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Symmetry in variational principles and applications

Marco Squassina

Abstract

We formulate symmetric versions of classical variational principles. Within the framework of
nonsmooth critical point theory, we detect Palais–Smale sequences with additional second-order
and symmetry information. We discuss applications to partial differential equations, fixed point
theory and geometric analysis.

1. Introduction

One of the most powerful contributions of the last decades in calculus of variations and
nonlinear analysis is surely given by Ekeland’s variational principle for lower semi-continuous
functionals on complete metric spaces [15, 16], arisen in the context of convex analysis. We refer
to [1, 4, 16, 19, 21] where a multitude of applications in different fields of analysis is carefully
discussed. In a recent note [27], Squassina has proved a version of the principle in Banach spaces
that provides almost symmetric almost critical points, provided that the functional satisfies
a rather mild symmetry condition. Roughly speaking, if (X, ‖ · ‖) is a Banach space that is
continuously embedded into a space (V, ‖ · ‖V ) with suitable properties and f : X → R ∪ {+∞}
is a lower semi-continuous bounded-below functional that does not increase by polarization,
then, for all ε > 0, there is uε ∈ X with

‖uε − u∗ε‖V < ε, f(uε) � inf f + ε2, f(ξ) � f(uε) − ε‖ξ − uε‖ ∀ξ ∈ X,

where the symmetrization ∗ is defined in an abstract framework, which reduces to the classical
notions in concrete functional spaces, such as in Lp(Ω) and in W 1,p

0 (Ω) spaces, Ω being either a
ball in R

N or the whole R
N . Possessing almost symmetric points is very useful in applications

not only to find symmetric cluster points, but also to facilitate the strong convergence of the
sequence (uε) via suitable compact embeddings enjoyed by spaces X∗ of symmetric functions
of X (see [22, 28, 31]). The aim of the present manuscript is to give a rather complete range
of abstract results and in this direction to furnish also applications to calculus of variations,
fixed point theory and geometry of Banach spaces.

The plan of the paper is as follows. In Section 2, we state symmetric versions of Ekeland
[15], Borwein–Preiss [3] and Deville–Godefroy–Zizler [13] principles, free or constrained, as
well as versions for the Ekeland’s principle with weights, in the spirit of Zhong’s result [32]
(see Theorems 2.5, 2.7, 2.8, 2.11–2.13, 2.18 and 2.20). Furthermore, in the framework of
the nonsmooth critical point theory developed in [12], we detect suitable Palais–Smale (PS)
sequences (uh) with respect to the notion of weak slope whose elements uh become more
and more symmetric, uh ∼ u∗h, as h gets large, and satisfy a second-order information, in
terms of a quantity w 
→ Quh

(w), introduced in [2], that plays the rǒle of the quadratic form
w 
→ f ′′(uh)(w)2 for functions of class C2 (see Theorem 2.28 as well as Corollary 2.30). As
pointed out by Lions [23], this additional second-order information can be very important
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to prove the strong convergence of (uh) ⊂ X, in some physically meaningful situations. It
would be interesting to obtain results in the same spirit for mountain pass values in place of
minimum values, as developed, by Fang and Ghoussoub [18] without symmetry information. In
Section 2.5, a discussion upon the relationships between symmetry, coercivity and PS sequences
is developed while in Section 2.7 an application of the symmetric Ekeland principles to get
minimax-type results is outlined. In Section 3, we discuss some possible applications and
implications of the abstract machinery formulated in Section 2. First, we find almost symmetric
solutions, up to a perturbation, for two classes of nonlinear elliptic partial differential equations
(PDEs) associated with suitable energy functionals (see Theorems 3.2 and 3.4). Next, we get
a symmetric version of the Caristi [6] fixed point theorem and of a theorem due to Clarke
[8] (see Theorems 3.5 and 3.8) and we obtain some applications in the geometry of Banach
spaces, such as symmetric versions of Danes̆ Drop [10] and Flower Petal theorems [26] (see
Theorems 3.11 and 3.13).

2. Symmetric variational principles

Let X, V and W be three real Banach spaces with X ⊆ V ⊆W and let S ⊆ X.

2.1. Abstract framework

Following [30], consider the following definition.

Definition 2.1. We consider two maps ∗ : S → V , u 
→ u∗, the symmetrization map, and
h : S ×H∗ → S, (u,H) 
→ uH , the polarization map, H∗ being a path-connected topological
space. We assume that the following hold:

(i) X is continuously embedded in V ; V is continuously embedded in W ;
(ii) h is a continuous mapping;
(iii) for each u ∈ S and H ∈ H∗ it holds (u∗)H = (uH)∗ = u∗ and uHH = uH ;
(iv) there exists (Hm) ⊂ H∗ such that, for u ∈ S, uH1...Hm converges to u∗ in V ;
(v) for every u, v ∈ S and H ∈ H∗ it holds ‖uH − vH‖V � ‖u− v‖V .

Moreover, the mappings h : S ×H∗ → S and ∗ : S → V can be extended to h : X ×H∗ → S
and ∗ : X → V by setting uH := (Θ(u))H for every u ∈ X and H ∈ H∗ and u∗ := (Θ(u))∗

for every u ∈ X, respectively, where Θ : (X, ‖ · ‖V ) → (S, ‖ · ‖V ) is a Lipschitz function, of
Lipschitz constant CΘ > 0, such that Θ|S = Id|S .

The previous properties, in particular (iv) and (v), and the definition of Θ easily yield

∀u, v ∈ X, ∀H ∈ H∗ : ‖uH − vH‖V � CΘ‖u− v‖V , ‖u∗ − v∗‖V � CΘ‖u− v‖V . (2.1)

For the sake of completeness, we now recall some concrete notions.

2.1.1. Concrete polarization. A subset H of R
N is called a polarizer if it is a closed affine

half-space of R
N , namely the set of points x that satisfy α · x � β for some α ∈ R

N and β ∈ R

with |α| = 1. Given x in R
N and a polarizer H, the reflection of x with respect to the boundary

of H is denoted by xH . The polarization of a function u : R
N → R

+ by a polarizer H is the
function uH : R

N → R
+ defined by

uH(x) =

{
max{u(x), u(xH)}, if x ∈ H,

min{u(x), u(xH)}, if x ∈ R
N \H. (2.2)
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The polarization CH ⊂ R
N of a set C ⊂ R

N is defined as the unique set which satisfies χCH =
(χC)H , where χ denotes the characteristic function. The polarization uH of a positive function
u defined on C ⊂ R

N is the restriction to CH of the polarization of the extension ũ : R
N → R

+

of u by zero outside C. The polarization of a function that may change sign is defined by
uH := |u|H for any given polarizer H.

2.1.2. Concrete symmetrization. The Schwarz symmetrization of C ⊂ R
N is the unique

open ball centred at the origin C∗ such that LN (C∗) = LN (C) (LN being the Lebesgue measure
on R

N ). If the measure of C is zero, then set C∗ = ∅. If the measure of C is not finite,
then put C∗ = R

N . A measurable function u is admissible for the Schwarz symmetrization
if u � 0 and, for all ε > 0, the measure of {u > ε} is finite. The Schwarz symmetrization
of an admissible u : C → R

+ is the unique u∗ : C∗ → R
+ such that, for all t ∈ R, it holds

{u∗ > t} = {u > t}∗. Considering the extension ũ : R
N → R

+ of u by zero outside C, it is
(ũ)∗|RN\C∗ = 0 and u∗ = (ũ)∗|C∗ . Let H∗ = {H ∈ H : 0 ∈ H} and let Ω be a ball in R

N or the
whole space R

N . Then u = u∗ if and only if u = uH for every H ∈ H∗. Set either X = W 1,p
0 (Ω),

S = W 1,p
0 (Ω,R+), V = Lp ∩ Lp∗

(Ω) with h(u) := uH and ∗(u) := u∗ orX = S = W 1,p
0 (Ω), V =

Lp ∩ Lp∗
(Ω) with h(u) := |u|H and ∗(u) := |u|∗. In the first case Θ(u) := |u| defines a function

from (X, ‖ · ‖V ) to (S, ‖ · ‖V ), Lipschitz of constant CΘ = 1, allowing to extend the definition of
h, ∗ on X = W 1,p

0 (Ω) by h(u) := h(Θ(u)) and ∗(u) := ∗(Θ(u)). In both cases properties (i)–(v)
in Definition 2.1 are satisfied [30].

We now recall [30, Corollary 3.1] a useful result on the approximation of symmetrizations.
The subset S of X in Definition 2.1 is considered as a metric space with the metric d induced
by ‖ · ‖ on X. We assume that conditions (i)–(v) of Definition 2.1 are satisfied.

Proposition 2.2. For all ρ > 0 there exists a continuous mapping Tρ : S → S such that
Tρu is built via iterated polarizations and ‖Tρu− u∗‖V < ρ for all u ∈ S.

Remark 2.3. If S is the set involved in Definition 2.1, then assume that

S′ ⊆ S, h(S′ ×H∗) ⊆ S′, ∗(S′) ⊆ V.

Then (S′,X, V, h, ∗) satisfies conditions (i)–(v) of Definition 2.1 and Proposition 2.2 holds for
S′ in place of S. If u ∈ X, then one still defines uH := (Θ(u))H and u∗ := (Θ(u))∗ for all u ∈ X.
Note that Θ(u) = u for all u ∈ S′, since S′ ⊆ S and Θ|S = Id|S .

2.2. Classical principles

In the following, we recall a particular form, suitable for our purposes, of Borwein–Preiss’s
smooth variational principle [3] for reflexive Banach spaces endowed with a Kadec renorm
(cf. [3, Theorems 2.6 and 5.2, and Formula 5.4]). We say that X is endowed with a Kadec
renorm ‖ · ‖, if the weak and norm topologies agree on the unit sphere of X. Such a norm
indeed exists if X is reflexive [14].

Theorem 2.4 (Borwein–Preiss’s principle). Assume that X is a reflexive Banach space,
endowed with any Kadec norm ‖ · ‖. Let f : X → R ∪ {+∞} be a proper bounded-below lower
semi-continuous functional. Let u ∈ X, ρ > 0, σ > 0 and p � 1 be such that

f(u) < inf f + σρp.

Then there exist v ∈ X and η ∈ X such that

(a) ‖v − u‖ < ρ;
(b) ‖η − u‖ � ρ;
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(c) f(v) < inf f + σρp;
(d) f(w) � f(v) + σ(‖v − η‖p − ‖w − η‖p) for all w ∈ X.

