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Abstract. By combining techniques of nonsmooth critical point theory with a sharp estimate
of Trudinger–Moser type, we prove the existence of an infinite number of solutions for a
class of perturbed symmetric elliptic problems at exponential growth inR

2 covering the full
range of subcriticality allowed.

1. Introduction

In 1994 K. Sugimura proved that, given an open bounded domainΩ of R
2 with

smooth boundary∂Ω, for eachϕ ∈ L2(Ω) the semilinear elliptic problem{
−∆u = g(x, u) + ϕ in Ω

u = 0 on ∂Ω
(1)

admits an unbounded sequence of solutions(uh) ⊂ H 1
0 (Ω) provided thatg(x, u)

is an odd (inu) superlinear nonlinearity with exponential growth such that

A1e
|s|p1 − B1 �

∫ s

0
g(x, τ ) dτ � A2e

|s|p2 − B2 0 < p1 � p2 <
1

2
,

a.e. inΩ and for eachs ∈ R, whereA1, A2 > 0 andB1, B2 � 0 (see [22]).
The main goal of this paper is improving Sugimura’s result and at the same time

extending these type of achievements to the case of quasilinear elliptic equations.
For a planar domainΩ, the analogue of the Sobolev embeddingH 1

0 (Ω) ↪→ L2∗
(Ω)

in dimensions greater than 3 is the Orlicz space embedding

∀ s � 1 : H 1
0 (Ω) � u 
→ eu2 ∈ Ls(Ω)
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for which the Trudinger–Moser inequality holds: there existsCT M > 0 with

∀ u ∈ H 1
0 (Ω) : ‖u‖1,2 � 1 �⇒

∫
Ω

e4πu2
dx � CT ML2(Ω), (2)

whereL2 denotes the usual Lebesgue measure inR
2 and‖ · ‖1,2 is the standard

norm inH 1
0 (Ω). In view of a sharp inequality like (2) (see Theorem 5), we shall

obtain a multiplicity result for the exponential nonlinearity

∀ s ∈ R : g(s) = |s|p−2se|s|p ,

all over the subcritical range 1< p < 2.
Let us now briefly recall the historic background of the problem of broken

symmetry for elliptic equations. IfΩ is a bounded domain ofRn with n � 2, the
multiplicity of solutions for semilinear elliptic problems of the type−∆u = g(x, u) + ϕ in Ω

u = 0 on ∂Ω,
(3)

with g superlinear, odd inu and fora, b > 0

|g(x, s)| � a + b|s|p, 1 < p < σ � 2∗ − 1 if n � 3,

1 < p < +∞ if n = 1, 2,

has been investigated by the variational techniques developed by Bahri, Berestycki,
Rabinowitz and Struwe in the early eighties [3,11,16,20,23]. Later on, around
1990, Bahri and Lions improved the previous results via a technique based on
Morse theory (see [4,5]).

Very recently further improvements have been achieved by a completely new
method devised by P. Bolle (see [6]). Whenn = 2, the result of Bahri and Lions [4]
is optimal for the power caseg(x, s) = |s|p−1s, namely the multiplicity appears
for all p > 1. However, whenn � 3, it remains open the problem of whether (3)
has an infinite number of solutions for allσ all the way up to the exponent 2∗ − 1.

Since 1994, several works have been devoted to the study of quasilinear elliptic
equations of the type:

−
n∑

i,j=1

Dj(aij (x, u)Diu) + 1

2

n∑
i,j=1

Dsaij (x, u)DiuDju = g(x, u) in Ω, (4)

whereΩ is a bounded domain ofRn with n � 3. We refer the reader to [7,8] for the
study of multiplicity of solutions of this problem and furthermore to [2] and [18]
for an even more general framework. The functionalf0 : H 1

0 (Ω) → R associated
with (4) is given by

f0(u) = 1

2

∫
Ω

n∑
i,j=1

aij (x, u)DiuDju dx −
∫

Ω

G(x, u) dx,
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whereDsG(x, s) = g(x, s).As pointed out in [8], this functional fails to be smooth
(C1) for n � 3. On the other hand, also in the casen = 2, being

∀ s < +∞ : H 1
0 (Ω) ↪→ Ls(Ω) but H 1

0 (Ω) �↪→ L∞(Ω),

it may happen that

2∑
i,j=1

Dsaij (x, u)DiuDju �∈ H−1(Ω),

even if Dsaij ∈ L∞, so that in generalf0 is continuous but fails to be locally
Lipschitzian.

Consequently, techniques of nonsmooth critical point theory have to be em-
ploied and the methods of [6] cannot be used since the functional is requested to be
of classC2. We refer the reader to [8–10,12] and [14] for the abstract framework
that we shall need in the following.

It seemed natural to ask whether also in the quasilinear setting the multiplicity
of solutions persists under perturbations. A partial answer to this question has been
given in [15] and [19] where it was proved that for a suitableq > 2, if

|g(x, s)| � a + b|s|p, 1 < p <
qn + 2(q − 1)

qn − 2(q − 1)
,

with a, b > 0 and for eachi, j = 1, . . . , n

aij (x,−s) = aij (x, s), g(x,−s) = −g(x, s)

a.e. inΩ and for eachs ∈ R, then for eachϕ ∈ L2(Ω) the problem

−
n∑

i,j=1

Dj(aij (x, u)Diu) + 1

2

n∑
i,j=1

Dsaij (x, u)DiuDju = g(x, u) + ϕ (5)

with u = 0 on∂Ω, has an unbounded sequence(uh) ⊂ H 1
0 (Ω) of solutions.

