (v) > — n~ e L(Q). (4.22)
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Moreover,
Jelx,u, Vu) - VTi(v)= — [je(x,u, Vu) - VTi(0)] "= —n~ eL'(Q). (4.23)

Then, we can apply Theorem 4.7 and obtain

/js(x, u, VM)Tk(U) + /jf(xv u, vu) : VTk(U) = <W7 Tk(U)> (424)
Q Q

for every k> 1. By using again (4.22) and (4.23) and by arguing as in Theorem 4.7 we
obtain

Js(e,u, Vuype LY(Q)  and  ji(x,u, Vu) - Voe L'(Q).

Thus, we can use Lebesgue Dominated Convergence Theorem to pass to the limit in
(4.24) and get (4.20). In particular, by (1.3), (1.4) and (4.3) we can choose v = u.
Finally, since

Js(xsu, Vu) = js(x, u, vu)X{\u|< 1} +js(x, u, vu)%ﬂu\)l}

and
| (s 1 Vi) g1y 13| < s (o, w0, V)

by (1.3) it results also ji(x, u, Vu)e L'(Q). Finally, notice that if ve W, we can take
n =Jje(x,u,Vu) - Vv and y = ji(x,u, Vu)v, so that (4.20) is satisfied. Thus, u is a
generalized solution to Problem (4.21). O

We point out that the previous result implies that if ue H}(Q) satisfies (4.15)
and je(x,u,Vu) - Vue L'(Q), it results that ji(x,u,Vu)eL'(Q), then
Js(x,u, Vu)ve L'(Q) for every veCy®(Q). Instead, the term which has not a
distributional interpretation in (4.15) is jz(x, u, Vu). In the next result we show that
if we multiply ji: (x, u, Vu) by a suitable sequence of C! functions, we obtain, passing
to the limit, a distributional interpretation of (4.15).

Theorem 4.9. Assume conditions (1.1)~(1.4). Let we H'(Q) and ue H}(Q) be such
that (4.15) is satisfied. Let (%) be a sequence in C!(R) with

sup ||‘9/1||oc<oov sup H‘g;1||oo<oov
h>1 h>1

lim 9(s)=1, lim 9 (s)=0.

h— oo h—
If j:(x,u, Vu) - Vue L' (Q), the sequence

div [ (u)je (x, u, Vu)]
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is strongly convergent in W=14(Q) for every l<q<%7 and

hlim {—div [9;,(w)je(x,u, V)] } +jis(x,u, Vu) = w in W 4(Q).

Proof. Let w = —div F with Fe L*(Q,R") and ve C* (). Then 9(u)ve V, and we
can take v as test function in (4.15). It results

/jé(x, u, Vu)d,(u) - Vo = f/jg(x,u,Vu)Sjl(u)~Vuvf/jx(x,u,Vu)9h(u)v
0 Q Q
—&—/FSh'(u)Vuv—i—/FSh(u)VU.
Q 0

Then u is a solution of the following equation:
—div [ (u)je(x,u, Vu)] = &, in 7'(Q),

where
&= —19,(w) (e (x,u, Vu) — F) - Vu + 9 (u)js(x,u, Vu)] — div (9,(u)F).

Now, notice that
9,(u)F - F strongly in L*(Q).

Then, div (9;,(u)F) is a convergent sequence in H~!(Q). Since the embedding of
H1(Q) in W~14(Q) is continuous, we get the desired convergence. Moreover,
Theorem 4.8 implies that js(x,u, Vu)e L'(Q). Then, the remaining terms in &,
converge strongly in L'(Q). Thus, we get the conclusion by observing that the
embedding of L'(Q) in W~14(Q) is continuous. [J

Consider the case j(x, s, &) = a(x, s)|¢|* with a(x,s) measurable with respect to x,
continuous with respect to s and such that hypotheses (1.1)—~(1.4), (1.7) are
satisfied. The next result proves that, in particular, if there exists ue H}(Q) that

satisfies (4.15) and if a(x,u)|Vu* € L'(Q), then u satisfies (4.15) in the sense of
distribution.