The following is a symmetric version of Borwein–Preiss’s smooth variational principle.

Theorem 2.5 (Symmetric Borwein–Preiss’s principle). Assume that X is a reflexive
Banach space, endowed with any Kadec norm ‖ · ‖. Let f : X → R ∪ {+∞} be a proper
bounded-below lower semi-continuous functional such that

f(uH) � f(u), for all u ∈ S and H ∈ H∗. (2.3)

Let u ∈ S, ρ > 0, σ > 0 and p � 1 be such that

f(u) < inf f + σρp. (2.4)

Then there exist v ∈ X and η ∈ X such that

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)ρ;
(b) ‖v − u‖ < ρ+ ‖Tρu− u‖;
(c) ‖η − u‖ � ρ+ ‖Tρu− u‖;
(d) f(v) < inf f + σρp;
(e) f(w) � f(v) + σ(‖v − η‖p − ‖w − η‖p) for all w ∈ X.

Here K > 0 denotes the continuity constant for the injection X ↪→ V .

Proof. Let u ∈ S, ρ > 0, σ > 0 and p � 1 be such that f(u) < inf f + σρp. If Tρ : S → S
is the mapping of Proposition 2.2, then we set ũ := Tρu ∈ S. Then, by construction, we have
‖ũ− u∗‖V < ρ and, in light of (2.3) and the property that ũ is built from u through iterated
polarizations, we obtain f(ũ) < inf f + σρp. By Theorem 2.4 there exist elements v ∈ X and
η ∈ X with ‖η − ũ‖ � ρ, such that f(v) < inf f + σρp, ‖v − ũ‖ < ρ and

f(w) � f(v) + σ(‖v − η‖p − ‖w − η‖p), for all w ∈ X.

Hence, (d) and (e) hold true. Taking into account, the second inequality in (2.1), if K > 0
denotes the continuity constant of the injection X ↪→ V , then we obtain

‖v − v∗‖V � K(CΘ + 1)‖v − ũ‖ + ‖ũ− u∗‖V < (K(CΘ + 1) + 1)ρ, (2.5)

where we used the fact that u∗ = ũ∗ in light of (iii) of the abstract framework and, again, by
the way ũ is built from u. Then (a) holds true. Also (b) follows from

‖v − u‖ � ‖v − ũ‖ + ‖ũ− u‖ < ρ+ ‖Tρu− u‖. (2.6)

Finally, (c) holds by virtue of ‖η − u‖ � ‖η − ũ‖ + ‖ũ− u‖ � ρ+ ‖Tρu− u‖.

Remark 2.6. If u ∈ S in (2.4) is such that uH = u for all H ∈ H∗ (which is the case,
for instance, if u∗ = u and ∗ denotes the usual Schwarz symmetrization in the space of
nonnegative vanishing measurable real functions), then by construction Tρu = u for every
ρ > 0 and conclusions (b)–(c) of Theorem 2.5 improve to

‖v − u‖ < ρ and ‖η − u‖ � ρ. (2.7)

Hence, starting with a minimization sequence made of symmetric functions yields a new
minimization sequence satisfying (a)–(e) and full smallness controls (b)–(c) of Theorem 2.5. In
many concrete cases (although there are some exceptions, as pointed out in [30]), if a functional
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does not increase under polarization, namely, condition (2.3) holds, then it is also nonincreasing
under symmetrization, namely

f(u∗) � f(u), for all u ∈ S.

In these cases, starting from an arbitrary minimization sequence (uh) ⊂ S, first one can consider
the new symmetric minimization sequence (u∗h) ⊂ S, which already admits a behaviour nicer
than that of (uh), and then apply the variational principle to it, finding a further minimization
sequence (vh) ⊂ X with even nicer additional properties.

In the abstract framework of Definition 2.1, using Ekeland’s principle in complete metric
spaces, we can derive the following result.

Theorem 2.7 (Symmetric Ekeland’s principle, I). Let S ⊂ X be as in Definition 2.1 and
let S′ be a closed subset of S satisfying the properties stated in Remark 2.3. Assume that
f : S′ → R ∪ {+∞} is a proper and lower semi-continuous functional bounded from below
such that (2.3) holds (on S′). Then, for all ρ > 0 and σ > 0, there exists v ∈ S′ such that

(a) ‖v − v∗‖V < (2K + 1)ρ;
(b) f(w) � f(v) − σ‖w − v‖ for all w ∈ S′.

In addition, one can assume that f(v) � f(u) and ‖v − u‖ � ρ+ ‖Tρu− u‖, where u ∈ S′ is
some element that satisfies f(u) � inf f + σρ.

Proof. As S′ is a closed subset of the Banach space X, (S′, d) is a complete metric space,
where d(u, v) = ‖u− v‖. Given ρ > 0 and σ > 0, let u ∈ S′ with f(u) � inf f + σρ. If Tρ : S′ →
S′ is the map of Proposition 2.2 (cf. Remark 2.3), let ũ = Tρu ∈ S′. Then ‖ũ− u∗‖V < ρ and,
taking into account (2.3), f(ũ) � inf f + σρ. By applying Ekeland’s variational principle on the
complete metric space S′ (see [15, Theorem 1.1]), we find v ∈ S′ such that f(v) � f(ũ) � f(u),
‖v − ũ‖ � ρ and f(w) � f(v) − σ‖w − v‖, for every w ∈ S′. As in inequality (2.5), it readily
follows that ‖v − v∗‖V � 2K‖v − ũ‖ + ‖ũ− u∗‖V < (2K + 1)ρ. Finally, ‖v − u‖ � ‖v − ũ‖ +
‖Tρu− u‖ � ρ+ ‖Tρu− u‖, concluding the proof.

Note that, in Banach spaces, essentially conclusion (b) of Theorem 2.7 can be recovered by
(e) of Theorem 2.5 with p = 1, since ‖v − η‖ − ‖w − η‖ � −‖w − v‖ for all w ∈ X.

On Banach spaces, we can state the following theorem.

Theorem 2.8 (Symmetric Ekeland’s principle, II). Assume that X is a Banach space and
that f : X → R ∪ {+∞} is a proper and lower semi-continuous functional bounded from below
such that (2.3) holds. Moreover, assume that, for all u ∈ dom(f), there exists ξ ∈ S such that
f(ξ) � f(u). Then, for every ρ > 0 and σ > 0, there exists v ∈ X with

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)ρ;
(b) f(w) � f(v) − σ‖w − v‖ for all w ∈ X.

In addition, one can assume that f(v) � f(u) and ‖v − u‖ � ρ+ ‖Tρu− u‖, where u ∈ S is
some element that satisfies f(u) � inf f + σρ.

Proof. Let u ∈ dom(f) with f(u) � inf f + σρ. Then let ξ ∈ S with f(ξ) � inf f + σρ. At
this stage one can proceed as in the proof of Theorem 2.7, with Ekeland’s principle now applied
to f defined on the whole X, yielding a v ∈ X with the desired properties.
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Now let f, fh : X → R ∪ {+∞} be lower semi-continuous functionals such that

for any u ∈ dom(f) ∩ S, there is (uh) ⊂ S with uh −→ u and fh(uh) −→ f(u) (2.8)

and

lim inf
h

(
inf
X
fh

)
� inf

X
f. (2.9)

As pointed out in [9], in some sense, this means that the function f is the uniform Γ-limit of
the sequence (fh). In the framework of Definition 2.1, we introduce the following definition.

Definition 2.9. We set XH∗ := {u ∈ S : uH = u, for all H ∈ H∗}.

Remark 2.10. In the framework of Definition 2.1, the space (XH∗ , ‖ · ‖) is complete, as it
is closed in X. Conversely, assume only that the conclusion of the symmetric Ekeland principle
holds true for the subclass of lower semi-continuous functionals f : (X, ‖ · ‖V ) → R ∪ {+∞}
bounded from below and which are not increasing under polarization of elements u ∈ S. Then
(XH∗ , ‖ · ‖V ) is complete if uH is contractive with respect to ‖ · ‖V . In fact, let (uh) be a
Cauchy sequence in (XH∗ , ‖ · ‖V ). Defining f : X → R

+ by f(u) := limj ‖uj − u‖V , then f is
continuous and f(uh) → 0 as h→ ∞, yielding inf f = 0. Observe also that, by contractivity,

f(uH) = lim
j

‖uj − uH‖V = lim
j

‖uH
j − uH‖V � lim

j
‖uj − u‖V = f(u),

for all H ∈ H∗ and u ∈ S and, for all u ∈ X,

f(Θ(u)) = lim
j

‖uj − Θ(u)‖V = lim
j

‖Θ(uj) − Θ(u)‖V � lim
j

‖uj − u‖V = f(u).

Given ε ∈ (0, 1), there is v ∈ X with f(v) � ε2, ‖v − v∗‖V < ε and f(w) � f(v) − ε‖w − v‖V ,
for all w ∈ X. By choosing w = uj and letting j → ∞, it holds f(v) � εf(v), namely,
‖uh − v‖V → 0 as h→ ∞. Moreover, v = v∗, by the arbitrariness of ε. Hence, v ∈ H∗.

Under the above conditions (2.8)–(2.9), we have a symmetric version of an Ekeland-type
principle proposed by Corvellec [9, Proposition 1].

Theorem 2.11 (Symmetric Ekeland’s principle, III). Assume thatX is a Banach space and
that f, fh : X → R ∪ {+∞} are proper lower semi-continuous functionals with f, fh bounded
from below satisfying conditions (2.8)–(2.9). Moreover, assume that

fh(uH) � fh(u) for all u ∈ S, H ∈ H∗ and h ∈ N. (2.10)

Let Y be a nonempty subset of S, ρ > 0 and σ > 0 such that

inf
Y
f < inf

X
f + σρ.

Then, for every h0 � 1, there exist h � h0, m > 1, (uh) ⊂ S and (vh) ⊂ X such that

(a) ‖vh − v∗h‖V < (K(CΘ + 1) + 1)ρ;
(b) |fh(vh) − infX f | < σρ;
(c) d(vh, Y ) < ρ+ ‖T(m−1)ρ/muh − uh‖;
(d) fh(w) � fh(vh) − σ‖w − vh‖ for all w ∈ X.

