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We consider the standing wave solutions of the three dimensional semilinear Schrödinger
equation with competing potential functions V and K and under the action of an external
electromagnetic field B. We establish some necessary conditions for a sequence of such
solutions to concentrate, in two different senses, around a given point. In the particular
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of a smooth ground energy map independent of B.
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1. Introduction

In this work we deal with the standing wave solutions

ϕ(x, t) = e−
iV0

�
tu(x), x ∈ R

3, t ∈ R
+

of the time-dependent Schrödinger equation with electromagnetic field

i�
∂ϕ

∂t
=

(
�

i
∇− A(x)

)2

ϕ + W (x)ϕ − |ϕ|p−1ϕ,

where the Schrödinger operator is defined as(
�

i
∇− A

)2

:= −�
2∆ − 2�

i
〈A | ∇〉 + |A|2 − �

i
div A.
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Here � > 0 is the Planck constant, p ∈ (1, 5), and the functions W : R3 → R and
A: R3 → R3 are, respectively, a scalar potential of the electric field E = −∇W and a
vector potential for the external electromagnetic field B = curlA. Now, the function
u: R3 → C which appears in ϕ(x, t) satisfies, more generally, a time-independent
equation of the form(

�

i
∇− A(x)

)2

u + V (x)u = K(x)f(|u|2)u, (1.1)

where V (x) = W (x) + V0, K: R3 → R is an additional potential function, and
f : R+ → R is a suitable nonlinearity. Quite recently, under reasonable assumptions
on A, V and K, the study of the existence of ground (bound) state solutions u�

to (1.1) and the related investigation of the semi-classical limit (the transition from
Quantum to Classical Mechanics as � → 0), has been tackled in various contribu-
tions (see e.g. [2, 4, 6, 7, 14, 19] for the case A �= 0 and [3, 11–13, 15, 23, 26] for the
case A = 0). More precisely, it turns out that, if z0 ∈ R3 is a non-degenerate critical
point of the so called ground-energy function Σr: R3 → R (see Definition 2.2), then
for every � sufficiently small (1.1) admits a least energy solution u� concentrating
near z0. In the opposite direction, we are interested in discussing some necessary
conditions for the concentration of a sequence of bound-state solutions to (1.1) in
the neighborhood of a given point z0. In absence of the electromagnetic field, this
problem has been studied in various papers (see e.g. [1, 29, 30]), mainly in the case
where f(u) is a power of exponent p (see also [17, 24]). It turns out that, at least
in this particular situation, for the concentration to occur, z0 has to be a critical
point for the C1 ground-energy map (see [30, Lemma 2.5])

Σr(z) =
V

5−p
2p−2 (z)

K
2

p−1 (z)
, for every z ∈ R3. (1.2)

On the other hand, to our knowledge, for a more general nonlinearity f(u), the
function Σr(z) is locally Lipschitz continuous, and its further smoothness properties
seem to depend on the uniqueness results for the limiting equation

−∆u + V (z)u = K(z)f(|u|2)u, (1.3)

where z ∈ R3 acts as a parameter. To overcome this problem, recently, the authors
have provided in [28] new necessary conditions involving generalized derivatives of
Σr such as the Clarke subdifferential or even weaker conditions, not requiring any
regularity of Σr (see Definition 2.4).

Our purpose in this paper is to understand what happens under the presence
of an external electromagnetic vector potential A, and to see whether A may influ-
ence or not the location of spikes for the solutions of (1.1). Actually, in general,
this fact seems to depend on the notion of concentration that one adopts. We con-
sider at least two ways of saying that a sequence (u�) of bound-state solutions
to (1.1) is peaking around a given point z0. The first one, the most intuitive, is
a pointwise concentration and it is precisely the one used in two papers by Wang
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and Zheng [29, 30]. The second is a sort of energetic concentration in terms of the
functional associated with (1.1),

J�(u) =
1
2

∫
R3

|D�u|2 + V (x)|u|2dx −
∫

R3
K(x)F (|u|2)dx,

where D� = �

i ∇− A(x). Precisely, we require that

lim
�→0

�
−3J�(u�) = Σr(z0).

As we prove in the main result, Theorem 3.1, the vector potential A might
affect the location of pointwise concentration points, whereas it does not influ-
ence the energetic concentration points. In the particular but fairly significant case
where f is a power nonlinearity, the above notions of concentration coincide (see
Proposition 2.1), and it turns out that the peaks locate at the classical critical points
of the smooth function (1.2) independent of A, thus rigorously confirming what was
conjectured in [7]. In some sense, from a heuristic point of view, A tends to lurk into
the complex phase factor of the solutions. We point out that, in the course of the
proof of Theorem 3.1, we will derive an ad-hoc Pucci–Serrin type identity for the
complex-valued solutions to (1.1) (cf. formula (3.6)). Just for the sake of simplicity,
we restrict the attention to the physically relevant case of space-dimension n = 3.

Notations.

(1) �w (respectively, �w) stands for the real (respectively, the imaginary) part
of w ∈ C.