Theorem 4.10. Assume conditions (1.1)~(1.4), (1.7). Let we H"'(Q) and ue H}(Q)
that satisfies (4.15). Moreover, suppose that j:(x,u, Vu) - Vue L' (Q) and that

~

J(x,8,8) = j(x,5,[¢]). (4.25)

Then j:(x,u, Vu)e L'(Q) and u is a distributional solution to

—div (je(x,u, Vu)) + js(x,u, Vu) =w in Q,
u=20 on 0Q.
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Proof. It is readily seen that, in view of (1.1) and (4.25), it results

€] 1Je(x, 5. )< V2e(x,5.8) - €
for a.e. xeQ, every seR and £€R". Then

Je(x,u, Vi) g vy =1y €L (Q).

Moreover, we take into account (1.7), and we observe that (1.5) implies that there
exists a positive constant C such that

El<1 = (x5, &)l <da(ls) < (s + 1),

which by Sobolev embedding implies also that j:(x,u, Vu)xﬂw‘gl}eLl(Q). Then
Je(x,u, Vu) e L'(Q). Moreover, from (1.3) and (1.4) we have

Js (1, V) u= (o, u, Vu)uy o < vy €L (Q).

Then Theorem 4.8 implies that ji(x,u, Vu)ue L'(Q). Finally, again Theorem 4.8
yields the conclusion. [

5. A compactness result for J

In this section, we will prove the following compactness result for J. We will
follow an argument similar to the one used in [9] and in [20].

Theorem 5.1. Assume conditions (1.1)~(1.4). Let {u,} = H}(Q) be a bounded sequence
with jz(x, up, V) - Vu,e LY(Q) and let {w,} = H~'(Q) be such that

YoeV,,: /js(x, Uy, Vi )V + e (X, tty, Vi) - Vo = (w0 ). (5.1)
Q

If w, is strongly convergent in H='(Q), then, up to a subsequence, u, is strongly
convergent in H}(Q).

Proof. Let w be the limit of {w,} and let L>0 be such that
Hu,,HngL for every n>1. (5.2)

From (5.2) we deduce that there exists ue H} () such that, up to a subsequence,
u,—u  weakly in Hj)(Q). (5.3)

Step 1: Let us first prove that u is such that

/ Jelxs, V) -V + / S, Vi = (w > Ve Vi (5.4)
Q Q
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First of all, from Rellich Compact Embedding Theorem, up to a subsequence,

{un—m in L49(Q) Vqe[l,2N/(N —2)), (5.5)
uy(x)—u(x) for ae. xeQ. '
We now want to prove that, up to a subsequence,

Vuy,(x)—>Vu(x) for a.e. xeQ. (5.6)

Let h=1. For every ve C(Q) we have that H(%)ve Vi, (Where H is again the
function defined in (4.5)), then

[ ()it V)5
T /Q {H (%>j“'(x’ n, Vitn) + H' (%)Jé(x, U, Vi) - % ;

(o))

Let w, = —div (F,), with (F,) strongly convergent in L?(Q, RY). Then it follows that:

/QH(%)jg(x, Uy, V) - Vo

h

+ /QH(%)FnVu.

Since the square bracket is bounded in L'(Q) and (H (%)F,) is strongly convergent
in L?(Q,RY) we can apply [11, Theorem 5] with

= [ () e, ) -5 (i, ) o

bu(x, &) = H(“";(lx)) Je(x,un(x), &) and E = B, = {xeQ: [u(x)|<h}

and deduce (5.6) by the arbitrariness of 2> 1. Notice that, by virtue of Theorem 4.8,
for every n we have

/je(x,umVun) - Vu, +/js(x, Uy, Vilg )y = Wy, Uy .
Q Q

Then, in view of (1.4), one has

sup/jg(x7 U, Vity) - Vi, < 0. (5.7)
Q

n=1
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Let now k=1, pe C* (), ¢ =0 and consider

