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Abstract In this note we expose some results proved in d’Avenia et al. [8] concern-
ing an elliptic problem in R

N which involves two nonlocal operators: the fractional
Laplacian and a convolution term of Hartree type. This equation has been called frac-
tional Choquard equation. The results obtained concern regularity of weak solutions,
existence and properties of ground states, as well as multiplicity and nonexistence of
solutions.
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1 Introduction

The equation we deal with is the following one:

(−�)su + ωu = (
Kα ∗ |u|p)|u|p−2u, u ∈ Hs(RN ), N ≥ 3, (Pω)

where s ∈ (0, 1), ω > 0 is a given parameter, α ∈ (0, N ), Kα(x) = |x |α−N is a
convolution kernel and p > 1 belongs to a suitable interval to be specified later. The
Hilbert space Hs(RN ) is defined as

Hs(RN ) = {
u ∈ L2(RN ) : (−�)s/2u ∈ L2(RN )

}

with its natural scalar product and norm given by

(u, v) =
∫

(−�)s/2u(−�)s/2v + ω

∫
uv, ‖u‖2 = ‖(−�)s/2u‖22 + ω‖u‖22.

The fractional Laplacian operator (−�)s is defined by

(−�)su(x) = −C(N , s)

2

∫
u(x + y) − u(x − y) − 2u(x)

|y|N+2s dy, x ∈ R
N ,

where C(N , s) is a suitable normalization constant. As anticipated, problem (Pω) has
nonlocal characteristics in the nonlinearity as well as in the (fractional) diffusion.
When s = 1, p = 2 and α = 2, then (Pω) reduces to the so-called Choquard or
nonlinear Schrödinger–Newton equation

−�u + ωu =
(
K2 ∗ u2

)
u, u ∈ H1(RN )

on which there is a huge literature and appears in many phenomena: from quantum
mechanics to self-gravitating matter theory; the interested reader is referred to the
papers [4,14,16,20,21].We have to say, that in these years the interests in the fractional
Laplacian, and in general in pseudodifferential operators, has steadily grown: e.g. for
s = 1/2, problem (Pω) has been used to model the dynamics of pseudo-relativistic
boson stars, see [10]. The fractional Laplacian appears in the fractional Schrödinger
equation by Laskin [12,13]; in [17,18] recent developments in the description of
anomalous diffusion via fractional dynamics are discussed and fractional equations
are derived asymptotically from Lévy random walk models, extending in a natural
way Brownian walk models.

We will refer to (Pω) as to the generalized nonlinear Choquard equation.
Our aim is to give the main results on the existence and qualitative properties of

weak solutions to (Pω). By a weak solution of (Pω) we mean a function u ∈ Hs(RN )

satisfying
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∫
(−�)s/2u (−�)s/2v + ω

∫
uv =

∫ (
Kα ∗ |u|p)|u|p−2uv, for all v ∈ Hs(RN ).

In order to be everything well defined, we need to restrict the range of p to

1 + α

N
< p <

N + α

N − 2s
. (1.1)

Therefore, without otherwise specified, this assumption will be everywhere tacitly
assumed. We shall see however, that this condition turns out to be also necessary in
order to get nontrivial solutions (i.e. u �≡ 0).

Solutions are found by variational methods; indeed they can be seen as critical
points of the C1 functional Eω : Hs(RN ) → R defined by

Eω(u) = 1

2

∫
|(−�)s/2u|2 + ω

2

∫
u2 − 1

2p

∫ (
Kα ∗ |u|p)|u|p.

In this context it is useful to introduce the Nehari manifold (which is a differentiable
manifold of codimension one, bounded away from zero), which is formally obtained
by multiplying the equation by u and integrating,

Nω :=
{
u ∈ Hs(RN )\{0} : ‖(−�)s/2u‖22 + ω‖u‖22 −

∫ (
Kα ∗ |u|p)|u|p = 0

}
.