A natural question is now whether the multiplicity of solutions appears for
the perturbed equation (5) wheng possesses an exponential growth all along the
subcritical range 1< p < 2. We are ready to give an answer to this question by
stating the main result of the paper. In the next,Ω will denote a smooth bounded
domain ofR2. Moreover, we assume that:
(H ) eachaij (x, s) is measurable inx for eachs ∈ R and of classC1 in s for a.e.
x ∈ Ω with aij = aji , aij ∈ L∞(Ω × R) andDsaij ∈ L∞(Ω × R). Moreover,
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there existν > 0 andR > 0 such that:

2∑
i,j=1

aij (x, s)ξiξj � ν|ξ |2,

|s| � R �⇒
2∑

i,j=1

sDsaij (x, s)ξiξj � 0,

(6)

a.e. inΩ and for all(s, ξ) ∈ R × R
2.

We point out that assumption (6) is well known in the current literature both for
existence and regularity theory (see e.g. [2,7,8,15,18,19]).

Let ϕ : Ω × R → R be a continuous map and letσ � 0 be such that

|ϕ(x, s)| � a + b|s|σ (a, b > 0)

a.e. inΩ and for eachs ∈ R and definefϕ : H 1
0 (Ω) → R by setting

fϕ(u) = 1

2

∫
Ω

2∑
i,j=1

aij (x, u)DiuDju dx −
∫

Ω

(
e|u|p − 1

)
dx −

∫
Ω

Φ(x, u) dx

with DsΦ(x, s) = ϕ(x, s) for eachx ∈ Ω and alls ∈ R.

Under the preceding assumptions, the following is the main result.

Theorem 1. Let 1 < p < 2 and assume that

aij (x,−s) = aij (x, s) (i, j = 1, 2)

a.e. in Ω and for each s ∈ R. Then the problem

−
2∑

i,j=1

Dj(aij (x, u)Diu) + 1

2

2∑
i,j=1

Dsaij (x, u)DiuDju

= p|u|p−2ue|u|p + ϕ(x, u) (7)

with u = 0 on ∂Ω , has a sequence (uh) ⊂ H 1
0 (Ω) of solutions such that

lim
h

fϕ(uh) = +∞.

In particular, our result removes any upper bound in the subcritical growth com-
pletely. It has to be remarked that Theorem 1 is new also in the caseDsaij (x, s) = 0
a.e. inΩ and for eachs ∈ R (semilinear case).

In the critical casep = 2, Adimurthi has conjectured in [1] that the problem{
−∆u = ueu2 + ϕ in B(0, 1)

u = 0 on ∂B(0, 1)
(8)
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admits at most one positive solutionu ∈ H 1
0 (B(0, 1)), whereB(0, 1) is the unit

ball in R
2. On the other hand, this uniqueness result seems to be out of reach, so

far.
The plan of the paper is as follows: in Sect. 2 we briefly recall some basic

notions from the theory of Orlicz spaces. In Sect. 3, we recollect some definitions
and results from nonsmooth critical point theory. In Sect. 4 we show how the
functional associated with our problem satisfies a variant of the classical Palais–
Smale condition. In Sects. 5 and 6 we obtain the key estimate from below (Lemma 3)
and the estimate from above for the critical values associated with the minimax
classes introduced by Rabinowitz in [16]. Finally, in Sect. 7, we end up the proof of
Theorem 1. We point out that, for the sake of simplicity, we shall prove our result
whenϕ ∈ L2(Ω). The general case can be covered by slightly modifying several
of the lemmas (see [16]).

2. Recalls from the theory of Orlicz spaces

Let us briefly recall some basic notions about Orlicz spaces that will be required
later. For further details, we refer the interested reader to [17].

Definition 1. Let (Ω, Σ, µ) be an abstract measure space, where Ω is some point
set, Σ is a σ -algebra of its subsets on which a σ -additive function µ : Σ → R

∗+
is given and µ has the finite subset property. Then, if Φ : R → R

∗+ is a Young
function, we define

OΦ
µ =

{
u : Ω → R

∗ measurable with αu ∈ JΦ
µ for some α > 0

}
,

where

JΦ
µ =

{
u : Ω → R

∗ measurable for Σ :
∫

Ω

Φ (|u|) dµ < +∞
}

.

The space OΦ
µ is called Orlicz space.

The setOΦ
µ is a vector space. Moreover, for eachu ∈ OΦ

µ there existsβ > 0
such that

βu ∈ BΦ =
{

v ∈ JΦ
µ :
∫

Ω

Φ (|v|) dµ � 1

}
, (9)

whereBΦ is a circled solid subset ofJΦ
µ . This property motivates the following

Definition 2. We define a functional on the Orlicz space OΦ
µ by setting

NΦ (u) = inf
{
k > 0 : 1

k
u ∈ BΦ

} = inf

{
k > 0 :

∫
Ω

Φ
(∣∣u

k

∣∣) dµ � 1

}
. (10)

We say that NΦ : OΦ
µ → R+ is the gauge norm of the Orlicz space OΦ

µ .
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It is readily seen that
(
OΦ

µ , NΦ

)
is a Banach space whenµ−a.e. equal functions

are identified. Besides the gauge norm, the spaceOΦ
µ can be endowed with another

norm functional.

Definition 3. For each u ∈ OΦ
µ we set

‖u‖Φ = sup

{∫
Ω

|uv| dµ : v ∈ OΦ
µ such that

∫
Ω

Ψ (|v|) dµ � 1

}
, (11)

where Ψ : R → R
∗+ is the complementary function to Φ, defined by setting

∀ y ∈ R : Ψ (y) = sup
x�0

{x |y| − Φ (x)} .

The functional ‖·‖Φ is called Orlicz norm.

One can prove that(OΦ
µ , ‖ · ‖Φ) is a Banach space whenµ-a.e. equal functions

are identified, and that the two norms‖ · ‖Φ andNΦ are equivalent. Moreover,
there is an useful relationship between the Orlicz and gauge norms, which will be
used in the following to obtain a fundamental estimate, namely

∀ u ∈ OΦ
µ : NΦ (u) � ‖u‖Φ � 2NΦ (u) . (12)

We end up this section by recalling a result, due to Krasnoselskii and Rutickii,
which enables to compute the Orlicz norm‖ · ‖Φ .

