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Abstract

By means of nonsmooth critical point theory, we prove existence of infinitely many
weak solutions for a class of perturbed symmetric quasilinear elliptic equations.
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1 Introduction

The main goal of this paper is to extend to the quasilinear case the existence
results known since 1980 for the semilinear scalar problem

- .ile(aij(w)Diu) =g(z,u)+¢ in 2
ij=

u=0 on 082,

with g is superlinear and odd in u, ¢ € L*(2) and 2 is a bounded domain in
R™.

This problem has been deeply studied in [2], [10], [15], [17] and [19] by means
of the variational techniques developed by Bahri, Berestycki, Rabinowitz and
Struwe in the early eighties. We remark that, around 1990, Bahri and P. L.
Lions improved in [3] and [4] the previous results via a technique based on
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Morse theory. See also [20] for further improvements by means of a completely
different method devised by P. Bolle.

On the other hand, since 1994, several efforts have been devoted to study
existence for quasilinear problems of the type

- i Dj(ay(z,u)Du) + & % Dsa;j(z,uw)DiuDju = g(z,u) in £2 0
u=0 on 042

We refer the reader to [5], [6], [7] and [18] for the study of multiplicity of
solutions of problem (1} and furthermore to 1], [14] and {16] for an even more
general framework.

The functional fy : H(2) — R associated with (1) is given by

folu) = %/Q Xn: a;;(z, u)DjuDjudz — /ﬂG(az,u) dr.

i,5=1

We stress that f is not even locally Lipschitz unless the a;;’s do not depend
on u.

Consequently, techniques of nonsmooth critical point theory have to be ap-
plied. We refer the reader to [7], [8], [9], [11] and [12] for the abstract theory
that we shall need in the following.

It seems now natural to ask whether also in a quasilinear setting the multi-
plicity of solutions is stable under large L?>—perturbations.

In this paper we want to investigate the effects of destroying the symmetry of
(1) and show that for each ¢ € L2({2) the perturbed equation

— Z D;{a;(z,uw)Dsu) +% Z Dja;;(z, u)DiuDju = g(z,u) + ¢ in 2 (2)
3,j=1 i,j=1
still has infinitely many weak solutions.
Therefore, we shall work on the functional
fo(u) = %/ > ai(z, u)DuDjyu dz —/ G(z,u) dx—/ ouds.
252 o) ”

In the next, 2 will denote an open and bounded subset of R* with n > 3.
Moreover, we shall consider the following assumptions :
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(S#]) each a;;{w, s) is measurable in z for each s € R and of class C* in s for
a.e. T € 2 with ay(z,s) = aj(z, s), ay(-,-) € L®°(2 x R) and Dyay(-, ) €
L>(§2 x R). Moreover, there exist ¥ > 0 and R > 0 such that

n

> aij(z, )6it; 2 vIE)

7,j=1

Is| 2 R = Z sDga(z,8)6E > 0, (3)

2,9=1
for a.e. z € £2 and for all (s,¢) € R x R*;
(%) G(z,s) is measurable in z for all s € R, of class C! in s a.e. in 2 with
G(z,0) =0 and g(z, s) = D;G(z, s). Moreover, there exist ¢ > 2 and R’ > 0
with
Is| > R = 0 < qG(z, s) < g{=, 8)s, (4)
for a.e. z € §2 and all s € R;

(A4 there exists v €]0,¢g — 2[ such that :

|s| > R = Z sDsa;j(z, 8)&& < v Z ai;(x, $)6&;, (5)

i,5=1 i,j=1
for a.e. z € £2 and for all (s,8) e R x R*.
Under the previous assumptions, the following is our main result .

Theorem 1.1 Assume that there ezists o € ] 1, ﬁ'——;—g—%[ such that

9(z, 5)| < @+ bls|”

with a,b € R and that for a.e. x € 2 and for each s € R

a;j(z, —s) = a;i(z,s), g(z,—s) = —g(z,s).