In particular, if fh = f for all h ∈ N and Y ⊂ XH∗ , then there exists v ∈ X such that

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)ρ;
(b) |f(v) − infX f | < σρ;
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(c) d(v, Y ) < ρ;
(d) f(w) � f(v) − σ‖w − v‖ for all w ∈ X.

Proof. Given h0 � 1, ρ > 0 and σ > 0, taking into account (2.8)–(2.9), arguing as in the
proof of Corvellec [9, Proposition 1], one finds u ∈ Y ∩ dom(f), m > 1, σ̂ ∈ (0, σ), σ̃ ∈ (σ̂, σ)
with mσ̃/(m− 1) < σ and f(u) < inf f + σ̂ρ, and points uh ∈ S ∩ dom(fh) such that

‖uh − u‖ < ρ/m, inf
X
fh � inf

X
f − (σ̃ − σ̂)ρ

2
, fh(uh) � f(u) +

(σ̃ − σ̂)ρ
2

,

and, in turn,

fh(uh) < inf
X
fh + σ̃ρ. (2.11)

By means of (2.10) condition (2.3) is satisfied for the functionals fh. Therefore, in light of
Theorem 2.8 (applied to fh, starting from the point uh: see (2.11)), with σ replaced by
mσ̃/(m− 1) and ρ replaced by (m− 1)ρ/m, respectively, there exist vh ∈ X such that

fh(vh) � fh(uh), ‖vh − v∗h‖V < (K(CΘ + 1) + 1)
m− 1
m

ρ < (K(CΘ + 1) + 1)ρ,

fh(w) � fh(vh) − m

m− 1
σ̃‖w − vh‖ � fh(vh) − σ‖w − vh‖, for all w ∈ X.

Also, it holds |fh(vh) − inf f | < σρ, since

inf
X
f − σρ < inf

X
f − (σ̃ − σ̂)ρ

2
� fh(vh) � fh(uh) � f(u) +

(σ̃ − σ̂)ρ
2

< inf f + σρ.

Moreover, noting that ‖vh − uh‖ < (m− 1)ρ/m+ ‖T(m−1)ρ/muh − uh‖, it holds

d(vh, Y ) � ‖vh − u‖ � ‖vh − uh‖ + ‖uh − u‖ < ρ+ ‖T(m−1)ρ/muh − uh‖.
The last conclusion of the statement can be easily obtained by taking into account that Tρu = u
for all ρ > 0 and u ∈ Y ⊂ XH∗ .

Based upon the strong Ekeland’s principle stated by Georgiev [20], which exhibits some
additional stability features, we formulate the following symmetric version.

Theorem 2.12 (Symmetric Ekeland’s principle, IV). Assume that X is a Banach space
and that f : X → R ∪ {+∞} is a proper and lower semi-continuous functional bounded from
below such that (2.3) holds. Then, for every ρ1, ρ2 > 0, σ > 0 and u ∈ S, such that

f(u) < inf
X
f + σρ1,

there exists a point v ∈ X such that

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)(ρ1 + ρ2);
(b) f(w) � f(v) − σ‖w − v‖ for all w ∈ X;
(c) for every sequence (uh) ⊂ X it follows

lim
h

(f(uh) + σ‖uh − v‖) = f(v) ⇒ lim
h
uh = v.

Proof. Given ρ1, ρ2 > 0 and σ > 0, let u ∈ S be such that f(u) < inf f + σρ1. If Tρ : S → S
is the map of Proposition 2.2, let ũ = Tρ1+ρ2u ∈ S. Then ‖ũ− u∗‖V < ρ1 + ρ2 and, taking
into account (2.3), f(ũ) < inf f + σρ1. By Georgiev [20, Theorem 1.6] there exists v ∈ X such
that (b) and (c) hold and ‖v − ũ‖ < ρ1 + ρ2. Then ‖v − v∗‖V < (K(CΘ + 1) + 1)(ρ1 + ρ2), by
arguing as in the previous proofs.
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In some situations, a version of Ekeland’s variational principle, sometimes called altered
principle, has been found very useful [26]. Here follows a symmetric version of it. A similar
statement holds with S in place of X, when S is closed.

Theorem 2.13 (Symmetric Ekeland’s principle, V). Assume that X is a Banach space
and that f : X → R ∪ {+∞} is a proper and lower semi-continuous bounded-below functional
such that (2.3) holds. Then, for every u ∈ S, ρ > 0 and σ > 0, there exists an element v ∈ X
such that

(a) f(w) > f(v) − σ‖w − v‖ for all w ∈ X \ {v};
(b) f(v) � f(u) − σ‖v − Tρu‖.

If in addition u ∈ XH∗ , then (b) strengthens to f(v) � f(u) − σ‖v − u‖.

Proof. Given u ∈ S, ρ > 0 and σ > 0, consider Tρu ∈ S. By applying [26, Theorem A,
p. 814] to Tρu and taking into account that f(Tρu) � f(u) by (2.3), we get an element v ∈ X
satisfying properties (a) and (b).

Remark 2.14. Let u ∈ S be such that f(u) � inf f + ρσ, for some ρ, σ > 0. Then, in
addition to the conclusions of Theorem 2.13, it follows ‖v − v∗‖V � ρ, as in the previous
statements. In fact, in light of (b) of Theorem 2.13, we have

‖v − Tρu‖ � f(u) − f(v)
σ

� f(u) − inf f
σ

� ρ,

which in turn allows us to get the desired conclusion, taking into account that ‖Tρu− u∗‖V < ρ.
Also one has ‖v − u‖ � ρ+ ‖Tρu− u‖. In other words, Theorem 2.13 is stronger than the
previous statements owing to the fact that it holds for any point u ∈ S. On the other hand,
the price to be paid is that the location of v with respect to u is no longer available and it is
recovered, provided that f(u) � inf f + ρσ.

Let X ′ denote the topological dual space of X. We need to recall from [13] the following
definition.

Definition 2.15. Let X be a Banach space, β be a family of bounded subsets of X which
constitutes a bornology, f : X → R ∪ {+∞} be a functional and u ∈ dom(f). We say that f is
β-differentiable at u with β-derivative ϕ = f ′(u) ∈ X ′ if

lim
t→0

f(u+ tw) − f(u) − 〈ϕ, tw〉
t

= 0

uniformly for w inside the elements of β. We denote by τβ the topology on X ′ of uniform
convergence on the elements of β.

When β is the class of all bounded subsets of X, then the β-differentiability coincides with
Fréchet differentiability and τβ coincides with the norm topology on X ′. When β is the class
of all singletons of X, the β-differentiability coincides with Gateaux differentiability and τβ is
the weak* topology on X ′.
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We consider the Banach space (Xβ , ‖ · ‖β) defined as follows:

Xβ := {g : X −→ R : g is bounded, Lipschitzian and β-differentiable on X},
‖g‖β := ‖g‖∞ + ‖g′‖∞, ‖g‖∞ = sup

u∈X
|g(u)|, ‖g′‖∞ = sup

u∈X
‖g′(u)‖.

Definition 2.16. We say that b ∈ Xβ is a bump function if supt(b) �= ∅ is bounded.

Next, we recall a localized version of Deville–Godefroy–Zizler’s variational principle (see [13,
Corollary II.4 and Remark II.5]).

Theorem 2.17 (Deville–Godefroy–Zizler’s principle). Assume that X is a Banach space
that admits a bump function in Xβ and let f : X → R ∪ {+∞} be a proper and lower semi-
continuous functional bounded from below. Then there exists a positive number A such
that, for all ε ∈ (0, 1), and u ∈ X with f(u) < inf f + Aε2, there exist g ∈ Xβ and v ∈ X
such that

(a) ‖v − u‖ � ε;
(b) ‖g‖∞ � ε and ‖g′‖∞ � ε;
(c) f(w) + g(w) � f(v) + g(v) for all w ∈ X.

Next, we state a symmetric version of Deville–Godefroy–Zizler’s variational principle.

Theorem 2.18 (Symmetric Deville–Godefroy–Zizler’s principle). Assume that X is a
Banach space that admits a bump function in Xβ and let f : X → R ∪ {+∞} be a proper
and lower semi-continuous functional bounded from below satisfying (2.3). Then there exists a
positive number A such that, for all ε ∈ (0, 1), and u ∈ S with f(u) < inf f + Aε2, there exist
g ∈ Xβ and v ∈ X such that

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)ε;
(b) ‖v − u‖ � ε+ ‖Tεu− u‖;
(c) ‖g‖∞ � ε and ‖g′‖∞ � ε;
(d) f(w) + g(w) � f(v) + g(v) for all w ∈ X.

Proof. By Theorem 2.17 there exists a positive number A with the stated properties. Let
u ∈ S and ε ∈ (0, 1) such that f(u) < inf f + Aε2. If Tε : S → S is as in Proposition 2.2, then
we set ũ := Tεu ∈ S. By construction we have ‖ũ− u∗‖V < ε and f(ũ) < inf f + Aε2. Hence,
by the just stated principle, there are g ∈ Xβ , with ‖g‖∞ � ε, and ‖g′‖∞ � ε and v ∈ X
such that ‖v − ũ‖ � ε and f(w) + g(w) � f(v) + g(v) for every w ∈ X. Furthermore, we have
‖v − v∗‖V < (K(CΘ + 1) + 1)ε with the usual argument, as well as ‖v − u‖ � ‖v − ũ‖ +
‖ũ− u‖ � ε+ ‖Tεu− u‖. This concludes the proof.

2.3. Statements with weights

In this section, we derive a symmetric version of Ekeland’s variational principle with weights
(see also [17, 29, 32]), based upon the following result due to Zhong (take x0 = y in [32,
Theorem 1.1]). The result is often used to prove that a lower semi-continuous bounded-below
functional that satisfies a suitable weighted PS condition needs to be coercive.
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Theorem 2.19 (Zhong’s principle). Let X be a complete metric space and consider a
nondecreasing and continuous function h : [0,+∞) → [0,+∞) such that∫+∞

0

1
1 + h(s)

ds = +∞.

Assume that f : X → R ∪ {+∞} is a proper lower semi-continuous functional bounded from
below. Let u ∈ X, ρ > 0 and σ > 0 such that

f(u) < inf
X
f + σρ.

Then there exists v ∈ X such that

(a) f(v) � f(u);
(b) d(v, u) � r(ρ);
(c) f(w) � f(v) − σ(d(w, v))/(1 + h(d(v, u))) for all w ∈ X,

where r(ρ) is a positive number that satisfies∫r(ρ)

0

1
1 + h(s)

ds � ρ.