2k
v= (pe’Mk<”"+R>+H(%>, where M = ] ) (5.8)
k Ol
Note that ve V,, and
_ ~ My (Rt gy (M0 _ —My (un+R)* + gy (Un
Vv = Ve H(k) Mjpe V(uy + R) H(k)
— My (u+R)* H (&) Vi,
+ @e ) K
Taking v as test function in (5.1), we obtain
/ et Vty) - &M B () Vg
o) k
+ /Q[js(x, U, Vity) — Myje(x, ty, Vidy) - V(1 + R)ﬂqoe’M’“(“"*RﬁH(%)
n v n
= / Jel ty, Vi) - pe Ml Ry (S)
Q k/ k
~My (- R)" gy (Hn
—|—<wn,(pe H(k)>. (5.9)

Observe that
[js(xv Up, Vu,,) - Mkjé(xv Up, vun) : v(”ﬂ + R)+}¢67Mk(u’1+R)+H<%> <0

Indeed, the assertion follows from (1.4), for almost every x such that u,(x)< — R
while, for almost every x in {x: — R<u,(x) <2k} from (1.5), (4.3) and (5.8) we get

[s(X, thny Vi) — My (X, tn, Vity) - V (1t + R) < (B(2k) — 0t M) |Vt | <0
Moreover, from (1.5), (5.2), (5.5) and (5.6) we have

i - o My +R)T (U ;. MR (¥
/Q‘]i(xaul’lvvul’l) € H(k)V(p%/ng(x,u,Vu) e H(k)V(P,

(e 08 1 (2)) < e 05 ()

as n— oo. Moreover, we take into account (5.7) and deduce that there exists a
positive constant C such that

‘/jé(xa un,Vu,,) . (peiMk(“n‘FR)JrH/ (@)Vu,, <
Q

¢
Kk Sk
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We take the superior limit in (5.9) and we apply Fatou Lemma to obtain

/ - u + u . _ u + u
/Qjé(x,u,w) s MR H(E)V‘P"‘/Q]x(xa u, Vu)pe Ml k) H(E)

- Mk/jg(x, u, Vu) - Vzﬁ(pe*Mk(“*RﬁH(%)
Q

. 7%+ <w’ q}ekamm*H(%» (5.10)

for every e C*(Q) with ¢>0. Then, the previous inequality holds for every
pe H} nL*(Q) with ¢>0. We now choose in (5.10) the admissible test function

@ = MRy ey, Y0

It results

/ngv(x7 u, Vu) H(z) Vi + /ij(x, u, Vu)H(%)lp

SN (s11)

Notice that

el V) - H () V| < (e, V)| [V,

Js(x,u, Vu)H(z)lﬁ’ < | js(x, u, Vu)y|.

Since y € V;, and from (1.3) and (1.5) we deduce that we can pass to the limit in (5.11)
as k— oo, and we obtain

/ja(x,u,vm~w+/jy<x,u,w>w><w,w> W e Vi >0,
Q Q

In order to show the opposite inequality, we can take v = ge~Mkn=R)" Ff (42) a5 test
function in (5.1) and we can repeat the same argument as before. Thus, (5.4) follows.

Step 2: In this step we will prove that u, —»u strongly in H}(Q). From (4.3), (5.7)
and Fatou Lemma, we have

0< /jg(x, u, Vu) - Vu< lim inf/jgv(x, Uy, Vi) - Vi, < 00
Q " Q
so that j:(x,u, Vu) - Vue L'(Q). Therefore, by Theorem 4.8 we deduce

/jg(x,u,Vu)~Vu+/js(x7u7Vu)u: woudy. (5.12)
Q Q



52 B. Pellacci, M. Squassina | J. Differential Equations 201 (2004) 25-62

In order to prove that u, converges to u strongly in H} (Q) we follow the argument of
[20, Theorem 3.2] and we consider the function {: R— R defined by

Ms if 0<s<R, M:Bi?,
()= 4 MR %f s>R, (5.13)
—Ms if — R<s<0,
MR if s< — R
We have that v, = u,¢™) belongs to H}(Q), and conditions (1.3)~(1.5) imply that
hypotheses of Theorem 4.8 are satisfied. Then, we can use v, as test function in (5.1).
It results

