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Abstract. By exploiting a variational identity of Pohožaev-Pucci-Serrin
type for solutions of class C1, we get some necessary conditions for
locating the peak-points of a class of singularly perturbed quasilinear
elliptic problems in divergence form. More precisely, we show that the
points where the concentration occurs, in general, must belong to what
we call the set of weak-concentration points. Finally, in the semilinear
case, we provide a new necessary condition which involves the Clarke
subdifferential of the ground-state function.

1. Introduction

Let ε > 0, n ≥ 3, and 1 < p < n. In this paper we consider the following
class of singularly perturbed quasilinear elliptic problems in divergence form:{

−εpdiv (α(x)∇β(∇u)) + V (x)up−1 = K(x)f(u) in Rn

u > 0 in Rn.
(Pε)

We assume that the functions α, V , K : Rn → R are positive, of class C1

with bounded derivatives and α, K ∈ L∞(Rn). Moreover, let

inf
x∈Rn

α(x) > 0 and inf
x∈Rn

V (x) > 0.
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The function β : Rn → R is of class C1, strictly convex, and positively ho-
mogeneous of degree p; namely, β(λξ) = λpβ(ξ) for every λ > 0 and ξ ∈ Rn.
Moreover, there exist ν > 0 and c1, c2 > 0 such that

ν|ξ|p ≤ β(ξ) ≤ c1|ξ|p, (1.1)

|∇β(ξ)| ≤ c2|ξ|p−1, (1.2)

for every ξ ∈ Rn. The nonlinearity f : R+ → R is of class C1 and such that

lim
s→0+

f(s)
sp−1

= 0 and lim
s→+∞

f(s)
sq−1

= 0,

for some p < q < p∗, with p∗ = np/(n − p). Moreover, 0 < ϑF (s) ≤ f(s)s,
for every s > 0, for some ϑ > p, where we have set F (s) =

∫ s
0 f(t) dt, s ∈ R+.

Let us define the space WV (Rn) by setting

WV (Rn) :=
{

u ∈ W 1,p(Rn) :
∫

Rn

V (x)|u|p dx < ∞
}

,

endowed with the natural norm ‖u‖p
WV

=
∫

Rn |∇u|p dx +
∫

Rn V (x)|u|p dx.
For p = 2, we write HV (Rn) in place of WV (Rn). Under the previous
assumptions, if K ≡ 1, it has been recently proved in [12] (see also [24]) that
if for some compact subset Λ ⊂ Rn we have

V (z0) = min
Λ

V < min
z∈∂Λ

V (z) and α(z0) = min
z∈Λ

α(z),

then, for every ε sufficiently small, there exists a solution uε ∈ WV (Rn)
of (Pε) which has a maximum point zε ∈ Λ, with

lim
ε→0

V (zε) = min
Λ

V and lim
ε→0

‖uε‖L∞(Ω\Bρ(zε)) = 0, for every ρ > 0.

In the semilinear case, the construction of solutions concentrating at critical
points (or minima) of the potential V (x) or other finite-dimensional driven
functions has been deeply investigated in the last decade, and also stronger
results can be found in the literature (see e.g. [1, 6, 8, 9, 10, 11, 17, 21, 26]
and references therein).

The goal of this paper is to establish some necessary conditions for a se-
quence of solutions (uεh

) of (Pε) to concentrate around a given point z0 ∈ Rn,
in the sense of Definition 2.8. If β(ξ) = ξ, we will prove (see Theorem 3.6)
that if z0 is a concentration point for a sequence (uεh

) ⊂ HV (Rn) of solutions
of the problem, then there exists a locally Lipschitz function Σ : Rn → R,
the ground-state function, which has, under suitable assumptions, a critical
point in the sense of the Clarke subdifferential at z0; that is, 0 ∈ ∂Σ(z0). Un-
der more stringent assumptions, it turns out that Σ admits all the directional
derivatives at z0 and ∇Σ(z0) = 0. In the general case, as a first necessary
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condition, the gradient vectors ∇α(z0), ∇V (z0), and ∇K(z0) must be lin-
early dependent. Moreover, in Theorem 2.6 (see also Theorem 2.11), we
show that the concentration points for problem (Pε) must belong to a set C

(which has a variational structure) that we call the set of weak-concentration
points (see Definition 2.1). To the authors’ knowledge, this kind of necessary
conditions in terms of generalized gradients seem to be new. Quite inter-
estingly, the lack of uniqueness (up to translations) for the limiting problem
(namely the rescaled problem with frozen coefficients){

−α(z)div (∇β(∇u)) + V (z)up−1 = K(z)f(u) in Rn

u > 0 in Rn
(Pz)

induces a lack of regularity for Σ. Some conditions ensuring uniqueness of
solutions for (Pz) can be found in [5, 23]. For instance, for 1 < p ≤ 2,
β(ξ) = |ξ|p−2ξ, and f(u) = uq−1 with p < q < p∗, we have uniqueness and
Σ admits all the directional derivatives.

