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1. Introduction

Let N > p > 1. In the study of the quasi-linear partial differential equation

−div
(

jξ (u, Du)
) + js(u, Du) + V (x)|u|p−2u = g(u), u ∈ W 1,p(

RN)
(1)

by means of variational methods, a rather typical assumption on j(s, ξ) and g(s) is that there exist p < q < Np/(N − p) and
δ > 0 such that

qj(s, ξ) − js(s, ξ)s − (1 + δ) jξ (s, ξ) · ξ − qG(s) + g(s)s � 0, (2)

for all s ∈ R and any ξ ∈ RN (cf. [2,7]). This condition ensures that every Palais–Smale sequence, in a suitable sense, of the
associated functional f : W 1,p(RN ) → R,

f (u) =
∫

RN

j(u, Du) + 1

p

∫

RN

V (x)|u|p −
∫

RN

G(u),

is bounded in W 1,p(RN ). We might refer to this technical condition as the generalized Ambrosetti–Rabinowitz condition,
involving the terms of the quasi-linear operator j. In fact, in the treatment of the non-autonomous semi-linear equation

−�u + V (x)u = g(u), u ∈ H1(RN)
, (3)
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the previous inequality (2) reduces to the classical Ambrosetti–Rabinowitz condition [1], namely 0 < qG(s) � g(s)s, for every
s ∈ R. Of course, aiming to achieve the existence of multiple solutions for Eq. (1), one needs to know that the Palais–Smale
condition for f is satisfied at an arbitrary energy level, and hence it is necessary to guarantee that Palais–Smale sequences
are always at least bounded, through condition (2). On the contrary, under suitable assumptions, if one merely focuses on
the existence of a nonnegative Mountain Pass solution of (1), it is reasonable to expect that by a clever selection of a special
Palais–Smale sequence at the Mountain Pass level c one could reach the goal of getting a solution to (1) without knowing
that the Palais–Smale condition holds. The existence of such a nice sequence is possible since the definition of c allows to
detect continuous paths γ : [0,1] → W 1,p(RN ) with a very good behavior. The idea, considering for instance problems (3),
is to see f = f1 as the end point of the continuous family of C1 functionals fλ : H1(RN ) → R,

fλ(u) = 1

2

∫

RN

|Du|2 + 1

2

∫

RN

V (x)|u|2 − λ

∫

RN

G(u).

When fλ satisfies a uniform Mountain Pass geometry, then it is possible to use the so-called monotonicity trick for C1

smooth functionals, originally discovered by Struwe [24] in a very special setting and generalized and formalized later in an
abstract framework by Jeanjean [12] and Jeanjean and Toland [15]. This strategy provides a bounded Palais–Smale sequence
for all λ fixed, up to a set of null measure. Then, by requiring some compactness condition one can detect a sequence (λ j),
increasingly converging to 1, for which there corresponds a sequence (uλ j ) of solutions to (3) at the Mountain Pass level
cλ j , namely

cλ = inf
γ ∈Γ

sup
t∈[0,1]

fλ
(
γ (t)

)
, Γ = {

γ ∈ C
([0,1], W 1,p(

RN))
: γ (0) = 0, γ (1) = w

}
, (4)