/jé(xa Uy, v”n) : Vuneg(uﬂ) = <Wn7 Un>
Q
- /[j.r(xa Uny V) + e (3, tn, Viay) - vuncl(un)]vn-
Q

Note that v, converges to ue'™ weakly in H}(Q) and almost everywhere in Q.
Moreover, conditions (1.3), (1.4) and (5.13) allow us to apply Fatou Lemma and get
that

lim sup /jé (x, ty, V) - Vu,e )
h Q

< w,uet™y — /[js(x7 u, Vae) + je (x, u, V) - Vul! (1) e, (5.14)
Q

On the other hand (5.12) and (5.13) imply that

Je(ox,u, Vu) - Vue*™] + jo(x, u, Vu)ue"™ e L'(Q), (5.15)
Je(x,u, Vu) - Vue*™]e L'(Q). '
Therefore, from Theorem 4.8, there holds
/jé(x,u,Vu) . V[ue‘f(m] + /]'S(x7 u, Vu)ue““> = (w,ue™ . (5.16)
Q o)

Thus, (5.14) and (5.16) imply that

/ Je(x, u, V) - Vuet™ < lim inf / (% thn, Vity) - VityeE)
e o

n— oo

< lim sup /]L'z(x, Uy, Vun) . vunel(ll;ﬂ
Q

n— o0

S / Je (o, u, V) - Vuet®.
Q

Then (4.3) implies that u, —u strongly in H}(Q). O
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6. Proofs of Theorems 2.1 and 2.3

In this section we give the definition of a Concrete Palais—Smale sequence, we
study the relation between a Palais—Smale sequence and a Concrete Palais—Smale
sequence, and we prove that f satisfies the (PS), for every ce R. Finally, we conclude
by giving the proofs of Theorems 2.1 and 2.3.

Let us consider the functional 7 : H}(Q)— R defined by

1(v>:—/QG<x,v)f (Ao,

where  AeH '(Q), G(x,s)= [yg(x,n)dt and ¢g:QxR->R is a
Carathéodory function satisfying assumption (2.2). Then (1.2) implies
that the functional f: H}(2)>RuU{+ o} defined by f(v) = J(v) + I(v) is lower
semicontinuous.

In order to apply the abstract theory, it is crucial the following

Theorem 6.1. Assume conditions (1.1), (1.2), (1.4),(2.2). Then, for every (u,n)eepi( f)
with f(u)<n, it results

[d%y|(u,n) = 1.

Moreover, if j(x, —s, —&) = j(x,s, &), g(x,—s) = —g(x,s) and A = 0, for every n>f(0)
one has |dz,%|(0,n) = 1.

Proof. Since G is of class C', Theorem 3.11 and Proposition 3.7 imply the
result. [

Furthermore, since G a C' functional, as a consequence of Proposition 4.5 one has
the following

Proposition 6.2. Assume conditions (1.2), (1.3), (1.5), (2.2) and consider
uedom(f) with |df|(u)<oo. Then there exists weH '(Q) such that
Wil 2 <df |(u) and

YveV,: /jé(x,u,Vu)-VU—}—/jS(x,u,Vu)v—/g(x,u)v— (A, vd> = w, ).
Q Q Q
Proof. Given uedom(f) with |df]|(u) < co, let

J(0) = J(0) —/Qg<x,u>v— (A0,

() = 1(0) + /Qg(x, W+ (A,v
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Then, since I is of class C' with I’ (u) =0, by (c¢) of Proposition 3.7 we get
|df|(u) = |dJ|(u). By Proposition 4.5, there exists we H~!(Q) with W]l 5 <ldf(u)
and

YveV,: /jgv(x7u,Vu)-Vv+/js(x,u,Vu)v—/g(x,u)v— (A, 0> = <w, )
Q Q Q

and the assertion is proved. [
We can now give the definition of the Concrete Palais—Smale condition.