Theorem 2. Assume that (Φ, Ψ ) be a complementary pair of Young functions such
that Φ(x) = 0 if and only if x = 0 where Φ is strictly increasing. Then

∀ u ∈ OΦ
µ : ‖u‖Φ = inf

k>0

{
1
k

(
1 +

∫
Ω

Φ (ku) dµ

)}
, (13)

namely the Orlicz norm ‖ ·‖Φ is given in terms of Φ alone.

Proof. See [17,24]. ��
This nice alternative formula will be used later on to estimate from below the

Orlicz norm.

3. Recalls from nonsmooth critical point theory

Let us briefly recall from [8] two basic definitions in a very general framework.

Definition 4. Let (X, d) be a metric space, f : X → R a continuous function and
u ∈ X. We denote by |df |(u) the supremum of σ ∈ [0,+∞[ such that there exist
δ > 0 and a continuous map

H : Bδ(u) × [0, δ] → X

such that for all (v, t) ∈ Bδ(u) × [0, δ]
d(H (v, t), v) � t, f (H (v, t)) � f (v) − σ t.

We say that the extended real number |df |(u) is the weak slope of f at u.
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If X is normed with‖ · ‖X andf is of classC1, then|df |(u) = ‖df (u)‖X.

Definition 5. Let (X, d) be a metric space, f : X → R a continuous function and
u ∈ X. We say that u is a critical point of f if |df |(u) = 0.

Let us now return to our concrete problem choosing the spaceX = H 1
0 (Ω)

andf = fϕ . It is easily verified thatfϕ is continuous.

Definition 6. We say that u is a weak solution of (7) if u ∈ H 1
0 (Ω) and

−
2∑

i,j=1

Dj(aij (x, u)Diu) + 1

2

2∑
i,j=1

Dsaij (x, u)DiuDju = p|u|p−2u e|u|p + ϕ

in the distributional space D ′(Ω).

Proposition 1. Let u ∈ H 1
0 (Ω) be such that

∣∣dfϕ

∣∣ (u) < +∞. Then

wu = −
2∑

i,j=1

Dj(aij (x, u)Diu)

+ 1

2

2∑
i,j=1

Dsaij (x, u)DiuDju − p|u|p−2u e|u|p − ϕ

belongs to H−1(Ω) and
‖wu‖−1,2 �

∣∣dfϕ

∣∣ (u).

In particular, each critical point of fϕ is a weak solution to our problem.

Proof. See [8, Theorem 2.1.3].��
We now introduce a variant of the classical Palais–Smale condition that is more

suitable to our nonsmooth context.

Definition 7. A sequence (uh) in H 1
0 (Ω) is said to be a concrete Palais–Smale

sequence at level c ∈ R ((CPS)c-sequence, in short) for fϕ , if fϕ(uh) → c,

2∑
i,j=1

Dsaij (x, uh)DiuhDjuh ∈ H−1(Ω)

eventually as h → ∞ and

−
2∑

i,j=1

Dj(aij (x, uh)Diuh)

+ 1

2

2∑
i,j=1

Dsaij (x, uh)DiuhDjuh − p|uh|p−2uhe|uh|p → 0,

strongly in H−1(Ω). We say that fϕ satisfies the concrete Palais–Smale condition at
level c, if every (CPS)c-sequence for fϕ admits a strongly convergent subsequence
in H 1

0 (Ω).



322 M. Squassina, C. Tarsi

It is easy to see that the validity of the(CPS)c condition implies the validity of
the classical Palais–Smale condition ((PS)c).

In the next theorem, we recall a generalization due to Struwe [21] of the classi-
cal perturbation argument for dealing with problems with broken symmetry, here
adapted to our nonsmooth framework.

Theorem 3. Let X be a Hilbert space endowed with a norm ‖ · ‖X and let f :
X → R be a continuous functional. Assume that there exists M > 0 such that
f satisfies the concrete Palais–Smale condition at each level c � M . Let Y be a
finite dimensional subspace of X and u∗ ∈ X \ Y and set

Y ∗ = Y ⊕ 〈u∗〉 , Y ∗+ = {u + λu∗ ∈ Y ∗ : u ∈ Y, λ � 0
}

.

Assume now that f (0) � 0 and that:

(a) there exists R > 0 such that:

∀ u ∈ Y : ‖u‖X � R �⇒ f (u) � f (0) ;

(b) there exists R∗ � R such that:

∀ u ∈ Y ∗ : ‖u‖X � R∗ �⇒ f (u) � f (0).

Let us set

P =
{

γ ∈ C(X, X ) : γ odd, γ (u) = u if max{f (u), f (−u)} � 0

}
.

Then, if

c∗ = inf
γ∈P

sup
u∈Y ∗+

f (γ (u)) > c = inf
γ∈P

sup
u∈Y

f (γ (u)) � M,

f admits at least one critical value c � c∗.

This result follows by combining [21, Ch. II, Theorem 7.1] with the nonsmooth
deformation lemmas of [8]. In our concrete situation, we will use this theorem in
the form of Lemma 4, which is due to P. Rabinowitz.

4. The perturbation argument

Let us first prove an a priori estimate for weak solutions of (7).

Lemma 1. Assume that u ∈ H 1
0 (Ω) is a weak solution of (7). Then∫

Ω

(
e|u|p − 1 + c

)
dx � σ

(
f 2

ϕ (u) + 1
)1/2

,

for some σ > 0 and c > 0.
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Proof. Let k � 1 andηk : R → R be the function defined by

ηk(s) =


0 if s � k

s − k if k � s � k + 1

1 if s � k + 1.