w ∈ W 1,p(RN ) being a suitable function with fλ(w) < 0 for any value of λ. Then, uλ j being exact solutions, one can exploit
the Pohǒzaev identity and combine it with the energy level constraint to show in turn that (uλ j ) is a bounded Palais–Smale
sequence for f1. In the case of semi-linear equations such as (3), we refer the reader to [14,3] where the approach has been
successfully developed. The main goal of this manuscript is twofold. On one hand, we intend to show how condition (2) can
be completely removed by using a general version of the monotonicity trick recently developed in [22] in the framework of
the non-smooth critical point theory of [9,8]. In this respect, first, in order to analyze the most clarifying concrete situation,
we consider a class of functionals invariant under orthogonal transformations, set in the space of radial functions (see
Theorem 1). As in the smooth case, by studying a penalized functional fλ we will obtain a sequence of λ j converging to
one, with corresponding weak solutions uλ j . In order to obtain that the sequence (uλ j ) is bounded, a general version of
the Pohǒzaev identity [10] for merely C1 weak solutions will be crucial, as C1,α is the optimal regularity if p �= 2 [25].
Moreover, a generalized version of Palais’ symmetric criticality principle recently achieved in [21] will be exploited. These
results are new also in the particular meaningful case j(u, Du) = |Du|p/p with p �= 2, being the case p = 2 covered in [3].
On the other hand, when one does not restrict the functional to the space of radially symmetric functions (see Theorem 2),
it is possible to make a stronger use of the result in [22] to construct a bounded, almost symmetric (cf. (27)), Palais–Smale
sequence which will give a radial and radially decreasing solution. At the high level of generality of Eq. (1), proving a priori
that the radial solution is decreasing seems a particularly strong fact. These results are new also for j(u, Du) = |Du|p/p,
even with p = 2.

Let us now state the main results of the paper. Let N > p > 1 and let j : R × R+ → R+ be a C1 function such that the
map t �→ j(s, t) is increasing and strictly convex. Moreover, we assume that there exist α,β > 0 with

αt p � j(s, t) � βt p, for every s ∈ R and t ∈ R+, (5)∣∣ js(s, t)
∣∣ � βt p,

∣∣ jt(s, t)
∣∣ � βt p−1, for every s ∈ R and t ∈ R+, (6)

js(s, t)s � 0, for every s ∈ R and t ∈ R+. (7)

Let V : R+ → R+ be a C1 function such that there exist m, M ∈ R+ with

0 < m � V (τ ) � M, for every τ ∈ R+. (8)

Furthermore, we shall assume that∥∥V ′(|x|)|x|∥∥LN/p(RN )
< αpS, (9)

where S = inf{‖Du‖p
p: u ∈ W 1,p(RN ), ‖u‖LNp/(N−p)(RN ) = 1} is the best Sobolev constant and α is the number in (5). Apart

from the natural growths (5)–(6), condition (7) is a typical requirement in the frame of quasi-linear equations, which
helps [2,7,18,20,23] in the achievement of both existence and summability issues related to Eq. (1). Under (5) and (8), the
functional defined either in W 1,p

rad (RN ) or in W 1,p(RN ) as

u �→
∫

RN

j
(
u, |Du|) + V

(|x|) |u|p

p
,
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is continuous but not even locally Lipschitz, as it can be easily checked. Moreover, it admits Gateaux derivatives along any
bounded direction v , but not on an arbitrary direction v of either W 1,p

rad (RN ) or W 1,p(RN ). This is the reason why we will
make use of the abstract machinery developed in [9,8] for continuous functionals, the related monotonicity trick proved in
[22] and Palais’ symmetric criticality principle formulated in [21].

Let p∗ := Np/(N − p) and consider the equation

−div

[
jt
(
u, |Du|) Du

|Du|
]

+ js
(
u, |Du|) + V

(|x|)up−1 = g(u) in RN . (10)

Our first main result is the following

Theorem 1. Assume (5)–(9) and let g : R+ → R+ be continuous with g(0) = 0 and extended by zero on R− . Moreover,

lim
s→0+

g(s)

sp−1
= lim

s→+∞
g(s)

sp∗−1
= 0, (11)

and, furthermore, for G(s) = ∫ s
0 g(t),

there exists s > 0 such that pG(s) − Msp > 0. (12)

Then Eq. (10) admits a nontrivial, nonnegative, distributional and radially symmetric solution u ∈ W 1,p(RN ).

