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Abstract. By combiningtechniques of nonsmooth critical point theory with a sharp estimate
of Trudinger—Moser type, we prove the existence of an infinite number of solutions for a
class of perturbed symmetric elliptic problems at exponential growiitficovering the full
range of subcriticality allowed.

1. Introduction

In 1994 K. Sugimura proved that, given an open bounded do®aii R? with
smooth boundary 2, for eachy € L2(£2) the semilinear elliptic problem

1
u=20 on as2 @)

{—Au =gx,u)+¢ Iin 2
admits an unbounded sequence of solutions C H(}(.Q) provided thatg (x, u)
is an odd (iru) superlinear nonlinearity with exponential growth such that

A

’ > 1
AP — By < / glx,t)dt < Azl — By 0 < p1< p2 <
0

és
a.e. ing2 and for eachy € R, whereA;, A» > 0 andB1, Bo > 0 (see [22]).

The main goal of this paper is improving Sugimura’s result and at the same time
extending these type of achievements to the case of quasilinear elliptic equations.

For a planar domaif®, the analogue of the Sobolev embeddﬂjﬁﬂ) — LZ(02)
in dimensions greater than 3 is the Orlicz space embedding

Vs>1: HYR2)sur ¢ e L ()
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for which the Trudinger—Moser inequality holds: there exts, > 0 with
Vu e H3(R2) : ull1z < 1= / A dx < Cry LAR), @)
Q

where.#? denotes the usual Lebesgue measui@irand || - 1.2 is the standard
norm in H&(Q). In view of a sharp inequality like (2) (see Theorem 5), we shall
obtain a multiplicity result for the exponential nonlinearity

VseR: g(s)=|s|P 2sel!”,

all over the subcritical range & p < 2.

Let us now briefly recall the historic background of the problem of broken
symmetry for elliptic equations. 2 is a bounded domain &”" with n > 2, the
multiplicity of solutions for semilinear elliptic problems of the type

—Au=gx,u)+¢ in £
©)
u=~0 on 052,

with g superlinear, odd im and fora, b > 0

lg(x, )| <a+bls|?, l<p<o<2*-1 ifn>3
l<p<+4+oo fn=12,

has been investigated by the variational techniques developed by Bahri, Berestycki,
Rabinowitz and Struwe in the early eighties [3,11,16,20,23]. Later on, around
1990, Bahri and Lions improved the previous results via a technique based on
Morse theory (see [4,5]).

Very recently further improvements have been achieved by a completely new
method devised by P. Bolle (see [6]). Wher- 2, the result of Bahri and Lions [4]
is optimal for the power casg(x, s) = |s|?~1s, namely the multiplicity appears
for all p > 1. However, whem > 3, it remains open the problem of whether (3)
has an infinite number of solutions for allall the way up to the exponent 2- 1.

Since 1994, several works have been devoted to the study of quasilinear elliptic
equations of the type:

_ Z Dj(a;j(x,u)D;u) +% Z Dya;j(x,u)DiuDju = g(x,u) in 2, (4)
i,j=1 i,j=1

wheres? is a bounded domain &" with n > 3. We refer the reader to [7, 8] for the

study of multiplicity of solutions of this problem and furthermore to [2] and [18]

for an even more general framework. The functiofigal H&(Q) — R associated

with (4) is given by

—1 ; ii DiuDud G d
fo(u)—éfg Y aij(x,u)DuDju x—/g (x, u) dx,

i,j=1
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whereD; G (x, s) = g(x, s).As pointed out in [8], this functional fails to be smooth
(€Y for n > 3. On the other hand, also in the case: 2, being

Vs < +00: H}(2) = L*(2) but H}(R) & L®(2),
it may happen that

2
Y Dyaij(x,u)DiuDju ¢ H™H(£2),
i,j=1

even if Dya;; € L*, so that in generafp is continuous but fails to be locally
Lipschitzian.

Consequently, techniques of nonsmooth critical point theory have to be em-
ploied and the methods of [6] cannot be used since the functional is requested to be
of classC?. We refer the reader to [8—10,12] and [14] for the abstract framework
that we shall need in the following.

It seemed natural to ask whether also in the quasilinear setting the multiplicity
of solutions persists under perturbations. A partial answer to this question has been
given in [15] and [19] where it was proved that for a suitaple 2, if

2(g — 1
g9 <a+bls)?, 1<p<iF2a-D
gn—2(g -1

witha,b > 0and foreach, j =1,...,n
ajj(x, —s) = a;j(x,s), gx,—s)=—g(x,s)

a.e. ins2 and for each € R, then for eachy € L2(£2) the problem

n n

1

= Y Djtayx D) + 5 Y Deaij v, wDiuDju = gx,w) + ¢ (5)
i,j=1 i,j=1

with u = 0 ond$2, has an unbounded sequenag) C H&(Q) of solutions.

