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By means of a perturbation argument devised by P. Bolle, we prove the existence of infinitely many solutions
for perturbed symmetric polyharmonic problems with non–homogeneous Dirichlet boundary conditions. An
extension to the higher order case of the estimate from below for the critical values due to K. Tanaka is obtained.

1 Introduction and main results

Let Ω ⊂ R
n be a smooth bounded domain with n > 2K , K � 1,

φj ∈ HK−j− 1
2 (∂Ω) , j = 0 , . . . , K − 1

and ϕ a function in L2(Ω). Moreover let

2 < σ < K∗ , K∗ =
2n

n− 2K
,

being K∗ the critical Sobolev exponent for the embedding HK
0 (Ω) ↪→ LK∗(Ω). The main goal of this paper is

to study the existence of multiple solutions for the following polyharmonic elliptic problem

(−∆)Ku = |u|σ−2 u+ ϕ in Ω (PK
ϕ )

with non–homogeneous Dirichlet boundary conditions(
∂

∂ν

)j

u

∣∣∣∣∣
∂Ω

= φj , j = 0 , . . . , K − 1 , (Dφ)

where ν denotes the outer unit normal to ∂Ω.
So far, many papers have been written on the existence and multiplicity of solutions for second order ellip-

tic problems with Dirichlet boundary conditions, especially by means of variational methods. In particular, if
Ω ⊂ R

n (n � 3) is a smooth bounded domain, ϕ ∈ L2(Ω) and 2 < σ < 2n
n−2 , the following model problem{

−∆u = |u|σ−2 u+ ϕ in Ω ,
u = 0 on ∂Ω

(1.1)
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has exercized many researchers in the last decades.
Ifϕ = 0, the problem is symmetric and multiplicity results come from the equivariant Lusternik–Schnirelmann

theory (see [23] and references therein). On the contrary, if ϕ �= 0 the symmetry of the problem breaks down and
a natural question is whether the multiplicity persists under perturbation of the odd equation. Partial answers have
been given in [1, 2, 3, 9, 19, 22, 24] where existence of infinitely many solutions was obtained via techniques
of classical critical point theory, provided that a suitable restriction on the exponent σ is assumed. See also [18]
and [21] for some recent extensions to the quasilinear case by means of techniques of nonsmooth critical point
theory. The problem of whether (1.1) has an infinite number of solutions for σ all the way up to 2n

n−2 is still open.
For a subset of ϕ dense in L2(Ω), a positive answer was given by Bahri and Lions in [3].

The success in looking for solutions of the non–symmetric problem (1.1) made quite interesting to study the
problem {

−∆u = |u|σ−2 u+ ϕ in Ω ,
u = φ on ∂Ω ,

(1.2)

where, in general, the boundary condition φ ∈ H1/2(∂Ω) is different from zero. This introduces a double loss of
symmetry, since the associated functional contains two terms which fail to be even. Some multiplicity results for
(1.2) have been proved in [5, 6, 7, 10, 11] provided that suitable restrictions on σ, depending also on the regularity
of Ω, are assumed.

Now, a natural question is how far the results known for the second order case extend to boundary value
problems of higher order. As for the case K = 1, the unperturbed equation

(
PK

0

)
with homogeneous boundary

conditions
(
i.e. φj = 0

)
admits infinitely many solutions for any 2 < σ < K∗. On the other hand, to the authors’

knowledge, no multiplicity result can be found in the literature for polyharmonic elliptic problems with a non–
symmetric nonlinearity and non–homogeneous Dirichlet boundary conditions (K � 2, φj �= 0 and ϕ �= 0).

Many situations lead naturally to higher order problems: for instance, in physics the clamped plate equation,
which was intensively studied by Grunau and Sweers [13, 14, 15, 16] from the point of view of positivity preser-
vation; in differential geometry the fourth order conformal operator involving ∆2

g discovered by Paneitz (see e. g.
[8]).