This result seems new even in the particular p-Laplacian case j(s, t) = t p/p with p �= 2. In order to prove Theorem 1,
we consider the continuous functionals fλ : W 1,p

rad (RN ) → R,

fλ(u) =
∫

RN

j
(
u, |Du|) +

∫

RN

V
(|x|) |u|p

p
− λ

∫

RN

G(u), λ ∈ [δ,1], (13)

for some suitable value of δ ∈ (0,1). First we shall prove that fλ fulfills a uniform Mountain Pass geometry. Next we show
that for all λ ∈ (δ,1] any bounded Palais–Smale sequence is, actually, strongly convergent. Furthermore, by applying the
monotonicity trick of [22] and Palais’ symmetric criticality principle proved in [21] for continuous functionals, a sequence
λh ⊂ [δ,1) with λh↗1 is detected such that, for each h � 1, there exists a distributional solution uλh ∈ W 1,p

rad (RN ) of

−div

[
jt
(
u, |Du|) Du

|Du|
]

+ js
(
u, |Du|) + V

(|x|)up−1 = λh g(u) in RN

at the Mountain Pass level cλh . Then, by exploiting a Pohǒzaev identity [10] for C1 solutions of (10), we show in turn that
(uλh ) is also a bounded Palais–Smale sequence for f1, and passing to the limit will provide the desired conclusion.

Our second main result is the following

Theorem 2. Assume (5)–(9), let g : R+ → R+ be continuous with g(0) = 0, extended by zero on R− , satisfying (12), and such that
for all ε > 0 there is Cε ∈ R+ with

∣∣g(s)
∣∣ � εsp−1 + Cεsq−1, p < q < p∗, (14)

for every s ∈ R+ . Let V also satisfy

|x| � |y| �⇒ V
(|x|) � V

(|y|) for every x, y ∈ RN . (15)

Then Eq. (10) admits a nontrivial, nonnegative, distributional, radially symmetric and decreasing solution u ∈ W 1,p(RN ).

This result seems new even in the particular p-Laplacian case j(s, t) = t p/p, included p = 2 due to the monotonicity
information which is obtained a priori, skipping a posteriori PDEs arguments. In place of (11), here we need the slightly
more restrictive condition (14), since we cannot work directly on sequences of radial functions, which enjoy uniform decay
properties. In order to prove Theorem 2, we argue on the continuous functionals fλ : W 1,p(RN ) → R again defined as in
(13) for all λ ∈ (δ,1], for a suitable δ ∈ (0,1). Hence here we do not restrict the functional to the space of radially symmetric
functions. However, we still proceed as indicated above for the proof Theorem 1, but, by exploiting the symmetry properties
of the functional under polarization (cf. [22]) we use the symmetry features of the monotonicity trick of [22] and we obtain
the existence of a bounded and almost symmetric (cf. (27)) Palais–Smale sequence for f1. Possessing a compactness result
for such sequences, we can conclude the proof. We remark that in this second statement the solution found is not only
radially symmetric, but also automatically radially decreasing.

In both Theorems 1 and 2, the radial dependence of the potential V is crucial in order to detect suitable precompact
Palais–Smale sequences, while in the general case an accurate description of the behavior of such sequences is required. This
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analysis was carried on in [14] for j(s, t) = t2/2 using concentration compactness arguments [17] which, to our knowledge,
are not yet available for a general j.

In the autonomous case, namely the case where the potential V is constant, based upon scaling arguments, other clas-
sical approaches can be adopted also allowing more general classes of nonlinearities g . We refer the reader to Berestycki
and Lions [4] for the semi-linear case and to [5,13] for more general situations including quasi-linear equations under
homogeneity assumptions on j which are not assumed here.

Finally we remark that, while in Theorem 1 the solution is found at the restricted Mountain Pass level

crad = inf
γ ∈Γrad

sup
t∈[0,1]

f1
(
γ (t)

)
, Γrad = {

γ ∈ C
([0,1], W 1,p

rad

(
RN))

: γ (0) = 0, γ (1) = w
}
,

in Theorem 2 the solution is found at the global Mountain Pass level

c = inf
γ ∈Γ

sup
t∈[0,1]

f1
(
γ (t)

)
, Γ = {

γ ∈ C
([0,1], W 1,p(

RN))
: γ (0) = 0, γ (1) = w

}
.