A natural question is now whether the multiplicity of solutions appears for
the perturbed equation (5) whegnpossesses an exponential growth all along the
subcritical range k< p < 2. We are ready to give an answer to this question by
stating the main result of the paper. In the neXtwill denote a smooth bounded
domain ofR?. Moreover, we assume that:

() eacha;;(x, s) is measurable in for eachs € R and of clasglin s for a.e.
x €  with a;; = aji, a;j € L*(2 x R) andDsa;; € L>($2 x R). Moreover,
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there existy > 0 andR > 0 such that:
2

D aijx, )& > vlEP,
i,j=1
' , (®)
s > R=> )Y sDaij(x,$)E&; >0,
i,j=1

a.e.inf2 and for all(s, £) € R x R2.
We point out that assumption (6) is well known in the current literature both for
existence and regularity theory (see e.g. [2,7,8,15,18,19]).

Lety : 2 x R — R be a continuous map and ket> 0 be such that
lp(x, )| <a+Dbls|” (a,b>0)

a.e. inf2 and for eachy € R and definef,, : H&(.Q) — R by setting

2
folu) = %/szzzlaij(x, w)DiuDjudx — /Q (e‘“'p - 1) dx — /Q & (x,u)dx

with D;® (x, s) = ¢(x, s) for eachx € £2 and alls € R.

Under the preceding assumptions, the following is the main result.
Theorem 1. Let 1 < p < 2 and assume that
aij(x, —s) = a;j(x,s) (i,j=12)
a.e in £2 and for each s € R. Then the problem

2 12
— > Dj(aij(x, u)Diu) + > > Dyajj(x, u)DiuD,ju
ij=1 i,j=1
= plul”2ue" + o(x,u) (7)
withu = 0 on 852, has a sequence (uy,) C Hol(Q) of solutions such that

lim f, un) = +o0.

In particular, our result removes any upper bound in the subcritical growth com-
pletely. It has to be remarked that Theorem 1 is new also in thelzagg(x, s) = 0
a.e. ing2 and for eachy € R (semilinear case).

In the critical casep = 2, Adimurthi has conjectured in [1] that the problem

—Au = ue”’ +¢ in B(0,1)

u=0 on B0, 1) ®
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admits at most one positive solutiane H(}(B(O, 1)), whereB(0, 1) is the unit
ball in R2. On the other hand, this uniqueness result seems to be out of reach, so
far.

The plan of the paper is as follows: in Sect. 2 we briefly recall some basic
notions from the theory of Orlicz spaces. In Sect. 3, we recollect some definitions
and results from nonsmooth critical point theory. In Sect. 4 we show how the
functional associated with our problem satisfies a variant of the classical Palais—
Smale condition. In Sects. 5and 6 we obtain the key estimate from below (Lemma 3)
and the estimate from above for the critical values associated with the minimax
classes introduced by Rabinowitz in [16]. Finally, in Sect. 7, we end up the proof of
Theorem 1. We point out that, for the sake of simplicity, we shall prove our result
wheng e L?(£2). The general case can be covered by slightly modifying several
of the lemmas (see [16]).

2. Recallsfrom thetheory of Orlicz spaces

Let us briefly recall some basic notions about Orlicz spaces that will be required
later. For further details, we refer the interested reader to [17].

Definition 1. Let (£2, X, 1) be an abstract measure space, where £2 is some point
set, X' isa o-algebra of its subsets on which a o -additive function 1 : ¥ — R%
is given and u has the finite subset property. Then, if @ : R — R* is a Young
function, we define

o = {u : 2 — R* measurable with au € 77 for some o« > 0],
where

/l‘f = {u : 2 — R* measurable for ¥ :f @ (lu))dp < +oo}.
Q

The space ﬁf is called Orlicz space.

The setﬁl‘f’ is a vector space. Moreover, for eacke 6’5’ there existg8 > 0
such that

ﬂu€@¢={v€jﬁ’ifg¢(lvl)duél}, )
where4 is a circled solid subset oylf . This property motivates the following

Definition 2. We define a functional on the Orlicz space ﬁl‘f’ by setting
No (u) = inf {k>0: %ue%@}:inf {k>0:/ ¢(|%’)d,u<1}. (10)
2

We say that A5 : ﬁ;f — R, isthe gauge norm of the Orlicz space ﬁl‘f .
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Itisreadily seen tha(tﬁl‘f , Jl/qs) is a Banach space when-a.e. equal functions

are identified. Besides the gauge norm, the s@ﬁ@an be endowed with another
norm functional.