We stress that some necessary conditions for the location of concentration
points were previously obtained by Ambrosetti et al. in [1] and by Wang and
Zeng in [26, 27] in the case p = 2 and β(ξ) = ξ. Their approach is based
on a repeated use of the divergence theorem. With respect to those papers
we prove our main results by means of a locally Lipschitz variant of the
celebrated Pucci-Serrin variational identity [19]. In our possibly degenerate
setting, classical C2 solutions might not exist, the highest general regularity
class being C1,β (see [25]). Therefore, the classical identity is not applicable
in our framework. However, it has been recently shown in [7] that, under
minimal regularity assumptions, the identity holds for locally Lipschitz so-
lutions (see Theorem 2.5), provided that the operator (β, in our case) is
strictly convex in the gradient, which, from our viewpoint, is a very natural
requirement.

This identity has also turned out to be useful in characterizing the ex-
act energy level of the least-energy solutions of the problem (Pz). Indeed,
in [12, Theorem 3.2] it was proved that (Pz) admits a least-energy solution
uz ∈ W 1,p(Rn) having the mountain-pass energy level. This is precisely
the motivation that led us to define the ground-state function Σ also in a
degenerate setting.

2. The quasilinear case

The aim of this section is the study of some necessary conditions for
the concentration of the solutions at a point z0 to occur, in the quasilinear
framework.
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2.1. Some preliminary definitions and properties. If z is fixed in Rn,
we consider the limiting functional Iz : W 1,p(Rn) → R,

Iz(u) := α(z)
∫

Rn

β(∇u) dx +
V (z)

p

∫
Rn

|u|p dx − K(z)
∫

Rn

F (u) dx.

It follows from our assumptions on β and f that Iz is a C1 functional and
its critical points are solutions of the limiting problem (Pz). We define the
minimax value cz for Iz by setting

cz := inf
γ∈Pz

sup
t∈[0,1]

Iz(γ(t)), (2.1)

Pz :=
{

γ ∈ C([0, 1], W 1,p(Rn)) : γ(0) = 0, Iz(γ(1)) < 0
}

.

Throughout the rest of the paper, we will denote by G(z) the set of all the
nontrivial solutions, up to translations, of the limiting problem (Pz) (the set
of bound-states). Under our assumptions on f , G(z) 
= ∅ for every z ∈ Rn.
Finally, · will always stand for the usual inner product of Rn.

We now introduce two functions ∂Γ− and ∂Γ+ that will be useful in the
sequel.

Definition 2.1. For every z, w ∈ Rn we define ∂Γ−(z;w) and ∂Γ+(z;w) by
setting

∂Γ−(z;w) := sup
v∈G(z)

∇zIz(v) · w, ∂Γ+(z;w) := inf
v∈G(z)

∇zIz(v) · w,

where ∇z denotes the gradient with respect to z. Explicitly, for every z, w ∈
Rn,

∂Γ−(z;w) = sup
v∈G(z)

[
∇α(z) · w

∫
Rn

β(∇v) dx

+ ∇V (z) · w
∫

Rn

|v|p
p

dx −∇K(z) · w
∫

Rn

F (v) dx
]
,

∂Γ+(z;w) = inf
v∈G(z)

[
∇α(z) · w

∫
Rn

β(∇v) dx

+ ∇V (z) · w
∫

Rn

|v|p
p

dx −∇K(z) · w
∫

Rn

F (v) dx
]
.

Finally, we define a set C ⊂ Rn by

C :=
{
z ∈ Rn : ∂Γ−(z, w) ≥ 0 and ∂Γ+(z, w) ≤ 0, for every w ∈ Rn

}
.

We say that C is the set of weak-concentration points for problem (Pε).
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The motivations that lead us to introduce the functions ∂Γ− and ∂Γ+,
and the set of weak-concentration points, will be clear in the course of the
investigation.

For the sake of completeness, we recall the following:

Definition 2.2. We define the ground-state function Σ : Rn → R by setting

Σ(z) := min
u∈G(z)

Iz(u), for every z ∈ Rn.

We now collect a few useful properties of the function Σ.

Lemma 2.3. Assume that

the map s ∈ R+ �→ f(s)
sp−1

is increasing. (2.2)

Then, the following facts hold:
(i) the map Σ is well defined and continuous, and

Σ(z) = cz, for every z ∈ Rn;

(ii) the map Σ can be written as

Σ(z) = inf
u∈W 1,p(Rn)\{0}

max
ϑ≥0

Iz(ϑu) = inf
u∈Nz

Iz(u), for every z ∈ Rn,

where Nz is the Nehari manifold, defined as

Nz :=
{

u ∈ W 1,p(Rn) \ {0} : I ′z(u)[u] = 0
}

.