(14)

For eachk � 1, we havef ′
ϕ(u)(ηk(u)) = 0. Therefore, it results∫

{k<u<k+1}

2∑
i,j=1

aij (x, u)DiuDju dx

+ 1

2

∫
Ω

2∑
i,j=1

ηk(u)Dsaij (x, u)DiuDju dx

� p(k + 1)p−1
∫

Ω

(
e|u|p − 1

)
dx +

∫
Ω

ϕηk(u) dx

− p(k + 1)p−1
(
e(k+1)p − 1

)
L2(Ω).

Taking into account thatDsaij ∈ L∞(Ω×R) and|ηk| � 1, inserting the expression
of fϕ(u), we findC > 0 andCδ,ϕ > 0 such that∫

{k<u<k+1}

2∑
i,j=1

aij (x, u)DiuDju dx

+ 1

2

∫
Ω

2∑
i,j=1

ηk(u)Dsaij (x, u)DiuDju dx

� C

2

∫
Ω

2∑
i,j=1

aij (x, u)DiuDju dx

� Cfϕ(u) + (1 + δ)C

∫
Ω

(
e|u|p − 1

)
dx + Cδ,ϕ,

for eachδ > 0. Fixing δ > 0 and choosingk sufficiently large, by combining the
two previous estimates we get:

Ckfϕ(u) �
∫

Ω

(
e|u|p − 1

)
dx − C′

k,

for someCk, C′
k > 0, which easily yields the assertion.

Let us now defineχ ∈ C∞(R) by settingχ = 1 for s � 1, χ = 0 for s � 2
and−2 < χ ′ < 0 when 1< s < 2, and let us set

φ(u) = 2σ
(
f 2

ϕ (u) + 1
)1/2

,

ψ(u) = χ

(
φ(u)−1

∫
Ω

(
e|u|p − 1 + c

)
dx

)
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for eachu ∈ H 1
0 (Ω). Finally, we define the modified functional by setting

f̃ϕ(u) = 1

2

∫
Ω

2∑
i,j=1

aij (x, u)DiuDju dx−
∫

Ω

(
e|u|p − 1

)
dx − ψ(u)

∫
Ω

ϕ u dx.

The Euler’s equation associated with̃fϕ is given by

−
2∑

i,j=1

Dj(aij (x, u)Diu) + 1

2

2∑
i,j=1

Dsaij (x, u)DiuDju = ĝ(x, u) in Ω (15)

where we have set

ĝ(x, u) = p|u|p−2ue|u|p + ψ(u)ϕ + ψ ′(u)

∫
Ω

ϕ u dx.

Note that, by Lemma 1, iff ′
ϕ(u) = 0, thenf̃ϕ(u) = fϕ(u) andf̃ ′

ϕ(u) = 0.

Remark 1. If we defineϑ : H 1
0 (Ω) → R by setting:

ϑ(u) = φ(u)−1
∫

Ω

(
e|u|p − 1 + c

)
dx,

a direct computation yields for eachv ∈ H 1
0 ∩ L∞(Ω):

f̃ ′
ϕ(u)(v) = (1 + T1(u))

∫
Ω

2∑
i,j=1

aij (x, u)DiuDjv dx

+ 1

2
(1 + T1(u))

∫
Ω

2∑
i,j=1

vDsaij (x, u)DiuDju dx

− (1 + T2(u))

∫
Ω

p|u|p−2uve|u|p dx − (ψ(u) + T1(u))

∫
Ω

ϕ v dx,

whereT1, T2 : H 1
0 (Ω) → R are given by

T1(u) = χ ′(ϑ(u))(2σ)2ϑ(u)φ(u)−2fϕ(u)

∫
Ω

ϕ u dx,

T2(u) = χ ′(ϑ(u))φ(u)−1
∫

Ω

ϕ u dx + T1(u).

If fϕ(u) � M andM → +∞, thenT1(u) → 0 andT2(u) → 0 (see [15,16]).

The following result establishes the links between the modified functionalf̃ϕ

and the original functionalfϕ .

Theorem 4. There exists M̃ ∈ R such that the following facts holds:

(a) if u solves (15) with f̃ϕ(u) � M̃ , then u solves (7) and f̃ϕ(u) = fϕ(u) ;
(b) f̃ϕ satisfies the concrete Palais–Smale condition at each level c � M̃ .
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Proof. By Remark 1 and Lemma 1,(a) follows arguing as in [15, Theorem 2.3]. Let
us now come to(b). Let us first show that each(CPS)c−sequence(uh) ⊂ H 1

0 (Ω)

for f̃ϕ with c � M̃ is bounded inH 1
0 (Ω). Letk � 1 andηk be the function defined

in (14). For eachk � 1, we have

f̃ ′
ϕ(uh)(ηk(uh))

‖uh‖1,2
→ 0

ash → +∞. In particular, it results

(1 + T1(uh))

∫
{k<uh<k+1}

2∑
i,j=1

aij (x, uh)DiuhDjuh dx

+ 1

2
(1 + T1(uh))

∫
Ω

2∑
i,j=1

ηk(uh)Dsaij (x, uh)DiuhDjuh dx

= (1 + T2(uh))

∫
Ω

p|uh|p−1|ηk(uh)|e|uh|p dx

+ (T1(uh) + ψ(uh))

∫
Ω

ϕηk(uh) dx + 〈wh, ηk(uh)〉

� p(k + 1)p−1(1 + T2(uh))

∫
{uh�k+1}

e|uh|p dx

+ (T1(uh) + ψ(uh))

∫
Ω

ϕηk(uh) dx + 〈wh, ηk(uh)〉

� p(k + 1)p−1(1 + T2(uh))

∫
Ω

(
e|uh|p − 1

)
dx

+ (T1(uh) + ψ(uh))