Definition 3. For each u € 0, we set

lulle = Sup{/ luvldp v e ﬁ;f such that / ¥ (lvhdp < 1}, (11)
2 2

where ¥ : R — R isthe complementary function to @, defined by setting
VyeR: ¥ (y) =supix|yl — @ x)}.

x>0
The functional ||-|| iscalled Orlicz norm.

One can prove the(tﬁ;f, Il - ll¢) is a Banach space whena.e. equal functions
are identified, and that the two norris || and.4% are equivalent. Moreover,
there is an useful relationship between the Orlicz and gauge norms, which will be
used in the following to obtain a fundamental estimate, namely

Vue ol : N ) < llulle <24 (u). (12)

We end up this section by recalling a result, due to Krasnoselskii and Rutickii,
which enables to compute the Orlicz nofim|| .

Theorem 2. Assumethat (&, ¥) bea complementary pair of Young functions such
that @ (x) = Oif and only if x = O where @ isdtrictly increasing. Then

Vueﬁf:HuH(p:Ii(nfo{%(l—i-/ @(ku)d;L)}, (13)
> fod
namely the Orlicznorm || -|| 4 iSgiven in terms of @ alone.

Proof. See [17,24]. O

This nice alternative formula will be used later on to estimate from below the
Orlicz norm.

3. Recallsfrom nonsmooth critical point theory

Let us briefly recall from [8] two basic definitions in a very general framework.

Definition 4. Let (2, d) beametric space, f : 2 — R acontinuous function and
u € 2. \We denote by |df|(u) the supremum of o € [0, +o0o[ such that there exist
8 > 0and a continuous map

0 Bs(u) x [0,8] - X
such that for all (v, t) € Bs(u) x [0, 8]
d(A(v,1),v)<t, [f(H(,1)<f(v)-—ot
We say that the extended real number |df|(u) isthe weak slope of f at u.
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If 2'is normed with| - || 2~ and f is of classC?, then|df|(u) = ||df ()| 2-

Definition 5. Let (2, d) beametric space, f : 2 — R acontinuous function and
u € Z.\Wesay that u isacritical point of f if |df|(u) = 0.

Let us now return to our concrete problem choosing the spéice H&(Q)
andf = f,. Itis easily verified thaff, is continuous.

Definition 6. We say that « isa weak solution of (7)if u € H(}(Q) and
2 I
— Y Dj(aij(x,u)Diu) + > > Dyaij(x,u)DiuDju = plul?"2u e’ + ¢
i.j=1 i,j=1
inthe distributional space 2'(£2).
Proposition 1. Let u € H(£2) besuchthat |df,| (u) < +oo. Then

2
wy = — Y Dj(aij(x,u)Diu)
ij=1
1 2
+ = Z Dsajj(x,u)DjuDju — plul?2u e’
2i,j=l

belongsto H~1(£2) and

-9

lwall—1.2 < |dfy| ().
In particular, each critical point of f, isa weak solution to our problem.

Proof. See [8, Theorem 2.1.3].0

We now introduce a variant of the classical Palais—Smale condition that is more
suitable to our nonsmooth context.

Definition 7. A sequence (uy) in Hol(fz) is said to be a concrete Palais-Smale
sequence at level ¢ € R ((CPS.-sequencgn short) for f,, if f,(un) — c,

2
> Dyaij(x, up) Diup Djuy, € H™(82)
i,j=1
eventually ash — oo and

2
- Z Dj(a;j(x, up)Diup)
ij=1

2
1 _
+5 2 DoaijCx, wn) Dy Dy, — plagl? Zues!” — 0,
i,j=1
stronglyin H~1(£2). Wesay that [, satisfiesthe concrete Palais-Smal e condition at

level ¢, if every (CPS.-sequencefor f, admits a strongly convergent subsegquence
in H}($2).
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Itis easy to see that the validity of ti€PS. condition implies the validity of
the classical Palais—Smale conditigR9.).

In the next theorem, we recall a generalization due to Struwe [21] of the classi-
cal perturbation argument for dealing with problems with broken symmetry, here
adapted to our nonsmooth framework.

Theorem 3. Let 2" be a Hilbert space endowed with a norm || - || 2-and let f :
2 — R be a continuous functional. Assume that there exists M > 0 such that
f satisfies the concrete Palais-Smale condition at each level ¢ > M. Let # bea
finite dimensional subspace of Z"and u™* € 2"\ % and set

v =v®u), ¥={u+rm*ecW uec® r>0}.
Assume now that f(0) < 0 and that:
(a) there exists R > 0 such that:

Vue?:uly>2R= fu) < f(0);

(b) there exists R* > R such that:
Yue " ulz > R* = fu) < f(0).