As a consequence, in the framework of Definition 2.1, we obtain the following theorem.

Theorem 2.20 (Symmetric Zhong’s principle). Let X be a Banach space and consider a
nondecreasing continuous function h : [0,+∞) → [0,+∞) such that∫+∞

0

1
1 + h(s)

ds = +∞.

Assume that, for ρ0 > 0 sufficiently small, there exists a function r : [0, ρ0) → [0,∞) with∫ r(ρ)

0

1
1 + h(s)

ds � ρ, lim
ρ→0+

r(ρ) = 0. (2.12)

Let f : X → R ∪ {+∞} be a proper lower semi-continuous functional bounded from below such
that condition (2.3) holds. Let u ∈ S, ρ > 0 and σ > 0 be such that

f(u) < inf
X
f + σρ. (2.13)

Then there exists v ∈ X such that

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)r(ρ);
(b) f(v) � f(u);
(c) ‖v − u‖ � r(ρ) + ‖Tr(ρ)u− u‖;
(d) f(w) � f(v) − σ(‖w − v‖)/(1 + h(‖v − Tr(ρ)u‖)) for every w ∈ X.

Proof. Let u ∈ S, ρ > 0 and σ > 0 with f(u) < inf f + σρ. Let also r(ρ) be a positive
number that satisfies conditions (2.12). Then, if Tr(ρ) : S → S is the map of Proposition 2.2,
let ũ := Tr(ρ)u ∈ S. Then ‖ũ− u∗‖V < r(ρ) and, taking into account (2.3), we can conclude
f(ũ) < inf f + σρ. By applying Theorem 2.19 to this element ũ, we find an element v ∈ X such
that ‖v − ũ‖ � r(ρ), f(v) � f(ũ) � f(u) and

f(w) � f(v) − σ
‖w − v‖

1 + h(‖v − Tr(ρ)u‖) for every w ∈ X.

Also, we have
‖v − u‖ � ‖v − ũ‖ + ‖Tr(ρ) − u‖ � r(ρ) + ‖Tr(ρ) − u‖.
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We conclude with ‖v − v∗‖V � K(CΘ + 1)‖v − ũ‖ + ‖ũ− u∗‖V < (K(CΘ + 1) + 1)r(ρ).

Remark 2.21. In the case h ≡ 0, one finds precisely the symmetric version of the classical
Ekeland’s variational principle (note that one can take r(ρ) = ρ). In the Cerami case h(s) = s
(see [7]), one can take r(ρ) = eρ − 1 and the conclusion of Theorem 2.20 reads as follows: for
every u ∈ S that satisfies (2.13), with ρ > 0 and σ > 0, there exists v ∈ X such that

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)(eρ − 1);
(b) f(v) � f(u);
(c) ‖v − u‖ � eρ − 1 + ‖Teρ−1u− u‖;
(d) f(w) � f(v) − σ(‖w − v‖)/(1 + ‖v − Teρ−1u‖) for all w ∈ X.

Furthermore, if u ∈ XH∗ and ρ = σ > 0, then there exists v ∈ X such that

(a) ‖v − v∗‖V < (K(CΘ + 1) + 1)(eρ − 1);
(b) f(v) � f(u);
(c) ‖v − u‖ � eρ − 1;
(d) f(w) � f(v) − ρ(‖w − v‖)/(1 + ‖v − u‖) for all w ∈ X.

Next, we highlight some by-products of the previous principles in the context of nonsmooth
critical point theory. We recall the definition of weak slope [12]. The symbol B(u, δ) stands for
the open ball in X with centre u and radius δ, and epi(f) = {(u, λ) ∈ X × R : f(u) � λ}.

Definition 2.22. For every u ∈ X with f(u) ∈ R, we denote by |df |(u) the supremum of
the values of σ in [0,∞) such that there exist δ > 0 and a continuous map

H : B((u, f(u)), δ) ∩ epi(f) × [0, δ] −→ X,

satisfying, for all (ξ, μ) ∈ B((u, f(u)), δ) ∩ epi(f) and t ∈ [0, δ],

‖H((ξ, μ), t) − ξ‖ � t, f(H((ξ, μ), t)) � f(ξ) − σt.

The extended real number |df |(u) is called the weak slope of f at u.

Remark 2.23. If f is of class C1, then |df |(u) = ‖df(u)‖; see [12, Corollary 2.12]. If u ∈ X,
with f(u) < +∞, the strong slope of f at u (see [11]) is the extended real |∇f |(u),

|∇f |(u) :=

⎧⎨
⎩lim sup

ξ→u

f(u) − f(ξ)
d(u, ξ)

if u is not a local minimum for f ;

0 if u is a local minimum for f.

It easily follows from the definition that |df |(u) � |∇f |(u).

We can now state the following corollary.

Corollary 2.24. Let X be a Banach space and h : [0,+∞) → [0,+∞) be a nondecreasing
and continuous function such that ∫+∞

0

1
1 + h(s)

ds = +∞.
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Assume that, for ρ0 > 0 sufficiently small, there exists a function r : [0, ρ0) → [0,∞) with
∫ r(ρ)

0

1
1 + h(s)

ds � ρ, lim
ρ→0+

r(ρ) = 0.

Let f : X → R ∪ {+∞} be a proper lower semi-continuous functional bounded from below such
that (2.3) holds. Then, for every ρ > 0 and uρ ∈ S with

f(uρ) < inf
X
f + ρ2,

there exists vρ ∈ X such that

(a) ‖vρ − v∗ρ‖V < (K(CΘ + 1) + 1)r(ρ);
(b) (1 + h(‖vρ − Tr(ρ)uρ‖))|df |(vρ) � ρ for all w ∈ X.

In particular, for every minimizing sequence (uj) ⊂ S for f, there exists a minimizing sequence
(vj) ⊂ X and (μj) ⊂ R

+ with μj → 0 such that

lim
j→∞

‖vj − v∗j ‖V = 0, lim
j→∞

(1 + h(‖vj − Tμj
uj‖))|df |(vj) = 0.

Moreover, for every symmetric minimizing sequence (uj) ⊂ XH∗ for f, there exists a minimizing
sequence (vj) ⊂ X such that

lim
j→∞

‖vj − v∗j ‖V = 0, lim
j→∞

(1 + h(‖vj − uj‖))|df |(vj) = 0.

Proof. Taking into account Remark 2.23, it is an easy consequence of Theorem 2.20.

2.4. Statements with constraints

A symmetric version of Ekeland’s principle with constraints, in the spirit of Ekeland [15,
Theorem 3.1], can also be formulated. Assume that Gj : X → R with 1 � j � m are C1

functions, let 1 � p � m and consider the set

C = {u ∈ X : Gj(u) = 0 for 1 � j � p and Gj(u) � 0 for p+ 1 � j � m}.
For all u in C , we denote by I (u) the index set of saturated constraints (cf. [15]), namely,
j ∈ I (u) if and only if Gj(u) = 0. We consider the following assumptions:

f : X → R is Fréchet differentiable, −∞ < inf
C
f < +∞; (2.14)

for all u ∈ C there exists ξ ∈ C ∩ S such that f(ξ) � f(u); (2.15)
for all u ∈ C the elements {dGj(u)}j∈I (u) are linearly independent inX ′; (2.16){

∀u ∈ C ∩ S, ∀H ∈ H∗ : uH ∈ C ,

∀u ∈ C ∩ S, ∀H ∈ H∗ : f(uH) � f(u).
(2.17)

Then, for every ε > 0, there exists uε ∈ C such that

f(uε) � inf
C
f + ε2, ‖uε − u∗ε‖V < Cε,

∥∥∥∥∥∥df(uε) −
m∑

j=1

λjdGj(uε)

∥∥∥∥∥∥
X′

� ε,

for some λj ∈ R, 1 � j � m, such that λj � 0 for p+ 1 � j � m and λj = 0 if Gj(uε) �= 0.
The assertion follows by applying Theorem 2.8 to the functional f̂ : X → R ∪ {+∞},

f̂(u) :=

{
f(u) for u ∈ C ,

+∞ for u ∈ X \ C ,
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finding almost symmetric point uε ∈ C such that f(uε) � inf f |C + ε2 and

∀w ∈ C : f(w) � f(uε) − ε‖w − uε‖,
and then arguing exactly as in the proof of Ekeland [15, Theorem 3.1], namely using [15,
Lemmas 3.2 and 3.3], in view of assumptions (2.14)–(2.16). The assumptions of Theorem 2.8 are
fulfilled since f̂ is lower semi-continuous, bounded from below (f being bounded from below on
C ) and, in light of (2.17), it satisfies f̂(uH) � f̂(u) for every u ∈ S and H ∈ H∗. Also, by virtue
of (2.15), for all u ∈ dom(f̂) there exists ξ ∈ S such that f̂(ξ) � f̂(u). In the case of a single
constraint, namely m = 1, then assumption (2.16) reads: G(u) = 0 implies dG(u) �= 0. On the
concrete side, (2.17) is satisfied in various situations, meaningful in the calculus of variations,
such as G : W 1,p(RN ) → R, G(u) =

∫
RN H(|u|) − 1 for suitable H ∈ C1(R) and functionals

f : W 1,p(RN ) → R ∪ {+∞} discussed in Section 3.1.1.

2.5. Symmetry, coercivity and PS conditions

A sequence (uh) ⊂ X is said to be a PS sequence for f ∈ C1(X) if (f(uh)) is bounded and
‖df(uh)‖X′ → 0, as h→ ∞. Also we say that f satisfies the PS condition, if each PS sequence
admits a converging subsequence. If f is bounded from below and satisfies the PS condition,
then it is coercive [5, 9], meaning that

lim inf
‖u‖→+∞

f(u) = +∞.

Actually, an even more general property holds and it is sufficient to assume that the PSB
condition holds, namely, each (uh) ⊂ X with (f(uh)) bounded and ‖df(uh)‖X′ → 0 is bounded
(see [9, Corollary 1], for details). As pointed out in [24, Section 10], a typical argument to
prove the above conclusion is based upon a clever application of Ekeland’s principle, after
observing that a violation of the coercivity yields � ∈ R, � � inf f and a sequence (uh) ⊂ X
such that f(uh) � �+ γh and ‖uh‖ � h, where (γh) ⊂ R

+ is a given sequence with γh → 0 as
h→ ∞. Note that �+ γh − inf f > 0 for all h ∈ N. Let σh > 0 with σh → 0 as h→ ∞ and
ρh = (�+ γh − inf f)/σh > 0 be such that ρh � h/2, yielding

f(uh) � inf f + σhρh, h ∈ N.