Then there exists a sequence (up) of weak solutions to (2) with f,(ur) — 4oc0.
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Since for each ¢ > 2 and n > 3 we have

g+ (g—-1)(n+2) < gn+2(g-1)
gn+(g-1(n—-2) gn—-2(g-1)’

this result relaxes Theorem 1.1 of [13] which was proven for

g+ (g—1){n+2)
"qgn+ (¢ —1)(n -2

o€ |l

This because we used in Lemma 4.2 the sharp estimate from below on the
growth of the critical values shown by K. Tanaka in 1989 via Morse theory
[19] which improves the direct estimate of P. H. Rabinowitz of 1981 based on
the Gagliardo-Niremberg inequality .

We point out that we assumed (3) and (5) only for large values of |s|, while
n [13], dealing with systems, we requested conditions (3) and (5) to hold for
each s € R.

In the next result we allow a more general class of perturbations.

Theorem 1.2 Assume that there ezxists 0 € |1,2*] and o’ € [0,¢ — 1[ with

g(z, )| a+blsl°, oz, s)| < c+dls|”,

where ¢ € C(£2 x R) and M > A

2(o—1) = g=0'=1° Assume further that :

aij(z, —s) = a;i(z, s), g(z,—s) = —g(z,s) .
Then there exists a sequence (uy) of weak solutions of the problem
=S Dy(as (e, w)Diu) + & S Dyasy(e,w)DruDyu = g(z, u) + o(a,u) in 2
ij=1 ij=1
with w =0 on 082, such that fs(un) — +oo where :
folu /Za”quuDudaf~/Gajudx—[)@(a:,u)dx,

7,j=1
and Dd(z,s) = ¢(x,s) for each z € 2 and all s € R.

These theorems extend the results of [2], [10], [15] and [17] to the quasilinear
case.
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2 Perturbation of even functionals

If ¢ # 0, clearly f, is not even. Note that by (4) we find ¢, ¢3,¢3 > 0 such
that :

1
a(g(x,s)8+cl) > G(x,s) + ca > c3ls]?, (6)

for a.e. x € §2 and each s € R.

Lemma 2.1 Assume that u is a weak solution to (2). Then it results

[N

| (Gw) +e) de <o (f2w) +1)7,
for some o > 0 depending on ||¢||2 .

Proof. Let us set C = || Dsaij||zeo(axr) - If we choose v' €]y, ¢ —2[ and € > 0
in such a way that
nCR'e ,
v < Y =7
using [7, Theorem 2.2.9] and working as in the proof of [7, Lemma 2.3.2], we
get

n
/ Z Dyaj(z, u)DiuDjuudz <
7,

hj=1

< fy'/ﬁ > aij(z, u)DiuDjuds + Mp . (7)

ig=1

Therefore, we deduce that :

Fol) = folu) = 3 folu) () =

1 1 1 i
= Z — — Zp P . ) ) >
/ [zg(x, u)u— G(z,u) 5% u] dx 1 / > Dsay(z, w)DiuDjuuds >

1,j=1

> (é _ ;) [ (6o, uuor)de - Ll

' n
- %—/ > ay(w, u)DuDjude — ¢y >
2

2,5=1
. (g - g) [ (@) + ex) de — L ) = ol - Bl — e

with 6 — 0 and 8(§) — +o0. Choosing § > 0 small enough, by (6) we have :

1609
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osfolu) 2 / (G(z,u) + c2) dx — cs,

where o5 = The assertion follows as in [15, Lemma 1.8].