Let us set
P = {y € C(Z, Z):y odd yu) =uif max{f(u), f(—u)} < 0}.

Then, if

*

¢t = mf} sup f(ym)) >c= |nf supf(y(u))

ued; 7 uew

f admits at least one critical valuec > c¢*

This result follows by combining [21, Ch. Il, Theorem 7.1] with the nonsmooth
deformation lemmas of [8]. In our concrete situation, we will use this theorem in
the form of Lemma 4, which is due to P. Rabinowitz.

4. The perturbation argument

Let us first prove an a priori estimate for weak solutions of (7).

Lemma 1. Assumethat u € H}(s2) isaweak solution of (7). Then

/Q(elulp — l+c) dx <o (f(f(u) +l)1/2,

for someo > 0andc¢ > O.
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Proof. Letk > 1 andn; : R — R be the function defined by
0 if s <k

m(s)=3s—k if k<s<k+1 (14)
1 if s >k+1.

For eachk > 1, we havef(;7 (u)(nk(u)) = 0. Therefore, it results

2
/ Z ajj(x,u)DiuDjudx
{k<u<k+1} ij=1

1 2
+ —/ Z nk()Dsa;j(x, u)DiuDju dx
2 2 =1

> pk + 1)1’*1/ (elul” - 1) dx +/ ok (u) dx
2 2

— plk+ 1Pt (e<"+1>" - 1) Q).
Taking into accountthdd;a;; € L°°(£2 xR) and|n,| < 1, inserting the expression
of f,(u), we findC > 0 andC; , > 0 such that

2

/ Z a;j(x,u)DiuDjudx
{k<u<k+1}; =1

1 2
+ _/ Z k() Dsa;j(x, u)DiuDjudx
2 2 =1

2
C
< E/Qi]z_:laij(x,u)DiuDjudx

< Cf,(uw) + 1+ 3)c/ (e'"'” - 1) dx + Cs.p.
2

for eachs > 0. Fixingé > 0 and choosing sufficiently large, by combining the
two previous estimates we get:

Cufpu) > / (e'“"’ _ 1) dx — CJ,

2

for someCy, C; > 0, which easily yields the assertion.

Let us now defingg € C*°(R) by settingy = 1fors < 1, x =0fors > 2
and—2 < x’ < Owhen 1< s < 2, and let us set

o =20 (120 +1)"".

¥ = x <¢(u>‘1 /Q (e'"'” - 1+c) dx>



324 M. Squassina, C. Tarsi

for eachu € Hol((z). Finally, we define the modified functional by setting

2
ﬁp(u) = %/Qi;laij(x, u)DiuDju dx—/Q (e‘”") — 1) dx — W(u)/gwudx.

The Euler’'s equation associated W'ﬂ; is given by

2
—ZD (ajj(x,u)Dju) + = ZDa,,(x u)DiuDju = g(x,u) in 2 (15)
i,j=1 lj =1

where we have set
g, u) = plul?~2ue™” +yw)p + ¥ () /Q Qudx.
Note that, by Lemma 1, if,(u) = 0, thenf,,(u) = f,(u) and f} (u) =
Remark 1. If we define® : H}(2) — R by setting:
9 (u) = ¢(u)*1/ (e'“"’ _1+ c) dx,
2

a direct computation yields for eaohe Hc} N L*®($2):

f ww) =1+ Tl(u))/ Z ajj(x,u)DiuDjvdx

i,j=1

(1+ Tl(u))/ Z vDga;j(x, u) DiuD judx

i,j=1

— (1+ Ta(u)) / plulP~2uve™” dx — (y (u) + Ti(u)) / pvdx,
2 22
whereTy, T, : Hi(£2) — R are given by
Ti(u) = x' (9 ))(20)?0 () () "2 f, (u) /Q pudx,

To(u) = x' (9 (u)p )~ f @ udx + Ti(u).

If fo(u) > M andM — +oo, thenT1(u) — 0 andT>(u) — 0 (see [15,16]).

The following result establishes the links between the modified functigpal
and the original functionaf,,.