We say that a solution u of (Pω) is a ground state if its energy Eω is minimal among
all the solutions; hence, since all the solutions belong to Nω, it can be characterized
as E(u) = minv∈Nω

Eω(v), if this minimum exists.
In the following we not give all the details of the proofs; we just present few simple

proofs, and for the more involved one we simply give some ideas skipping the more
technical and boring, and giving the precise reference of [8]. In Sect. 2 we present the
main results and some ideas on how to address the proofs.

2 Main results and ideas of proofs

This section is divided into six subsection in which we address various aspects of the
solutions of (Pω).

2.1 Regularity

The first result we present concerns the regularity of any weak solution.

Theorem 2.1 Let u be a weak solution of (Pω). Then u ∈ L1(RN ) and moreover

• if s ≤ 1/2, then u ∈ C0,μ(RN ) for μ ∈ (0, 2s);
• f s > 1/2, then u ∈ C1,μ(RN ) for μ ∈ (0, 2s − 1).
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The proof is based on a standard and straightforward bootstrap argument. Without
going into details, one first need to introduce the fractional Sobolev spaces:

Wβ,q = {u ∈ Lq(RN )|F−1[(1 + |ξ |β)Fu] ∈ Lq(RN )} q ≥ 1, β ≥ 0,

see e.g. [23]. Then one show that if u ∈ Hs(RN ) is a weak solution of (Pω) and r > 1
then u ∈ W2s,r . This is done in [8, Lemma 3.3 and 3.4] by using some properties of
the Bessel operator and the convolution integral. The regularity result is then obtained
by combining this fact and the continuous embedding given in (ii) of the following

Proposition 2.2 (Theorem 3.2 of [9])We have:

(i) If β ≥ 0 and either 1 < r ≤ q ≤ r∗
β := Nr/(N − βr) < +∞ or r = 1 and

1 ≤ q < N/(N − β), we have that Wβ,r is continuously embedded in Lq(RN ).
(ii) Assume that 0 ≤ β ≤ 2 and β > N/r . If β − N/r < 1 and 0 < μ ≤ β − N/r

thenWβ,r is continuously embedded in C0,μ(RN ). If β − N/r > 1 and 0 < μ ≤
β − N/r − 1 then Wβ,r is continuously embedded in C1,μ(RN ).

Beside the Hölder regularity just stated, it is worth noticing the next summability
property of the fixed sign solutions.Wewill use this result in studying theMorse index.
In this framework we need the energy functional Eω to be C2 and this is achieved,
with a straightforward proof, for p ≥ 2.

Proposition 2.3 Let s ∈ (1/2, 1) and p ∈ [2, (N + α)/(N − 2s)). If u ∈ Hs(RN ) is
a solution of (Pω) with |u| > 0, then u ∈ H2s+1(RN ). In particular ∇u ∈ Hs(RN ).

Remark 2.4 Under the hypotheses of the Proposition 2.3, we have u ∈ C2(RN ).
Indeed, since u ∈ C1,μ(RN ) with ∂i (−ωu + (Kα ∗ u p)u p−1) ∈ L∞(RN ) and ∂i u
satisfies

(−�)s∂i u = ∂i

(
−ωu + (

Kα ∗ u p) u p−1
)

,

by [22, Proposition2.1.11], we conclude that ∂i u ∈ C1(RN ).

Comingback to the proof of Proposition 2.3, one has to show that‖(−�)s+1/2u‖2 <

∞. For this, cut-off functions to deal with the convolution term inside and outside a ball
in R

N are introduced. Finally usual properties of the convolution permits to conclude
(see [8, Proposition 3.5]).

2.2 Asymptotics

Whenever p ≥ 2 somethingmore can be said on the solutions: for the sake of simplicity
we set here

V := − (
Kα ∗ |u|p) |u|p−2.

The key observation now is that if a function u is in L1(RN ) ∩ L∞(RN ), then Kα ∗
|u|p ∈ C0(R

N ), see [8, Lemma3.6]. We deduce that V ∈ L∞(RN ) and V (x) → 0
for |x | → ∞. Then an easy application of [11, LemmaC.2] allows us to obtain the
asymptotic profile of the solutions as given in the next
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Theorem 2.5 Let p ∈ [2, (N +α)/(N −2s)) and u be a solution of (Pω). Then there
exist two positive constants C1,C2 such that, for any x ∈ R

N ,

|u(x)| ≤ C1 〈x〉−N−2s , where 〈x〉 = (1 + |x |2)1/2

and

u(x) = −C2

(∫
Vu

)
1

|x |N+2s + o(|x |−N−2s) for |x | → +∞.