Definition 6.3. Let ce R. We say that {u, } is a Concrete Palais—Smale sequence for f
at level ¢ ((CPS),-sequence for short) if there exists w, e H~'(Q) with w, -0 such
that j:(x,u,, Vi) - Vu, € L'(Q) for every n>1, and

S ()=, (6.1)

/jf(xv Up, Vun) -Vo+ /js(xa Up, Vun)v - / g(x, Mn)l) - </1, U>
Q Q Q

= {wy,vy, YveV,,. (6.2)
We say that f* satisfies the Concrete Palais-Smale condition at level ¢ ((CPS), for

short) if every (CPS) -sequence for f admits a strongly convergent subsequence in
Hi(Q).

Proposition 6.4. Assume conditions (1.2)—(1.5), (2.2). If uedom( f) satisfies |df |(u) =
0, then u is a generalized solution to

{ —div (Je(x,u, Vu)) + js(x,u, Vu) = g(x,u) + A in Q,
u=20 on 0Q.

Proof. It is sufficient to combine Lemma 4.6, Proposition 6.2, and Theorem 4.8. [

The following result concerns the relation between the (PS),. condition and the
(CPS), condition.

Proposition 6.5. Assume conditions (1.2)~(1.5), (2.2). Then if f satisfies the (CPS),
condition, it satisfies the (PS), condition.

Proof. Let {u,} cdom(f) that satisfies the Definition 3.4. From Lemma 4.6 and
Proposition 6.2 we get that u, satisfies the conditions in Definition 6.3. Thus, there
exists a subsequence, which converges in H}(Q). O
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We now want to prove that f satisfies the (CPS), condition at every level ¢. In
order to do this, let us consider a (CPS)_-sequence {u,} edom(f).
From Theorem 5.1 we deduce the following

Proposition 6.6. Assume that conditions (1.1)~(1.4), (2.2) are satisfied. Let {u,} be a
(CPS) -sequence for f, bounded in H}(Q). Then {u,} admits a strongly convergent
subsequence in H}(Q).

Proof. Let {u,} =dom(f) be a concrete Palais—Smale sequence for f at level c.
Taking into account that, as known, by (2.2) the map {u+> g(x,u)} is compact from
H}(Q) to H7'(Q), it suffices to apply Theorem 5.1 to see that {u,} is strongly
compact in H}(Q). O

Proposition 6.7. Assume conditions (1.1)~(1.4), (1.9), (2.2),(2.3). Then every (CPS), -
sequence {u,} for f is bounded in H}(Q).

Proof. Condition (1.4) and (4.3) allow us to apply Theorem 4.8 to deduce that we
may choose v = u, as test functions in (6.2). Taking into account conditions (1.9),
(2.2), (2.7), (6.1), the boundedness of {u,} in H}(Q) follows by arguing as in [20,
Lemma 4.3]. O

Remark 6.8. Notice that we use condition (1.9) only in Proposition 6.7.
We can now state the following

Theorem 6.9. Assume conditions (1.1)~(1.4), (1.9), (2.2), (2.3). Then the functional
satisfies the (PS), condition at every level ceR.

Proof. Let {u,} cdom( f) be a concrete Palais—Smale sequence for /" at level ¢. From
Proposition 6.7 it follows that {u,} is bounded in H}(Q). By Proposition 6.6 f
satisfies the Concrete Palais—Smale condition. Finally Proposition 6.5 implies that f
satisfies the (PS), condition. [

We are now able to prove Theorem 2.1.

Proof of Theorem 2.1. We will prove Theorem 2.1 as a consequence of Theorem
3.10. First, note that (1.2) and (2.2) imply that f is lower semicontinuous. Moreover,
from (2.5) we deduce that f is an even functional, and from Theorem 3.11 we deduce
that (3.3) and condition (d) of Theorem 3.10 are satisfied. Hypotheses (2.4) implies
that condition (b) of Theorem 3.10 is verified (see the subsequent proof of Theorem
2.3). Let now (4, ¢,,) be the sequence of solutions of —Au = Ju with homogeneous
Dirichlet  boundary  conditions. Moreover, let us consider V7t =
span{¢p,eH}(Q) :h=hy} and note that V" has finite codimension. In order to
prove (a) of Theorem 3.10 it is enough to show that there exist /g, y >0 such that for
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all ue V* with ||Vu||, = 1 there holds f () >7. First, note that condition (2.2) implies
that, for every ¢>0, we find al"eC®(Q) and o eL®/N+2(Q) with

2
ot >| v (w2 S€ and

(1) 2) i
lg(x,s)[<a;’(x) + a7 (x) + efs|]V-2.