Proof. To prove (ii), it suffices to argue as in [18, Proposition 2.5]. We now
come to assertion (i). By [12, Theorem 3.2], for every z ∈ Rn, problem (Pz)
admits a solution vz ∈ W 1,p(Rn), vz 
= 0, such that Iz(vz) = Σ(z) = cz,
where cz is defined as in (2.1). The continuity of Σ then follows from the
continuity of the map z �→ cz, which we now prove directly using an argument
envisaged by Rabinowitz [21]. For α, V, K ∈ R, define the functional Iα,V,K :
W 1,p(Rn) → R by

Iα,V,K(u) := α

∫
Rn

β(∇u) dx +
V

p

∫
Rn

|u|p dx − K

∫
Rn

F (u) dx.

Let us set

c(α, V, K) := inf
γ∈Pα,V,K

max
t∈[0,1]

Iα,V,K(γ(t)),

Pα,V,K :=
{

γ ∈ C([0, 1], W 1,p(Rn)) : γ(0) = 0, Iα,V,K(γ(1)) < 0
}

.
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Claim: For every (α, V, K) ∈ R3 we have

lim
η→0

c(α + η, V + η, K − η) = c(α, V, K).

We first observe that a simple adaptation of the argument of [21, Lemma
3.17] yields

α1 > α2, V1 > V2, K1 < K2 =⇒ c(α1, V1, K1) ≥ c(α2, V2, K2). (2.3)

The proof of the claim will be accomplished indirectly. By virtue of (2.3),
we get

lim
η→0−

c(α + η, V + η, K − η) := c− ≤ c(α, V, K).

Suppose that c− < c(α, V, K). For the sake of brevity, we define

Jη(u) := Iα+η,V +η,K−η(u).

Let ηh → 0− as h → ∞, and δj → 0+ as j → ∞. For each h ∈ N, by
assertion (ii), there is a sequence (uhj) in W 1,p(Rn), uhj 
= 0, such that

α

∫
Rn

β(∇uhj) dx + V

∫
Rn

|uhj |p dx = 1 (2.4)

and
max
ϑ≥0

Jηh
(ϑuhj) ≤ c(α + ηh, V + ηh, K − ηh) + δj . (2.5)

Notice that we can choose the sequence (uhj) satisfying (2.4), since the
position

u �→ α

∫
Rn

β(∇u) dx + V

∫
Rn

|u|p dx

defines on W 1,p(Rn) a norm equivalent to the natural one, as follows from
(1.1). Take now h = j and set uh = uhh. Hence, in view of (2.5), we have

c(α, V, K) ≤ max
ϑ≥0

Iα,V,K(ϑuh) = Iα,V,K(φ(uh)uh)

= Jηh
(φ(uh)uh) − ηhφ(uh)p

∫
Rn

|uh|p
p

dx − ηhφ(uh)p

∫
Rn

β(∇uh) dx

− ηh

∫
Rn

F (φ(uh)uh) dx

≤ max
ϑ≥0

Jηh
(ϑuh) − ηhφ(uh)p

∫
Rn

|uh|p
p

dx − ηhφ(uh)p

∫
Rn

β(∇uh) dx

− ηh

∫
Rn

F (φ(uh)uh) dx
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≤ c(α + ηh, V + ηh, K − ηh) + δh − ηhφ(uh)p

∫
Rn

|uh|p
p

dx

− ηhφ(uh)p

∫
Rn

β(∇uh) dx + ηh

∫
Rn

F (φ(uh)uh) dx

≤ c− + δh − ηhφ(uh)p

∫
Rn

|uh|p
p

dx − ηhφ(uh)p

∫
Rn

β(∇uh) dx

− ηh

∫
Rn

F (φ(uh)uh) dx.

At this point, one can show exactly as in [21, pp. 281–282] that there exists
a constant C > 0 such that φ(uh) ≤ C, for every h ∈ N sufficiently large.
Therefore, recalling the properties of F and the Sobolev embedding, the
above chain of inequalities contradicts c− < c(α, V, K), at least for every
h ∈ N large enough. We conclude that c− < c(α, V, K) is impossible. In a
completely similar fashion one can prove that the inequality

c(α, V, K) < lim
η→0+

c(α + η, V + η, K − η)

leads to a contradiction. Therefore the claim is proved.
Let now (zh) be a sequence in Rn such that zh → z as h → ∞. Observe

that, given η > 0, for large h ∈ N, we have

V (z) + η ≥ V (z) + |V (zh) − V (z)|
≥ V (z) ≥ V (z) − |V (zh) − V (z)| ≥ V (z) − η,

and similar relations hold for α and K. Therefore the continuity of z �→ cz

follows from the previous claim, applied with α = α(z), V = V (z), and
K = K(z). This completes the proof of assertion (i). �
Remark 2.4. As we have already pointed out in the introduction, we believe
that the lack of regularity of the ground-state map Σ is essentially inherited
by the lack of uniqueness assumptions on the limiting equation (Pz). From
this viewpoint, in the degenerate case p 
= 2, the problem of establishing
the regularity of Σ seems quite a difficult matter. On the contrary, if p = 2
and, for instance, β(ξ) = ξ, it is known that Σ is always at least locally
Lipschitz continuous (cf. Lemma 3.1). If, additionally, f(u) is exactly the
power up−1 (in which case equation (Pz) has in fact a unique solution [3]),
then Σ is smooth and it also admits an explicit representation formula (see
Remark 3.2).