Of course, on one hand, we have c � crad. On the other hand it is not clear if, in general, one has c = crad or c < crad although,
precisely as a further consequence of Theorem 2, this occurs when V is constant and the map t �→ j(s, t) is p-homogeneous
(see Remark 1).

2. Proof of Theorem 1

We will prove Theorem 1 by studying the functionals fλ : W 1,p
rad (RN ) → R defined in (13). Taking into account assump-

tions (5), (8) and (11), recalling [4, Theorem A.VI], it follows that fλ is well defined and (merely) continuous. In turn, we
shall exploit the non-smooth critical point theory of [9,8] including the connection between critical points in a suitable
sense and solutions of the associated Euler’s equation (see for instance [18, Theorem 3] and also [21, Proposition 6.16] for
the symmetric setting). More precisely under assumption (5)–(9), the critical points of fλ are distributional solutions of

−div

[
jt
(
u, |Du|) Du

|Du|
]

+ js
(
u, |Du|) + V

(|x|)|u|p−2u = λg(u) in RN . (16)

Combining the following two lemmas shows that the minimax class (4) is nonempty and that the family ( fλ) enjoys a
uniform Mountain Pass geometry whenever λ varies inside the interval [δ0,1], for a suitable δ0 > 0.

Lemma 3. Assume (5), (8) and (11)–(12). Then there exists δ0 ∈ (0,1) and a curve γ ∈ C([0,1], W 1,p
rad (RN )), independent of λ, such

that fλ(γ (1)) < 0, for every λ ∈ [δ0,1].

Proof. Due to (12), there exists z ∈ W 1,p
rad (RN ), z � 0 and Schwarz symmetric, such that

∫

RN

(
G(z) − M

p
zp

)
> 0.

To see this, follow closely the first part of [4, Step 1, pp. 324–325]. In turn, let δ0 ∈ (0,1) with

∫

RN

(
δ0G(z) − M

p
zp

)
> 0, (17)

and define the curve η ∈ C([0,∞), W 1,p
rad (RN )) by setting η(t) := z(·/t) for t ∈ (0,∞) and η(0) := 0. From (5) and (8) it

follows that

fλ
(
η(t)

)
� βtN−p‖Dz‖p

L p(RN )
− tN

∫

RN

(
δ0G(z) − M

p
zp

)
,

yielding, on account of (17), a time t0 > 0 such that fλ(η(t0)) < 0 for every λ ∈ [δ0,1]. Then, the curve γ ∈
C([0,1], W 1,p

rad (RN )), independent of λ, defined by γ (t) := η(t0t) has the required property and Γ is nonempty by tak-
ing w := γ (1). �
Lemma 4. Assume (5), (8) and (11). Let δ0 > 0 be the number found in Lemma 3. There exist σ > 0 and ρ > 0, independent of λ, such
that fλ(u) � σ for any u in W 1,p

rad (RN ) with ‖u‖1,p = ρ and for every λ ∈ [δ0,1].
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Proof. Condition (11) implies that for every ε > 0, there exists Cε such that
∣∣g(s)

∣∣ � εsp−1 + Cεsp∗−1, for every s ∈ R+. (18)

Then, fixed ε0 < m, we find Cε0 such that for every λ ∈ [δ0,1]

fλ(u) � α‖Du‖p
L p(RN )

+ m − ε0

p
‖u‖p

L p(RN )
− Cε0‖u‖p∗

W 1,p(RN )
.

This last inequality immediately gives the conclusion. �
We will use the following compactness condition.

Definition 1. Let λ, c ∈ R. We say that fλ satisfies the concrete-(BPS)c condition if any bounded sequence (uh) ⊂ W 1,p
rad (RN )

such that there is wh ∈ W −1,p′
rad (RN ) with

fλ(uh) → c,
〈
f ′
λ(uh), v

〉 = 〈wh, v〉 for every v ∈ C∞
c,rad

(
RN)

, and wh → 0 (19)

admits a strongly convergent subsequence.