Now, let ue ¥+ and notice that there exist two positive constants ¢y, ¢c; such that
. 2
£z 2|Vl - [ Gl
Q

N-2 2N
>l vl [ (2l + 5 b )

2N
2 —
= ool |Vully — [laf[]|ul], — e IIaf)IIﬁZHWIIz — 0o [Vul =2

2N
2 -
> ao|[Vul[y = lla" |l ully — crel[Vully — eea|[Vul 2.

Then if A is sufficiently large, since 4, — + oo, for all ue V*, ||Vu||, = 1 implies
||a§l>|\2\|u||2<oc0/2. Thus, for ¢>0 small enough, ||Vu||, =1 implies f(u)>y for
some y>0. Then also (a) of Theorem 3.10 is satisfied. Theorem 6.9 implies that f
satisfies (PS), condition at every level ¢, so that we get the existence of a sequence of
critical points {u,} = H}(Q2) with f(u;)—> + co. Proposition 6.4 yields the
assertion. [

Let us conclude this section by proving Theorem 2.3.

Proof of Theorem 2.3. We will prove Theorem 2.3 as a consequence of Theorem 3.9.
In order to do this, let us notice that, from (1.2) and (2.8), f is lower semicontinuous
on H}(Q). Moreover, Theorem 3.11 implies that condition (3.3) is satisfied. From
Theorem 6.9 we deduce that f satisfies (PS), condition at every level ¢. It is left to
show that f satisfies the geometrical assumptions of Theorem 3.9.

Let us first consider the case in which A4 = 0. Notice that conditions (1.2), (2.8) and
(2.9) imply that there exist y>0 and > 0 such that for |[u||, , = r there holds f(u)>7.
Conditions (1.2) and (2.4) imply that there holds

. 2 _ -
1w [ )Vl = [ kColet + lall, + GlIElLy el (63)
Q Q N+2
Now, let us consider a finite-dimensional subspace W of H{(Q) such that
W< L*(Q). Condition (1.7) implies that, for every ¢>0, there exists R>r, we W,

with [|w||, > R and a positive constant C; such that

2 2
/Q (W) [V <eCo 1wl + Col w2, (6.4)
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where Cjy is a positive constant depending on W. Then, by suitably choosing ¢,
(6.3) and (6.4) yield condition (3.4) for a suitable v;e H}(Q) and for vy = 0.
Thus, we can apply Theorem 3.9 and deduce the existence of a nontrivial
critical point u of f. From Proposition 6.4, u is a generalized solution of
Problem (P).

Now, let us consider the case in which A4#0. Let ¢, be the first eigenfunction of
the Laplace operator with homogeneous Dirichlet boundary conditions and set vy =
tog, for ty>0. Then, if ¢, sufficiently small, thanks to (1.2) and (2.8), we get f(vy) <O.
As before, (1.2), (2.8) and (2.9) imply that there exist ¢>0, r = r(¢) >0 and y >0 such
that, for every Ae H~'(Q) with ||4||_, <e, there holds

S(u)=y for every u with |[u —vol|;, =1

Moreover, we use condition (1.2), (1.7) and (2.4) and we argue as before to
deduce the existence of vy € H} () with ||vy — vo|| >r and f(v1) <0. Condition (3.4) is
thus fulfilled. Then, we can apply Theorem 3.9 getting the existence of two
distinct nontrivial critical points of f. Finally, Proposition 6.4 yields the
conclusion. [