In order to prove the main results on
(
PK

ϕ

)
, we will apply a method due to Bolle et al. [4, 5] for dealing with

problems with broken symmetry. The idea is to consider a continuous path of functionals (Φt)0�t�1 where Φ0

is symmetric and Φ1 is the functional associated to our problem. Then, as t varies, one proves a preservation of
minmax critical levels, thus getting critical points also for Φ1. It is a standard fact that the critical points of Φ1

correspond to the solutions of the problem.
We point out that in the case σ = K∗ Bolle’s method does not seem to provide infinitely many solutions in

presence of broken symmetries. For the critical growth case (with zero boundary data), we refer to [12] for the
existence of one solution in a very general framework.

Let K � 1. We endow the Sobolev space HK
0 (Ω) with the standard scalar product

(u, v)K,2 =




∫
Ω

∆mu∆mv dx if K = 2m,

∫
Ω

∇∆mu∇∆mv dx if K = 2m+ 1 .
(1.3)

Let now ψ ∈ HK ∩ L∞(Ω) be the solution of


(−∆)Kψ = 0 in Ω ,(
∂

∂ν

)j

ψ

∣∣∣∣∣
∂Ω

= φj , j = 0 , . . . , K − 1 .
(1.4)

Then the problem
(
PK

ϕ

)
with boundary conditions (Dφ) can be reduced to

(−∆)Kw = |w + ψ|σ−2 (w + ψ) + ϕ in Ω
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with homogeneous boundary data. We say that u ∈ HK(Ω) is a solution of
(
PK

ϕ

)
with conditions (Dφ), if

u = w + ψ, where w ∈ HK
0 (Ω) satisfies∫

Ω

∆mw∆mη dx =
∫

Ω

|w + ψ|σ−2(w + ψ)η dx +
∫

Ω

ϕη dx , K = 2m,∫
Ω

∇∆mw∇∆mη dx =
∫

Ω

|w + ψ|σ−2(w + ψ)η dx+
∫

Ω

ϕη dx , K = 2m+ 1 ,

for all η ∈ HK
0 (Ω).

We are now ready to state the main results of the paper.

Theorem 1.1 Let n > 2K and assume that σ satisfies

2 < σ < 2
n+K

n
.

Then
(
PK

ϕ

)
with boundary conditions (Dφ) admits infinitely many solutions.

Theorem 1.1 is new also in the case where φj = 0 for each j = 0, . . . ,K − 1. In this situation the following
stronger result holds.

Theorem 1.2 Let n > 2K and assume that σ satisfies

2 < σ < 2
n−K

n− 2K
.

Then
(
PK

ϕ

)
with homogeneous boundary conditions admits infinitely many solutions.

These results extend the achievements of [5, 6, 7, 10], dealing with second order equations, to higher order
elliptic problems.

Remark 1.3 If ∂Ω is of class C2K,α, ϕ ∈ C0,α
(
Ω

)
and φj ∈ C2K−j(∂Ω), then each solution of

(
PK

ϕ

)
belongs to C2K,α

(
Ω

)
, hence it is classical (see [17]).

Remark 1.4 Let f ∈ C1(R) and set F (s) =
∫ s

0 f(t) dt. Suppose that

|f(s)| � C
(
1 + |s|σ−1

)
, |s| � R =⇒ 0 < σF (s) � f(s)s

for some C,R > 0 with F invariant with respect to more general groups of symmetry. Then the previous results
can be extended to equations

(−∆)Ku = f(u) + ϕ in Ω .

See [10] and Remark 2.2.

2 Bolle’s method for broken–symmetry problems

In this section we briefly recall the theory devised by Bolle [4] for dealing with problems with broken symmetry.
Let X be an infinite dimensional Hilbert space equipped with the norm ‖ · ‖X and

Φ : [0, 1]×X −→ R

a C2 functional. We set Φθ = Φ(θ, ·) if θ ∈ [0, 1] and we denote by Φ′
θ : X → X the Fréchet derivative of Φθ .