Let now L : Rn × R × Rn → R be a function of class C1 such that

the function ξ �→ L(x, s, ξ) is strictly convex,
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for every (x, s) ∈ Rn × R, and let ϕ ∈ L∞
loc(Rn).

Next, we recall a Pucci-Serrin variational identity for locally Lipschitz
continuous solutions of a general class of Euler equations, recently proved
in [7]. As we have already remarked in the introduction, the classical identity
[19] is not applicable here, since it requires the C2 regularity of the solutions,
while the maximal regularity for degenerate equations is C1,β (see e.g. [25]).

Theorem 2.5. Let u : Rn → R be a locally Lipschitz solution of

−div (∂ξL(x, u,∇u)) + ∂sL(x, u,∇u) = ϕ in D′(Rn).

Then,

n∑
i,j=1

∫
Rn

∂ih
j∂ξi

L(x, u,∇u)∂ju dx

−
∫

Rn

[
(div h)L(x, u,∇u) + h · ∂xL(x, u,∇u)

]
dx =

∫
Rn

(h · ∇u)ϕ dx, (2.6)

for every h ∈ C1
c (Rn, Rn).

2.2. Necessary conditions for locating peak-points. We now state and
prove the main results of this section.

Theorem 2.6. Let z0 ∈ Rn and assume that (uεh
) is a sequence of solutions

of problem (Pε) such that

uεh
= v0

( · − z0

εh

)
+ o(1), strongly in WV (Rn), (2.7)

for some v0 ∈ WV (Rn) \ {0}. Then, the following facts hold:
(a) the vectors ∇α(z0), ∇V (z0), and ∇K(z0) are linearly dependent ;
(b) z0 ∈ C; that is, z0 is a weak-concentration point for (Pε);
(c) if G(z0) = {v0}, then all the partial derivatives of Σ at z0 exist and

∇Σ(z0) = 0;

that is, z0 is a critical point of Σ.

Proof. We write uh in place of uεh
, and we define

vh(x) := uh(z0 + εhx). (2.8)

Therefore, vh satisfies the rescaled equation

−div (α(z0 + εx)∇β(∇vh)) + V (z0 + εx)vp−1
h = K(z0 + εx)f(vh) in Rn.
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By (2.7), we have vh → v0 strongly in WV (Rn). We now prove that vh → v0

in the C1 sense over the compact sets of Rn and that v0 is a nontrivial
positive solution of the equation

−α(z0)div(∇β(∇v)) + V (z0)vp−1 = K(z0)f(v) in Rn. (2.9)

Let us set

dh(x) :=

{
V (z0 + εhx) − K(z0 + εhx)f(vh(x))

vp−1
h (x)

if vh(x) 
= 0

0 if vh(x) = 0,

A(x, s, ξ) := α(z0 + εhx)∇β(ξ), B(x, s, ξ) := dh(x)sp−1,

for every x ∈ Rn, s ∈ R+ and ξ ∈ Rn. Taking into account (1.2) and the
strict convexity of β, we get

A(x, s, ξ) · ξ ≥ ν|ξ|p and |A(x, s, ξ)| ≤ c2|ξ|p−1.

Notice that, in view of the growth assumptions on f , there exists δ > 0
sufficiently small such that dh ∈ Ln/(p−δ)(B2ρ) for every ρ > 0 and

S = sup
h∈N

‖dh‖Ln/(p−δ)(B2ρ) ≤ Dρ

(
1 + sup

h∈N
‖vh‖Lp∗ (B2ρ)

)
< ∞,

for some Dρ > 0. Since we have div(A(x, vh,∇vh)) = B(x, vh,∇vh) for
every h ∈ N, by exploiting [22, Theorem 1] there exists a radius ρ > 0 and
a positive constant M = M(ν, c2, Sρδ) such that

sup
h∈N

max
x∈Bρ

|vh(x)| ≤ M(2ρ)−N/p sup
h∈N

‖vh‖Lp(B2ρ) < ∞,

so that (vh) is uniformly bounded in Bρ. Then, by virtue of [22, Theorem 8],
up to a subsequence (vh) converges uniformly to v0 in a small neighborhood
of zero. Similarly one shows that vh → v0 in C1

loc(Rn). Therefore, it is easily
seen that v0 is a nontrivial positive solution of (2.9); that is, v0 ∈ G(z0).
Since the map β is strictly convex, we can use Theorem 2.5 by choosing in
(2.6) ϕ = 0 and