The restriction here on p is due to the fact we need a positive power of |u| in V .
Note that contrary to the local case s = 1, the solutions decay at a polynomial rate.
We refer the reader to [19] for sharp results about the exponential decay of ground
state solutions in the case s = 1.

2.3 Existence and further properties of the ground state

Once we have obtained the qualitative properties of (all) the solutions, we establish
the existence results.

Ground states solutions have often a special interest. They are important both for
a physical and mathematical point of view since they share further properties, like
stability, positivity and symmetry. For (Pω) they can be found in various equivalent
ways (see [8, Section 4]):

• by minimizing Eω on Nω,

• by minimizing E0 (we mean Eω with ω = 0) on the sphere �ρ = {u ∈ Hs(RN ) :
‖u‖2 = ρ} with ρ > 0,

• by minimizing

S(u) := ‖u‖2
(∫

(Kα ∗ |u|p) |u|p)1/p

or

W (u) := ‖(−�)s/2u‖
N (p−1)−α

sp
2 (ω‖u‖22)

N+α−(N−2s)p
2sp

(∫
(Kα ∗ |u|p) |u|p)1/p

.

on (Hs(RN ) ∩ L2Np/(N+α)(RN ))\{0}.
Arguing as in [19, Proof of Proposition 2.2] and applying [8, Lemma 2.2] we obtain

Theorem 2.6 The functional S achieves the minimum on Hs(RN )\{0}.
The advantage of minimizing S instead of, e.g., E0 on the constraint �ρ, is that

in this last case we need a further restriction on p: indeed to be well defined the
minimization problem min�ρ E0 we have to assume p ∈ (1+ α/N , 1+ (2s + α)/N )

otherwise inf�ρ E0 = −∞, as it is easily seen on the curve τ �→ τ N/2w(τ ·), for a
fixed w ∈ �ρ.
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However in the restricted range p ∈ (1 + α/N , 1 + (2s + α)/N ) it is possible to
show by concentration compactness arguments that every minimizing sequence for
E0 on �ρ is relatively compact. This fact is important in studying the orbital stability.
As a byproduct, E0 achieves the infimum on �ρ , for every ρ > 0, and the minimum
is a non-negative, radially symmetric and decreasing function, see [8, Theorem4.5].

The ground state has also a symmetry property as given in the next

Theorem 2.7 Let u ∈ Hs(RN ) be a ground state of (Pω). Then u has fixed sign and
there exist x0 ∈ R

N and a monotone function v : R → R with fixed sign such that
u(x) = v(|x − x0|).

Proof Given a ground state u of (Pω), u �= 0 and u is a solution of

S(u) = inf
ϕ∈Hs (RN )\{0}

S(ϕ).

Taking into account ‖(−�)s/2|u|‖2 ≤ ‖(−�)s/2u‖2 we see that also |u| is a ground
state and then satisfies

(−�)s |u| + ω|u| = (
Kα ∗ |u|p)|u|p−1.

By arguing as in [9, end of Section 3], we see that |u| > 0 and u does not change
sign: so we can assume u > 0. Given v ∈ Hs(RN ) with v ≥ 0 and any half-space
H ⊂ R

N , the polarization vH is defined as

vH (x) =
{
max{v(x), v(σH (x))} if x ∈ H,

min{v(x), v(σH (x))} if x ∈ R
N \H,

where σ H (x) is the reflected of x with respect to ∂H . Then ‖vH‖22 = ‖v‖22 and by [1,
Theorem 2] we have ‖(−�)s/2vH‖22 ≤ ‖(−�)s/2v‖22. In turn, since S(u) ≤ S(uH ),
we conclude that

∫ (
Kα ∗ |u|p) |u|p = ‖u‖2p

[S(u)]p ≥ ‖uH‖2p
[S(uH )]p =

∫ (
Kα ∗ |uH |p

)
|uH |p.