(2) i is the imaginary unit, namely i2 = −1. For w ∈ C, we set w̄ = �w − i�w.
(3) The gradient of a C1 function f : R3 → R will be denoted by ∇f . The jacobian

matrix of a C1 function g: R3 → R3 will be indicated by g′. The directional
derivatives of f and g along a vector w will be indicated by ∂f

∂w and ∂g
∂w .

(4) 〈x | y〉 denotes the standard scalar product in R
3 of x and y.

2. Problem Setting and Auxiliary Results

In this section, we collect a few preliminary definitions and results that we need
in order to state and prove our main achievement, Theorem 3.1. For the sake of
simplicity, we rename the constant � into ε > 0. We assume that the functions

A: R
3 → R

3, V : R
3 → R, K: R

3 → R

are all of class C1, K is positive and there exist V0 > 0 and K0 > 0 with

inf
x∈R3

V (x) = V0 and sup
x∈R3

K(x) = K0. (2.1)

Moreover, the function f : R+ → R is of class C1, increasing, f(0) = 0 and

lim
s→∞

f(s)

s
p−1
2

= 0 and 0 < ϑF (s) ≤ f(s)s for some p ∈ (1, 5) and ϑ > 2,
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where F (s) = 1
2

∫ s

0
f(t) dt for s ∈ R+. In order to formulate the problem in a

suitable variational setting, for every ε > 0, we introduce the (real) Hilbert space
Hε

A,V defined as the closure of C∞
c (R3, C) with respect to scalar product

(u, v)Hε
A,V

:= �
∫

R3
DεuDεv + V (x)uv̄ dx, Dεu =

ε

i
∇− A(x).

As remarked in [14], Hε
A,V has in general no relationships with H1(R3, C). However,

the following diamagnetic inequality is well known (see e.g. [21])

ε|∇|u|(x)| ≤ |Dεu(x)|, for every u ∈ Hε
A,V and a.e. x ∈ R

3, (2.2)

so that |u| ∈ H1(R3, R) for any u ∈ Hε
A,V . Finally we recall that the Schrödinger

operator is gauge invariant: if we replace A by Ã = A+∇χ for any χ ∈ C2(R3, R),
and we let ũ = e

i
ε χu, then curl Ã = curlA and(ε

i
∇− Ã

)
ũ = e

i
ε χ

(ε

i
∇− A

)
u,

so that ‖ũ‖Hε
Ã,V

= ‖u‖Hε
A,V

.

Under the above assumptions, we give the following

Definition 2.1. We say that (uε) is a sequence of bound-state solutions to
(ε

i
∇− A(x)

)2

u + V (x)u = K(x)f(|u|2)u (Sε)

if uε belongs to Hε
A,V for every ε > 0,

sup
ε>0

ε−3‖uε‖2
Hε

A,V
< ∞ (2.3)

and uε satisfies (Sε) on R3 in weak sense.

2.1. The ground-energy functions

Fixed z ∈ R
3, we consider the functional

Iz(u) =
1
2

∫
R3

|∇u|2 + V (z)|u|2 dx −
∫

R3
K(z)F (|u|2) dx

associated with the limiting equation (1.3). It is readily seen that Iz is C1 over both
the spaces H1(R3, R) and H1(R3, C).

Definition 2.2. We define the real and the complex ground-state functions

Σr: R
3 → R and Σc: R

3 → R

by setting, for every z ∈ R3,

Σr(z) = min
v∈Nz

Iz(v) and Σc(z) = min
v∈Ñz

Iz(v),
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where Nz (respectively, Ñz) are the real (respectively, the complex) Nehari mani-
folds,

Nz =
{
u ∈ H1(R3, R)\{0} : I ′z(u)[u] = 0

}
,

Ñz =
{
u ∈ H1(R3, C)\{0} : I ′z(u)[u] = 0

}
.

Here I ′z(u)[v] stands for the directional derivative of Iz at u along v.

We denote by Sr(z) the set of positive radial solutions up to translations to (1.3)
at the energy level Σr(z). As the next lemma claims, the map Σr enjoys some useful
regularity properties (see [30]).

Lemma 2.1. The following facts hold:

(i) Σr is locally Lipschitz continuous;
(ii) the directional derivatives from the left and the right of Σr at every point z ∈ R

3

along any w ∈ R
3 exist and it holds

(
∂Σr

∂w

)−
(z) = sup

v∈Sr(z)

〈∇zIz(v) | w〉 ,

(
∂Σr

∂w

)+

(z) = inf
v∈Sr(z)

〈∇zIz(v) | w〉 .

Explicitly, we have
(

∂Σr

∂w

)−
(z) = sup

v∈Sr(z)

[
∂V

∂w
(z)

∫
R3

|v|2
2

dx − ∂K

∂w
(z)

∫
R3

F (|v|2) dx

]
,

(
∂Σr

∂w

)+

(z) = inf
v∈Sr(z)

[
∂V

∂w
(z)

∫
R3

|v|2
2

dx − ∂K

∂w
(z)

∫
R3

F (|v|2) dx

]
,

for every z, w ∈ R3.

The next result will turn out to be pretty useful along the proof of our main
theorem. We stress that it contains, as a particular case, [19, Lemma 7].