Under reasonable assumptions, we can also have (uh) ⊂ S. At this stage, if (2.3) holds,

f(Tρh
uh) � f(uh) � inf f + σhρh, ‖Tρh

uh − u∗h‖V < ρh.

Then Ekeland’s principle yields (vh) ⊂ X with f(vh) � f(uh) � �+ γh, ‖df(vh)‖X′ � σh and
‖vh − Tρh

uh‖ � ρh, implying ‖vh − v∗h‖V < Cρh. Note that, assuming ‖uH‖ = ‖u‖ for all u ∈ S
and H ∈ H∗, which is reasonable for applications to PDEs, there holds ‖vh‖ � ‖Tρh

uh‖ − ρh =
‖uh‖ − ρh � h/2, yielding ‖vh‖ → ∞, as h→ ∞. In particular, it follows that f(vh) → �, since

� = lim inf
‖u‖→+∞

f(u) � lim inf
h

f(vh) � lim sup
h

f(vh) � lim
h

(�+ γh) = �.

Since σh → 0, (vh) in an unbounded PS sequence, contradicting the PSB condition. To
guarantee that, in addition, ‖vh − v∗h‖V → 0, one would need that ρh → 0. On the other hand,
ρh, σh, γh → 0, by σhρh = �+ γh − inf f , yields � = inf f , which is not the case in general. In
conclusion, this argument does not seem to allow obtaining a true unbounded almost symmetric
PS sequence, which would of course considerably improve the statement on coercivity, replacing
PSB with some symmetric version of it involving PS sequences (uh) with ‖uh − u∗h‖V → 0. If
f is bounded from below, (2.3) holds and it satisfies the symmetric PSB condition, then

lim inf
‖u‖→+∞

f(u) > inf
X
f.
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It is sufficient to argue by contradiction and let � = inf f in the previous proof, allowing
ρh, σh, γh → 0. The relationships between the symmetry of the functional, its coercivity and
PS conditions of some kind would deserve further attention.

2.6. Symmetric quasi-convex PS sequences

To the author’s knowledge, the next notion was first introduced by Bartsch and Degiovanni [2].

Definition 2.25. Let X be a Banach space, f : X → R be a lower semi-continuous
functional and u ∈ X. We define the functional Qu : X → R̄ by setting

Qu(w) := lim sup
z→u
ζ→w
t→0

f(z + tζ) + f(z − tζ) − 2f(z)
t2

, for every w ∈ X.

In the framework of Definition 2.1, we also introduce the following definition.

Definition 2.26. Let X be a Banach space and f : X → R be a lower semi-continuous
functional. We say that (uh) ⊂ X is a symmetric quasi-convex PS sequence at level c ∈ R

((SQPS)c -sequence, in short) if

lim
h→∞

f(uh) = c, lim
h→∞

|df |(uh) = 0,

and, in addition,

lim
h→∞

‖uh − u∗h‖V = 0, lim inf
h→∞

Quh
(w) � 0, ∀w ∈ X. (2.18)

We say that f satisfies the symmetric quasi-convex PS condition at level c, (SQPS)c, in short,
if every (SQPS)c-sequence that admits a subsequence strongly converging in W , up to a
subsequence, converges strongly in X.

Compared to a standard PS sequence, two additional items of information are involved on
(uh), a quasi-symmetry and a quasi-convexity condition.

Remark 2.27. As pointed out in [18, 23], the fact that a PS sequence (uh) ⊂ X for a
functional f : X → R of class C2 satisfies the additional second-order condition

lim inf
h→∞

〈f ′′(uh)w,w〉 � 0, for all w ∈ X,

can sometimes be crucial for the proof of the strong convergence of (uh) itself to some limit
point u ∈ X. Furthermore, the additional symmetry condition ‖uh − u∗h‖V → 0, as h→ ∞,
usually provides compactifying effects (see, for example, [30, Section 4.2]). Based upon these
considerations, it is quite clear that, in some sense, the (SQPS)c-condition is much weaker
than the standard PS condition. Of course, Qu(w) = 〈f ′′(u)w,w〉 when f is of class C2 and
replacing 〈f ′′(u)w,w〉 with Qu(w) appears to be a natural extension when the function is not
C2 smooth.
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Now let X be a Hilbert space and consider the following assumptions:

f(uH) � f(u) for all u ∈ S and H ∈ H∗; (2.19)
for all X there exists ξ ∈ S such that f(ξ) � f(u); (2.20)
if (uh) ⊂ X is bounded, then (ξh) ⊂ S is bounded; (2.21)

‖uH‖ � ‖u‖ for all u ∈ S and H ∈ H∗; (2.22)
f admits a bounded minimizing sequence. (2.23)

Note that assumptions (2.20)–(2.22) are satisfied in many typical concrete situations, like
when X is a Sobolev space W 1,p

0 (Ω), Ω is a ball or R
N , S is the cone of its positive functions

and the functional satisfies f(|u|) � f(u) for all u ∈ X. Assumption (2.23) is mild but not
automatically satisfied of course; for instance, all the minimizing sequences for the exponential
function on R are unbounded.

We can now state the following theorem.

Theorem 2.28. Assume that f : X → R is a lower semi-continuous functional bounded
from below such that conditions (2.19)–(2.23) hold. Then f admits an (SQPS)inf f -sequence.

Proof. In the course of the proof, C will denote a generic constant that might change
from line to line. By means of assumption (2.23), we can find a bounded minimizing sequence
(uh) ⊂ X for f , namely, there exists a sequence (εh) ⊂ R

+, with εh → 0 as h→ ∞, such that
‖uh‖ � C and f(uh) < inf f + ε3h for all h ∈ N. In light of assumptions (2.20)–(2.21), there
exists a sequence (ξh) ⊂ S such that ‖ξh‖ � C and f(ξh) < inf f + ε3h, for all h ∈ N. Taking
into account that any norm ‖ · ‖ on X is a Kadec norm and that assumption (2.19) holds,
by Theorem 2.5 (symmetric Borwein–Preiss’s principle) with p = 2, σh = ρh = εh, we find two
sequences (vh) ⊂ X and (ηh) ⊂ X such that ‖vh − v∗h‖V < Cεh, f(vh) < inf f + ε3h as well as

‖vh − ξh‖ < εh + ‖Tεh
ξh − ξh‖, ‖ηh − ξh‖ � εh + ‖Tεh

ξh − ξh‖, (2.24)

f(w) � f(vh) + εh(‖vh − ηh‖2 − ‖w − ηh‖2), for all w ∈ X. (2.25)

Fixed any ζ ∈ X and t ∈ R, substituting w := vh + tζ and w := vh − tζ into (2.25) yields

f(vh + tζ) � f(vh) + εh(‖vh − ηh‖2 − ‖vh − ηh + tζ‖2),

f(vh − tζ) � f(vh) + εh(‖vh − ηh‖2 − ‖vh − ηh − tζ‖2).

Whence, taking into account the parallelogram law, it holds

f(vh + tζ) + f(vh − tζ) − 2f(vh) � −2εht
2‖ζ‖2, for all ζ ∈ X and t ∈ R. (2.26)

In turn, for every w ∈ X, it holds

Qvh
(w) = lim sup

z→vh
ζ→w
t→0

f(z + tζ) + f(z − tζ) − 2f(z)
t2

� lim sup
ζ→w
t→0

f(vh + tζ) + f(vh − tζ) − 2f(vh)
t2

� −2εh‖w‖2,

which yields the desired property on Qvh
. Note also that, from (2.25), for every h and w �= vh,

f(vh) − f(w)
‖w − vh‖ � εh

‖w − ηh‖2 − ‖vh − ηh‖2

‖w − vh‖ � εh(‖w − ηh‖ + ‖vh − ηh‖).
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By repeatedly applying (2.22), we get ‖Tεh
ξh‖ � ‖ξh‖. Whence, recalling (2.24), it follows that

|df |(vh) � |∇f |(vh) = lim sup
w→vh

f(vh) − f(w)
‖w − vh‖ � 2εh‖vh − ηh‖

� 2εh‖vh − ξh‖ + 2εh‖ξh − ηh‖
< 4εh(εh + ‖Tεh

ξh − ξh‖) � 4ε2h + 8εh‖ξh‖ � Cεh.

This concludes the proof.

In the framework of Definition 2.1, we also introduce the following definition.

Definition 2.29. We set X∗ := {u ∈ S : u∗ = u} and we say that X is symmetrically
embedded into W if ‖u∗‖ � ‖u‖ for all u ∈ X and the injection i : X∗ ↪→W is compact.

As a consequence of Theorem 2.28, we have the following corollary.

Corollary 2.30. Let X be symmetrically embedded in W and f : X → R be a lower
semi-continuous functional bounded from below such that (2.19)–(2.23) hold. Then f admits
an (SQPS)inf f -sequence converging weakly in X and strongly in W . If in addition (SQPS)inf f

holds, there exists a point z ∈ S such that f(z) = inf f, |df |(z) = 0, z = z∗ and Qz � 0.

Proof. Let C denote a generic constant that might change from line to line. By
Theorem 2.28, f admits an (SQPS)inf f -sequence (vh) ⊂ X. By construction (vh) is bounded
in X. In fact, with the notation in the proof of Theorem 2.28, there exist a vanishing sequence
(εh) ⊂ R

+ and a bounded sequence (ξh) ⊂ S, yielding

‖vh‖ � ‖vh − ξh‖ + ‖ξh‖ � εh + ‖Tεh
ξh − ξh‖ + ‖ξh‖ � εh + 3‖ξh‖ � C.

Hence, there exist v ∈ X and a subsequence of (vh) that we shall still indicate by (vh),
such that (vh) weakly converges to v in X. Since X is symmetrically embedded into W ,
we have that ‖v∗h‖ � ‖vh‖ � C and also, up to a further subsequence, (vh) converges in
W to some v̂ ∈W . Of course, it is v = v̂. If f satisfies (SQPS)inf f , then there exists a
further subsequence, that we still denote by (vh), which converges to some z in X. By
lower semi-continuity, f(z) = inf f . Since |df |(vh) → 0 and f(vh) → inf f = f(z), by means
of Degiovanni and Marzocchi [12, Proposition 2.6], it follows that |df |(z) � lim infh |df |(vh) =
0. Since ‖vh − v∗h‖V → 0, letting h→ ∞ into ‖z − z∗‖V � ‖z − vh‖V + ‖vh − v∗h‖V + ‖v∗h −
z∗‖V � K(CΘ + 1)‖vh − z‖ + ‖vh − v∗h‖V yields z = z∗ ∈ S, as desired. Since f(z) = inf f and,
by definition, f(z + tζ) � f(z) and f(z − tζ) � f(z) for all t ∈ R and ζ ∈ X, we infer that, for
all w ∈ X,

Qz(w) � lim sup
ζ→w
t→0

f(z + tζ) + f(z − tζ) − 2f(z)
t2

� 0.