L(x, s, ξ) := α(z0 + εhx)β(ξ) + V (z0 + εhx)
sp

p
− K(z0 + εhx)F (s),

h(x) = hε,k(x) := (0, . . . , 0︸ ︷︷ ︸
k−1

, T (εx), 0, . . . , 0︸ ︷︷ ︸
n−k

), for ε > 0 and k = 1, . . . , n,

for every x ∈ Rn, s ∈ R+, and ξ ∈ Rn, the function T ∈ C1
c (Rn) being

chosen so that T (x) = 1 for |x| ≤ 1 and T (x) = 0 for |x| ≥ 2. In particular,
hε,k ∈ C1

c (Rn, Rn) and

∂ih
j
ε,k(x) = ε∂iT (εx)δkj , for every x ∈ Rn, ε > 0, and i, j, and k.
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Then, it follows from (2.6) that

0 =
n∑

i=1

∫
Rn

ε∂iT (εx)α(z0 + εhx)∂ξi
β(∇vh)∂kvh dx

−
∫

Rn

ε∂kT (εx)
[
α(z0 + εhx)β(∇vh) + V (z0 + εhx)

vp
h

p

− K(z0 + εhx)F (vh)
]
dx

−
∫

Rn

εhT (εx)
[ ∂α

∂xk
(z0 + εhx)β(∇vh) +

∂V

∂xk
(z0 + εhx)

vp
h

p

− ∂K

∂xk
(z0 + εhx)F (vh)

]
dx

for every ε > 0, h ∈ N, and k = 1, . . . , n. Since the sequence (vh) is bounded
in WV (Rn), by (1.1), (1.2), and the boundedness of α and K, we have∣∣∣ n∑

i=1

∫
Rn

∂iT (εx)α(z0 + εhx)∂ξi
β(∇vh)∂kvh dx

∣∣∣ ≤ C,

∣∣∣ ∫
Rn

∂kT (εx)
[
α(z0 + εhx)β(∇vh) + V (z0 + εhx)

vp
h

p

−K(z0 + εhx)F (vh)
]
dx

∣∣∣ ≤ C ′,

for some positive constants C and C ′. Therefore, letting first ε → 0 yields∫
Rn

[
∂α

∂xk
(z0 + εhx)β(∇vh) +

∂V

∂xk
(z0 + εhx)

vp
h

p
(2.10)

− ∂K

∂xk
(z0 + εhx)F (vh)

]
dx = 0,

for every h ∈ N and k = 1, . . . , n. Letting now h → ∞, by (2.7), we find

∂α

∂xk
(z0)

∫
Rn

β(∇v0) dx +
∂V

∂xk
(z0)

∫
Rn

vp
0

p
dx − ∂K

∂xk
(z0)

∫
Rn

F (v0) dx = 0,

for every k = 1, . . . , n, which yields

∇α(z0) ·w
∫

Rn

β(∇v0) dx+∇V (z0) ·w
∫

Rn

vp
0

p
dx = ∇K(z0) ·w

∫
Rn

F (v0) dx,
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for every w ∈ Rn. Then, since v0 
≡ 0, assertion (a) immediately follows.
Moreover, since v0 ∈ G(z0), by the definition of ∂Γ−, we obtain

∂Γ−(z0;w) = sup
v∈G(z0)

[
∇α(z0) · w

∫
Rn

β(∇v) dx

+ ∇V (z0) · w
∫

Rn

|v|p
p

dx −∇K(z0) · w
∫

Rn

F (v) dx
]

≥ ∇α(z0) · w
∫

Rn

β(∇v0) dx

+ ∇V (z0) · w
∫

Rn

vp
0

p
dx −∇K(z0) · w

∫
Rn

F (v0) dx = 0,

for every w ∈ Rn. Analogously, by the definition of ∂Γ+, we have

∂Γ+(z0;w) = inf
v∈G(z0)

[
∇α(z0) · w

∫
Rn

β(∇v) dx

+ ∇V (z0) · w
∫

Rn

|v|p
p

dx −∇K(z0) · w
∫

Rn

F (v) dx
]

≤ ∇α(z0) · w
∫

Rn

β(∇v0) dx

+ ∇V (z0) · w
∫

Rn

vp
0

p
dx −∇K(z0) · w

∫
Rn

F (v0) dx = 0,

for every w ∈ Rn. Therefore z0 ∈ C and assertion (b) is proved. If G(z0) =
{v0}, then clearly Σ admits all the directional derivatives at z0 and

∂Σ
∂w

(z0) = ∂Γ−(z0;w) = ∂Γ+(z0;w) = 0, for every w ∈ Rn,

by virtue of (b). This proves assertion (c). �

The strong convergence required by (2.7) allows us to take the limit
as h → ∞ in equation (2.10). In the semilinear case one can construct
uniform exponential barriers for the family (vh), and therefore the strong
convergence of (vh) follows easily from the Lebesgue convergence theorem
(see [18, 26, 27]). The well-known loss of regularity for solutions of quasilin-
ear equations is usually an obstruction to this kind of argument. However,
if the solutions belong to a suitable space, then a pointwise concentration
suffices (see Corollary 2.9).
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Remark 2.7. We wish to point out that Theorem 2.6 holds true also for
the more general class of quasilinear equations