Remark 6.10. Notice that Theorems 1.2 and 1.3 are an easy consequence of
Theorems 2.1 and 2.3, respectively. Indeed, consider for example ¢;(x,s)=

a(x)arctg s + |s~%s. In order to prove Theorem 1.2, it is left to show that g;(x,s)
satisfies conditions (2.2), (2.3) and (2.4). First, notice that Young inequality implies
that, for every ¢>0, there exists a positive constant $(¢) such that (2.2) holds with
a:(x) = p(e) + a(x). Moreover, (2.3) is satisfied with ao(x) = 0 and by(x) = n/2(p —
1). Finally, (2.4) is verified with k(x) = 1/p, a(x) =0 and b(x) = (n/2 + C)a(x)
where CeR™ is sufficiently large. Theorem 1.3 can be obtained as a consequence of
Theorem 2.3 in a similar fashion.

7. Summability results
In this section, we suppose that g(x, s) satisfies the following growth condition
N+2 .
lg(x, )l <alx) + BsIV2,  a(x)eL’(Q), beR". (7.1)
Note that (2.2) implies (7.1). Let us set 2* = 2N /(N — 2). We prove the following:

Theorem 7.1. Assume conditions (1.1)~(1.4), (7.1). Let ue H\(Q) be a generalized
solution of problem (P). Then the following conclusions hold:

(@) if re(2N/(N +2),N/2), then u belongs to L' (Q), where r** = Nr/(N — 2r),
(b) if r>N/2, then u belongs to L™ (Q).

Theorem 7.1 will be proved as a consequence of the following
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Lemma 7.2. Let us assume that conditions (1.1)~(1.4) are satisfied. Let ue H}(Q) be a
generalized solution of the problem

{ —div (e (x,u, Vu)) + js(x,u, Vu) + c(x)u = f(x) in Q,

7.2
u=20 on 0Q. (72)

Then the following conclusions hold.:

. N ko

@ if ceL2(Q) and feL"(Q), withre (2N /(N +2),N/2), then u belongs to L" (Q),
where r** = Nr/(N — 2r),

(i) if ce L'(Q) with t>N/2 and f € L1(Q), with ¢> N /2, then u belongs to L* (Q).

Proof. Let us first prove conclusion (i). For every k> R (where R is defined in (1.4)),
let us define the function 7, (s) : R— R such that i, e C!, 5, is odd and

0 if 0<s<R,
n(s) =< (s— R if R<s<k, (7.3)
bys + ¢k if s>k,
where by and ¢ are constant such that #;, is C I. Since u is a generalized solution of

(7.2), v=n;(u) belongs to W,. Then we can take it as test function, moreover,
Js(x,u, Vu)n, (u) =0. Then from (1.4) and (4.3) we get

oo [ wlVal < [ eom) = [ ctoun, o (7.4
Q Q Q
Now, let us consider the odd function , (s) : R— R defined by

Ui (s) = /0 S ikt (7.5)

The following properties of the functions y, and 5, can be deduced from (7.3) and
(7.5) by easy calculations

W ()] = i (s), (7.6)

<71y (5)(s — R) < Coyg ()’ (7.7)
M

i ()] < Coltg ()| 77T, (7.8)

N

where Cj is a positive constant. Notice that for every ¢>0 there exist ¢;(x) e L2(Q),

with ||¢||x <e¢ and ¢;€ L (Q) such that ¢(x) = ¢1(x) + ¢2(x). From (7.4), (7.6), (7.7)
2
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and Holder inequality, we deduce

o0 [ 190 @) <Glla@ly| [ 1o ] + 1760 = Rt = xul o).

We fix ¢ = (9%)/(2Cy), where & is the Sobolev constant. We obtain

o #
[l <e [176)- Rt - cxtoulln@l. 09
Q
Now, let us define the function
h(x) = [/ (%) = Rer(x) = ea(x)u(x)] (7.10)
and note that 4(x) belongs to L'(Q) with
t = min{r,2%}. (7.11)

Let us consider first the case in which ¢ = r, then from (7.8) and (7.9), we get

1

UQ |Wk(u)|2*]2%<c||h||,{/g () 2’:11}—/.