Theorem 4. There exists M € R such that the fol lowi ng facts holds:

(a) if u solves (15) with fw(u) M, then u solves (7) and fw(u) Jo(u);
(b) fw satisfies the concrete Palais-Smal e condition at each level ¢ > M.
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Proof. By Remark 1 and Lemma lg) follows arguing asin[15, Theorem 2.3]. Let
us now come t@b). Let us first show that eadlCPS.—sequenceuy,) C H (£2)
for fw with ¢ > M is bounded m!-I0 (£2). Letk > 1 andn, be the function defmed
in (14). For eaclt > 1, we have

£7 u u
Joo () (nic(up)) o
lunll12
ash — +oo. In particular, it results

2

(L + T1(un)) Z aij(x, up)DiupDjup dx

{k<up<k+1} . ij=1

+ = (1+ Tl(uh))/ Z Nk(up) Dsaij(x, up) Diup Djuy dx
i,j=1

= (1+ To(up)) /Q plun” Y un)leV” dx
+ (T1(up) + ¥ (up)) /Q oni(up) dx + (wp, ni(up))

pk + P YL+ To(up)) el"nl” dx
{up=k+1}

+ (T1(up) + ¥ (up)) /Q on(up) dx + (wp, ni(up))
> plk 4+ P71+ Ta(up)) / (e'“h"’ - 1) dx
2
+ (T1(up) + ¥ (up)) /;z oni(up) dx
= 2p(k+ Pt (e®H” — 1) L2(@2) + fuwn, milun),

wherew;, — 0in H*l((z) Inserting now the expression @ (u;,), we get

1+ Tl(uh))/ Z ajj(x, up) Diup Djup dx
i,j=1

A+ Ta0) / S )| Dty ) Dy Dy
i,j=1
> g(k-{-l)P 1(1+ Tz(uh))/ Z ajj(x,u)DiuD; udx
i,j=1

— plk + VP YA+ To(un)) fp(un) — ple + P71+ Taup)) /Q Qup dx

+(Tl(uh)+1lf(uh))fgfpnk(uh)dx

= 2p(k + 1P~ (D" — 1) L2(2) + (w1 un)).
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Taking into account thaty,| < 1, |v¥| < 1 andTy(up), T2(uy) — 0 uniformly in
h asM — +o0, by choosingk large enough we find'; > 0 such that

2
kaf |Vup|?dx < ck/ > aij(x,u)DjuDjudx
£ 2;0=1

< 2p(k + 1P fo(up) + 2p(k + VP Hol2llunllz + 2@l
+2p(k + )P ® D" — 1) 22(2) + llwpll—1,20lmk ) ll1,2-

Since f, (u) — c andw, — 0in H~1(£2), the above inequality implies that the
sequenceuy,) is bounded i (2).

Now, let (u;,) be a(CPS, -sequence forf, with ¢ > M. Therefore, by the
previous stefu;,) is bounded inH&(.Q). Taking into account that the map

Hy(2) — HY(2)
u—> plulP=? uel”

maps bounded sets (Hol(.Q) to relatively compact sets dff ~1(£2) (see [24]),
arguing as in [15, Lemma 3.3] we deduce that, up to subseque@tesuy,)) is
strongly convergent il ~1(£2). Then, by [8, Theorem 2.2.4], there exists a further
subsequence;, ) strongly convergent im{(}({z). ]

5. The growth estimate from below

Following [16], we shall build a min—max class fﬁg and then we shall compare the
growths from below and from above of the associated min—-max values. Sugimura
proved in [22] the following logarithmic estimate from below on the growth of the
critical valuesh; (see Definition 8) for problem (1)

2
Vk > ko:be > k(ogk)? 2, pe(0,1/2).
Instead, we shall obtain the much stronger estimate:
Vk > ko: by > k2.

Let us now recall the celebrated Trudinger—Moser inequality for a smooth
bounded domai2 c R? in its general form: there existry; > 0 such that

Vu e HH@) : lullis < 1= / e dx < Cru2AR),
2

for eacha € [0, 4]. See the works of Trudinger and Moser [13, 25].
The following result is one of the main tools of the paper for getting the optimal
estimate from below.
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Theorem 5. For each 1 < p < 2thereexists0 < ¢ < 1 such that
Vue H} Q) : ull1z2 > 1= / (" —1)dx < Colulys  (16)
" ,

where ¢ dependsonly on R = |ju||1,2 and Co > O isindependent of p, R.

Proof. Letus give an outline of the proof. First we introduce a suitable Orlicz space
on the bounded domaif?, rescaling the usual Lebesgue measure in order to give
an estimate from above on the gauge norm. Here the Trudinger—Moser inequality
plays an important role. Then we introduce the Orlicz norm and we give an estimate
from below on this norm, usin@l3). Finally, combining the two estimates with
(12) will yield (16). Let us define a mag : R — R by setting

VxeR:d (x)=e"" —1.

