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1. I N T R O D U C T I O N  

In this paper,  in the spirit of [1], we want to investigate the effect of perturbing the S l - symmet ry  

of a general class of Hamiltonian systems. 
Studied around 1980 by Bahri and Berestycki in [2], the problem of finding multiple periodic 

solutions of nonsymmetr ic  systems of type (T  ij (s) = 5ij) 

a/e = Ds,  V ( v )  + ~e, g = l , . . . , n ,  (1.1) 

where ~ c L2(S 1, Nn), have also been considered by Rabinowitz in [3] via techniques of classical 

critical point theory. 
In order to find weak solutions to (1.1), he looked for critical points of the smooth (C 1) action 

L : H I ( S 1 , N  n) --* ~ defined by 

/02  /0 ~ ( ~ )  = 2 J0 I#l~ dr  - V (~) dr  - ~ -  ~ dT. 

On the other hand, the action of a mechanical system with n degree of freedom, in general, 
may be represented by quasi-linear functionals L : H I ( S  1, R n) --* N of the type 

1/02  /0 f/  L(')') = ~ TiJ (V)~i'~j dr  - V(7) dr  - ~"  3' dr, (1.2) 
i,j=l 
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where {TiJ(s)} is the symmetric positive definite quadratic form of kinetic energy and V is the 
potential energy. If ~ -- 0, clearly for each 7 E HI(SI,I~ n) we have 

V ~ 6 ]~, L(To'~) = L('~), (ToT)(T) = 7(T + ~q), (SLsymmetry) .  

If ~ # 0, the Sl-symmetry drops and the associated evolution system is given by 

1 
Ds~TiJ (7);h~/j = Ds~ V(7)  + ~t, (1.3) - + 

i = l  i , j=l  

for ~ = 1 , . . . ,  n. Now, since LI ( s  1, N n) C_ H-1($1,  R'~), (1.2) is a smooth functional and we shall 
apply the techniques of classical critical point theory [3-5]. 

Recently, some papers have been published about the existence of weak solutions to quasi- 
linear elliptic systems subjected to perturbation from Z2-symmetry. ( L ( - 7 )  = L(7)).  See [6,7]. 
On the other hand, to my knowledge, little is known for gLsymmetries in case of the quasi-linear 
functional (1.2). 

Throughout the paper, we shall consider the following assumptions. 

(i) TiJ(.) • CI([~ n) N L°Z(N n) and DsTiJ(.) e L°°(N n) for each i , j  = 1 , . . .  ,n. Moreover, 

~ T i J ( s ) ~ i ~ j  >_ v [~[2, (v > 0), (1.4) 
i ,j= l 

for each (s, ~) E R 2n. 
(ii) V E CI(N '~) and there exist bl,b2, R > 0 and a , p  > 2 such that 

V(s)  <_ bl + b21sl °, (1.5) 

>- R o <  V(s) < s .  (1 .6 )  

for each s E R n. Finally, there exists 0 El0, # --2[ such that 

i , j=l  i , j=l  

for each (s, ~) c N2~. 

Under the previous assumptions, the following is our main result. 

THEOREM I. Let ~ • L2(~I ,R  n) and assume that 

a < 4 # - 2 .  

Then the perturbed Hamiltonian system (6 = 1 , . . . ,  n) 

1 
D~,T~J(7)'~<~j : D~,V("/) + ~e (1.7) - ' + 

i = 1  i , j=l  

~dmi ts n sequence (Oh) of weak solutions in H I (S 1, R~). 

This result extends Theorem 2.4 in [3] to a more general class of Hamiltonian systems. 
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2. P E R T U R B E D  SI-SYMMETRIC F U N C T I O N A L S  

By condition (1.6), we find Cl,C2,C3 > 0 such that  for each s E R ~, 

!(8" VV(s)  -[-c1) ~_ V(s) At-c 2 ~ c3[s[ Iz. (2.8) 
# 

LEMMA 1. If~/ E HI(S1 ,R  n) is a weak solution to (1.7), there ex/sts c > 0 with 

jO 2~ (L (.7)2 + 1) 1/2 (v (~) + c2) dr < c 

PROOF. It suffices to follow the steps of Lemma 2.1 in [1]. | 

Let us now define X E C°°(R) by setting x(r )  = 1 for r < 1, X(T) = 0 for r > 2, and 
- 2  < X'(T) < 0 when 1 < r < 2, and let for each "y E HI(S1 ,R n) 

, , ,  : ( 
¢ (~) = 2c (,z (~)~ + 1)~ , ~ (~) x ¢ (v  (7) + c,) 

Finally, we define the modified functional by 

f-,(7) = ~ Jo TiJ (7)7i'~j dr  - V(7) dT -- ¢(7) ~ ' 7  dr. (2.9) 
i,j=l 

The Euler's equation associated with the previous functional is given by 

~ 1 n 
- (T'~(-~)~) '+~ ~ D~T'J(~)~/~j = D ~ ( - ~ ) ,  (2.10) 

i=1 i,j=l 

where 

jr0 
2~r 

v?(3)  = vv(3)  + ¢(3)~ + ¢'(3) ~ . ~  dr. 