Since 2N /(N +2)<r<N/2 we can define ye R" by

F(N 42) — 2N
= =D =72 1) =r*. 12
N2 G+ =r2y+1)=r (7.12)
Moreover, since r <N /2 we have that 2/2*> 1/, then

1
7

[t r <Cll, (7.13)

Notice that |y (u)|— C(y)|u — R|’+1}({x: u(x)|>ry almost everywhere in Q. Then
Fatou Lemma implies that |u — R|A"HX{X ()= &} belongs to L? (Q). Thus, u belongs

to L 0+D(Q) = L""(Q) and the conclusion follows. Consider now the case in which
t = 2* and note that this implies that N > 6. In this case we get

2
E

1
[l <ctmie [ [ w557
¢ Q

Since N >6 it results 2/2*>1/(2*)". Moreover, we can choose y such that

2(y+ 1) = (2% (2y + 1).
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Thus, we follow the same argument as in the previous case and we deduce that u
belongs to L1 (Q) where

2*N

SN2

If it still holds s; <r we can repeat the same argument to gain more summability on
u. In this way for every se[2*,r) we can define the increasing sequence

Ns,

*
so = 2", SHHZW
- n

and we deduce that there exists 7 such that s;_; <r and s; >r. At this step from (7.11)
we get that ¢ =r and then ueL’ (Q), that is the maximal summability we can
achieve.

Now, let us prove conclusion (ii). First, note that since '€ L1(Q), with ¢>N/2, f
belongs to L'(Q) for every r>(2N)/(N +2). Then, conclusion (i) implies that

ue L°(Q) for every o> 1. Now, take 0>0 such that r — 5> N/2, since ueLé(Q) it
results

/Q|c(x)u(x)|’*‘5<|\c(x)||§*5 [/Q IM(X)Ié]?<OO-

Then, the function d(x) =f(x) — c(x)u(x) belongs to L'(Q) with r = min{q,—
0}>N/2. Let us take k>R (R is defined in (1.4)) and consider the function v =
Gy (1) = u — Ty (u) (Where Ty(s) is defined in (3.5)). Since u is a generalized solution
of (7.2) we can take v as test function. From (1.4) and (4.3) it results

o0 [ VG [ Jaw]16.)]
Q Q
The conclusion follows from Theorem 4.2 of [21]. O

Remark 7.3. In classical results of this type (see e.g. [18] or [6]) it is usually

considered as test function v = |u|2yu. Note that this type of function cannot be used
here for it does not belong to the space W,. Moreover, the classical truncation T,
seems not to be useful because of the presence of c¢(x)u. Then, we have chosen a
suitable truncation of u in order to manage also the term c¢(x)u.

Now we are able to prove Theorem 7.1.

Proof of Theorem 7.1. Theorem 7.1 will be proved as a consequence of Lemma 7.2.
So, consider u a generalized solution of Problem (P), we have to prove that u is a
generalized solution of Problem (7.2) for suitable f(x) and ¢(x). This is shown in
Theorem 2.2.5 of [9], then we will give here a sketch of the proof of [9] just for
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clearness. We set
go(x,s) = min{max{g(x,s), —a(x)},a(x)},
g1(x,8) = g(x,5) — go(x,5).

It follows that g(x,s) = go(x,s) + gi1(x,s) and |go(x,s)|<a(x) so that we can set
f(x) = go(x,u(x)). Moreover, we define

gi(xu(x) .
(=1 ul) if u(x)+#0,

0 if u(x)=0.

Then |c(x)| <b\u(x)|ﬁ, so that ¢(x) GL%(Q). Lemma 7.2 implies that conclusion (a)
holds. Now, if r> N /2 we have that f(x) e L"(Q) with r> N /2. Moreover, conclusion
(a) implies that ue L'(Q) for every t< oo, so that ¢(x)e L'(Q) with t>N/2. Then
Lemma 7.2 implies that ue L*(Q). O

Remark 7.4. When dealing with quasilinear equations (i.e. j(x,s, &) = a(x,s)¢é- &), a
standard technique, to prove summability results, is to reduce the problem to the
linear one and to apply the classical result (see e.g. [21]). Note that here this is not
possible due to the general form of j.
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