It is easily seen thap is a Young function, so that we can introduce an associated
Orlicz spaces?. Let (2, ¥, v) be the bounded domain & endowed with the
usualo —algebraX of measurable subsets and with a suitable rescaled Lebesgue
measurev, which will be determined later. Hence, by definitigh0), the gauge
norm.#3 : 0F — R is given by

N (u) = inf {k>0:/ (e|Z|”—1)dv<1}. (17)
2
We observe first that the Trudinger—Moser inequality implies
fﬂ (" — 1)dx < Cp L2 (2)
for anyu e H (2) such thatjul|, » < (47)¥2 and forC}.,, > Crm. Hence
/Q (eltl" = 1)ax < ¢}, 2% (2) (18)
foranyu e H}(2) andk > 0 such thafull;, < k (4m)Y2. Inequality (18)

suggests us the choice of a new measugefined as

22 (4)
VAe X :v(A)= ——5—.
Cry e (2)

Replacingdx by dv, inequality (18) allows us to estimate the gauge norm from
above, namely, byl7) we have

llully 2
VueHlQ:JVug—’. 19
0 ( ) (] ( ) (47_[)1/2 ( )
To get the estimate from below on the gauge nof§), we consider now the Orlicz
norm||-|| which by (13), may be written as

A4 [ (T —Day 1+ [ (K0T = 1)dy
k>0 k ko
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for somekg > O (the minimum point). Indeed, sineé— 1 > ¢ forall r > 0,
1+ f_Q (ekp"”p — 1)dv
k

so that the infimum if13) is actually a minimum. Therefore, 2) and(19), to
end up the proof we have to estimate from below the nprif, . We achieve this

-1
by comparing the value @ with [fg (e — 1)dv] If

— 400 ask — 0" and ask — +00,

1
k g P A\,
O T (e = 1)dv

we immediately get
lullg > / (7 — 1) (21)
2

Otherwise, if we assume
1

T (@7 =)y’
we can divide the proof into 3 steps, depending on the value of

a= /Q (el"lp — 1)dv.

ko >

e If a < 1, then there exists/g which does not depend on such that
1
lullg > :/ (" — 1)dv. (22)
kJo

Indeed, thec! map® : R — R given by
1+ [, (ek"l”‘p —1)dv

k 9
attains its minimum irkg. Then®’ (ko) = 0, which yields

2 2

P D
< 1+kg/ lul? ko lul” gy,
2

O k) =

Therefore, it is readily seen that

_ , 1
94 l/ " —1)dv < O (ko) < — —,
Pko _Q( ) p—lko

sincekp > 1 bya < 1. In particular, we obtain:

1
. > (p—l)kg.
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Sincekg > , we get the following upper bound dg

1
1 1 _
e =k.
p—1

Inserting this inequality ir20) we obtain(22).

ko

N

e If a > 1 andkg > 1 we can repeat the proof as in the casg 1.
e If a > 1 andkg < 1, there are only two possibilities: either

/ (e‘“'p — 1)dv <C, (23)
2
whereC > 0 is a constant independent &f or there exists? < 1, which
depends only oR = |ju] 1 2, in such a way that
1
ko < . (24)

[J (" — 1) av]”

We shall prove this alternative later. Relati@#) implies

5
lulle > k_](-) > [/Q (elulp — 1)dv] , (25)

while (23) yields (16) directly, for all 1 > ¢ > 0. Then, by(21), (22) and(25),
for someC > 0

1/19 C / lul?
llullgp —C 7 @ (e 1)dx, (26)

whered = ¥ (R) < 1 depends only oR = |lu]|1 ». On the other hand, combining
(12) and(19) yields

2
lulle < m““”lz ||M||12 (27)

The estimat&26) on ||u|| 4, together with(27), imply (16). To end up the proof of
the theorem, it remains to show that eitlig8) or (24) is verified. Observe that

-0
a? = (/ (" — l)dv) —~ 1" asv — 0", (28)
2

depending only orR = ||u||12. Indeed, the Trudinger—-Moser inequality yields,
after some computations,

luj?
l<a< / (e g, _ 1)dv
{721 <}
+ / (" — 1)av (29)
{12012 ,>1)

2p

i
<14cef7,
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wherec > 0 is a constant independent Bf Inequality (29) yields (28) directly.
Therefore, it suffices to show that for aRy> 0 either(23) holds or there exists
aconstant = ¢ (R) € (0, 1) such that

Vue H} (2): llullio=R=ko<1l—e. (30)
By (28), if (30) is verified then inequality24) holds. Let us first show that
/ (" — 1)dv — / " —1)dv ask — 17. (31)