Note that ,  by the previous lemma, if ~/E HI(S1 ,R n) is a weak solution to (1.7), we have that  
¢(7)  = 1, and therefore, L(7) = L(7).  

The next result measures the defect of Sl-symmetry of L. This turns out to be crucial in the 
final comparison argument. 

LEMMA 2. There exists/3 > 0 such that for all 7 E HI(S1 ,R  n) 

- __ # (z( , )  1/. + 1 )  

PROOF. Taking into account Lemma 1 and the fact that  [17112 = 11T~(7)[12, the proof follows as 
in [1, Lemma 2.6]. | 

THEOREM 2. There exists M > 0 such t h a t / f ?  c H I ( S I , R  n) is a weak solution to (2.10) with 
L(7)  >- M ,  then 7 is a weak solution to (1.7) and L(7) = L(7).  

PROOF. Follow the steps of Theorem 2.3 in [1]. | 
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3. THE PALAIS-SMALE CONDITION FOR 

DEFINITION 1. I f  c C l~, a sequence (7 h) C_ H I ( S 1 , R  n) is said to be a Palais-Smale sequence at 
level c ((PS)c-sequence, in short) for L, i l L ( 7  h) -* c, and (for ~ = 1 , . . . ,  n) 

1 
ns~TiJ (7)~/i4/j - Ds~ V(7)  ~ O, - ~ (T'~(~)~)' + 

{=1 ~,j=l 

strongly in H -1 (S1). 

We say that L satisfies the Palais-Smale condition at level c, if each (PS)c sequence for f., has 
a strongly convergent subsequence in H i (S 1, R~). 

LEMMA 3. There exists M > 0 such that each (PS)c-sequence (7 h) for L with c >_ M is bounded 
in H1 ($1, Rn). 

PROOF. Let M > 0 and (7 h) be a (PS)c-sequence for L with c _> M such that  M _< L(7  h) _< K,  
for some K > 0 and h E N large. By Lemma 3 in [7], we have 

liln~' (7")(~h) = 0 

Therefore, arguing as in [1, Lemma 3.2], for large h E N and any y > 0, it follows 

h 2 
u (1 - 0(2 + 0 ) ( 1  + T1 (7h)))117 I1~,~ ~ ]l~hlli,~ + K > L (7 h) - ~ '  (7 h) (7 h) _> ~ 

fo + (#~o (1 + T2 (7h)) -- 1) v(7h) dT--[o(l+Tl(7h))+l]ll(Pll2ll7hH2, 
where v > 0 is the ellipticity constant of coefficients T ij and T1, T2 : H 1 (~1, Rn)  __~ ~ are defined 
by setting 

T~ (7) = X' (~ (7)) (2c)2,~(~)¢(~)-2~ (7) ~ .  7d~-, 

/? /o T:(7) = X'(O (7 ) )¢ (7 )  -1 ~ . T d T + T I ( 7 ) ,  0(7)  := ¢(7)  -1 (V (7 )  +c2) dT. 

If we choose M sufficiently large, we find E > 0, ~ > 0, and Q E ](1 + ~)/#,  (1 - ¢)/(0 + 2)[ such 
that  uniformly in h E N 

( 1 - - t ) ( 2 + O ) ( l + T l ( T h ) ) ) > e ,  ( t t o ( l + T 2 ( T h ) ) - - l )  > ~ .  

Hence, we obtain, for some b > 0 and c > 0, 
tJ£ h 2 

~ 117hlli,~ + K >_ T 117 I1~,~ + b'7117'~11~- c 117"111,~, 

which implies the boundedness of  (7 h) in H I ( s  1, Rn). | 

We now recall a crucial property for the Palais-Smale condition to hold. 

LEMMA 4. Let (7 h) be a bounded sequence in HI(S1 ,R  n) and set 

(wh'~?> = T'J ("th)~/hiTjdT +-2 E DsT'J (7h) "h'h dT • ~7"1i ")'~ , 

i , j=l  i , j=l  

for all U 6 C°°{S 1 Rn). Then, i f  (w h) is strongly convergent to some w in H - I ( S 1 , R n ) ,  (7 h) 
C \ ' 

admits a strongly convergent subsequence in H I (S I , Rn). 

PROOF• Since in our setting LI(S 1, Nn) C_ H - I ( N  1, Nn), the proof is standard• | 

We point out that  the previous lemma is absolutely nontrivial in more than one variable. 
See p,W]. 

We now come to one of the main tools of this paper. 

THEOREM 3. There is M > 0 such that L satisfies the (PS)c-condition for c > M.  