In the next result we will use the property

jt(s, t)t � αt p, (20)

which can be obtained by hypotheses (5) once one has observed that, as j is a strict convex function with respect to t , it
results 0 = j(s,0) � j(s, t) + jt(s, t) · (0 − t).

Proposition 5. Let λ ∈ [δ0,1], c ∈ R and assume (5)–(8) and (11). Then the functional fλ satisfies the concrete-(BPS)c .

Proof. Let (uh) ⊂ W 1,p
rad (RN ) be a bounded sequence which satisfies the properties in (19). Then, in turn, there exists a

subsequence, still denoted by (uh), converging weakly in W 1,p
rad (RN ), strongly in Lq(RN ) for any q ∈ (p, p∗) and almost

everywhere to a function u ∈ W 1,p
rad (RN ). Moreover, we can apply the result in [6] to obtain that Duh converges to Du

almost everywhere. More precisely, since the variational formulation is here restricted to radial functions, this property
follows by arguing as in [21, proof of Theorem 6.4]. Then, it is possible to follow the same arguments used in [18, Step 2 of
Lemma 2] (see also [20]) for bounded domains, in order to pass to the limit in the equation in (19) and obtain in turn that
u satisfies the variational identity∫

RN

jt
(
u, |Du|) Du

|Du| · Dϕ +
∫

RN

js
(
u, |Du|)ϕ +

∫

RN

V
(|x|)|u|p−2uv = λ

∫

RN

g(u)ϕ, ∀ϕ ∈ C∞
c,rad

(
RN)

.

In fact, all the particular test functions built in [18,20] to achieve this identity are radial, since each uh is radial and ϕ is
a fixed radial function. Observe also that a function ϕ ∈ W 1,p

rad (RN ) ∩ L∞(RN ) can be approximated, in the ‖ · ‖1,p norm, by
a sequence (ϕm) ⊂ C∞

c,rad(RN ) with ‖ϕm‖L∞ � c(ϕ), for some positive constant c(ϕ). Whence, exploiting (6)–(8) and (11),
recalling that u is radial and arguing as in [18, Proposition 1], it follows that u is an admissible test function, namely∫

RN

jt
(
u, |Du|)|Du| +

∫

RN

js
(
u, |Du|)u +

∫

RN

V
(|x|)|u|p = λ

∫

RN

g(u)u. (21)

Furthermore, taking into account that uh ∈ W 1,p
rad (RN ) and exploiting conditions (11), we can use [4, Theorem A.I] to obtain

that

lim
h→∞

∫

RN

g(uh)uh =
∫

RN

g(u)u.

Observe that, applying Fatou’s Lemma in view of (7)–(8) and (20), formula (21) implies∫

RN

jt
(
u, |Du|)|Du| + V

(|x|)|u|p � lim inf
h→∞

{ ∫

RN

jt
(
uh, |Duh|

)|Duh| + V
(|x|)|uh|p

}

� lim sup
h→∞

{ ∫

RN

jt
(
uh, |Duh|

)|Duh| + V
(|x|)|uh|p

}
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� − lim inf
h→∞

∫

RN

js
(
uh, |Duh|

)
uh + lim

h→∞
λ

∫

RN

g(uh)uh

= −
∫

RN

js
(
u, |Du|)u + λ

∫

RN

g(u)u

=
∫

RN

jt
(
u, |Du|)|Du| + V

(|x|)|u|p .

Then, taking into account (8) and (20), it results

lim
h→∞

∫

RN

|Duh|p + m|uh|p =
∫

RN

|Du|p + m|u|p,

giving the desired convergence of (uh) to u via the uniform convexity of W 1,p(RN ). �
Next, we state the main technical tool for the proof of the first theorem.