Lemma 2.2. The following facts hold:

(i) Σc(z) = Σr(z), for every z ∈ R3;
(ii) if Uz: R3 → C is a least energy solution of problem (1.3), then

|∇|Uz|(x)| = |∇Uz(x)| and �(
iŪz(x)∇Uz(x)

)
= 0,

for a.e. x ∈ R3;
(iii) there exist ω ∈ R and a real-valued least energy solution uz of problem (1.3)

with

Uz(x) = eiωuz(x), for a.e. x ∈ R
3. (2.4)
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Proof. Fix z ∈ R3. For the sake of convenience, we introduce the functionals

T (u) =
∫

R3
|∇u|2 dx,

Pz(u) =
∫

R3

[
K(z)F (|u|2) − 1

2
V (z)|u|2

]
dx.

Observe that Iz(u) = 1
2T (u)−Pz(u). Consider the following minimization problems

σr(z) = min
{
T (u): u ∈ H1(R3, R), Pz(u) = 1

}
,

σc(z) = min
{
T (u): u ∈ H1(R3, C), Pz(u) = 1

}
.

Note that, obviously, there holds σc(z) ≤ σr(z). If we denote by u� the Schwarz
symmetric rearrangement (see e.g. [3, 21]) of the positive real valued function |u| ∈
H1(R3, R), then, Cavalieri’s principle yields∫

R3
F (|u�|2) dx =

∫
R3

F (|u|2) dx and
∫

R3
|u�|2 dx =

∫
R3

|u|2 dx,

which entails Pz(u�) = Pz(u). Moreover, by the Polya–Szegö inequality, we have

T (u�) =
∫

R3
|∇u�|2 dx ≤

∫
R3

|∇|u||2 dx ≤
∫

R3
|∇u|2 dx = T (u),

where the second inequality follows by (2.2) with A = 0 and ε = 1. Therefore, one
can compute σc(z) by minimizing over the subclass of positive, radially symmetric
and radially decreasing functions u ∈ H1(R3, R). As a consequence, σr(z) ≤ σc(z).
In conclusion, σr(z) = σc(z). Observe now that

Σr(z) = min
{
Iz(u): u ∈ H1(R3, R)\{0} is a solution to (1.3)

}
,

Σc(z) = min
{
Iz(u): u ∈ H1(R3, C)\{0} is a solution to (1.3)

}
.

The above equations hold since any nontrivial real (respectively, complex) solution
of (1.3) belongs to Nz (respectively, Ñz) and, conversely, any solution of Σr(z)
(respectively, Σc(z)) produces a nontrivial solution of (1.3). Moreover, it follows
from an easy adaptation of [3, Theorem 3, p. 331] that Σr(z) = σr(z) as well as
Σc(z) = σc(z). In conclusion,

Σr(z) = σr(z) = σc(z) = Σc(z),

which proves (i). To prove (ii), let Uz: R3 → C be a least energy solution to
problem (1.3). There holds |∇|Uz|| ≤ |∇Uz|. Assume by contradiction that

L3({x ∈ R
3: |∇|Uz|(x)| < |∇Uz(x)|}) > 0,

where L3 is the Lebesgue measure in R3. Then we get Pz(|Uz |) = Pz(Uz) and

σr(z) ≤
∫

R3
|∇|Uz||2 dx <

∫
R3

|∇Uz |2 dx = σc(z),
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which is a contradiction. The second assertion in (ii) follows by a direct computa-
tion. Indeed, a.e. in R3, we have

|∇|Uz|| = |∇Uz| if and only if �Uz∇(�Uz) = �Uz∇(�Uz).

If this last condition holds, in turn, a.e. in R3 we have

Ūz∇Uz = �Uz∇(�Uz) + �Uz∇(�Uz),

which implies the desired assertion. Finally, the representation formula of (iii) is an
immediate consequence of (ii), since one obtains Uz = eiω|Uz| for some ω ∈ R.

2.2. Generalized gradients

Assume that f : R3 → R is a locally Lipschitz continuous function. For the reader’s
convenience, we recall that the Clarke subdifferential (or generalized gradient) of f

at a point z (cf. [8]) is defined as

∂Cf(z) =
{
η ∈ R

3: f0(z, w) ≥ 〈η | w〉 , for every w ∈ R3
}
,

where f0(z, w) is the Clarke derivative of f at z along the direction w, defined as

f0(z; w) = lim sup
ξ→z

λ→0+

f(ξ + λw) − f(ξ)
λ

.

From [8, Proposition 2.3.1] we learn that ∂Cf(z) is nonempty, convex and

∂C(−f)(z) = −∂Cf(z), for every z ∈ R
3. (2.5)

In light of (i) in Lemma 2.1, we are allowed to give the following

Definition 2.3. We denote by S ⊂ R3 the set of critical points of the function Σr

in the sense of the Clarke subdifferential, namely

S :=
{
z ∈ R

3: 0 ∈ ∂CΣr(z)
}
.