Letk = 1 — 5, withn — O*. Then we have

/ (M ~ 1)av — f ("1~ 1)av
2 2
</ M 1~ el ) gy (32)
2

L2
< {f 2 du} 20p - ul}, .
2

The last integral term in inequalit2) can be estimated as {29), obtaining(31).
Analogously one can show that

/|u|l’e’<”‘“'”du—>/ ul? ™" dv ask — 1°. (33)
2 2

Let us assume now th&B0) is not verified. Therefore, recalling thay < 1,
there existsRg > 0 such that for ang < (0, 1) there exists:, € Hol(.Q) with
luell1,2 = Ro, such that 1> ko > 1 — ¢. By definition,®’ (ko) = 0, so that

pké’/ |ug|? ekoluel” g < 1+/ (e'“‘flp —1)dv=1+a.
Q Q
Therefore

l1+a> p(l—s)p/ |u8|pekg|“5|pdv
2

p (1 pe) {/ lue |P elel” dv — eC(Ro)}
2
= (p — p?e) (a — eC (Ro))
by (33), which implies that

1+ (ep — £%p?) C (Ro)
—pzs +p-1

(34)

for 0 < ¢ < 5. From(34) one can obtain the following upper bound@n
p

4 1 -1 -11
a < —— if0<e<min{ ,pz,pz,—}J
p—1 pC(Ro) p 2pc p
hence, if(30) is not verified,(23) holds. Let us assume now th@0) holds. By
(28) there exists @ = o (R) with 0 < ¢ < 1, such that~—? > ko, that is(24).
|
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Remark 2. Observe that if16) holds with®, then it holds for any O< ¢’ < 9,
sinceR > 1. Therefore, from now on we can assume that @ < 1/4 without
loss of generality. The reason of this choice will be explained later.

Let now(uy, Ax) C H(}(.Q) x R be (orthonormalized) sequence of solutions to

—Au=Au in £2
u=0 onos2,

and define recursively
2 = (uo), Vk=21:%i1=% ®Rupyr.
Since eacl¥; is finite dimensional, one can fin#l, 82, 3 > 0 such that
Vue % : fpu) < Bullulll, — Ballull? , — Bs.
for eachg > 2. In particular, for eachk € N there existR; > 0 such that
lullr2 > Re = fp(u) < f,(0) <O
forallu € Z; andRy < Ryy1 -
Definition 8. For eachk € N set D, = %, N B(0, Ry),
I = [)/ € C(Dy. HY(2)) 1 y odd andy [, ;0 ) = Id} ,
and
b= Inf max fy (y @).
Lemma 2 (Intersection lemmgaFor any y € I, andeach R < Ry
Vk>1:y (D) NABO,R)NFHL, # 0. (35)
Proof. See [16, Lemma 1.44].0
Observe that for alf > 2 and eacla; > 0 there existay > 0 with
M 1> aq)s| —ap (36)
for eachs € R.
Lemma 3. Thereexist 8 > 0 and kg € N such that

Yk > ko: by > Bk
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Proof. Let us first note that we have

Vu € Hy (R): fo w) > 7, ()

where we have set

_Y 2 _ lul? _ /
= Dul|“d 1)d dx.
f(p () 2,/.Q| ul“dx /-;Z<€ ) x — ¥ (u) Q(pu X

Therefore, it suffices to get the desired estimate for values

by = ylgpk 52%1( F, v W)

which, for simplicity, we avoid torename.f € I';, andR < Ry, bythe Intersection
Lemma, we find
wey (D) NIBrNIYE,

so that

max fp (v w) = J,(y wy) > inf = F,w). (37)

u€d BRNY:

Therefore, to obtain a lower bound fof we have to estimate?, () from

below, withu € 3Bz N @k{l andR < Ry. This estimate will be obtained applying
the interpolation inequality:

_ S
lully < Nl g™ ullf 2, 1<s<r<oo, a=1--. (38)

From now on, suppose € 3Bz N % -, and 1< R < Ry. First, observe that for
any g > 0 there exists a constant= c(8, p) > 0 such that

Vit e[0,+oo[: e’ —1< e’ +ec.
Therefore, by Holder inequality, it results

/ (" —1)dx < / ul? e’ dx + 2% (2)
Q 2

a=1

< llully (/ eaallulpdx) +c1
2

1-9p2 3(1-2v)
0=——">>1 Sl
1— 492 1-9

for somecy, where we put
0;

combining(16) with the previous inequality, and noting tr%(;xt—l < 1, we obtain

a=1

WP _ e < ﬁ{/ ”allup—ld}“
/Q(e )dx < ullly Q(e Jdxf "+ )

a—1
< Nullly Cap R +ca,
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where® = ¢ (R),