Lemma 6. Assume that conditions (5)–(8) and (11)–(12) hold and that fλ satisfies the concrete-(BPS)c for all c ∈ R and all λ ∈ [δ0,1].
Then there exists a sequence (λ j, u j) ⊂ [δ0,1] × W 1,p

rad (RN ) with λ j↗1 and where u j is a distributional solution to

−div

[
jt
(
u, |Du|) Du

|Du|
]

+ js
(
u, |Du|) + V

(|x|)|u|p−2u = λ j g(u) in RN , (22)

such that fλ j (u j) = cλ j .

Proof. The result follows by applying [22, Corollary 3.3] to the minimax class defined in (4), with the choice of spaces
X = S = V = W 1,p

rad (RN ) and by defining uH := u and u∗ := u as the identity maps. In fact, assumptions (H1) and (H2) are
fulfilled thanks to Lemmas 3 and 4. Condition (H3) is implied by the structure of fλ as it can be verified by a straightfor-
ward direct computation. Finally assumption (H4) is evidently satisfied since uH is the identity map. Since X = W 1,p

rad (RN ),
it turns out that, a priori, the solutions (u j) provided by [22, Corollary 3.3] are distributional with respect to test functions
in C∞

c,rad(RN ). The fact that u j is, actually, a distributional solution with respect to any test function in C∞
c (RN ) follows by

[21, Theorem 4.1 and end of the proof of Theorem 6.4]. �
Proposition 7. Assume (5), (8) and (11)–(12). The map λ → cλ is non-increasing and continuous from the left.

Proof. The fact that cλ is non-increasing trivially follows from the fact that G � 0. The proof of the left-continuity follows
arguing by contradiction exactly as done in [12, Lemma 2.3]. �
2.1. Proof of Theorem 1 concluded

Proposition 5 allows us to apply Lemma 6 and obtain, in turn, a sequence u j of distributional solution of (22) at the
energy level cλ j . Following the argument in [11, Lemma 4.1] and applying [19, Theorem 1 and Remark, p. 261] one obtains
u j ∈ L∞

loc(R
N ) and then, via standard regularity arguments (see [16]) u j ∈ C1,α(RN ). As a consequence, we can apply the

Pohǒzaev variational identity for C1 solutions of Eq. (22) stated in [10, Lemma 1], by choosing therein h(x) = hk(x) =
H(x/k)x ∈ C1

c (RN ;RN ), where H ∈ C1
c (RN ) is such that H(x) = 1 on |x| � 1 and H(x) = 0 for |x| � 2. Letting k → ∞ and

taking into account conditions (5), (6) and that V ′(|x|)|x| ∈ LN/p(RN ), we reach∫

RN

jt
(
u j, |Du j|

)|Du j| − N

∫

RN

j
(
u j, |Du j|

) − N

p

∫

RN

V
(|x|)|u j|p

+ Nλ j

∫

RN

G(u j) − 1

p

∫

RN

V ′(|x|)|x||u j|p = 0, for all j � 1.

In turn, each u j satisfies the following identity

fλ(u j) = 1

N

∫

RN

jt
(
u j, |Du j|

)|Du j| − 1

Np

∫

RN

V ′(|x|)|x||u j|p, for all j � 1.
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Since fλ(u j) = cλ j and recalling (20) one has

‖Du j‖p
L p(RN )

(
αpS − ∥∥V ′(|x|)|x|∥∥LN/p(RN )

)
� pNScλ j , for all j � 1,

where S is the best constant for the Sobolev embedding. The last inequality, jointly with (9) and Proposition 7, yields the
existence of A > 0 such that

‖Du j‖L p(RN ) � A, for all j � 1. (23)

Also, since u j solves (22), by testing it with u j itself (which is admissible), (7) and (20) give
∫

RN

V
(|x|)|u j|p − λ j

∫

RN

g(u j)u j � 0.