Now, for z ∈ R3, we consider the gauge invariant functional Jz: H1(R3, C) → R

Jz(u) =
1
2

∫
R3

∣∣∣∣
(

1
i
∇− A(z)

)
u

∣∣∣∣
2

+ V (z)|u|2 dx −
∫

R3
K(z)F (|u|2) dx,

associated with the limiting equation(
1
i
∇− A(z)

)2

u + V (z)u = K(z)f(|u|2)u.

We denote by Gc(z) the set of the nontrivial solutions v: R3 → C, up to translations,
of the above limiting problem with bounded, but not necessarily least, energy.
Moreover, we introduce the linear map Υz: R

3 → R, defined as

Υz(x) :=
3∑

j=1

Aj(z)xj , for every x ∈ R3.
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Apparently, for every z ∈ R3, there holds ∇Υz(x) = A(z). It is readily seen that for
every v ∈ Gc(z) we can write v = eiΥzUz, where Uz is a (possibly complex-valued)
solution to problem (1.3).

Definition 2.4. Let z ∈ R3. For every w ∈ R3 we define Γ−
z (w) and Γ+

z (w) by

Γ−
z (w) := sup

v∈Gc(z)

〈∇zJz(v) | w〉 and Γ+
z (w) := − inf

v∈Gc(z)
〈∇zJz(v) | w〉 ,

where ∇z is the gradient with respect to z. Explicitly, for every w ∈ R3,

Γ−
z (w) = sup

v=eiΥz Uz
v∈Gc(z)

[〈
∂A

∂w
(z)

∣∣∣∣
∫

R3
�(iŪz∇Uz) dx

〉

+
∂V

∂w
(z)

∫
R3

|Uz|2
2

dx − ∂K

∂w
(z)

∫
R3

F (|Uz|2) dx

]
,

Γ+
z (w) = − inf

v=eiΥz Uz
v∈Gc(z)

[〈
∂A

∂w
(z)

∣∣∣∣
∫

R3
�(iŪz∇Uz) dx

〉

+
∂V

∂w
(z)

∫
R3

|Uz|2
2

dx − ∂K

∂w
(z)

∫
R3

F (|Uz|2) dx

]
.

Notice that

∂Γ±
z (0) =

{
η ∈ R

3: Γ±
z (w) ≥ 〈η | w〉, for every w ∈ R3

}
,

where ∂Γ±
z (0) is the subdifferential of the convex function Γ±

z at zero. We set

S∗ :=
{
z ∈ R

3: 0 ∈ ∂Γ−
z (0) ∩ ∂Γ+

z (0)
}

and we say that S∗ is the set of weak-concentration points for problem (Sε).

2.3. Concentration of bound-state solutions

We now introduce two (gauge invariant) notions of concentration for a sequence of
bound-states solutions of (Sε) around a given point.

Definition 2.5. Let z0 ∈ R3 and assume that (uεh
) ⊂ Hεh

A,V is a sequence of
bound-state solutions to problem (Sε). We say that

(i) z0 is a concentration point for (uεh
) if |uεh

(z0)| ≥ � > 0 and for every η > 0
there exist ρ > 0 and h0 ≥ 1 such that

|uεh
(x)| ≤ η, for every h ≥ h0 and |x − z0| ≥ εhρ.

The set of such points will be denoted by C ⊂ R3;
(ii) z0 is an energy-concentration point if, in addition

lim
h→∞

ε−3
h Jεh

(uεh
) = Σr(z0). (∗)

The set of such points will be denoted by E ⊂ R3.
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For instance, if K ≡ 1, f is a power, z0 is a minimum point of V and (uεh
) is a

sequence of least-energy solutions to (Sε), then z0 ∈ E �= ∅ (cf. [19, Lemma 3]).
Next we see that in the case of power nonlinearities

f(u) = λu
p−1
2 for some p ∈ (1, 5) and λ > 0, (2.6)

the above notions (i) and (ii) coincide.

Proposition 2.1. Let f be as in (2.6). Then E = C.

Proof. We can prove the proposition under the mere assumption (*). Consider
vh(x) = uεh

(z0 + εhx). Then (|vh|) converges to some ṽ ≥ 0 weakly in H1(R3, R)
and strongly in Lq

loc(R
3, R) for 2 ≤ q < 6 (see Step I in the proof of Theorem 3.1).

By Kato’s inequality [27, Theorem X.33], we get∫
R3

K(z0 + εhx)|vh|pṽ dx ≥
∫

R3
∇|vh|∇ṽ + V (z0 + εhx)|vh|ṽ dx

which, as h → ∞, yields,∫
R3

K(z0)|ṽ|p+1 dx ≥
∫

R3
|∇ṽ|2 + V (z0)|ṽ|2 dx.