−εpdiv (α(x)∂ξβ(u,∇u)) + εpα(x)∂sβ(u,∇u) + V (x)up−1 = K(x)f(u),

under suitable assumptions on ∂ξβ(s, ξ) and ∂sβ(s, ξ) (see [12]). On the
other hand, although the ground-state function Σ can be defined exactly as
in Definition 2.2 and Σ(z) = cz (cf. [12, Theorem 3.2]), the presence of u
itself in the function β makes the problems of the regularity of Σ and of the
decay at infinity for the rescaled family of solutions very complicated, even
in the nondegenerate case p = 2.

Definition 2.8. Let z0 ∈ Rn. We say that a sequence (uεh
) of solutions

of (Pε) concentrates at z0 if uεh
(z0) ≥ � > 0 for some � > 0 and for every

η > 0 there exist � > 0 and h0 ∈ N such that

uεh
(x) ≤ η, for every h ≥ h0 and |x − z0| ≥ εh�.

This is precisely the notion of concentration adopted in [26, 27].

Corollary 2.9. Let (uεh
) be a family of solutions of (Pε) which concentrates

at a point z0 ∈ Rn. Suppose that, for every h ∈ N sufficiently large,

uεh
∈ C1

d(Rn) ∩ W 2,n(Rn),

where

C1
d(Rn) :=

{
u ∈ C1(Rn) : lim

|x|→∞
u(x) = 0 and lim

|x|→∞
∇u(x) = 0

}
.

Then, all the conclusions of Theorem 2.6 hold true.

Proof. If uεh
∈ C1

d(Rn)∩W 2,n(Rn), then one can apply the results contained
in [20] to show that the rescaled sequence vεh

decays exponentially fast at
infinity, uniformly with respect to h, together with all its partial derivatives.
Hence we can pass to the limit in equation (2.10), and complete the proof
as in Theorem 2.6. �

For the particular but important case α(x) = 1, β(ξ) = |ξ|p−2ξ, and
f(s) = sq−1, p < q < p∗, we can still prove a fast-decay at infinity for the
solutions.

Lemma 2.10. Let (uεh
) be a sequence of solutions of the problem{

−εp∆pu + V (x)up−1 = K(x)uq−1 in Rn

u > 0 in Rn
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which concentrates at z0 ∈ Rn. Then, if we set

vh(x) := uεh
(z0 + εhx),

for each η > 0 there exist Rη, Cη > 0 independent of h such that

|vh(x)| ≤ Cη exp
{
−

( η

p − 1

)1/p
|x|

}
,

for every |x| ≥ Rη and every h ∈ N.

Proof. For every h ∈ N, vh satisfies the equation

−∆pvh + V (z0 + εhx)vp−1
h = K(z0 + εhx)vq−1

h in Rn.

Since (uεh
) is a concentrating sequence, it results that

lim
|x|→∞

vh(x) = 0, uniformly in h ∈ N.

Then, setting infx∈Rn V (x) = V0, given η > 0 there exists a positive constant
Rη independent of h such that

V (z0 + εhx)vp−1
h (x) − K(z0 + εhx)vq−1

h (x) ≥ (V0 − η)vp−1
h (x),

for every |x| ≥ Rη. It follows that the inequality

−div (|∇vh|p−2∇vh) + (V0 − η)vp−1
h ≤ 0 (2.11)

holds true for every h ∈ N and |x| ≥ Rη. Define now the function

Φ(x) := Cη exp
{
−

(V0 − η

p − 1

)1/p
|x|

}
,

where Cη := exp
{(V0−η

p−1

)1/p
Rη

}
max|x|=Rη

vh(x). Notice that, since vh is
uniformly bounded, we can assume that Cη is independent of h. Now, exactly
the same computations of [14, Theorem 2.8] entail

−div (|∇Φ|p−2∇Φ) + (V0 − η)Φp−1 ≥ 0. (2.12)

Testing inequalities (2.11) and (2.12) with φ = (vh − Φ)+ on {|x| ≥ Rη}
yields∫

{|x|≥Rη}∩{vh>Φ}

(
|∇vh|p−2∇vh · ∇(vh − Φ) + (V0 − η)vp−1

h (vh − Φ)
)
dx ≤ 0,∫

{|x|≥Rη}∩{vh>Φ}

(
|∇Φ|p−2∇Φ · ∇(vh − Φ) + (V0 − η)Φp−1(vh − Φ)

)
dx ≥ 0.
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By subtracting the previous inequalities and taking into account that
n∑

i=1

(|ξ|p−2ξi − |ζ|p−2ζi)(ξi − ζi) > 0, for every ξ, ζ ∈ Rn, ξ 
= ζ,

we get ∫
{|x|≥Rη}∩{vh>Φ}

(vp−1
h − Φp−1)(vh − Φ) dx ≤ 0.