So that, conditions (8), (18) and (23) yield, for any fixed ε < m,

(m − λ jε)‖u j‖p
L p(RN )

� λ j
Cε

S p∗/p
Ap∗

. (24)

Since (λ j) is bounded, by combining (23) and (24) we get that (u j) is bounded in W 1,p
rad (RN ). In turn, let us observe that

(u j) is a concrete-(BPS)c1 for the functional f1. In fact notice that, taking into account that G(u j) remains bounded in
L1(RN ) due to inequality (18), that fλ j (u j) = cλ j and recalling Proposition 7, it follows as j → ∞

f1(u j) = fλ j (u j) + (λ j − 1)

∫

RN

G(u j) = cλ j + (λ j − 1)

∫

RN

G(u j) = c1 + o(1). (25)

Furthermore, by defining ŵ j = (λ j − 1)g(u j) ∈ W −1,p′
(RN ), for every v ∈ C∞

c (RN ) we have

〈
f ′

1(u j), v
〉 =

∫

RN

jt
(
u j, |Du j|

) Du j

|Du j| · D v +
∫

RN

js
(
u j, |Du j|

)
v +

∫

RN

V
(|x|)|u j|p−2u j v −

∫

RN

g(u j)v

= 〈
f ′
λ j

(u j), v
〉 + 〈ŵ j, v〉 = 〈ŵ j, v〉. (26)

Then, since in light of (18) and (23)–(24), ŵ j → 0 in W −1,p′
(RN ) as j → ∞, Proposition 5 applied to f1 and with c = c1

implies that there exists a function u ∈ W 1,p
rad (RN ) such that, up to a subsequence, (u j) converges to u strongly in W 1,p

rad (RN ).
On account of formulas (25)–(26) and the continuity of f1, and by an application of Lebesgue’s Theorem we conclude that u
is a nontrivial radial Mountain Pass solution of (10). Finally, u is automatically nonnegative, as follows by testing (10) with
the admissible (by [20, Proposition 3.1] holding also for unbounded domains) test function −u− , in view of (7), (20) and
the fact that g(s) = 0 for every s � 0.

3. Proof of Theorem 2

Eq. (10) is investigated by studying the continuous functional fλ : W 1,p(RN ) → R with fλ(u) again defined as in (13)
which, for λ = 1, corresponds to the action functional associated to (10).

Definition 2. Let λ ∈ [δ0,1], for some δ0 > 0, and c ∈ R. We say that fλ satisfies the concrete-(SBPS)c condition if every
bounded sequence (uh) in W 1,p(RN ) such that there exists wh ∈ W −1,p′

(RN ) with wh → 0 as h → ∞,

fλ(uh) → c,
〈
f ′
λ(uh), v

〉 = 〈wh, v〉 ∀v ∈ C∞
c

(
RN)

,

and

∥∥uh − u∗
h

∥∥
L p(RN )∩L p∗

(RN )
→ 0, (27)

admits a strongly convergent subsequence. Here u∗ := |u|∗ , where ∗ denoted the Schwarz symmetrization.

Proposition 8. Let λ ∈ [δ0,1], for some δ0 > 0, c ∈ R and assume that (5)–(8) and (14) hold. Then the functional fλ satisfies the
concrete-(SBPS)c .

Proof. Given a concrete-(SBPS)c sequence (uh) ⊂ W 1,p(RN ), as in the proof of Proposition 5, up to a subsequence, (uh)

converges to a u weakly, almost everywhere and, in addition, Duh converges to Du almost everywhere. The main difference
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with respect to Proposition 5 is that the crucial limit

lim
h

∫

RN

g(uh)uh =
∫

RN

g(u)u, (28)

admits now a different justification. Since (u∗
h) ⊂ W 1,p

rad (RN ) and (uh) is bounded in W 1,p(RN ), then (u∗
h) is bounded

in W 1,p(RN ) too by virtue of the Polya–Szegö inequality. Therefore, since for every p < q < p∗ the injection map
i : W 1,p

rad (RN ) → Lq(RN ) is completely continuous, up to a subsequence, it follows that u∗
h → z in Lq(RN ) as h → ∞ for

some z ∈ Lq(RN ), for p < q < p∗ . Due to ‖uh − u∗
h‖Lp∩Lp∗

(RN ) → 0 we get uh → z in Lq(RN ), as

‖uh − z‖Lq(RN ) � C
∥∥uh − u∗

h

∥∥
L p∩L p∗

(RN )
+ ∥∥u∗

h − z
∥∥

Lq(RN )
.