Therefore, there exists ϑ ∈ (0, 1] such that ϑṽ ∈ Nz0 . As a consequence,

Σr(z0) ≤ ϑ2

(
1
2
− 1

p + 1

) ∫
R3

|∇ṽ|2 + V (z0)|ṽ|2 dx

≤
(

1
2
− 1

p + 1

)
lim inf
h→∞

∫
R3

|∇|vh||2 + V (z0 + εhx)|vh|2 dx

≤
(

1
2
− 1

p + 1

)
lim inf
h→∞

∫
R3

∣∣∣∣
(

1
i
∇− A(z0 + εhx)

)
vh

∣∣∣∣
2

+V (z0 + εhx)|vh|2 dx

≤ lim inf
h→∞

ε−3
h Jεh

(uεh
) = Σr(z0),

where we have used the diamagnetic inequality (2.2) with ε = 1. Hence we get
ϑ = 1, which gives at once ṽ ∈ Nz0 . Then,

∫
R3

|∇ṽ|2 + V (z0)|ṽ|2dx ≤
(

1
2
− 1

p + 1

)−1

lim inf
h→∞

ε−3
h Jεh

(uεh
)

=
(

1
2
− 1

p + 1

)−1

Σr(z0) ≤
∫

R3
|∇ṽ|2 + V (z0)|ṽ|2dx.

This implies that |vh| → ṽ strongly in H1(R3, R). Repeating the arguments in
the proof of [19, Lemma 5] we conclude that z0 ∈ C (the concentration occurs
exponentially fast, see Step II of the proof of Theorem 3.1). This proves that E ⊂ C.
The converse inclusion follows by the uniqueness of solutions (up to translations)
to problem (1.3). Indeed, if z0 ∈ C, the sequence ε−3

h Jεh
(uεh

) converges to Jz0(v0)
being v0 an element of the family

{eiΥz0(x)+iωφ0(x)}ω∈R,
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where φ0 is the unique solution to (1.3) up to translations (cf. [19, Lemma 7]). In
particular, there holds Jz0(v0) = Iz0(φ0) = Σr(z0), that is z0 ∈ E , concluding the
proof. For similar considerations in the case A = 0, see e.g. [18, Lemma 4.2].

We are naturally led to consider the following question (see also Remark 3.1).

Question 2.1. When f(u) does not satisfy (2.6), is it still true that E = C?

3. The Main Result

For every p ∈ (1, 5), let us set

Sp :=
{
z ∈ R

3: (5 − p)K(z)∇V (z) = 4V (z)∇K(z)
}
.

We now come to the main result of the paper.

Theorem 3.1. Assume that there exist C ≥ 0 and γ > 0 such that, for |x| large,

|A′(x)| ≤ Ceγ|x|, |∇V (x)| ≤ Ceγ|x|, |∇K(x)| ≤ Ceγ|x|. (3.1)

Let (uεh
) ⊂ Hεh

A,V be a sequence of bound-state solutions to (Sε). Then,

C ⊂ S∗ and E ⊂ S.

If in addition f satisfies (2.6), then we have

C = E ⊂ S = Sp.

Proof. Let z0 ∈ C and set vh(x) = uεh
(z0 + εhx) for every h ≥ 1 and x ∈ R3.

Then, the sequence (vh) satisfies the rescaled equation

−∆vh − 2
i
〈A(z0 + εhx) | ∇vh〉 − εh

i
divA(z0 + εhx)vh

+ |A(z0 + εhx)|2vh + V (z0 + εhx)vh = K(z0 + εhx)f(|vh|2)vh. (3.2)

We shall divide the proof into five steps.

Step I. Up to a subsequence, (vh) converges in some Hölder space C2,α
loc (R3) to the

function v0(x) = eiΥz0(x)Uz0(x), where Uz0 : R3 → C is a solution to the equation

−∆Uz0 + V (z0)Uz0 = K(z0)f(|Uz0 |2)Uz0 . (3.3)

By the assumption on (uεh
), the sequence (vh) is bounded in H1

A,V , and the dia-
magnetic inequality (2.2) immediately implies that (|vh|) is bounded in H1(R3, R).
Therefore, up to a subsequence, it converges weakly in H1(R3, R) and locally
strongly in any Lq(R3, R) with q < 6 towards a positive function v∗. Moreover,
for each compact subset Λ ⊂ R3, by the continuity of A, (vh) is also bounded in
H1(Λ, C). We may now use the subsolution estimate (see e.g. [16, Theorem 8.17]) to
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get that (vh) is also bounded in L∞
loc(R

3) and hence in C2,α
loc (R3), via Schauder’ esti-

mates. By combining this fact with the results of [20], up to a subsequence, vh con-
verges to v0 in C2,α

loc (R3) and furthermore v0 �≡ 0, since |vh(0)| = |uεh
(z0)| ≥ � > 0.

By continuity, the limit v0 satisfies the limiting equation

−∆v0 − 2
i
〈A(z0) | ∇v0〉 + |A(z0)|2v0 + V (z0)v0 = K(z0)f(|v0|2)v0. (3.4)

If we define Uz0 : x ∈ R3 �→ e−iΥz0(x)v0(x), then Uz0 satisfies (3.3).