2y
g—2—'—26 *

Let us now define y € C*°(R) by setting x =1for s <1, x =0for s = 2 and
—2< x' < 0when 1< s <2, and let us set :

s =2 (20 +1)", v =x (6" [ (Glz,w) +e) do)

for each u € H}(£2) . Finally, we define the modified functional by setting :

fw(u / Z a;;(z,u)DsuD; udx—/ G(z,u)dz — 9 /(pud:c (8)

2,j=1

The Euler’s equation associated with (8) is given by :

i,j=1 (9)

E Dj(a;j(z,u) D) + & Z Dsa;j(z,u)DiuDju = §(z,u) in 2
u=10 on 012,

where we have set :

3(z,u) = g(o,w) + Y(w)p+¥'(w) [ puds.

We remark that by Lemma 2.1, if u solves (2), then ¢(u) = 1 and f,(u) =
fo(u) . In the next result, we measure the defect of symmetry of f,.

Lemma 2.2 There exists 8 > 0 depending on ||p||2 such that

|Fo(w) = Fol—u)| < B{IFp(w)]7 +1}
for each v € H}(£2).
Proof. See [13, Lemma 2.2].

Theorem 2.3 There exists M > 0 such that if u is a weak solution of (9)
such that ﬁ,,( )= M then u is a weak solution to (2) and f¢( u) = fo(u).
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Proof. For the complete proof, see [13, Theorem 2.3] . Let us give a brief sketch .
Standard computations yield :

V() (@) = X)) [6(w) [ oww)uds — (2019w, (w) f(w)(w)]
where we have set

9Hu) = ¢(u)~ / (z,u) + c2) dz.

Moreover, a direct computation yields :

(u)(u) =(1+T1(u )/ Zawxu)DuDudx+
ig=1

+= (1+T1 /ﬁZDauxu)DuDuudx+
2,§=1

—(1+T2(u))/ng(a:,u)udx— (w(u)—l-Tl(u))/nguda:,

where 71, Ty : H}(§2) — R are defined by setting :

T (w) = X' (8(w)) (20)29(u) (1) %S, () /Q ouds,

and

Ty(u) = X (0@)o(w) ™ [ puds +Tiw).

»(1)(u) as in Lemma 2.1.

At this point, argue on the term fw(u) — m 7/

3 The concrete Palais—Smale condition

We now introduce a variant of the classical Palais—Smale condition that is
more suitable in our nonsmooth context .

Definition 3.1 A sequence (uy) in H}(£2) is said to be a concrete Palais-
Smale sequence at level c € R ((CPS).—sequence, in short) for the functional

ftp; 7’f f{p(uh) — C,

> Dsaij(z, up) DiunDjup € H(£2)

ij=1
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eventually as h — co and

— ZD aij(z,un)Diup) + L ZDaz]xuh)DuhD up — gz, up) = 0
:.7 1 Z] 1

strongly in H™Y(2) . We say that f;, satisfies the concrete Palais—Smale con-
dition at level ¢ ((CPS). condition), if every (CPS),—sequence for f, admits
a strongly convergent subsequence in H}($2).

Lemma 3.2 There ezists M € R such that each (CPS).—sequence (uy) for
fo with ¢ > M is bounded in H}(52).

Proof. Let K > 0 be such that for large h € N and any ¢ > 0, we have :

ollunlliz + K > fo(us) — Qﬁ;(uh)(“h)~

If we choose ' and ¢ as in the proof of Lemma 2.1, by inequality (7), arguing
as in the proof of [13, Lemma 3.2], we have :

ollunlli + K 2
1
= (5 — Q(l —f—Tl(Uh)) 2 (1 ‘+‘T1 uh > / Z a’z] Z, Uh)D 'U'hD up dT +

+o(1+ To(ws) [ g(@,un)undz — [ Gla,w)da +

+o((un) + Ta(un)) — P(ua)] /Q pupdz - g(l + Ti(un)) Mp - 2

>2 (1= 0(2+7) (1+ Ta(u)) lunllt, + (201 + Taun)) = 1) [ Gl ws) do
~lo(1 + Ta(us)) + Wliglallunlle = 51+ 1 (us)) M.