Assume that

X = X0 ⊕ Re1 ⊕ . . .⊕ Rek ⊕ . . .

where dim(X0) < +∞ and (ek)k�1 is an orthonormal system in X . Let R > 0 and set

C =
{
ζ ∈ C(X,X) : ζ is odd and ζ(u) = u if ‖u‖X � R

}
and

ck = inf
ζ∈C

sup
u∈Xk

Φ0(ζ(u)) , (2.1)

where Xk = Re1 ⊕ . . .⊕ R ek. Moreover, assume that:



38 Lancelotti, Musesti, and Squassina: Non–homogeneous polyharmonic problems

(B1): Φ satisfies the Palais–Smale condition in [0, 1]×X , i.e. any sequence (θh, uh) such that (Φ(θh, uh)) is
bounded and Φ′

θh
(uh) → 0 as h→ +∞, converges on some suitable subsequence;

(B2): for any b > 0 there exists Cb > 0 such that∣∣∣∣ ∂∂θΦ(θ, u)
∣∣∣∣ � Cb(‖Φ′

θ(u)‖X + 1)(‖u‖X + 1)

for all (θ, u) ∈ [0, 1]×X with |Φθ(u)| � b;

(B3): there exist two continuous maps η1, η2 : [0, 1]×R → R, η1 � η2, which are Lipschitz continuous with
respect to the second variable and such that

η1(θ,Φθ(u)) � ∂

∂θ
Φ(θ, u) � η2(θ,Φθ(u)) (2.2)

at each critical point u of Φθ;

(B4): Φ0 is even and for each finite dimensional subspace W of X it results

lim
u∈W

‖u‖X→+∞
sup

θ∈[0,1]

Φ(θ, u) = −∞ .

Taken i = 1, 2, let us denote by ψi : [0, 1]× R → R the solutions of the problem

∂

∂θ
ψi(θ, s) = ηi(θ, ψi(θ, s)) ,

ψi(0, s) = s .

Note that ψi(θ, ·) are continuous, non–decreasing on R and ψ1 � ψ2. Set

η1(s) = sup
θ∈[0,1]

η1(θ, s) , η2(s) = sup
θ∈[0,1]

η2(θ, s) .

In this framework, the following abstract result can be proved.

Theorem 2.1 Assume that the sequence(
ck+1 − ck

η1(ck+1) + η2(ck) + 1

)

is unbounded. Then the functional Φ1 admits a sequence of critical values (c̃k) such that ψ2(1, ck) <
ψ1(1, ck+1) � c̃k for every k ∈ N.

P r o o f. See [4, Theorem 3] and [5, Theorem 2.2].

Remark 2.2 LetG be a compact Lie group acting orthogonally onX . It has been recently proved by M. Clapp
et al. [10] that the previous result holds provided that Φ0 is G–invariant.

3 Tanaka’s theory for even functionals

In this section we recall some notions and results from [24]. Let X be an infinite dimensional separable Hilbert
space and let f : X → R be a function of class C2 satisfying the following conditions:

(T1): f is even with f(0) = 0;

(T2): for any finite dimensional subspacesW of X there exists R = R(W ) > 0 such that f(u) < 0 for every
u ∈ W with ‖u‖ � R;
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(T3): for every u ∈ X it is

f ′(u) = u+K(u) ,

where f ′ : X → X denotes the Fréchet derivative of f and K : X → X is a compact operator.

Moreover we assume that there exists a sequence (Xk) of subspaces of X such that

dimXk = k , X =
∞⋃

k=1

Xk .

For every k ∈ N let us set Rk = R(Xk), Dk = Xk ∩B(0, Rk),

Ck =
{
γ ∈ C(Dk, X) : γ odd and γ

∣∣
Xk∩∂B(0,Rk)

= Id
}

(3.1)

and

bk = inf
γ∈Ck

sup
u∈Dk

f(γ(u)) . (3.2)

Let us now recall the following Palais–Smale conditions.

Definition 3.1 We say that:
(a) f satisfies the (PS) condition, if every sequence (uh) in X with (f(uh)) bounded and ‖f ′(uh)‖X → 0 as

h→ +∞ admits a subsequence converging in X ;
(b) f satisfies the (PS)k condition, if every sequence (uh) in Xk with (f(uh)) bounded and∥∥∥∥(

f
∣∣
Xk

)′
(uh)

∥∥∥∥
Xk

−→ 0

as h→ +∞ admits a subsequence converging in Xk;
(c) f satisfies the (PS)∗ condition, if every sequence (uk) in X with uk ∈ Xk, (f(uk)) bounded and∥∥∥∥(

f
∣∣
Xk

)′
(uk)

∥∥∥∥
Xk

−→ 0

as k → +∞ admits a subsequence converging in X .