Step II. There exist two positive constants R∗ and C∗ such that

|vh(x)| ≤ C∗e−
q

V0
2 |x|, for every |x| ≥ R∗ and h ≥ 1, (3.5)

where V0 is defined in (2.1). Since z0 ∈ C, we have vh(x) → 0 as |x| → ∞, uniformly
with respect to h ≥ 1. Hence, for any η > 0, we can find a radius Rη > 0 such
that |vh(x)| < η whenever |x| > Rη and h ≥ 1. Therefore, exploiting again Kato’s
inequality

∆|vh| ≥ �(v̄h|vh|−1(∇− iA)2vh) (in distributional sense),

and taking into account that f is increasing, there holds

∆|vh| ≥ V (z0 + εhx)|vh| − K(z0 + εhx)f(|vh|2)|vh| ≥ [V0 − K0f(η2)]|vh|
in the sense of distributions on {|x| > Rη}, where K0 > 0 is as in (2.1). Let
Γ0 be a fundamental solution for −∆ + cη, where cη = V0 − K0f(η2). We can
choose Γ0 so that |vh(x)| ≤ [V0 − K0f(η2)]Γ0(x) holds for |x| = Rη. Then, if
w = |vh| − [V0 − K0f(η2)]Γ0, there holds

∆w = ∆|vh| − [V0 − K0f(η2)]∆Γ0

≥ [V0 − K0f(η2)]|vh| − [V0 − K0f(η2)]2Γ0

= [V0 − K0f(η2)]w

in distributional sense over {|x| > Rη}. Then, by the maximum principle, w(x) ≤ 0
for every |x| ≥ Rη. Since, as known, Γ0 decays exponentially at the rate √

cη, fixing
η = η∗ so small that f(η2

∗) ≤ V0/2K0, we can find constants R∗ > 0 and c > 0 such
that Γ0(x) ≤ c exp{−√

V0/2|x|} for |x| ≥ R∗, which yields the desired conclusion.

Step III. For every h ≥ 1, the following identity holds∫
R3

[〈
∂A

∂xk
(z0 + εhx)

∣∣∣∣A(z0 + εhx)
〉
|vh|2 −�

〈
1
i
∇vh

∣∣∣∣ ∂A

∂xk
(z0 + εhx)v̄h

〉

+
∂V

∂xk
(z0 + εhx)

|vh|2
2

− ∂K

∂xk
(z0 + εhx)F (|vh|2)

]
dx = 0. (3.6)

Rigorously, we cannot directly apply the Pucci–Serrin variational identity [25], since
the solutions to Eq. (3.2) are complex-valued. For we are not aware of any explicit
reference to cite for the identity we need, we will derive (3.6) directly (see also [9]).
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Throughout the rest of this step only, we use the less cumbersome notation x · y in
place of 〈x | y〉 to indicate the standard scalar product in R3.

First of all, let us observe that, for every h ≥ 1,

|∇vh| ≤ |D1vh| + |A(z0 + εhx)||vh|.
Hence, taking into account Step II and the bounds (3.1) and (2.3), we get

‖∇vh‖L2(R3) ≤ ‖D1vh‖L2(R3) + ‖A(z0 + εhx)vh‖L2(R3)

≤ ‖D1vh‖L2(R3) + |A(z0)|‖vh‖L2(R3) + c‖eγεh|x||x|vh‖L2(R3)

≤ c, (3.7)

for all h ≥ 1 and some c > 0. Let δ > 0 and consider the cut-off function ψδ = ψ(δx),
where ψ ∈ C1

c (R3) is such that ψ(x) = 1 for |x| ≤ 1 and ψ(x) = 0 for |x| ≥ 2. If
ek denotes the kth vector of the canonical base in R3, we test Eq. (3.2) with the
function ψδek · ∇vh and we take the real part. Firstly, we have

�
∫

R3
∇vh ·∇[ψδek ·∇vh] dx = �

∫
R3

∇vh ·∇ψδek ·∇vh dx−
∫

R3
∇ψδ ·ek

|∇vh|2
2

dx.

As a consequence, by virtue of (3.7), the Dominate Convergence Theorem yields

lim
δ→0

�
∫

R3
∇vh · ∇[ψδek · ∇vh] dx = 0.

Now, we have

�
∫

R3
K(z0 + εhx)f(|vh|2)vhψδek · ∇vh dx

= �
∫

R3
K(z0 + εhx)ψδek · ∇F (|vh|2) dx

= − εh

∫
R3

∂K

∂xk
(z0 + εhx)ψδF (|vh|2) dx −

∫
R3

K(z0 + εhx)
∂ψδ

∂xk
F (|vh|2) dx.

Hence, in light of (3.1), (3.5) and (3.7), by the Dominate Convergence theorem we
have

lim
δ→0

�
∫

R3
K(z0 + εhx)f(|vh|2)vhψδek · ∇vhdx = −εh

∫
R3

∂K

∂xk
(z0 + εhx)F (|vh|2) dx.

In a similar fashion, there hold

lim
δ→0

�
∫

R3
V (z0 + εhx)vhψδek · ∇vh dx = −εh

∫
R3

∂V

∂xk
(z0 + εhx)

|vh|2
2

dx,

lim
δ→0

�
∫

R3
|A(z0 + εhx)|2vhψδek · ∇vh dx

= − εh

∫
R3

A(z0 + εhx) · ∂A

∂xk
(z0 + εhx)|vh|2 dx.