Then, by combining [19, Lemma 5.3 and Lemma5.4], we conclude the proof. ��

Finally we study the Morse index of the ground state. Here the details are given.
We assume 2 ≤ p < 1 + (2s + α)/N , to have the functional Eω of class C2, and
s > 1/2. If u is the minimum of E0 on�ρ (recall this is an equivalent characterization
of the ground state) we have

∫
|(−�)s/2u|2 −

∫ (
Kα ∗ |u|p) |u|p = −λρ2 (2.1)
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and easy computations show that λ > 0. Now consider

E ′′
λ(u)[ξ, η] =

∫
(−�)s/2ξ(−�)s/2η + λ

∫
ξη

− p
∫ (

Kα ∗ |u|p−2uη
)

|u|p−2uξ−(p − 1)
∫ (

Kα ∗ |u|p) |u|p−2ξη

(2.2)
and let’s go to study its kernel. Since the problem is invariant for the group of trans-
lations, the solutions of (Pω) will never be isolated, then ker E ′′

λ(u) �= {0} and in fact
we will prove that

span{∇u} ⊂ ker E ′′
λ(u). (2.3)

Indeed, for every a ∈ R
N , consider the linear and isometric action of the group of the

translations in R
N induced on Hs(RN ), that is

ta : u ∈ Hs(RN ) �−→ u(· + a) ∈ Hs(RN ).

Since Eλ ◦ ta = Eλ, we have E ′
λ(tau)[v] = E ′

λ(u)[t−av], for every u, v ∈ Hs(RN ).

For every u ∈ Hs(RN ) it is also convenient to introduce the following map

su : a ∈ R
N �−→ u(· + a) ∈ Hs(RN ).

Of course, for a generic fixed u ∈ Hs(RN ), the map su does not need to be differen-
tiable but (for example) whenever u ∈ Hs(RN ) is a solution of (Pω) as in Proposition
2.3 it does, and the differential in 0 is given by

s′
u(0)[b] = ∇u · b ∈ Hs(RN ), for all b ∈ R

N .

Hence, in this case, by differentiating in 0 the map

a ∈ R
N �−→ E ′

λ(su(a)) ∈ H−s(RN ),

we get E ′′
λ(su(0))[s′

u(0)[b], ·] = 0 for all b ∈ R
N and this gives (2.3).

It would be interesting to understand if the ground state is nondegenerate in the
sense that

span{∇u} = ker E ′′
λ(u).

The Morse index iMorse(u) is defined as the maximal dimension of subspaces of
Hs(RN ) on which E ′′

λ(u) is negative definite.

Proposition 2.8 Let u ∈ �ρ be a ground state and Tu�ρ = {w ∈ Hs(RN ) : ∫
uw =

0}. Then
(i) E ′′

λ(u) is positive semidefinite on Tu�ρ ,
(ii) infw∈Tu�ρ E ′′

λ(u)[w,w] = 0.
(iii) iMorse(u) = 1.
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Proof Let v any element of Tu�ρ and γ : (−ε, ε) → �ρ a smooth curve such that
γ (0) = u and γ ′(0) = v. Since u is the minimum of E0 on �ρ , it is

d2

dτ 2
E0(γ (τ ))

∣∣∣
τ=0

≥ 0

which explicitly reads as

0 ≤ E ′′
0 (u)[v, v] + E ′

0(u)[γ ′′(0)] = E ′′
0 (u)[v, v] − λ

∫
uγ ′′(0). (2.4)

Of course, 0 = d
dτ

∫ |γ (τ)|2 = 2
∫

γ (τ)γ ′(τ ) implies

∫
|v|2 +

∫
uγ ′′(0) = 0,

which, plugged into (2.4) gives (i). Property (ii) follows by Proposition 2.3 and the
translation invarianceof�ρ : indeed ∂xi u ∈ Tu�ρ andweknow E ′′

λ(u)[∂xi u, ∂xi u] = 0.
Finally, to prove (iii), note that by (2.2) and (2.1)

E ′′
λ(u)[u, u] =

∫
|(−�)s/2u|2 + λρ2 + (1 − 2p)

∫ (
Kα ∗ |u|p) |u|p

= 2(1 − p)
∫ (

Kα ∗ |u|p) |u|p < 0.