∫
Ω

ϕηk(uh) dx

− 2p(k + 1)p−1
(
e(k+1)p − 1

)
L 2(Ω) + 〈wh, ηk(uh)〉,

wherewh → 0 in H−1(Ω). Inserting now the expression offϕ(uh), we get

(1 + T1(uh))

∫
Ω

2∑
i,j=1

aij (x, uh)DiuhDjuh dx

+ 1

2
(1 + T1(uh))

∫
Ω

2∑
i,j=1

|ηk(uh)|Dsaij (x, uh)DiuhDjuh dx

� p

2
(k + 1)p−1(1 + T2(uh))

∫
Ω

2∑
i,j=1

aij (x, u)DiuDju dx

− p(k + 1)p−1(1 + T2(uh))fϕ(uh) − p(k + 1)p−1(1 + T2(uh))

∫
Ω

ϕuh dx

+ (T1(uh) + ψ(uh))

∫
Ω

ϕηk(uh) dx

− 2p(k + 1)p−1
(
e(k+1)p − 1

)
L 2(Ω) + 〈wh, ηk(uh)〉.
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Taking into account that|ηk| � 1, |ψ | � 1 andT1(uh), T2(uh) → 0 uniformly in
h asM̃ → +∞, by choosingk large enough we findCk > 0 such that

νCk

∫
Ω

|∇uh|2 dx � Ck

∫
Ω

2∑
i,j=1

aij (x, u)DiuDju dx

� 2p(k + 1)p−1fϕ(uh) + 2p(k + 1)p−1‖ϕ‖2‖uh‖2 + 2‖ϕ‖1

+ 2p(k + 1)p−1(e(k+1)p − 1
)
L 2(Ω) + ‖wh‖−1,2‖ηk(uh)‖1,2.

Sincefϕ(uh) → c andwh → 0 in H−1(Ω), the above inequality implies that the
sequence(uh) is bounded inH 1

0 (Ω).
Now, let (uh) be a(CPS)c-sequence for̃fϕ with c � M̃. Therefore, by the

previous step(uh) is bounded inH 1
0 (Ω). Taking into account that the map

H 1
0 (Ω) −→ H−1(Ω)

u 
−→ p |u|p−2 ue|u|p

maps bounded sets ofH 1
0 (Ω) to relatively compact sets ofH−1(Ω) (see [24]),

arguing as in [15, Lemma 3.3] we deduce that, up to subsequences,(ĝ(x, uh)) is
strongly convergent inH−1(Ω). Then, by [8, Theorem 2.2.4], there exists a further
subsequence(uhk

) strongly convergent inH 1
0 (Ω). ��

5. The growth estimate from below

Following [16], we shall build a min–max class for̃fϕ and then we shall compare the
growths from below and from above of the associated min–max values. Sugimura
proved in [22] the following logarithmic estimate from below on the growth of the
critical valuesbk (see Definition 8) for problem (1)

∀ k � k0 : bk � k (logk)
2
p
−2

, p ∈ (0, 1/2) .

Instead, we shall obtain the much stronger estimate:

∀ k � k0 : bk � k2.

Let us now recall the celebrated Trudinger–Moser inequality for a smooth
bounded domainΩ ⊂ R

2 in its general form: there existsCT M > 0 such that

∀ u ∈ H 1
0 (Ω) : ‖u‖1,2 � 1 �⇒

∫
Ω

eαu2
dx � CT ML 2(Ω),

for eachα ∈ [0, 4π ]. See the works of Trudinger and Moser [13,25].
The following result is one of the main tools of the paper for getting the optimal

estimate from below.
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Theorem 5. For each 1 < p < 2 there exists 0 < ϑ � 1 such that

∀ u ∈ H 1
0 (Ω) : ‖u‖1,2 > 1 �⇒

∫
Ω

(
e|u|p − 1

)
dx � C0 ‖u‖1/ϑ

1,2 (16)

where ϑ depends only on R = ‖u‖1,2 and C0 > 0 is independent of p, R.

Proof. Let us give an outline of the proof. First we introduce a suitable Orlicz space
on the bounded domainΩ, rescaling the usual Lebesgue measure in order to give
an estimate from above on the gauge norm. Here the Trudinger–Moser inequality
plays an important role. Then we introduce the Orlicz norm and we give an estimate
from below on this norm, using(13). Finally, combining the two estimates with
(12) will yield (16). Let us define a mapΦ : R → R+ by setting

∀ x ∈ R : Φ (x) = e|x|p − 1.

It is easily seen thatΦ is a Young function, so that we can introduce an associated
Orlicz spaceOΦ

ν . Let (Ω, Σ, ν) be the bounded domain ofR
2 endowed with the

usualσ−algebraΣ of measurable subsets and with a suitable rescaled Lebesgue
measureν, which will be determined later. Hence, by definition(10), the gauge
normNΦ : O Φ

ν → R+ is given by

NΦ (u) = inf

{
k > 0 :

∫
Ω

(
e| u

k |p − 1
)
dν � 1

}
. (17)

We observe first that the Trudinger–Moser inequality implies∫
Ω

(
e|u|p − 1

)
dx � C′

T ML 2 (Ω)

for anyu ∈ H 1
0 (Ω) such that‖u‖1,2 � (4π)1/2 and forC′

T M � CT M . Hence∫
Ω

(
e| u

k |p − 1
)
dx � C′

T ML 2 (Ω) (18)

for any u ∈ H 1
0 (Ω) andk > 0 such that‖u‖1,2 � k (4π)1/2. Inequality(18)

suggests us the choice of a new measureν, defined as

∀A ∈ Σ : ν (A) = L 2 (A)

C′
T ML 2 (Ω)

.