(40)

o (e—1)/ap?
a—1

Cot,z? =C2 (
andc; > max{l, Co}. Note that condition 1< R < R; can be always satisfied,
by choosingR; large enough. Applying now inequalit8) with

_ ﬁ_3(1+19)
T~ T i

=

ands = 2, we obtain

_1l-a
lullep < IIMII%_G lullfo < Ay 2 llullyz,
L2 1—9 (41)
T T T340

where we have used the relation
n 1
Vue g lullz < =7 llullz-
A
Combining(39) with (41) yields

» 1 1-202
/ (elu‘ — 1) dx < Cyp mR 197 4 cq.
Q AL

On the other hand, usin@6) we have

/ ¥ () pudx < llgli2llullz < cllgliz2 llull,
2

p 1/q
a;/qu (2)Ya f_Q (elu‘ -1+ az) dx

<cllol;
ay’? a2. 72 (2)

< C¢/ (elulp — 1) dx + C1,
2

where we can assuntg, > 1 andCy, > 0 without loss of generality. Hence

1 Cav 1-492
k

whereC, 9., = Cy.9Cp andCa, = c1C, + C1,, > 0. Observe thak=22> = 0
forall0 < ¥ < 1/2; hence, we can chooge= R (k) such that
1-492 1492

1 T2 1-40°
WY = A" = 4Cy 5 o R 107
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SinceA, > cqk for largek (beingn = 2), R is subjected to the lower bound
Cl/a 2u

where we may assume thatOc4 < 1 without loss of generality; we remark that
¥ = ¥ (k). Combining(42) with (43) yields the following estimate from below:

e 20
> 2| ¥ 44
s [ ] “

which holds fork large enough. It remains to prove that the constant cut in the
right-hand side of inequality44), which depends o, may be bounded from
below uniformly. By(40), recalling that O< ¢4 < 1 andCy 9, > 1

cl/a 200 20 1 M
4 S 4 ) <0‘ po
4Covy | = LAc2Cy o

-1 _ 3?
But “T = 1257 SO that

2(a—1) 2a
a—1\ ca
— 1, - C1>0
o 4c2Cy

ast® — 0. Therefore, we obtain that

C]_/a 2o
4
>C 45
[4cmﬁ¢} (49)

for all 9 small enough, wher€ > 0 is a constant independent 6nBy (37),

by = inf max 7, (y () = inf S, ).

y €l ueDy u€d BRNZ:

By combining(44) with (45), for k large enough there exists= R (k) € (0, Ry)
such that for alk € 8B N %L,

S, ) > Ck,

and the proof is now complete.
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6. Thegrowth estimate from above

Definition 9. We denote by Uy, the set of & = fuy41 + w such that
0< 17 < Re1, we BO, Rey1) N, NIEll12 < Rt
We denote by Ay the set of A € C(Ug, H0 (£2)) such that
Mp, € Tht1s AMaB(O,Reyn)U(BO, Res1)\BO.RO)N%) = 1d
and we set _
k= Aigﬁk g;gffw(k(u)).
The next is our main existence tool.
Lemma 4. Assumethat ¢, > by > M for k large. If § €]0, ¢ — bi[ and
A = {1 € Ay : Fo(h(u)) < by +8 for u e Dy},

a8 = inf  maxf,(\(u)).
AEAR(8) ueUy

Then ¢ (8) isacritical valuefor f,,.

Proof. See [15, Lemma 5.5]. Of course, in this nonsmooth framework, we apply
[8, Theorem 1.1.13]instead of the deformation Lemma for smooth functionals (see
e.g. Lemma 1.60 of [16]). O

Lemmab. Let ¢, = by for k large. Then thereexist y > 0 and k1 € N such that

Yk > ki b < ykq/q_l
for eachg > 2.

Proof. Letg > 2. Following [15, Lemma 2.2], there existg , > 0 such that

| Fo) = Fo=w] < g {1 oM +1}

for eachu € H&(Q). At this point argue as in [15, Lemma 5.6]0

7. Proof themain result

Let us consider values @fsuch that; > by > M. By assertion(a) of Theorem

4 the functionalf,, satisfies the concrete Palais—Smale condition at lgveince
q/(g —1) < 2, by combining Lemma 3 and Lemma 5 we deduce that by,

so that we may apply Lemma 4 and obtain thg®) is a critical value forfw.
Therefore, by(b) of Theorem 4 f, admits a diverging sequence of critical values
(hence of weak solutions of (7)). To cover the case of a general nonlineaiity
suffices to apply slight adaptations to several of the Lemmas (see [16]).

Acknowledgements. The authors wish to thank Marco Degiovanni and Bernhard Ruf for
providing some useful discussions.
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