PROOF. Taking into account Lemma 3.3 of [1], combine Lemma 3 and Lemma 4. | 
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4.  E X I S T E N C E  O F  M U L T I P L E  P E R I O D I C  O R B I T S  

Now, let { e l , . . . ,  en} be the s tandard  basis in R ~ and define, for each 1 < i < n, 

Em,i := span {vj,k = sin (jT) ek, wj,k = cos ( j r )  ek : 1 < j < m,  1 < k < i } .  

By inequal i ty  (2.8), there  exists Rm,i > 0 such tha t  

If Dm,i = BR,,.~ ~ Era,i, we say tha t  ~ ~ C(Dm,i ,  H~(~ 1, R") )  is equivariant  if 

v o e  [0, 2~[, ~(To(~)) = To~(~). 

Finally, set 

and 

Fk,i = {rl E C ( D m , i , H 1 ) :  ~ equiv. ~(3') = 7 if I1~11 = Rk,~ or ~ ~ E0,~} 

379 

bk,~ = inf max  /~ (T](-y)). 
~?EFk,i 3'EDk,~ 

The  following result depends on an gl-version of Borsuk-Ulam's  Theorem.  

LEMMA 5. For each k E N, 1 < i < n, 0 E]0, Rk,i[, and ~ C Fk,~, 

~(Dk,~) A OB(O, O) N E ± k,~-, ¢0 .  

PROOF. See [3, Lemma  2.20]. | 

LEMMA 6. There  exis t /3  > 0 and ko C N such that,  for each 1 < i < n, 

Vk > ko, bk,i _>/3k (a+2)/(a-2). 

± 
PROOF. If k > 1 and "y E 0B(0 ,  Q) ~ Ek,i_l ,  arguing as in [1, Lemma 5.3], by (1.5), we have 

g(~)  > 4Q 2 - ~111~11~ - a2 - ~all~ll2, 

for some a l ,  a2, a3 > 0. Now, Gagliardo-Niremberg 's  inequali ty implies tha t  

II~ll~ -< a411~11~2 -2)/2~ II~ll~ ~÷2)/2~ , 

for some a4 > 0 and all ~, E H 1. Moreover, 

1 
11~112 -< ~ II~ll~, 

.k for each ")' E Ek, i_  1. Continuing as in [1, Lemma 5.3], we conclude the  proof. | 

For each k E N, we now set 

Uk,i = {~ /=  TVk,i+l + ¢ :  r E [0, Rk,i+l] ,  ¢ C B (0, Rk,i+l) n Ek,i, II'Yl]l,2 <- Rk , i+ l} ,  

i k , i  = {)~ E C ( U k , i , u l )  : )~lDk, ~ E Fk,i,)~IoB(O,Rk.~+,)U((B(O,Rk,i+,)\B(O,Rkd))AEk,i) = I d }  . 

We now recall the  main existence tool from critical point  theory. 
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THEOREM 4. Assume  that  ck,~ > bk,~ >_ M .  If  0 < 5 < ck,~ - bk,i and 

Ak,i ( 5 ) : =  {A C Ak , i :  L (A (~)) < bk,i + 5, for 3' E Dk,i~,, 

set 

ck,i(5) = inf m a x  L(A(7) ) .  
AEAk .~(~i) "YEUk,i 

Then  ek,i(5) is a critical value for L. 

PROOF. Argue  essent ia l ly  as in [3, L e m m a  2.29]. | 

I t  on ly  r emains  to  show t h a t  condi t ion  ck,i = bk,i for k large is no t  p e r m i t t e d .  

LEMMA 7. A s s u m e  that  Ck,i = bk,~ for a11 k >_ kl a n d  1 < i < n. Then,  there  exist  7 > 0 a n d  

>_ kl  wi th  
b~,i < @. / ( . -1) .  

PROOF. Choose  k > k l ,  1 < i < n, and  e > 0 and  let  A c Ak,i be such t h a t  

m a x  L (A (7)) -< bk,i + e. 
"YCUk,i 

Now, let  A(~/) = A(7) and  X(To~/) = ToA(~/) for 3' c Uk,i. I t  is easy  to  show t h a t  A E Fk, i+l .  
Then ,  a rgu ing  as in [1, L e m m a  5.6], we get  

bk,i+l <_ bk,i +/3 (Ibk,il 1/" + 1 ) ,  

for k > k l .  T h e  p roof  now goes on as in [3, L e m m a  2.31]. | 

F inal ly ,  we come to the  p roof  of Theo rem 1. Since cr < 4# - 2 impl ies  t h a t  # / ( #  - 1) < 

(a + 2 ) / ( a  - 2 ) ,  combining  L e m m a s  6 and  7, we deduce,  by T he o re m 4 t h a t  (Ck,i(5)) is a sequence 

of  cr i t ica l  values  for L. Whence ,  by  T h e o r e m  4, L has a sequence of cr i t ica l  values.  
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