Since vh and Φ are continuous functions, it has to be that

{|x| ≥ Rη} ∩ {vh > Φ} = ∅, for every h ∈ N,

which implies the assertion. �

Theorem 2.11. Let (uεh
) be a sequence of solutions of the problem{

−εp∆pu + V (x)up−1 = K(x)uq−1 in Rn

u > 0 in Rn
(2.13)

which concentrates at z0 ∈ Rn. Then, the following facts hold:
(a) the vectors ∇V (z0) and ∇K(z0) are proportional ;
(b) z0 ∈ C; that is, z0 is a weak-concentration point for (2.13);
(c) if 1 < p ≤ 2, then all the partial derivatives of Σ at z0 exist and

∇Σ(z0) = 0; that is, z0 is a critical point of Σ.

Proof. By virtue of Lemma 2.10 we can pass to the limit in equation (2.10)
and get assertions (a) and (b) as in Theorem 2.6. If 1 < p ≤ 2, by combining
the results of [5, 15] and [23], for every z ∈ Rn, problem (Pz) admits a unique
positive C1 solution (up to translations) such that u(x) → 0 as |x| → ∞.
Then G(z0) = {v0} and assertion (c) follows by the corresponding assertion
in Theorem 2.6. �

3. The semilinear case

The main goal of this section is that of getting, in the particular case
β(ξ) = ξ, namely semilinear equations, a more accurate version of Theo-
rem 2.6 involving the Clarke subdifferential of the ground-state function Σ.
We wish to stress that we have in mind the case when f is not simply the
power nonlinearity up−1 (cf. Remark 3.2).

For z ∈ Rn fixed, we consider the limiting functional Iz : H1(Rn) → R,

Iz(u) := α(z)
∫

Rn

|∇u|2 dx +
V (z)

p

∫
Rn

|u|p dx − K(z)
∫

Rn

F (u) dx,
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whose critical points are of course solutions of (Pz). The minimax levels cz of
Iz are defined according to (2.1). Throughout the rest of this section, we will
denote by S(z) the set of all the nontrivial solutions of (Pz) corresponding to
the energy level Σ(z) (the set of ground-states). It is known that S(z) 
= ∅
for every z ∈ Rn (see [2]).

As the next lemma shows, in this particular situation, the function Σ has
further regularity properties (and in some cases it relates to the maps ∂Γ−

and ∂Γ+).

Lemma 3.1. If p = 2 and condition (2.2) holds, then the following facts
hold:

(i) Σ is locally Lipschitz;
(ii) the directional derivatives from the left and the right of Σ at z along

w,
(

∂Σ
∂w

)−(z) and
(

∂Σ
∂w

)+(z) respectively, exist at every point z ∈ Rn,
and it holds that(∂Σ

∂w

)−
(z) = sup

v∈S(z)
∇zIz(v) · w,(∂Σ

∂w

)+
(z) = inf

v∈S(z)
∇zIz(v) · w,

for every z, w ∈ Rn. In particular, if G(z) = S(z), we have

∂Γ−(z;w) =
(∂Σ

∂w

)−
(z) and ∂Γ+(z;w) =

(∂Σ
∂w

)+
(z), (3.1)

for every w ∈ Rn.

Proof. By the results of [27], Σ is a locally Lipschitz map. We remark
here that, since z acts as a parameter, the functional Iz is invariant under
orthogonal change of variables. Therefore, without loss of generality, to get
the formulas for the left and right directional derivatives of Σ, it suffices to
show that(∂Σ

∂zi

)−
(z) = sup

v∈S(z)

[ ∂α

∂zi
(z)

∫
Rn

|∇v|2
2

+
∂V

∂zi
(z)

∫
Rn

|v|p
p

− ∂K

∂zi
(z)

∫
Rn

F (v)
]
,

(∂Σ
∂zi

)+
(z) = inf

v∈S(z)

[ ∂α

∂zi
(z)

∫
Rn

|∇v|2
2

+
∂V

∂zi
(z)

∫
Rn

|v|p
p

− ∂K

∂zi
(z)

∫
Rn

F (v)
]
,

for every z ∈ Rn and i = 1, . . . , n. These can be obtained arguing as
in [18, 27]. Finally, formulas (3.1) follow by the definition of ∂Γ+(z;w)
and ∂Γ−(z;w). �
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Remark 3.2. Assume that p = 2, K is bounded from below away from
zero, and f(u) = uq−1, where 2 < q < 2∗. Then Σ is smooth and it can be
given an explicit form (cf. [18, Remark 2.1]): there exists Cq > 0 such that

Σ(z) = Cq

[ V (z)
K(z)

] q
q−2

−n
2
√

α(z)K(z), for every z ∈ Rn.