Replacingdx by dν, inequality(18) allows us to estimate the gauge norm from
above, namely, by(17) we have

∀ u ∈ H 1
0 (Ω) : NΦ (u) �

‖u‖1,2

(4π)1/2 . (19)

To get the estimate from below on the gauge normNΦ , we consider now the Orlicz
norm‖·‖Φ which by(13), may be written as

‖u‖Φ = min
k>0

1 + ∫
Ω

(
ekp |u|p − 1

)
dν

k
= 1 + ∫

Ω

(
ek

p
0 |u|p − 1

)
dν

k0
, (20)
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for somek0 > 0 (the minimum point). Indeed, sinceet − 1 � t for all t > 0,

1 + ∫
Ω

(
ekp |u|p − 1

)
dν

k
→ +∞ ask → 0+ and ask → +∞,

so that the infimum in(13) is actually a minimum. Therefore, by(12) and(19), to
end up the proof we have to estimate from below the norm‖ · ‖Φ . We achieve this

by comparing the value ofk0 with
[∫

Ω

(
e|u|p − 1

)
dν
]−1

. If

k0 � 1∫
Ω

(
e|u|p − 1

)
dν

,

we immediately get

‖u‖Φ �
∫

Ω

(
e|u|p − 1

)
dν. (21)

Otherwise, if we assume

k0 >
1∫

Ω

(
e|u|p − 1

)
dν

,

we can divide the proof into 3 steps, depending on the value of

a =
∫

Ω

(
e|u|p − 1

)
dν.

• If a � 1, then there exists āk, which does not depend onu, such that

‖u‖Φ � 1

k̄

∫
Ω

(
e|u|p − 1

)
dν. (22)

Indeed, theC1 mapΘ : R → R given by

Θ(k) = 1 + ∫
Ω

(
ekp |u|p − 1

)
dν

k
,

attains its minimum ink0. ThenΘ ′(k0) = 0, which yields

pk
p
0

∫
Ω

|u|p ek
p
0 |u|pdν = 1 +

∫
Ω

(
ek

p
0 |u|p − 1

)
dν

� 1 + k
p
0

∫
Ω

|u|p ek
p
0 |u|pdν.

Therefore, it is readily seen that

pk
p−1
0

∫
Ω

(
e|u|p − 1

)
dν � Θ(k0) � p

p − 1

1

k0
,

sincek0 � 1 bya � 1. In particular, we obtain:

1∫
Ω

(
e|u|p − 1

)
dν

� (p − 1) k
p
0 .
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Sincek0 > 1∫
Ω

(
e|u|p −1

)
dν

, we get the following upper bound onk0

k0 �
(

1

p − 1

) 1
p−1 = k̄.

Inserting this inequality in(20) we obtain(22).

• If a > 1 andk0 � 1 we can repeat the proof as in the casea � 1.
• If a > 1 andk0 < 1, there are only two possibilities: either∫

Ω

(
e|u|p − 1

)
dν � C, (23)

whereC > 0 is a constant independent ofR, or there existsϑ < 1, which
depends only onR = ‖u‖1,2, in such a way that

k0 <
1[∫

Ω

(
e|u|p − 1

)
dν
]ϑ . (24)

We shall prove this alternative later. Relation(24) implies

‖u‖Φ >
1

k0
>

[∫
Ω

(
e|u|p − 1

)
dν

]ϑ

, (25)

while (23) yields (16) directly, for all 1 > ϑ > 0. Then, by(21), (22) and(25),
for someC > 0

‖u‖1/ϑ
Φ � C

CT ML 2 (Ω)

∫
Ω

(
e|u|p − 1

)
dx, (26)

whereϑ = ϑ (R) � 1 depends only onR = ‖u‖1,2. On the other hand, combining
(12) and(19) yields

‖u‖Φ � 2

(4π)1/2
‖u‖1,2 � ‖u‖1,2 . (27)

The estimate(26) on‖u‖Φ , together with(27), imply (16). To end up the proof of
the theorem, it remains to show that either(23) or (24) is verified. Observe that

a−ϑ =
(∫

Ω

(
e|u|p − 1

)
dν

)−ϑ

→ 1− as ϑ → 0+, (28)

depending only onR = ‖u‖1,2. Indeed, the Trudinger–Moser inequality yields,
after some computations,

1 < a �
∫
{
|u|p−2‖u‖2

1,2�1
} (e |u|2

‖u‖2
1,2 − 1

)
dν

+
∫
{
|u|p−2‖u‖2

1,2>1
} (e|u|p − 1

)
dν

� 1 + ceR
2p

2−p
,

(29)



330 M. Squassina, C. Tarsi

wherec > 0 is a constant independent ofR. Inequality(29) yields(28) directly.
Therefore, it suffices to show that for anyR > 0 either(23) holds or there exists

a constantε = ε (R) ∈ (0, 1) such that

∀ u ∈ H 1
0 (Ω) : ‖u‖1,2 = R �⇒ k0 � 1 − ε. (30)

By (28), if (30) is verified then inequality(24) holds. Let us first show that∫
Ω

(
ekp |u|p − 1

)
dν →

∫
Ω

(
e|u|p − 1

)
dν ask → 1−. (31)

Let k = 1 − η, with η → 0+. Then we have∣∣∣∣∫
Ω

(
e|u|p − 1

)
dν −

∫
Ω

(
ekp |u|p − 1

)
dν

∣∣∣∣
�
∫

Ω

e|u|p{1 − e−ηp|u|p}dν

�
{∫

Ω

e2|u|pdν

}1/2

· 2ηp · ‖u‖p
2p .

(32)

The last integral term in inequality(32) can be estimated as in(29), obtaining(31).
Analogously one can show that∫

Ω

|u|p ekp |u|pdν →
∫

Ω

|u|p e|u|pdν ask → 1−. (33)

Let us assume now that(30) is not verified. Therefore, recalling thatk0 < 1,
there existsR0 > 0 such that for anyε ∈ (0, 1) there existsuε ∈ H 1

0 (Ω) with
‖uε‖1,2 = R0, such that 1> k0 > 1 − ε. By definition,Θ ′(k0) = 0, so that

pk
p
0

∫
Ω

|uε|p ek
p
0 |uε |pdν � 1 +

∫
Ω

(
e|uε |p − 1

)
dν = 1 + a.