If we take M sufficiently large, we ind 6 > 0,7 >0 and g € ]1—:’[, ;,‘—Jr‘;[ with
1-0@+7) A +Ti(w) >4, (g0l + To(un)) — 1) >,
uniformly in h € N. Hence we obtain :
vo 9 ¢
olluntive + K 2 - [lunlle +bnfiuallg = cliurliz — dre,

which implies that the sequence (uy) is bounded in H}(£2).

The next result is one of the main tools to get our existence result.

Theorem 3.3 ﬁ, satisfies the (CPS),. condition at each level ¢ > M.
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Proof. Let (uy) be a (CPS),—sequence for f, with ¢ M, where M is as in
Lemma 3.2. Therefore (up) is bounded in H}{£2) and from [13, Lemma 3.3] we
deduce that, up to subsequences, (g(z,up)) is strongly convergent in H~1(2).
Then, by {7, Theorem 2.2.4], there exists a further subsequence (up,) which
strongly converges in H}({2).

4 Comparison of min—max values

In this section, we shall build two min-max classes for f, and then we shall
compare the growths of the associated min—max values (see [15]) . Let (up) be
the orthonormalized sequence of solutions to the problem :

—~Au=Au in f2
u=0 on 012,

and set Vy = {ug) and Vi1 = Vi @ Ruyy for each & > 1. Since each Vj is
finite dimentional, one can find 5, 5, 83 > 0 such that :

Folw) < Ballull? 2 = Ballulif, — 65,

for each u € Vi . In particular, for each k € N there exists K, > 0 such that :

lullz = Re = f,(uv) < f,(0) <0
for all w € V.

Definition 4.1 For each k € N set Dy = Vi, N B(0, Ry),

I = {’Y € C(Dy, Hy(12)) : 7y odd and Voso.ryy = Id} ,

and

bp = inf max f,(7(u)).

. 2(c41)
Lemma 4.2 There exist f > 0 and kg € N with by, > k=D for k = ky .

Proof. Since there exist 31, B2 > 0 such that

Fow 2 5 [ Dufdz - Billulist - 82,

1613
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it suffices to follow the proof of [19, Theorem 1].

Definition 4.3 We denote by Uy the set of € = tugy1 + w such that :

0 <t < Rey1, we B(0,Rer1) N Vi, €l < Rita -

We denote by Ay the set of A € C(Uy, H}((2)) such that :

Ao, € Thtts MoB(0,Resn)U(BO,Brs i \BO,R )N = Td

and we set :

¢e = inf max f,(A(u)).

AEAL u€U

The next is our main existence tool.

Lemma 4.4 Assume that ¢z > by > M . If § €]0, ¢z — by[ and

(@) ={Ne A f(A(w) < b+ for ue Dy}

set

ce(8) = inf max f,(Mu)).

AEAL() u€Uy
Then c(0) is a critical value for ﬁp.

Proof. See [13, Lemma 5.5] . Of course, differently from the proof of [15, Lemma
1.57], in this nonsmooth framework, we shall apply [7, Theorem 1.1.13] instead
of the classical Deformation Lemma (see Lemma 1.60 of [15]).

Lemma 4.5 Assume that ¢, = by for all k > k. Then, there exist v > 0 such
that by < 7]“—3—1 for each k = k; .

Proof. See [13, Lemma 5.6] .

We finally come to the proof of our main result.

Proof of Theorem 1.1. The restriction on ¢ implies that ¢/(¢ — 1) < (2(c +
1))/(n(o — 1)) . Therefore, combining Lemma 4.2 and Lemma 4.5 we deduce
that ¢, > by, so that we may apply Lemma 4.4 and obtain that (c,(9)) is a
sequence of critical values for ﬁ,. Finally, if M is larger than max{M ) M s
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by Theorem 2.3 we conclude that f, has a diverging sequence of critical val-
ues. O

Proof of Theorem 1.2. It is a variant of the proof of Theorem 1.1. It suffices
to slightly modify the estimates in several of the Lemmas. O
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