The result then follows from (i) and the direct sum decomposition (see [2] for the
general setting): Hs(RN ) = Tu�ρ ⊕ span{u}. ��

2.4 Multiplicity of bound states

The problem under consideration has also other type of solutions (actually a sequence)
which in general are changing sign. These solutions are of “mountain pass” type, in
the sense they are obtained by minimax arguments. To apply these methods, the func-
tional Eω has to satisfy some geometric and compactness properties. The geometric
properties are listed in the next

Proposition 2.9 The functional Eω satisfies the following geometric assumptions of
the Symmetric Mountain Pass Theorem:

(i) it is even, that is Eω(u) = Eω(−u),

(ii) it has has a strict local minimum in 0 with Eω(0) = 0,
(iii) there exist a nested sequence {Vk} of finite dimensional subspaces of Hs(RN )

and {Rk} ⊂ R
+ such that Eω(u) ≤ 0 for every u ∈ Vk with ‖u‖ ≥ Rk.

Proof Property (i) is immediate. By standard inequality it holds

Eω(u) ≥ 1

2
‖u‖2 − C‖u‖2p
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getting (ii). Finally, if {ei }i=1,...,k is an orthogonal basis of a k−dimensional subspace
Vk of Hs(RN ), then, writing u = ∑k

i=1 ti ei , it is Eω(u) → −∞ for ‖u‖ → ∞,
proving (iii). ��

For what concerns compactness we need to restrict to functions with some symme-
tries. To this aim some preliminaries are in order.

Firstly, let � > 1, Ni ≥ 2, i = 1, . . . , �, or � = 1 and N ≥ 3, and N = ∑�
i=1 Ni .

A point in R
N is now denoted with x = (x1, . . . , x�), xi ∈ R

Ni . Let O(Ni ) be the
orthogonal group on R

Ni and consider the product group

G := O(N1) × · · · × O(N�)

acting on R
N by

g · x = (g1x1, . . . , g�x�), g = (g1, . . . , g�) ∈ G

and whose representation in Hs(RN ) is given by the linear and isometric action

(Tgu)(x) = u(g−1 · x). (2.5)

Set

X := {u ∈ Hs(RN ) : Tgu = u for all g ∈ G}.

In particular for � = 1 we have the radial functions, u(x) = u(|x |). We say that the
functions in X are “symmetric”. Then X is exactly the closed and infinite dimensional
subspace of fixed points for the action (2.5). The importance of this setting is twofold.
Indeed the functional Eω is G−invariant, i.e. for every g ∈ G, Eω ◦ Tg = Eω and the
space X has compact embedding into Lq(RN ), q ∈ (2, 2∗

s ), see [15].
Secondly, for every fixed u ∈ Hs(RN ), consider the problem

{
(−�)α/2ϕ = γ (α)|u|p, where γ (α) := πN/22α�(α/2)

�(N/2−α/2) ,

ϕ ∈ Ḣα/2(RN ),
(2.6)

(where � is the gamma function) whose weak formulation is the following one: we
say that ϕ ∈ Ḣα/2(RN ) is a weak solution if for every ξ ∈ Ḣα/2(RN )

∫
(−�)α/4ϕ(−�)α/4ξ = γ (α)

∫
ξ |u|p. (2.7)

Recall that for every α ∈ (0, N ), (−�)α/2u is defined via the Fourier transform
and Ḣα/2(RN ) is defined as the completion of C∞

c (RN ) with respect to the associ-
ated Gagliardo seminorm ‖(−�)α/4u‖2 (these notions coincide with that given in the
Introduction for α ∈ (0, 2)). Observe now that, under the assumption on p, the right
hand side in (2.7) defines the map
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L : v ∈ Ḣα/2(RN ) �→
∫

v|u|p ∈ R

which is linear and continuous; indeed

|Lv| ≤ C‖u‖p
2Np/(N+α)‖v‖Ḣα/2 ≤ C‖u‖p‖v‖Ḣα/2 .