Of course z = u, allowing to conclude that

uh → u in Lq(RN)
as h → ∞, for every p < q < p∗. (29)

In light of (29), for a p < q < p∗ there exists ζ ∈ Lq(RN ), ζ � 0, such that |uh| � ζ for every h � 1. In turn, by assumption
(14), for all ε > 0 there exists Cε ∈ R with

ε|uh|p + Cεζ
q − g(uh)uh � 0.

Then, by Fatou’s Lemma, by the arbitrariness of ε and the boundedness of (uh) in L p(RN ),

lim sup
h

∫

RN

g(uh)uh �
∫

RN

g(u)u.

Of course, since g(uh)uh � 0, again by Fatou’s Lemma one also has

lim inf
h

∫

RN

g(uh)uh �
∫

RN

g(u)u,

concluding the proof of formula (28). �
Next, we state the main technical tool for the proof of the second theorem.

Lemma 9. Assume that conditions (5)–(8) and (14)–(15) hold and that fλ satisfies the concrete-(SBPS)c for all c ∈ R and all λ ∈ [δ0,1].
Then there exists a sequence (λ j, u j) ⊂ [δ0,1] × W 1,p(RN ) with λ j↗1 where u j is a distributional solution of

−div

[
jt
(
u, |Du|) Du

|Du|
]

+ js
(
u, |Du|) + V

(|x|)up−1 = λ j g(u) in RN ,

such that fλ j (u j) = cλ j and u j = u∗
j .

Proof. The result follows by applying [22, Corollary 3.3] with the following choice of spaces: X = W 1,p(RN ), S =
W 1,p(RN ,R+) and V = L p ∩ L p∗

(RN ). In fact, it is readily verified that assumptions (H1)–(H4) in [22, Section 3.1] are
fulfilled with uH = |u|H , where v H denotes the standard polarization of v � 0 and with u∗ = |u|∗ where v∗ denotes the
Schwarz symmetrization of v � 0. Condition (H1) is just the continuity of the functionals fλ . Condition (H2) is satisfied
since Lemma 3 and Lemma 4 hold with the same proof (notice that the function z in the proof of Lemma 3 satisfies z = z∗).
Condition (H3) follows, as in the proof of Lemma 6 by a simple direct computation. Assumption (H4) is satisfied by (15)
and standard arguments (see also [22, Remark 3.4]). Notice that the function w = γ (1) = z(x/t0) detected in Lemma 3 and
used to build the minimax class Γ is radially symmetric and radially decreasing, so that w H = w for every half space H , as
required in (H4). �
3.1. Proof of Theorem 2 concluded

The proof goes along the lines of the proof of Theorem 1 by simple adaptations of the preparatory results contained in
Section 2 to the new setting. With respect to the main differences in the proofs, it is sufficient to replace Proposition 5 with
Proposition 8 and Lemma 6 with Lemma 9.
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Remark 1. In the notations c and crad mentioned at the end of the introduction, we always have c � crad. On the other
hand, when V is constant and the function t �→ j(s, t) is p-homogeneous, then c � crad. In fact, let ur be a radial solution
at level c provided by Theorem 2, namely f1(ur) = c. Then, defining the radial curve γr(t)(x) := ur(x/tt0), which belongs to
C([0,1], W 1,p

rad (RN )) for a suitable t0 > 1 and arguing as in [11, Step I, proof of Theorem 3.2] through the Pohǒzaev identity,
it follows that

c = f1(ur) = max
t∈[0,1] f1

(
γr(t)

)
,

immediately yielding c � crad, as desired.
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