Therefore

1 + a � p (1 − ε)p

∫
Ω

|uε|p ek
p
0 |uε |pdν

� p (1 − pε)

{∫
Ω

|uε|p e|uε |pdν − εC (R0)

}
= (p − p2ε) (a − εC (R0))

by (33), which implies that

a �
1 + (εp − ε2p2

)
C (R0)

−p2ε + p − 1
(34)

for 0 < ε <
p−1
p2 . From(34) one can obtain the following upper bound ona:

a <
4

p − 1
if 0 < ε < min

{
1

pC (R0)
,

p − 1

p2 ,
p − 1

2p2 ,
1

p

}
;

hence, if(30) is not verified,(23) holds. Let us assume now that(30) holds. By
(28) there exists aϑ = ϑ (R) with 0 < ϑ < 1, such thata−ϑ > k0, that is(24).
��
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Remark 2. Observe that if(16) holds withϑ , then it holds for any 0< ϑ ′ < ϑ ,
sinceR > 1. Therefore, from now on we can assume that 0< ϑ < 1/4 without
loss of generality. The reason of this choice will be explained later.

Let now(uk, λk) ⊂ H 1
0 (Ω)×R be (orthonormalized) sequence of solutions to{

−∆u = λu in Ω

u = 0 on ∂Ω,

and define recursively

Y0 = 〈u0〉 , ∀ k � 1 : Yk+1 = Yk ⊕ Ruk+1.

Since eachYk is finite dimensional, one can findβ1, β2, β3 > 0 such that

∀ u ∈ Yk : f̃ϕ(u) � β1‖u‖2
1,2 − β2‖u‖q

1,2 − β3,

for eachq > 2. In particular, for eachk ∈ N there existsRk > 0 such that

‖u‖1,2 � Rk �⇒ f̃ϕ(u) � f̃ϕ(0) � 0

for all u ∈ Yk andRk � Rk+1 .

Definition 8. For each k ∈ N set Dk = Yk ∩ B(0, Rk),

Γk =
{
γ ∈ C(Dk, H 1

0 (Ω)) : γ odd andγ
∣∣
∂B(0,Rk)

= Id
}

,

and

bk = inf
γ∈Γk

max
u∈Dk

f̃ϕ(γ (u)).

Lemma 2 (Intersection lemma). For any γ ∈ Γk and each R < Rk

∀ k � 1 : γ (Dk) ∩ ∂B(0, R) ∩ Y ⊥
k−1 �= ∅. (35)

Proof. See [16, Lemma 1.44].��
Observe that for allq > 2 and eacha1 > 0 there existsa2 > 0 with

e|s|p − 1 � a1|s|q − a2 (36)

for eachs ∈ R.

Lemma 3. There exist β > 0 and k0 ∈ N such that

∀ k � k0 : bk � βk2.
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Proof. Let us first note that we have

∀ u ∈ H 1
0 (Ω) : f̃ϕ (u) � Jϕ (u)

where we have set

Jϕ (u) = ν

2

∫
Ω

|Du|2 dx −
∫

Ω

(
e|u|p − 1

)
dx − ψ (u)

∫
Ω

ϕ u dx.

Therefore, it suffices to get the desired estimate for values

bk = inf
γ∈Γk

max
u∈Dk

Jϕ (γ (u))

which, for simplicity, we avoid to rename. Ifγ ∈ Γk andR < Rk, by the Intersection
Lemma, we find

w ∈ γ (Dk) ∩ ∂BR ∩ Y ⊥
k−1

so that

max
u∈Dk

Jϕ (γ (u)) � Jϕ (γ (w)) � inf
u∈∂BR∩Y ⊥

k−1

Jϕ (u) . (37)

Therefore, to obtain a lower bound forbk we have to estimateJϕ (u) from

below, withu ∈ ∂BR ∩Y ⊥
k−1 andR < Rk. This estimate will be obtained applying

the interpolation inequality:

‖u‖r � ‖u‖1−a
s ‖u‖a

1,2 , 1 � s � r < ∞, a = 1 − s

r
. (38)

From now on, supposeu ∈ ∂BR ∩ Y ⊥
k−1 and 1< R < Rk. First, observe that for

anyβ > 0 there exists a constantc = c(β, p) > 0 such that

∀ t ∈ [0,+∞[ : etp − 1 � tβetp + c.

Therefore, by Hölder inequality, it results∫
Ω

(
e|u|p − 1

)
dx �

∫
Ω

|u|β e|u|pdx + cL 2 (Ω)

� ‖u‖β
αβ

(∫
Ω

e
α

α−1 |u|pdx

) α−1
α + c1

for somec1, where we put

α = 1 − ϑ2

1 − 4ϑ2 > 1, β = 3(1 − 2ϑ)

1 − ϑ
> 0 ;

combining(16) with the previous inequality, and noting thatα−1
α

< 1, we obtain∫
Ω

(
e|u|p − 1

)
dx � ‖u‖β

αβ

{∫
Ω

(
e

α
α−1 |u|p − 1

)
dx

} α−1
α + c1

� ‖u‖β
αβ Cα,ϑR

α−1
αϑ + c1,

(39)
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whereϑ = ϑ (R),

Cα,ϑ = c2

(
α

α − 1

)(α−1)/αpϑ

(40)

andc2 � max{1, C0}. Note that condition 1< R < Rk can be always satisfied,
by choosingRk large enough. Applying now inequality(38) with

r = αβ = 3(1 + ϑ)

1 + 2ϑ
� 2

ands = 2, we obtain

‖u‖αβ � ‖u‖1−a
2 ‖u‖a

1,2 � λ
− 1−a

2
k ‖u‖1,2 ,

a = 1 − 2

αβ
= 1 − ϑ

3(1 + ϑ)
,

(41)

where we have used the relation

∀ u ∈ Y ⊥
k−1 : ‖u‖2 � 1

λ
1/2
k

‖u‖1,2 .