By the Riesz Representation Theorem there exists a unique weak solution ϕ of
(2.6), represented as a convolution with the kernel Kα/γ (α), i.e. ϕ = Kα ∗ |u|p (see
e.g. [23]) and

‖Kα ∗ |u|p‖Ḣα/2 = ‖L‖ ≤ C‖u‖p.

As a consequence of the above setting we can prove the following result, which will
help us to recover compactness.

Lemma 2.10 Let {un}, u ∈ X be such that un ⇀ u in Hs(RN ). Then

(i) Kα ∗ |un|p → Kα ∗ |u|p in Ḣα/2(RN );
(ii)

∫
(Kα ∗ |un|p) |un|p → ∫

(Kα ∗ |u|p) |u|p;
(iii)

∫
(Kα ∗ |un|p) |un|p−2unu → ∫

(Kα ∗ |u|p) |u|p.
We omit the easy proof which uses standard argument as Young inequality and

Dominated Convergence Theorem [8, Lemma 5.2].

Proposition 2.11 The functional Eω satisfies the Palais–Smale condition in X.

Proof Let {un} ⊂ X be a Palais–Smale sequence, that is,

|Eω(un)| ≤ M, E ′
ω(un) → 0 in H−s(RN ).

Then we deduce in a standard way the boundedness of {un} in Hs(RN ). Hence, there
exists u ∈ X such that, up to subsequences, un ⇀ u in Hs(RN ). By Lemma 2.10 we
have the convergences

0 ←− E ′
ω(un)[u] = (un, u) −

∫ (
Kα ∗ |un|p

) |un|p−2unu −→ ‖u‖2

−
∫ (

Kα ∗ |u|p)|u|p,

E ′
ω(un)[un] = ‖un‖2 −

∫ (
Kα ∗ |un|p

) |un|p −→ 0,
∫ (

Kα ∗ |un|p
) |un|p −→

∫ (
Kα ∗ |u|p)|u|p,

from which we deduce that ‖un‖ → ‖u‖, concluding the proof. ��
We can prove now the following
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Theorem 2.12 The functional Eω possesses infinitely many critical points {un} ⊂ X
such that Eω(un) → ∞, and ‖un‖ → ∞. In paticular, problem (Pω) has infinitely
many solutions in X.

Proof All the hypotheses (geometry and compactness) of the Symmetric Mountain
Pass Theorem on the space X are satisfied, so that the existence of infinitely many
critical points {un} ⊂ X with Eω(un) → ∞ is guaranteed. Then, since

∫
(Kα ∗

|un|)|un|p ≤ C‖un‖2p, it has to be ‖un‖ → ∞. By the Palais Principle of Symmetric
Criticality, the constrained critical points {un} ⊂ X for Eω are indeed “true” critical
points and hence solutions of (Pω). ��
Observe that Proposition 2.9 holds also in the limit cases p = 1 + α/N and p =
(N + α)/(N − 2s). Due to the nonexistence result (see Sect. 2.5), we see that the
Palais–Smale condition cannot be satisfied for these values.

Note however that up to this point wemay have found purely radial solutions, in the
sense that we cannot distinguish between the cases � = 1 or � > 1. To obtain genuine
nonradial solutions we need a slight modification in the above setting, as introduced
in [3]. Unfortunately a restriction on the dimension N appears here. Let N = 4 or
N ≥ 6 and choose an integer m �= (N − 1)/2 such that 2 ≤ m ≤ N/2. Let us define

G := O(m) × O(m) × O(N − 2m)

whose induced action on Hs(RN ) is as usual

(Tgu)(x) = u
(
g−1
1 x1, g

−1
2 x2, g

−1
3 x3

)
, g = (g1, g2, g3) ∈ G, (2.8)

where, now x = (x1, x2, x3) ∈ R
m ⊕R

m ⊕R
N−2m . We know that X , associated to the

action (2.8), has compact embedding into Lq(RN ), q ∈ (2, 2∗
s ). The key point now

consists in considering the involution in R
N

τ · x = (x2, x1, x3)

and the action

(Iu)(x) = u(x), (T u)(x) = −u(τ−1 · x)
induced by H = {ιH , τ } on Hs(RN ). Define the semidirect product

K := G �ψ H ⊂ O(N )

via the group homomorphism ψ : H → Aut(G) given by

ψ(ιH )g = g, ψ(τ)g = g−1, g ∈ G.