Definition 3.2 Let u ∈ X be a critical point of f . The large Morse index of f at u, denoted by m∗(f, u), is
the infimum of the codimensions of the subspaces of X where the quadratic form f ′′(u) is positive definite.

The next result is the main tool for estimating from below the critical values bk. For the proof see [24,
Theorem B].

Theorem 3.3 Assume that f satisfies (T1) – (T3), (PS), (PS)k and (PS)∗. Then for each k � 1 there exists
uk ∈ X such that

f(uk) � bk , f ′(uk) = 0 , m∗(f, uk) � k .

4 Application to polyharmonic problems

Let ψ ∈ HK ∩ L∞(Ω) be again the solution of the problem (1.4). For θ ∈ [0, 1], let us consider the functional
Φθ : HK

0 (Ω) → R,

Φθ(u) =
1
2
‖u‖2

K,2 −
1
σ

∫
Ω

|u+ θψ|σ dx− θ

∫
Ω

ϕu dx .

Note that

for all u ∈ HK
0 (Ω) : Φ0(−u) = Φ0(u)

and that critical points of Φ1 are associated with the weak solutions of problem
(
PK

ϕ

)
with Dirichlet boundary

conditions (Dφ).
We now show that Φθ satisfies condition (B1).
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Lemma 4.1 Let (θh, uh) ⊂ [0, 1]×HK
0 (Ω) be such that

(Φ(θh, uh)) is bounded , lim
h

Φ′
θh

(uh) = 0 .

Then, on some suitable subsequence, (θh, uh) converges in [0, 1] ×HK
0 (Ω).

P r o o f. For every h � 1 we have

(
Φ′

θh
(uh), uh

)
K,2

= ‖uh‖2
K,2 −

∫
Ω

|uh + θψ|σ−2(uh + θψ)uh dx− θ

∫
Ω

ϕuh dx .

Since
(
Φ′

θh
(uh), uh

)
K,2

= o(‖uh‖K,2), for a suitable B > 0 and � ∈ ]
1
σ ,

1
2

[
it results

B + � ‖uh‖K,2 � Φθh
(uh) − �(Φ′

θh
(uh), uh)K,2

=
(

1
2
− �

)
‖uh‖2

K,2 +
(
�− 1

σ

)∫
Ω

|uh + θhψ|σdx

− θh�

∫
Ω

|uh + θhψ|σ−2(uh + θhψ)ψ dx+ θh(�− 1)
∫

Ω

ϕuh dx

as h→ +∞. Then, fixed ε ∈ ]
0, 1 − 1

	σ

[
, since

|uh + θhψ|σ � 1
2σ−1

(|uh|σ − |ψ|σ)
,

in view of Young’s inequality some computations entail

B + � ‖uh‖K,2 �
(

1
2
− �

)
‖uh‖2

K,2 +
1

2σ−1

(
�(1 − ε) − 1

σ

)
‖uh‖σ

σ − aε

for some aε > 0, which implies the boundedness of (uh) in HK
0 (Ω). Since the map

HK
0 (Ω) Υ−−−−→ L

K∗
σ−1 (Ω)

((−∆)K)−1

−−−−−−−→ HK
0 (Ω) , Υ(u) = |u+ θψ|σ−2(u+ θψ)

is compact, it is a standard fact that (uh) strongly converges in HK
0 (Ω).

In the following result we see that assumption (B2) is also fulfilled.

Lemma 4.2 For each b > 0 there exists C > 0 such that∣∣∣∣ ∂∂θΦ(θ, u)
∣∣∣∣ � C

(
1 + ‖Φ′

θ(u)‖K,2

)(
1 + ‖u‖K,2

)
for all (θ, u) ∈ [0, 1] ×HK

0 (Ω) with |Φθ(u)| � b.