This concludes the proof of the corollary.

These results look particularly useful for applications to PDEs defined on a ball Ω or on R
N ,

choosing X = W 1,p
0 (Ω), X = S or S = W 1,p

0 (Ω,R+), V = Lp ∩ Lp∗
(Ω) and W = Lq(Ω) ⊃ V

with p < q < p∗. These functional spaces are compatible with Definition 2.29.
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2.7. Symmetric inf sup principles

The symmetric version of Ekeland’s variational principle allows us to obtain a symmetric
minimax type result for C1 smooth functionals. We refer to Theorem 5.1 in the book [19]
by de Figueiredo for a standard statement of the minimax principle, without symmetry,
proved through the classical Ekeland’s principle. In fact, let (S,X, V, h, ∗) be according to
Definition 2.1. Recall also inequalities (2.1). We assume that Θ : (X, ‖ · ‖) → (S, ‖ · ‖) is
continuous and also consider the polarization and symmetrization maps as defined over the
whole X by setting uH = (Θ(u))H and u∗ = (Θ(u))∗, respectively. Let ψ ∈ S with ψH = ψ for
all H ∈ H∗ and introduce the spaces

X̂ := C([0, 1],X), ‖γ‖X̂ := sup
t∈[0,1]

‖γ(t)‖, V̂ := C([0, 1], V ) ‖γ‖V̂ := sup
t∈[0,1]

‖γ(t)‖V ,

Ŝ := {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = ψ}.
Define ∗ : Ŝ → V̂ , γ 
→ γ∗ and h : Ŝ ×H∗ → Ŝ, (γ,H) 
→ γH by setting

h(γ,H)(t) := γ(t)H , γ∗(t) := γ(t)∗, ∀γ ∈ Ŝ, ∀H ∈ H∗, ∀t ∈ [0, 1].

Note that, since X and V are Banach spaces, X̂ and V̂ are Banach spaces, Ŝ ⊂ X̂ ⊂ V̂ , Ŝ
is a closed subset of X̂ and X̂ is continuously embedded into V̂ . Furthermore, for all γ ∈ Ŝ
it holds γ∗ ∈ V̂ and γH ∈ Ŝ since γ∗ ∈ C([0, 1], V ), γH ∈ C([0, 1],X) and γH(0) = γ(0)H = 0,
γH(1) = ψH = ψ. With the above definitions, the string (Ŝ, X̂, V̂ , h, ∗) satisfies the axiomatic
properties of Definition 2.1. Let us prove that ĥ is a continuous mapping. Given (γj ,Hj) in
Ŝ ×H∗ such that (γj ,Hj) converges to (γ0,H0) as j → ∞, we have a sequence (tj) ⊂ [0, 1]
converging to a t0 ∈ [0, 1] as j → ∞, such that

‖γHj

j − γH0
0 ‖X̂ � ‖γj(tj)Hj − γ0(tj)Hj‖ + ‖γ0(tj)Hj − γ0(t0)H0‖ + ‖γ0(tj)H0 − γ0(t0)H0‖

� CΘ‖γj − γ0‖X̂ + ‖γ0(tj)Hj − γ0(t0)H0‖ + CΘ‖γ0(tj) − γ0(t0)‖,
yielding the desired conclusion since γj → γ in X̂ as j → ∞, (γ0(tj),Hj) converges to
(γ0(t0),H0) and the mapping h : S ×H∗ → S is continuous. Analogously, given γ ∈ Ŝ, there
exists a sequence (tm) ⊂ [0, 1] converging to t0 ∈ [0, 1] such that

‖γH1...Hm − γ∗‖V̂ � ‖γ(tm)H1...Hm − γ(t0)H1...Hm‖V + ‖γ(t0)H1...Hm − γ(t0)∗‖V

+ ‖γ(tm)∗ − γ(t0)∗‖V � ‖γ(t0)H1...Hm − γ(t0)∗‖V

+ 2CΘ‖γ(tm) − γ(t0)‖V ,

implying the desired convergence. Also, taken any γ, η ∈ Ŝ and H ∈ H∗, it holds

‖γH − ηH‖V̂ = sup
t∈[0,1]

‖γ(t)H − η(t)H‖V � CΘ sup
t∈[0,1]

‖γ(t) − η(t)‖V � CΘ‖γ − η‖V̂ .

Of course, (γH)∗ = (γ∗)H = γ∗ and γHH = γH follow immediately from the corresponding
property (iii) of Definition 2.1. Now, given a C1 smooth functional f : X → R satisfying

f(uH) � f(u), for all u ∈ X and H ∈ H∗, (2.27)
inf
γ∈Ŝ

max
t∈[0,1]

f(γ(t)) > max{f(0), f(ψ)}, (2.28)

consider the minimax value

c = inf
γ∈Ŝ

max
t∈[0,1]

f(γ(t)),

and the functional f̂ : Ŝ → R, bounded from below in view of (2.28), defined by

f̂(γ) := max
t∈[0,1]

f(γ(t)), for all γ ∈ Ŝ.
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Note that f̂ is continuous. In fact, let γ̄ ∈ Ŝ and ε > 0. There exists δ > 0 such that |f(x) −
f(y)| � ε for all y ∈ γ̄([0, 1]) and all x ∈ X such that ‖x− y‖ � δ. Hence, for all γ ∈ Ŝ with
‖γ − γ̄‖X̂ � δ,

f̂(γ) − f̂(γ̄) = f(γ(τ)) − max
t∈[0,1]

f(γ̄(t)) � |f(γ(τ)) − f(γ̄(τ))|,

τ ∈ [0, 1] being the point where the maximum of t 
→ f(γ(t)) is achieved. Then, since
‖γ(τ) − γ̄(τ)‖ � ‖γ − γ̄‖X̂ � δ, it follows that |f(γ) − f(γ̄)| � ε, proving the continuity of f̂ ,
after reverting the role of γ and γ̂. Moreover, due to (2.27), it follows

f̂(γH) = max
t∈[0,1]

f(γ(t)H) � max
t∈[0,1]

f(γ(t)) = f̂(γ), for all γ ∈ Ŝ.

Then, by applying Theorem 2.7 (with S′ = Ŝ and σ = ρ = ε > 0) in place of the standard
Ekeland’s principle, for every ε > 0 there exists γε ∈ Ŝ such that

‖γε − γ∗ε‖V̂ < ε, c � f̂(γε) � c+ ε, f̂(γ) � f̂(γε) − ε‖γ − γε‖X̂ , ∀γ ∈ Ŝ.

Once these inequalities are reached, by arguing exactly as in [19, Proof of Theorem 5.1,
pp. 37–39], for every ε > 0 there exists a point uε ∈ X which, by construction, is of the form
uε = γε(tε) for some tε ∈ [0, 1], such that

‖df(uε)‖ � ε, c � f(uε) � c+ ε.

Furthermore, it follows that ‖uε − u∗ε‖V < ε, since

‖uε − u∗ε‖V = ‖γε(tε) − γε(tε)∗‖V � ‖γε − γ∗ε‖V̂ < ε.

Similar results were obtained in [30] without using Ekeland’s variational principle.
This kind of achievement is very useful in the study of elliptic equations, especially those

set on the entire space R
N where the addition of almost symmetry information yields a

compactifying effect, through compact embeddings of spaces of symmetric functions Xsym

of X into X.

3. Some applications

In this section, we highlight possible applications of the abstract symmetric versions of the
variational principles in the framework of PDEs, fixed point theory and geometric properties
of Banach spaces.

3.1. Calculus of variations

In this section, we consider two applications of the symmetric principles to PDEs.

3.1.1. A quasi-linear example. Let Ω = B be the unit ball in R
N (N � 1), 1 < p <∞ and

define the functional f : W 1,p
0 (Ω) → R ∪ {+∞} by setting

f(u) =
∫
Ω

L(u, |Du|), (3.1)

where L is an integrand of class C1 and, for (s, ξ) ∈ R × R
N ,

L(s, |ξ|) � 0. (3.2)

Assume that u belongs to dom(f) whenever u ∈W 1,p
0 (Ω) ∩ L∞(Ω). The functions Ls and Lξ

are the derivatives of L with respect to the variables s and ξ. We assume that there exist
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α, β, γ ∈ C(R) and real numbers a, b ∈ R such that the following conditions hold:

|L(s, |ξ|)| � α(|s|)|ξ|p + b|ξ|p + a, (3.3)

|Ls(s, |ξ|)| � β(|s|)|ξ|p, |Lξ(s, |ξ|)| � γ(|s|)|ξ|p−1 + b|ξ|p−1 + a, (3.4)

for every (s, ξ) ∈ R × R
N . We write the growth assumptions in such a fashion, since in the

particular case with β = γ = 0, conditions (3.2)–(3.4) reduce to [15, Assumptions (4.12)–(4.14)]
as stated by Ekeland. Now, since, in the general case where β and γ are unbounded, Ls(u, |Du|)
and Lξ(u, |Du|) are not in L1

loc(B) for a given function u ∈W 1,p
0 (Ω), the Euler–Lagrange

equation associated with f cannot be given, at least a priori, a distributional sense. To overcome
this situation, in [25], for every u ∈W 1,p

0 (Ω) the following vector space, dense in W 1,p
0 (Ω),

was used:

Vu = {v ∈W 1,p
0 (Ω) ∩ L∞(Ω) : u ∈ L∞({x ∈ Ω : v(x) �= 0})}. (3.5)

The following proposition can be obtained arguing as in [25, Proposition 4.5] and provides a
link between the weak slope and directional derivatives of f along a direction v ∈ Vu.

Proposition 3.1. Under assumptions (3.2)–(3.4), for every u ∈ dom(f), we have

|df |(u) � sup
v∈Vu

‖v‖1,p�1

[∫
Ω

Lξ(u, |Du|) ·Dv +
∫
Ω

Ls(u, |Du|)v
]
.