Moreover, if

π : K → {+1,−1} such that π(g, ιH ) = 1, π(g, τ ) = −1
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denotes the canonical epimorphism, we define the action of K on Hs(RN ) by

(Tku)(x) := π(k)u(k−1 · x), k ∈ K .

Of course, this action is linear and isometric and in particular if, k = (g, ιH ) then
(Tku)(x) = u(g−1 · x), if, k = (ιG , τ ) then (Tku)(x) = −u(τ−1 · x). Set

Y := {u ∈ Hs(RN ) : Tku = u for all k ∈ K }

and note that the unique radial function in Y is u ≡ 0. Since Eω is K−invariant
and Y ⊂ X is closed and infinite dimensional, we can argue as before to obtain the
following multiplicity result.

Theorem 2.13 Assume N = 4 or N ≥ 6. The functional Eω possesses infinitely
many critical points {un} ⊂ Y such that Eω(un) → ∞ and ‖un‖ → ∞. In particular,
problem (Pω) has infinitely many solutions in Y .

2.5 Nonexistence result

This subsection justifies the range in which p varies.

Theorem 2.14 Assume that either p ≤ 1 + α/N or p ≥ (N + α)/(N − 2s). Then
(Pω) does not admit nontrivial solutions u ∈ C2(RN ).

As a consequence, the range of p detected in (1.1) is optimal for the existence of
nontrivial solutions. Theorem 2.14 is based upon a Pohožaev identity

(N − 2s)
∫

|(−�)s/2u|2 + ωN
∫

|u|2 = α + N

p

∫ (
Kα ∗ |u|p)|u|p. (2.9)

The proof is technical and is obtained, as in [6], by the localization procedure due to
Caffarelli and Silvestre [5].

The proof of the theorem is then achieved by combining the Pohožaev Identity with
the fact that any solution satisfies

∫
|(−�)s/2u|2 + ω

∫
|u|2 =

∫ (
Kα ∗ |u|p)|u|p. (2.10)

Indeed combining (2.9) and (2.10) we get

(
N − 2s − α + N

p

) ∫
|(−�)s/2u|2 + ω

(
N − α + N

p

) ∫
|u|2 = 0

andhence, sinceω > 0, if both the coefficients are positive, that is p ≥ α+N/(N−2s),
the unique solution is the trivial one. Analogously, if they are both negative, that is
p ≤ 1 + α/N , nontrivial solutions cannot exist.
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2.6 The “zero mass” case

A second problem addressed in the paper [8] related to equation (Pω) is the so called
“zero mass” problem:

(−�)su = (
Kα ∗ |u|p)|u|p−2u, u ∈ Ḣ s(RN ) (P0)

We have established the following result.

Theorem 2.15 The following assertions hold:

(1) Let p �= α+N
N−2s . Then (P0) does not admit nontrivial solutions u ∈ Ḣ s(RN ) ∩

L
2pN
N+α (RN ).

(2) Let p = α+N
N−2s = 2. Then the problem writes as

(−�)su = (|x |−4s ∗ |u|2)u, u ∈ Ḣ s(RN ), N > 4s, (2.11)

and any of its solutions of fixed sign have the form

C

(
t

t2 + |x − x0|2
) N−2s

2

, x ∈ R
N , (2.12)

for some x0 ∈ R
N , C > 0 and t > 0.

The classification of the solutions to problem (2.11) is reminiscent of that for the
fixed-sign solutions to

(−�)su = u
N+2s
N−2s in R

N .

In fact in [7] the authors proved that any positive solution to this problem has the form
of (2.12).

Finally the first statement of Theorem 2.15 follows by Pohožaev identity (2.9),
while for the second assertion we refer the reader to the final part in [8] which is a little
bit technical, involving the Kelvin transform, moving plane methods and asymptotic
decay.
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