P r o o f. Let b > 0. Condition |Φθ(u)| � b implies that

θ

∫
Ω

ϕu dx � σ

2
‖u‖2

K,2 −
∫

Ω

|u+ θψ|σ dx− (σ − 1)θ
∫

Ω

ϕu dx− σb (4.1)

and for some c1, c2 > 0

‖u+ θψ‖σ
σ � c1‖u‖2

K,2 + c2 . (4.2)

Therefore, by (4.1) we have

−(Φ′
θ(u), u)K,2 = − ‖u‖2

K,2 +
∫

Ω

|u+ θψ|σ−2(u+ θψ)u dx+ θ

∫
Ω

ϕu dx

�
(σ

2
− 1

)
‖u‖2

K,2 −
∫

Ω

|u+ θψ|σ−2(u+ θψ)θψ dx− (σ − 1) θ
∫

Ω

ϕu dx− σb .
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Taking into account (4.2), by Hölder and Young inequalities for each ε > 0 there exist c1ε, c2ε > 0 such that∣∣∣∣
∫

Ω

|u+ θψ|σ−2(u+ θψ)θψ dx
∣∣∣∣ � ε ‖u‖2

K,2 + c1ε ,∣∣∣∣
∫

Ω

ϕu dx

∣∣∣∣ � ε ‖u‖2
K,2 + c2ε .

In particular, by choosing ε small enough, one finds c3, c4 > 0 such that

−(Φ′
θ(u), u)K,2 � c3 ‖u‖2

K,2 − c4 . (4.3)

On the other hand, since

∂

∂θ
Φ(θ, u) = −

∫
Ω

|u+ θψ|σ−2(u + θψ)ψ dx−
∫

Ω

ϕu dx , (4.4)

by (4.2), arguing as above, for each ε > 0 there exists c3ε > 0 such that∣∣∣∣ ∂∂θΦ(θ, u)
∣∣∣∣ � ε ‖u‖2

K,2 + c3ε . (4.5)

Hence, the proof follows by (4.3), (4.5) and a suitable choice of ε.

Finally, we check that also (B3) is satisfied.

Lemma 4.3 Let η1, η2 : [0, 1] × R → R be functions defined as

−η1(θ, s) = η2(θ, s) = C
(
s2 + 1

)(σ−1)/2σ
(4.6)

for a suitable C > 0. Then (2.2) holds at each critical point of Φθ . Moreover, if

−η1(θ, s) = η2(θ, s) = C
(
s2 + 1

)1/2σ
(4.7)

the same holds provided that φj = 0 for each j = 0, . . . ,K − 1.

P r o o f. It follows by (4.4) that there exist b1, b2 > 0 with∣∣∣∣ ∂∂θΦ(θ, u)
∣∣∣∣ � b1 ‖u+ θψ‖σ−1

σ + b2 ;

analogously, with homogeneous boundary data one gets∣∣∣∣ ∂∂θΦ(θ, u)
∣∣∣∣ � b′1 ‖u‖σ .

Therefore, since there exists C′ > 0 such that at each critical point u of Φθ

‖u+ θψ‖σ
σ � C′(Φ2

θ(u) + 1
)1/2

,

condition (2.2) is fulfilled with η1 and η2 chosen either as in (4.6) or in (4.7).

5 The growth estimate from below

The main goal of this section is to get a growth estimate from below for the critical values ck. The technique
relies on a combination of Morse theory with some spectral properties of the higher order Schrödinger operator.

Consider the eigenvalue problem related to the higher order Schrödinger operator

(−∆)Ku+ V (x)u = λu in R
n ,

where V ∈ Ln/2K(Rn) and let (µk) ⊂ R denote the sequence of eigenvalues of the operator (−∆)K + V (x),
repeated according to multiplicity.



42 Lancelotti, Musesti, and Squassina: Non–homogeneous polyharmonic problems

Lemma 5.1 Let n > 2K and V ∈ Ln/2K(Rn). Then there exists Bn,K > 0 with

�
{
k ∈ N : µk � 0

}
� Bn,K

∫
Rn

V −(x)n/2K dx , (5.1)

where � denotes the cardinality.

P r o o f. See [20, Theorem 3].

The next result establishes the required estimate from below.

Lemma 5.2 There exists α > 0 such that

bk � αk2Kσ
/

n(σ−2)

for each k � 1.

P r o o f. We want to apply Theorem 3.3 to the functional Φ0 : HK
0 (Ω) → R,

Φ0(u) =
1
2
‖u‖2

K,2 −
1
σ
‖u‖σ

σ .