As a consequence of Proposition 3.1 and Theorem 2.8, we have the following theorem.

Theorem 3.2. Assume that conditions (3.2)–(3.4) hold and L(−s, |ξ|) � L(s, |ξ|) for all
s � 0. Then, for any ε > 0, there exist uε ∈W 1,p

0 (Ω) and wε ∈W−1,p′
(Ω) such that

〈wε, v〉 =
∫
Ω

Lξ(uε, |Duε|) ·Dv +
∫
Ω

Ls(uε, |Duε|)v ∀v ∈ Vuε
, (3.6)

as well as

‖wε‖W−1,p′ (Ω) � ε and ‖uε − u∗ε‖Lp(Ω)∩Lp∗ (Ω) < ε.

Proof. The functional f in formula (3.1) is proper, bounded from below and lower semi-
continuous by means of condition (3.2) and Fatou’s lemma. Moreover, the assumptions
of Theorem 2.8 are satisfied with X = W 1,p

0 (Ω), S = W 1,p
0 (Ω,R+), V = Lp(Ω) ∩ Lp∗

(Ω),
ξ = |u| and where uH , u∗ for u ∈ S and u∗ = |u|∗ for u ∈ X denote the polarization and
symmetrization, respectively (see Sections 2.1.1–2.1.2). Assumption (2.3) holds with equal
sign by the radial structure of the integrand, as it can be verified by direct computation.
The assertion follows by Theorem 2.8 (recall also Remark 2.23), Proposition 3.1 and the
Hahn–Banach theorem, taking into account the density of Vuε

in W 1,p
0 (Ω).

In many cases, one recovers the fact that the solution uε of equation (3.6) is actually meant
in the sense of distributions, by suitably enlarging the class of admissible test functions;
see, for example, [25, Theorem 4.10 and Lemma 4.6]. Theorem 3.2 could be seen as a
nonsmooth symmetric version of Ekeland [15, Proposition 4.3(a)]. In fact, under the above
assumptions our functional is merely lower semi-continuous, while the functional of Ekeland
[15, Proposition 4.3(a)] is of class C1. Furthermore, the symmetry featured in Theorem 3.2
can be obtained via Theorem 2.8 due to the structure L(s, |ξ|) yielding (2.3), in place of the
more general form L(x, s, ξ), admissible in [15]. Theorem 3.2 is new even in the particular
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case β = γ = 0. We stress that a constrained version of Theorem 3.2 could also be provided,
yielding a nonsmooth symmetric counterpart of Ekeland [15, Proposition 4.3(b)].

Remark 3.3. It should be highlighted that the strength of Theorem 3.2 is related to
the fact that we are not assuming that ξ 
→ j(x, s, ξ) is convex. Should one additionally
consider this assumption, it is then often the case that functionals satisfying (2.3), fulfil in
turn the corresponding symmetrization inequality f(u∗) � f(u). In such a case, starting from
a minimizing sequence (uh), one has that (u∗h) is a minimizing sequence too and it is then
easy to find a further almost symmetric minimizing sequence (vh). Without the convexity of
ξ 
→ j(x, s, ξ), to the author’s knowledge, no symmetrization inequality is available and thus
Theorem 3.2 has a rather significant impact on PDEs and problems of Calculus of Variations
which are set on a symmetric domain.

3.1.2. A semi-linear example. Let us now briefly discuss another example where the
second-order condition related to w 
→ Qu(w) is also involved, namely, the inferior limit in
formula (2.18), in a C1, but not C2, framework. In [2], Bartsch and Degiovanni showed that,
in some concrete cases of interest in the theory of PDEs, although it is often not possible to
compute the values of Qu(w), it is possible to compute a greater quantity. For instance, if f is
of class C1, then (see [2, Remark 4.4]), for every w ∈ X,

Qu(w) � lim sup
(τ,ϑ)→(0,0)

z→u
ζ→w

f ′(z + τζ)ζ − f ′(z + ϑζ)ζ
τ − ϑ

,

the right-hand side being easier to estimate, in some cases [2, Propositions 4.5]. For instance,
now let Ω = B be the unit ball in R

3, the three-dimensional case being considered just for
simplicity. Let also g : R → R be a continuous function and assume that there exist a1, a2 ∈ R,
b ∈ R and 2 < p � 6 such that, for all s, t ∈ R, it holds

|g(s)| � a1 + b|s|p−1 and g(−s) = −g(s),
(g(s) − g(t))(s− t) � −(a2 + b|s|p−2 + b|t|p−2)(s− t)2.

Then, for all s ∈ R, define a measurable function Dsg by setting

Dsg(s) := lim inf
(t,τ)→(0,0)

t,τ∈Q

g(s+ t) − g(s+ τ)
t− τ

.

Let G(s) =
∫s

0
g(t)dt and consider the C1 functional f : H1

0 (Ω) → R defined by

f(u) =
1
2

∫
Ω

|Du|2 −
∫
Ω

G(u).

In light of Bartsch and Degiovanni [2, Proposition 6.1], it holds

Qu(w) �
∫
Ω

|Dw|2 −
∫
Ω

Dsg(u)w
2 < +∞, ∀u,w ∈ H1

0 (Ω). (3.7)

Therefore, combining Theorem 2.28 with the above setting yields the following theorem.

Theorem 3.4. Assume that f is bounded from below and admits a bounded minimizing
sequence. Then f has a minimizing sequence (uh) ⊂ H1

0 (Ω) and a sequence (ψh) ⊂ H−1(Ω)
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such that

lim
h

‖uh − u∗h‖L2(Ω)∩L2∗ (Ω) = 0,∫
Ω

DuhDϕ =
∫
Ω

g(uh)ϕ+ 〈ψh, ϕ〉, ∀ϕ ∈ H1
0 (Ω), lim

h
‖ψh‖H−1 = 0,

lim inf
h

[∫
Ω

|Dw|2 −
∫
Ω

Dsg(uh)w2

]
� 0, ∀w ∈ H1

0 (Ω).

Proof. Based upon the above remarks, the assertion follows by Theorem 2.28 by choosing
X = H1

0 (Ω), S = H1
0 (Ω,R+), V = L2(Ω) ∩ L2∗

(Ω), since f(uH) = f(u) for all u ∈ S and H ∈
H∗, as well as f(|u|) = f(u) for all u ∈ X and ‖uH‖H1

0 (Ω) = ‖u‖H1
0 (Ω) for all u ∈ S and H ∈ H∗.

3.2. Fixed points

The following is a symmetric version of the so-called Caristi Fixed Point Theorem [6], which
was also proved by Ekeland via his principle in [16].

Theorem 3.5 (Symmetric Caristi Fixed Point Theorem). Let X be a Banach space and
F : X → X be a map such that

‖F (u) − u‖ � f(u) − f(F (u)), for all u ∈ X,

where f : X → R is a lower semi-continuous function, bounded from below, satisfying (2.3)
and such that, for all u ∈ X, there exists ξ ∈ S with f(ξ) � f(u). Then, for all ε ∈ (0, 1), there
exists a fixed point ξε ∈ X of F such that ‖ξε − ξ∗ε‖V < ε.

Proof. By virtue of Theorem 2.8 with σ = ρ = ε > 0, for every ε ∈ (0, 1), there exists an
element ξε ∈ X such that ‖ξε − ξ∗ε‖V < ε, and

f(w) � f(ξε) − ε‖w − ξε‖ for all w ∈ X.

In particular, choosing w = F (ξε) and using the assumption, we get

‖F (ξε) − ξε‖ � f(ξε) − f(F (ξε)) � ε‖F (ξε) − ξε‖,
which yields F (ξε) = ξε, concluding the proof.

Let Ω be either a ball in R
N or the whole R

N and take 1 < p <∞.

Corollary 3.6. Let F : W 1,p
0 (Ω) →W 1,p

0 (Ω) be a map such that

‖F (u) − u‖1,p � f(u) − f(F (u)), for all u ∈W 1,p
0 (Ω),

where f : W 1,p
0 (Ω) → R is a lower semi-continuous function bounded from below such that

f(|u|) � f(u) for all u ∈W 1,p
0 (Ω), f(uH) � f(u) for all u ∈W 1,p

0 (Ω,R+).

Then, for all ε ∈ (0, 1), there is a fixed point ξε ∈W 1,p
0 (Ω) of F with ‖ξε − ξ∗ε‖Lp∩Lp∗ (Ω) < ε.

Proof. Theorem 3.5 is applied with X = W 1,p
0 (Ω), S = W 1,p

0 (Ω,R+) and V = Lp ∩ Lp∗
(Ω).

As pointed out on Section 2.1, if uH is the polarization of positive functions on R
N and ∗ is

the Schwarz symmetrization, the framework of Definition 2.1 is satisfied.
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Let Ω be either a ball in R
N or the whole R

N and take 1 < p <∞.

Corollary 3.7. Let F : Lp(Ω) → Lp(Ω) be a map such that

‖F (u) − u‖p � f(u) − f(F (u)), for all u ∈ Lp(Ω),

where f : Lp(Ω) → R is a lower semi-continuous function bounded from below such that

f(|u|) � f(u) for all u ∈ Lp(Ω), f(uH) � f(u) for all u ∈ Lp(Ω,R+).

Then, for all ε ∈ (0, 1), there is a fixed point ξε ∈ Lp(Ω) of F with ‖ξε − ξ∗ε‖Lp(Ω) < ε.

Proof. Theorem 3.5 is applied with X = V = Lp(Ω) and S = Lp(Ω,R+).

We conclude the section with a symmetric version of a fixed point theorem due to Clarke [8]
and also proved by Ekeland via his principle [16].

Theorem 3.8. Let (X, ‖ · ‖V ) be a Banach space, and F : (X, ‖ · ‖V ) → (X, ‖ · ‖V ) be
continuous, and assume that there exists 0 < σ < 1 such that

∀u ∈ X ∃t ∈ (0, 1] : ‖F (tF (u) + (1 − t)u) − F (u)‖V � σt‖F (u) − u‖V . (3.8)

Assume that F (S) ⊂ S, F (uH) = F (u)H for all H ∈ H∗ and u ∈ S, and that, for every u ∈ X,
there exists ξ ∈ S such that ‖ξ − F (ξ)‖V � ‖u− F (u)‖V . Then, for any ε ∈ (0, 1 − σ), there
exists a fixed point ξε ∈ X for F such that ‖ξε − ξ∗ε‖V < ε.