Finally, we have

J(δ) = �
∫

R3

2
i
A(z0 + εhx) · ∇vhψδek · ∇vh dx = J1(δ) + J2(δ) + J3(δ),
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where we have set

J1(δ) = −εh�
3∑

m=1

∫
R3

2
i

∂Am

∂xk
(z0 + εhx)ψδ

∂vh

∂xm
v̄h dx,

J2(δ) = −�
3∑

m=1

∫
R3

2
i
Am(z0 + εhx)

∂ψδ

∂xk

∂vh

∂xm
v̄h dx,

J3(δ) = −�
3∑

m=1

∫
R3

2
i
Am(z0 + εhx)ψδ

∂2vh

∂xk∂xm
v̄h dx.

After a few computations, one shows that J2(δ) → 0 as δ → 0 and

J3(δ) = −�
∫

R3

2εh

i
divA(z0 + εhx)vhψδek · ∇vh dx − J(δ) + Θ(δ),

with Θ(δ) → 0 as δ → 0. Furthermore, again by (3.1), (3.5) and (3.7)

lim
δ→0

J1(δ) = −εh�
∫

R3

2
i
∇vh · ∂A

∂xk
(z0 + εhx)v̄h dx.

Therefore, we obtain

lim
δ→0

J(δ) = −�
∫

R3

εh

i
divA(z0 + εhx)vhek · ∇vh dx

− εh�
∫

R3

1
i
∇vh · ∂A

∂xk
(z0 + εhx)v̄h dx.

Adding the above identities immediately yields (3.6).

Step IV. We apply the Dominate Convergence Theorem to take the limit as h → ∞
into identity (3.6). The only troublesome term is

�
〈

1
i
∇vh

∣∣∣∣ ∂A

∂xk
(z0 + εhx)v̄h

〉
,

since we apparently have no control on the decay of ∇vh. Taking into account (3.7)
and recalling that ∇vh(x) → ∇v0(x) for all x ∈ R3, up to a subsequence, we have

∇vh ⇀ ∇v0, weakly in L2(R3). (3.8)

On the other hand, by virtue of Step II, there exist R∗ > 0 and c > 0 such that∣∣∣∣ ∂A

∂xk
(z0 + εhx)v̄h

∣∣∣∣ ≤ ce−
(q

V0
2 −γεh

)
|x|, for every |x| ≥ R∗.

Consequently, since v̄h(x) → v̄0(x) for all x ∈ R3 and A ∈ C1(R3), there holds

∂A

∂xk
(z0 + εhx)v̄h → ∂A

∂xk
(z0)v̄0, strongly in L2(R3). (3.9)

Thus, by combining (3.8) and (3.9), for each k, we immediately get

lim
h→∞

∫
R3

�
〈

1
i
∇vh

∣∣∣∣ ∂A

∂xk
(z0 + εhx)v̄h

〉
dx =

∫
R3

�
〈

1
i
∇v0

∣∣∣∣ ∂A

∂xk
(z0)v̄0

〉
dx.
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Since similar considerations apply to the other terms that appear in (3.6), we can
therefore pass to the limit as h → ∞, to find, for each k,∫

R3

〈
∂A

∂xk
(z0)

∣∣∣∣A(z0)
〉
|v0|2 −�

〈
1
i
∇v0

∣∣∣∣ ∂A

∂xk
(z0)v̄0

〉
dx

+
∂V

∂xk
(z0)

∫
R3

|v0|2
2

dx − ∂K

∂xk
(z0)

∫
R3

F (|v0|2) dx = 0. (3.10)

Now, as proved in Step I, v0 can be represented as v0(x) = eiΥz0(x)Uz0(x) where
Uz0 : R3 → C solves (3.3). Taking into account that

1
i
∇v0(x) = eiΥz0(x)A(z0)Uz0(x) − ieiΥz0(x)∇Uz0(x),

for every x ∈ R3 we obtain〈
∂A

∂xk
(z0)

∣∣∣∣A(z0)
〉
|v0(x)|2 −�

〈
1
i
∇v0(x)

∣∣∣∣ ∂A

∂xk
(z0)v̄0(x)

〉

=
〈

∂A

∂xk
(z0)

∣∣∣∣A(z0)
〉
|Uz0(x)|2

− �
〈

eiΥz0(x)A(z0)Uz0(x) − ieiΥz0(x)∇Uz0(x)
∣∣∣∣ ∂A

∂xk
(z0)e−iΥz0 (x)Ūz0(x)

〉

=
〈

∂A

∂xk
(z0)

∣∣∣∣A(z0)
〉
|Uz0(x)|2

− �
(〈

∂A

∂xk
(z0)

∣∣∣∣A(z0)
〉
|Uz0(x)|2 − i

〈
∂A

∂xk
(z0)

∣∣∣∣∇Uz0(x)
〉

Ūz0(x)
)

=
〈

∂A

∂xk
(z0)

∣∣∣∣�(iŪz0(x)∇Uz0(x))
〉

.