It is straightforward that Φ0 satisfies (T1) and (T2). Moreover, since the map

HK
0 (Ω) Υ−−−−→ L

K∗
σ−1 (Ω)

((−∆)K)−1

−−−−−−−→ HK
0 (Ω) , Υ(u) = |u|σ−2u

is compact, then (T3) is also fulfilled. By Lemma 4.1 it follows that Φ0 satisfies the (PS) condition and, in a
similar way, we obtain also that Φ0 satisfies the (PS)k and (PS)∗ conditions. Then, by Theorem 3.3 there exists
a sequence (uk) in HK

0 (Ω) of critical points of Φ0 such that Φ0(uk) � bk and m∗(Φ0, uk) � k.
If (µk) is the sequence of the eigenvalues (repeated according to their multiplicity) of the operator{
v �→ (−∆)Kv − (σ − 1) |uk|σ−2v

}
with homogeneous Dirichlet boundary conditions, being

Φ′′
0(uk)(v, v) =

((
(−∆)K − (σ − 1) |uk|σ−2

)
v, v

)
K,2

we have that

�
{
j ∈ N : µj � 0

}
= m∗(Φ0, uk) � k .

On the other hand, by applying Lemma 5.1 with

V (x) =

{
−(σ − 1) |uk(x)|σ−2 if x ∈ Ω ,
0 if x ∈ R

n \ Ω ,

there exists Bn,K > 0 such that

�
{
j ∈ N : µj � 0

}
� Bn,K

∥∥|uk|σ−2
∥∥n/2K

n/2K
.

It follows that

‖uk‖n(σ−2)/2K
n(σ−2)/2K � βk (5.2)

for some β > 0. Moreover,
(
Φ′

0(uk), uk

)
K,2

= 0 implies

bk � Φ0(uk) =
σ − 2
2σ

‖uk‖σ
σ . (5.3)

Since σ > n(σ−2)
2K , by (5.2) and (5.3) we have

bk � C ‖uk‖σ

n(σ−2)
/

2K
� αk2Kσ/n(σ−2)

for some C,α > 0, which is the assertion.
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6 Proof of the results

By Lemmas 4.1, 4.2 and 4.3 the hypotheses (B1), (B2) and (B3) are fulfilled. Moreover, for any finite dimen-
sional subspace W of HK

0 (Ω) one has

for all u ∈W : Φθ(u) � β1 ‖u‖2
K,2 − β2 ‖u‖σ

K,2 − β3

for some constants β1, β2, β3 > 0. Then,

lim
u∈W

‖u‖K,2→+∞
sup

θ∈[0,1]

Φθ(u) = −∞

and also (B4) is satisfied.
Let now f1, . . . , fk be the first k eigenfunctions of (−∆)K with homogeneous boundary conditions, set Xk =

Rf1 ⊕ . . .⊕ Rfk and define the sequence (ck) as in (2.1). We want to apply Theorem 2.1 by choosing η1 and η2
according to (4.6) of Lemma 4.3. Assume by contradiction that there exists B > 0 such that∣∣ck+1 − ck

∣∣
c

σ−1
σ

k + c
σ−1

σ

k+1 + 1
� B . (6.1)

In view of [1, Lemma 5.3], this yields ck � γkσ for some positive constant γ. Therefore, by Lemma 5.2 we
conclude that (6.1) cannot hold provided that

2Kσ
n(σ − 2)

> σ , (6.2)

namely σ < 2 n+K
n , which concludes the proof of Theorem 1.1.

Let us now assume φj = 0 for each j = 1, . . . ,K − 1. Arguing as above, by (4.7) of Lemma 4.3 one finds
γ′ > 0 such that ck � γ′kσ/(σ−1). Therefore (6.2) becomes

2Kσ
n(σ − 2)

>
σ

σ − 1
,

which implies Theorem 1.2. �
Note that for each n > 2K it results

2
n+K

n
<

2n
n−K

< K∗ .

If K = 1, it has been proved in [5, 10] that Theorem 1.1 holds if

2 < σ <
2n
n− 1

,

provided that Ω is of class C2, φ0 ∈ C2(∂Ω) and ϕ ∈ C
(
Ω

)
.

Conjecture 6.1 Let Ω be of class C2K . Theorem 1.1 holds provided that

2 < σ <
2n

n−K
, φj ∈ C2K−j(∂Ω) j = 0 , . . . , K − 1 , ϕ ∈ C

(
Ω

)
.
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