Let us now recall from [4] two definitions that will be useful in the sequel.

Definition 3.3. Let f : Rn → R be a locally Lipschitz function near a given
point z ∈ Rn. The generalized derivative of the function f at z along the
direction w ∈ Rn is defined by

f0(z;w) := lim sup
ξ→z

λ→0+

f(ξ + λw) − f(ξ)
λ

.

Definition 3.4. Let f : Rn → R be a locally Lipschitz function near a given
point z ∈ Rn. The Clarke subdifferential (or generalized gradient) of f at z
is defined by ∂f(z) :=

{
η ∈ Rn : f0(z, w) ≥ η · w, for every w ∈ Rn

}
.

By [4, Proposition 2.3.1] we learn that

Proposition 3.5. For every z ∈ Rn, the set ∂f(z) is nonempty and convex,
and ∂(−f)(z) = −∂f(z).

The next is the main result of this section.

Theorem 3.6. Assume that (uεh
) is a sequence of solutions of the problem{

−ε2div (α(x)∇u) + V (x)u = K(x)f(u) in Rn

u > 0 in Rn
(3.2)

which concentrates at z0. Then, the following facts hold:
(a) the vectors ∇α(z0), ∇V (z0), and ∇K(z0) are linearly dependent ;
(b) z0 ∈ C; that is, z0 is a weak-concentration point for (3.2);
(c) if either G(z0) = S(z0) or

ε−n
h Jεh

(uεh
) → cz0 , (3.3)

where

Jε(v) =
ε2

2

∫
Rn

α(x)|∇v|2 dx +
1
2

∫
Rn

V (x)|v|2 dx −
∫

Rn

K(x)F (v) dx, (3.4)

we have 0 ∈ ∂Σ(z0); that is, z0 is a critical point of Σ in the sense
of the Clarke subdifferential ;
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(d) if S(z0) = {v0}, then all the partial derivatives of Σ at z0 exist and

∇Σ(z0) = 0;

that is, z0 is a critical point of Σ.

Proof. For problem (3.2) it is possible to prove the existence of uniform
exponentially decaying barriers. Then we can pass to the limit in equation
(2.10), to get assertions (a) and (b) as in Theorem 2.6. If G(z0) = S(z0), by
combining formulas (3.1) of Lemma 3.1 with (b) of Theorem 2.6, we have(∂Σ

∂w

)−
(z0) ≥ 0 and

(∂Σ
∂w

)+
(z0) ≤ 0, (3.5)

for every w ∈ Rn. In particular, it holds that(∂(−Σ)
∂w

)+
(z0) ≥ 0, for every w ∈ Rn.

Then, by the definition of (−Σ)0(z0;w) we get

(−Σ)0(z0;w) ≥
(∂(−Σ)

∂w

)+
(z0) ≥ 0, for every w ∈ Rn.

By the definition of ∂(−Σ)(z0) we immediately get 0 ∈ ∂(−Σ)(z0), which,
together with Proposition 3.5, yields assertion (c). To prove the same con-
clusion when (3.3) holds, we simply remark that cz0 = Σ(z0). Therefore, if
v0 is the limit of the sequence (vh) defined in (2.8), then v0 ∈ S(z0) because
we can exploit again some exponential barrier to pass to the limit. As a
consequence, arguing as in Theorem 2.6, it follows that inequalities (3.5)
hold and we are reduced to the previous case. Finally, if S(z0) = {v0}, the
map Σ admits all the directional derivatives at z0 and, by virtue of (3.5)
they are equal to zero, which proves (d). �

We would like to remark that a different definition of concentration has
been used in [13]. We recall it here, suitably adapted to our purposes.

Definition 3.7. Assume that uε ∈ C2(Rn) is a family of solutions of (3.2),
and let Jε be as in (3.4). Moreover, let xε ∈ Rn be such that maxx∈Rn uε =
uε(xε). We say that uε concentrates at z0 ∈ Rn if the following facts hold:

(i) lim
ε→0

xε = z0;

(ii) lim
ε→0

ε−nJε(uε) = cz0 .

It is not difficult to check that if (uε) is a sequence as in the above defi-
nition, then (uε) concentrates at z0 in the sense of Definition 2.8, vanishing
at an exponential rate away from z0 (cf. [13, Lemma 4.2]). In particular,
according to (c) of Theorem 3.6, we have 0 ∈ ∂Σ(z0).
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We finish the paper with an open problem. Assume that (uh) is a sequence
of solutions of problem (3.2). Suppose that these solutions concentrate at
z0 ∈ Rn and S(z0) = {v0}. Is it possible to prove that z0 is a C1-stable
critical point of Σ, according to the definition of Yanyan Li [16]?
Acknowledgment. The authors are indebted to the anonymous referee
for her/his careful reading of the manuscript and for valuable remarks and
comments.
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