Combining(39) with (41) yields∫
Ω

(
e|u|p − 1

)
dx � Cα,ϑ

1

λ
1/α
k

R
31−2ϑ2

1−ϑ2 + c1.

On the other hand, using(36) we have∫
Ω

ψ (u) ϕudx � ‖ϕ‖2 ‖u‖2 � c ‖ϕ‖2 ‖u‖q

� c ‖ϕ‖2
a

1/q
2 L 2 (Ω)1/q

a
1/q
1


∫
Ω

(
e|u|p − 1 + a2

)
dx

a2L
2 (Ω)


1/q

� Cϕ

∫
Ω

(
e|u|p − 1

)
dx + C1,ϕ,

where we can assumeCϕ > 1 andC1,ϕ > 0 without loss of generality. Hence

Jϕ (u) � R2

[
1

2
− Cα,ϑ,ϕ

λ
1/α
k

R
1−4ϑ2

1−ϑ2

]
− C2,ϕ (42)

whereCα,ϑ,ϕ = Cα,ϑCϕ andC2,ϕ = c1Cϕ + C1,ϕ > 0. Observe that1−4ϑ2

1−ϑ2 > 0
for all 0 < ϑ < 1/2 ; hence, we can chooseR = R (k) such that

λ
1/α
k = λ

1−4ϑ2

1−ϑ2

k = 4Cα,ϑ,ϕR
1−4ϑ2

1−ϑ2 .
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Sinceλk � c4k for largek (beingn = 2), R is subjected to the lower bound

R2 �
[

c
1/α
4

4Cα,ϑ,ϕ

]2α

k2, (43)

where we may assume that 0< c4 < 1 without loss of generality; we remark that
ϑ = ϑ (k). Combining(42) with (43) yields the following estimate from below:

Jϕ (u) �
[

c
1/α
4

4Cα,ϑ,ϕ

]2α

k2, (44)

which holds fork large enough. It remains to prove that the constant cut in the
right-hand side of inequality(44), which depends onϑ , may be bounded from
below uniformly. By(40), recalling that 0< c4 < 1 andCα,ϑ,ϕ � 1

[
c

1/α
4

4Cα,ϑ,ϕ

]2α

�
[

c4

4c2Cϕ

]2α

·
(

α − 1

α

)2 (α − 1)

pϑ

But α−1
α

= 3ϑ2

1−ϑ2 so that

(
α − 1

α

) 2(α−1)
pϑ → 1,

[
c4

4c2Cϕ

]2α

→ C1 > 0

asϑ → 0. Therefore, we obtain that

[
c

1/α
4

4Cα,ϑ,ϕ

]2α

� C (45)

for all ϑ small enough, whereC > 0 is a constant independent onϑ . By (37),

bk = inf
γ∈Γk

max
u∈Dk

Jϕ (γ (u)) � inf
u∈∂BR∩Y ⊥

k−1

Jϕ (u) .

By combining(44) with (45), for k large enough there existsR = R (k) ∈ (0, Rk)

such that for allu ∈ ∂BR ∩ Y ⊥
k−1

Jϕ (u) � Ck2,

and the proof is now complete.��
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6. The growth estimate from above

Definition 9. We denote by Uk the set of ξ = tuk+1 + w such that

0 � t � Rk+1, w ∈ B(0, Rk+1) ∩ Yk, ‖ξ‖1,2 � Rk+1.

We denote by Λk the set of λ ∈ C(Uk, H 1
0 (Ω)) such that

λ|Dk
∈ Γk+1, λ|∂B(0,Rk+1)∪((B(0,Rk+1)\B(0,Rk))∩Yk) = Id

and we set
ck = inf

λ∈Λk

max
u∈Uk

f̃ϕ(λ(u)).

The next is our main existence tool.

Lemma 4. Assume that ck > bk � M̃ for k large. If δ ∈]0, ck − bk[ and

Λk(δ) = {λ ∈ Λk : f̃ϕ(λ(u)) � bk + δ for u ∈ Dk

}
,

set
ck(δ) = inf

λ∈Λk(δ)
max
u∈Uk

f̃ϕ(λ(u)).

Then ck(δ) is a critical value for f̃ϕ .

Proof. See [15, Lemma 5.5]. Of course, in this nonsmooth framework, we apply
[8, Theorem 1.1.13] instead of the deformation Lemma for smooth functionals (see
e.g. Lemma 1.60 of [16]). ��
Lemma 5. Let ck = bk for k large. Then there exist γ > 0 and k1 ∈ N such that

∀ k � k1 : bk � γ k
q
/

q−1

for each q > 2.

Proof. Let q > 2. Following [15, Lemma 2.2], there existsαϕ,q > 0 such that∣∣f̃ϕ(u) − f̃ϕ(−u)
∣∣ � αϕ,q

{
|f̃ϕ(u)|1/q + 1

}
for eachu ∈ H 1

0 (Ω). At this point argue as in [15, Lemma 5.6].��

7. Proof the main result

Let us consider values ofk such thatck � bk � M̃. By assertion(a) of Theorem
4 the functionalf̃ϕ satisfies the concrete Palais–Smale condition at levelck. Since
q/(q − 1) < 2, by combining Lemma 3 and Lemma 5 we deduce thatck > bk,
so that we may apply Lemma 4 and obtain thatck(δ) is a critical value forf̃ϕ .
Therefore, by(b) of Theorem 4,fϕ admits a diverging sequence of critical values
(hence of weak solutions of (7)). To cover the case of a general nonlinearityϕ, it
suffices to apply slight adaptations to several of the Lemmas (see [16]).��
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