Proof. It is sufficient to argue essentially as in the proof of Ekeland [16, Theorem 3] on
the function f : X → R defined by f(u) := ‖u− F (u)‖V observing that, by assumption and by
(v) of Definition 2.1, it holds f(uH) = ‖uH − F (uH)‖V = ‖uH − F (u)H‖V � ‖u− F (u)‖V =
f(u) for all H ∈ H∗ and u ∈ S. Moreover, for all u ∈ X there is ξ ∈ S such that f(ξ) � f(u).
Applying Theorem 2.8 in place of Ekeland’s principle, the assertion follows.

Let Ω be either a ball in R
N or the whole R

N and take 1 < p <∞.

Corollary 3.9. Let F : Lp(Ω) → Lp(Ω) be a map such that (3.8) holds, F (u) � 0 for all
u ∈ Lp(Ω,R+), F (uH) = F (u)H for all H ∈ H∗ and u ∈ Lp(Ω,R+), and that F (|u|) = |F (u)|
for all u ∈ Lp(Ω). Then, for every ε ∈ (0, 1 − σ), there is a fixed point ξε ∈ Lp(Ω) for F such
that ‖ξε − ξ∗ε‖Lp(Ω) < ε.

Proof. Apply Theorem 3.8 with the choice X = V = Lp(Ω), S = Lp(Ω,R+). Note that,
for all u ∈ X, it holds ‖|u| − F (|u|)‖Lp(Ω) = ‖|u| − |F (u)|‖Lp(Ω) � ‖u− F (u)‖Lp(Ω), in the
notation of the proof of Theorem 3.8.

3.3. Drops and flower petals

As a by-product of the symmetric variational principle, Theorem 2.7, we obtain symmetric
versions of the Danes̆ Drop Theorem [10] and of the Flower Petal Theorem [26]. In the
particular case where h and ∗ are the identity maps and S = X = V , the statements reduce to
the classical formulation. Possible applications of the statements to some meaningful concrete
situations have not yet been investigated.
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Definition 3.10. Let X be a Banach space, B ⊂ X be convex and x ∈ X’. We say that

Drop(x,B) :=
⋃

y∈B, t∈[0,1]

x+ t(y − x),

is the drop associated with x and B. If x0, x1 ∈ X and ε > 0, then we say that

Petalε(x0, x1) :=
{
y ∈ X : ε‖y − x0‖ + ‖y − x1‖ � ‖x0 − x1‖

}
is the petal associated with ε and x0, x1 ∈ X.

Note that, for all ε ∈ (0, 1) and x0, x1 ∈ X, it always holds

B((1−ε)/(1+ε))‖x0−x1‖(x1)⊂Petalε(x0, x1),
Drop(x0, B((1−ε)/(1+ε))‖x0−x1‖(x1))⊂Petalε(x0, x1),

so that each petal contains a suitable ball as well as a drop of a suitable ball.
Here is a symmetric version of the so-called Drop Theorem due to Danes̆ [10].

Theorem 3.11 (Symmetric Drop Theorem). Let (X, ‖ · ‖V ) be a Banach space, B,C be
nonempty closed subsets of S, with B ⊂ XH∗ convex, and d(B,C) > 0. Moreover, let x ∈ C
such that S′ := Drop(x,B) ∩ C is closed and h(S′) ⊂ S′, ∗(S′) ⊂ V . Then, for all ε > 0 small,
there exists ξε ∈ Drop(x,B) ∩ C such that

Drop(ξε, B) ∩ C = {ξε} and ‖ξε − ξ∗ε‖V < ε.

Proof. By Remark 2.3, (S′,X, V, h, ∗) satisfies (i)–(v) of Definition 2.1 and Proposition 2.2.
Moreover, S′ is closed. Define a continuous function f : S′ → R

+ by setting

f(u) := inf
ζ∈B

‖u− ζ‖V , for all u ∈ S′.

Observe that, since B ⊂ XH∗ , for all u ∈ S′ and any H ∈ H∗, we have

f(uH) = inf
ζ∈B

‖uH − ζ‖V = inf
ζ∈B

‖uH − ζH‖V � inf
ζ∈B

‖u− ζ‖V = f(u),

in light of (v) of Definition 2.1. Now let ε0 > 0 be fixed sufficiently small that ε0 diam(B) <
(1 − ε0)d(B,C). In turn, for every ε ∈ (0, ε0], by applying Theorem 2.7 with ρ = σ = ε, we find
an element ξε ∈ S′ such that ‖ξε − ξ∗ε‖V < ε and

inf
ζ∈B

‖w − ζ‖V > inf
ζ∈B

‖ξε − ζ‖V − ε‖w − ξε‖V , ∀w ∈ S \ {ξε}. (3.9)

To prove the assertion, we argue by contradiction, assuming that

Drop(ξε, B) ∩ (Drop(x,B) ∩ C) �= {ξε}.
Then we find τ ∈ [0, 1], τ �= 1, and η ∈ B such that ŵ = (1 − τ)η + τξε ∈ S′ \ {ξε}. In turn,
from formula (3.9) evaluated at ŵ, and since B is convex, we infer

inf
ζ∈B

‖ξε − ζ‖V < τ inf
ζ∈B

‖ξε − ζ‖V + (1 − τ) inf
ζ∈B

‖η − ζ‖V + ε(1 − τ)‖η − ξε‖V ,

namely (recall that 0 � τ < 1) for every ζ ∈ B it holds

inf
ζ∈B

‖ξε − ζ‖V < ε‖η − ξε‖V � εdiam(B) + ε‖ζ − ξε‖V .

Therefore, taking the infimum over ζ ∈ B, and since ε ∈ (0, ε0], we conclude that

(1 − ε0)d(B,C) � (1 − ε) inf
ζ∈B

‖ξε − ζ‖V � εdiam(B) � ε0 diam(B) < (1 − ε0)d(B,C),
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which is a contradiction. Hence, Drop(ξε, B) ∩ (Drop(x,B) ∩ C) = {ξε}. By the inclusion
Drop(ξε, B) ⊂ Drop(x,B) we get Drop(ξε, B) ∩ C = {ξε}, concluding the proof.

Now let Ω be either the unit ball in R
N or R

N and 1 < p <∞. We denote by Lp
r(Ω,R

+)
the set of radially symmetric elements of Lp(Ω,R+), that is, u∗ = u, (∗ being the Schwarz
symmetrization) being equivalent to uH = u for any H ∈ H∗.

Corollary 3.12 (Symmetric Drop Theorem in Lp-spaces). Let C be a nonempty closed
subset of (Lp(Ω,R+), ‖ · ‖Lp(Ω)) and B be a unit ball in Lp

r(Ω,R
+) with d(B,C) > 0. Let u ∈ C

be such that

∀v ∈ Drop(u,B) ∩ C, ∀H ∈ H∗ : vH ∈ Drop(u,B) ∩ C.
Then, for all ε > 0 small, there exists ξε ∈ Drop(u,B) ∩ C such that

Drop(ξε, B) ∩ C = {ξε} and ‖ξε − ξ∗ε‖Lp(Ω) < ε.

Proof. By assumption, S′ is compatible with Definition 2.1. Apply Theorem 3.11 with
X = V = Lp(Ω), S = Lp(Ω,R+), S′ = Drop(u,B) ∩ C. Since B ⊂ Lp

r(Ω,R
+), u∗ = u for all

u ∈ B and thus uH = u for all H ∈ H∗. Hence, B is a convex subset of XH∗ .

Next, we state a symmetric version of the Petal Flower Theorem obtained by Penot [26].

Theorem 3.13 (Symmetric Petal Flower Theorem). Let (X, ‖ · ‖V ) be a Banach space and
S′ = C be a closed subset of S such that

∀v ∈ C, ∀H ∈ H∗ : vH ∈ C.

Assume that x ∈ C, y ∈ S \ C with xH = x and yH = y for any H ∈ H∗ and

‖x− y‖V � d(y, C) + ε2 for some ε > 0. (3.10)

Then there exists a point ξε ∈ Petalε(x, y) ∩ C such that

Petalε(ξε, y) ∩ C = {ξε} and ‖ξε − ξ∗ε‖V < ε.

Proof. By Remark 2.3, (S′,X, V, h, ∗) satisfies (i)–(v) of Definition 2.1 and Proposition 2.2.
Moreover, S′ is closed. Define the continuous map f : S′ → R

+ by setting f(u) := ‖u− y‖V

for all u ∈ S′. Since yH = y for any H ∈ H∗, we have

f(uH) = ‖uH − y‖V = ‖uH − yH‖V � ‖u− y‖V = f(u), for u ∈ S′ and H ∈ H∗.

Then, by Theorem 2.13 and Remark 2.14, with the choice ρ = σ = ε, since (3.10) rephrases as
f(x) � infS′ f + ε2, there exists ξε ∈ C such that ‖ξε − ξ∗ε‖V < ε,

ε‖w − ξε‖V + ‖w − y‖V > ‖ξε − y‖V , ∀w ∈ C \ {ξε},
and ε‖ξε − Tεx‖V + ‖ξε − y‖V � ‖x− y‖V . As Tεx = x, this means ξε ∈ Petalε(x, y) ∩ C and
w �∈ Petalε(ξε, y) for all w ∈ C \ {ξε}, that is, Petalε(ξε, y) ∩ C = {ξε}.

Now let Ω be either the unit ball in R
N or the whole R

N and take 1 � p <∞.

Corollary 3.14 (Symmetric Petal Flower Theorem in Lp-spaces). Let C be a closed
subset of (Lp(Ω,R+), ‖ · ‖Lp(Ω)), u ∈ C, v ∈ Lp(Ω,R+) \ C with uH = u and vH = v for any



SYMMETRY IN VARIATIONAL PRINCIPLES AND APPLICATIONS 347

H ∈ H∗, ‖u− v‖Lp(Ω) � d(v, C) + ε2 for some ε > 0. Assume in addition that

∀v ∈ C, ∀H ∈ H∗ : vH ∈ C.

Then there exists ξε ∈ Petalε(u, v) ∩ C with Petalε(ξε, v) ∩ C = {ξε} and ‖ξε − ξ∗ε‖Lp(Ω) < ε.

Proof. Apply Theorem 3.13, with the choice X = V = Lp(Ω) and S = Lp(Ω,R+).
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comments.
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