Hence, equation (3.10) can be rephrased as〈
∂A

∂xk
(z0)

∣∣∣∣
∫

R3
�(iŪz0∇Uz0) dx

〉

+
∂V

∂xk
(z0)

∫
R3

|Uz0 |2
2

dx − ∂K

∂xk
(z0)

∫
R3

F (|Uz0 |2) dx = 0,

for every k = 1, 2, 3, namely,〈
∂A

∂w
(z0)

∣∣∣∣
∫

R3
�(iŪz0∇Uz0) dx

〉

+
∂V

∂w
(z0)

∫
R3

|Uz0 |2
2

dx − ∂K

∂w
(z0)

∫
R3

F (|Uz0 |2) dx = 0, (3.11)

for every w ∈ R3.

Step V. In this final step, we prove the desired inclusions stated by the theorem.
As a consequence of identity (3.11), in light of the definition of Γ±(z0; w), we imme-
diately deduce that z0 ∈ S∗, thus proving that C ⊂ S∗. Let us now assume that
z0 ∈ E . Then Jz0(v0) = Σc(z0) = Σr(z0), and by virtue of (iii) of Lemma 2.2, we
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have Uz0(x) = eiωuz0(x) for some ω ∈ R, where uz0 is a real-valued least energy
solution to (1.3). Moreover, by (ii) of Lemma 2.2, we have

� (
iŪz0(x)∇Uz0(x)

)
= 0, for a.e. x ∈ R3.

Then, in light of Lemma 2.1 and (3.11), we obtain
(

∂Σr

∂w

)−
(z0) = sup

u∈Sr(z0)

[
∂V

∂w
(z0)

∫
R3

|u|2
2

dx +
∂K

∂w
(z0)

∫
R3

F (|u|2) dx

]

= sup
U=eiωu
u∈Sr(z0)

[
∂V

∂w
(z0)

∫
R3

|U |2
2

dx +
∂K

∂w
(z0)

∫
R3

F (|U |2) dx

]

≥ ∂V

∂w
(z0)

∫
R3

|Uz0 |2
2

dx +
∂K

∂w
(z0)

∫
R3

F (|Uz0 |2) dx = 0,

for every w ∈ R3. In a similar fashion, there holds(
∂Σr

∂w

)+

(z0) ≤ 0,

for every w ∈ R3. In particular, by the definition of (−Σr)0(z0; w), we get

(−Σr)0(z0; w) ≥
(

∂(−Σr)
∂w

)+

(z0) ≥ 0,

for w ∈ R3. Hence 0 ∈ ∂C(−Σr)(z0), which, in light of Proposition 2.1, yields z0 ∈
S. Finally, if f(u) satisfies (2.6), problem (1.3) admits a unique (up to translations)
real-valued solution φ0 (see [5]). Taking into account Lemma 2.2, there exists ω ∈ R

such that v0 = eiΥz0(x)+iωφ0(x). Then, if z0 ∈ C = E (see Proposition 2.1), we
have Sr(z0) = {φ0}, Σr admits all the directional derivatives and, by the above
inequalities, (

∂Σr

∂w

)±
(z0) =

∂Σr

∂w
(z0) = 0,

for w ∈ R3. Since up to a multiplicative constant Σr writes down explicitly as (1.2),
the last assertion readily follows by a direct computation.

In light of identity (3.11), we also have the following

Corollary 3.1. Under the assumptions of Theorem 3.1, for every z0 ∈ C, there
exist constants λ1, λ2, λ3 ∈ R (possibly zero) and γ1, γ2 ∈ R\{0} such that

3∑
j=1

λj∇Aj(z0) + γ1∇V (z0) + γ2∇K(z0) = 0. (3.12)

Hence, in general, the location of concentration points might depend also on the
(fixed) external electromagnetic potential A. If S∗ = ∅, then (Sε) does not admit
any sequence of bound-state solutions concentrating somewhere pointwise.
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Corollary 3.2. The location of energy-concentration points of a sequence of bound-
state solutions to problem (Sε) is independent of the external electromagnetic field B

(and there holds λj = 0 for all j = 1, 2, 3 in (3.12)). If S = ∅, then (Sε) does not
admit any sequence of bound-state solutions concentrating somewhere energetically.

Remark 3.1. Despite the fact that both pointwise and energy concentration are
gauge invariant, the necessary condition (3.12) is not, in general, unless λj = 0 for
all j = 1, 2, 3. Hence, it seems natural to conjecture that the answer to Question 2.1
is always affirmative.

Corollary 3.3. Assume that f(u) is such that, for every z ∈ R3, problem (1.3)
admits a unique positive radial solution, up to translations. Then, if z is an energy-
concentration point it is a classical critical point of Σr.

We refer the reader to [5, Theorems 2.5 and 4.2] for some results ensuring uniqueness
for (1.3) under some additional hypothesis on f(u).

We finish the paper with a simple but interesting property of the family
{Sp}p∈(1,5).

Observation 3.1. Assume that f(u) satisfies (2.6) and that

lim sup
|x|→∞

|∇V (x)|
V (x)

< ∞ and lim inf
|x|→∞

|∇K(x)| > 0.

We denote by Crit(K) the set of critical points of K, which is a compact set in
light of the above assumption. Then, it is a simple task to check that

lim
p→5−

distR3(Sp, Crit(K)) = 0,

that is, if p is close to the critical exponent 5, the spikes locate close to Crit(K).
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