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1. Introduction

The well-known Polya–Szegö inequality [15,29,30] states that if u ∈ W 1,p(RN ,R+) then∫
RN

|∇u∗|pdx ≤
∫
RN

|∇u|pdx, (1.1)

where u∗ is the Schwarz symmetric rearrangement of u. This inequality has relevant applications in the study
of isoperimetric inequalities, in the Faber–Krahn inequality and in the determination of optimal constants
in the Sobolev inequality [2,36]. This kind of inequalities still holds in the nonlocal case, e.g. for the standard
fractional norm, namely for u ∈ W s,p(RN ,R+)∫∫

R2N

|u∗(x) − u∗(y)|p

|x − y|N+ps
dxdy ≤

∫∫
R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy, (1.2)
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for p ≥ 1 and s ∈ (0, 1), see e.g. [1,3]. Actually this inequality implies (1.1) by a straightforward application
of a result by Bourgain, Brezis and Mironescu [4,5] which confirms that

lim
s↗1

(1 − s)
∫∫

R2N

|v(x) − v(y)|p

|x − y|N+ps
dxdy = KN,p

∫
RN

|∇v|p, for v ∈ W 1,p(RN ), (1.3)

where

KN,p :=
∫
SN−1

|e · σ|p dσ, for some e ∈ SN−1, the unit sphere in RN . (1.4)

Polarization by closed half spaces H ⊂ RN containing the origin is an elementary form of symmetrization and
it is a key tool in order to investigate various rearrangements inequalities. The polarization uH with respect
to H, see the definition (2.1), also called two-point rearrangement, essentially compares the values of u on the
two sides of ∂H and keeps the largest values inside H and the smallest values outside H, cf. [14,16–18]. Since
the first achievements obtained in [14], the approximation in Lp(RN ) of u∗ via iterated polarizations of u has
been refined in various ways. It is now known that there exists an explicit and universal (i.e. independent
of u) sequence of closed half spaces {Hn}n∈N of RN containing the origin such that a suitable sequence
of iterated polarizations of u with respect to Hn strongly converges to u∗ in Lp(RN ), see [38] and the
references therein. It is thus natural to derive the rearrangement inequalities (1.1)–(1.2) from the (possible)
corresponding inequalities for the polarizations using general weak lower semi-continuity properties. In fact,
for any closed half space H with 0 ∈ H and any u ∈ W 1,p(RN ),∫

RN
|∇uH |pdx =

∫
RN

|∇u|pdx, (1.5)

as well as, for any W s,p(RN ),∫∫
R2N

|uH(x) − uH(y)|p

|x − y|N+ps
dxdy ≤

∫∫
R2N

|u(x) − u(y)|p

|x − y|N+ps
dxdy, (1.6)

see [3,14] and references included. For applications of polarization techniques, see [19,33–35,37,38].
More recently, a new class of nonlocal functionals has been involved in the study of topological degree of

a map [6,11,24], namely, for δ > 0 and 1 < p < N ,

Iδ(u) :=
∫∫

{|u(y)−u(x)|>δ}

δp

|x − y|N+p
dxdy.

It turns out that this energy also provides a pointwise approximation of ∥∇u∥p
p for p > 1, precisely

lim
δ↘0

Iδ(u) = 1
p

KN,p

∫
RN

|∇u|pdx, (1.7)

where KN,p is given by (1.4), see [7,23] (and also [9,10,12,13,25]). Various properties of Sobolev spaces in
terms of Iδ were investigated in [27], for example, it was shown in [27, Theorem 3] that, for 1 < p < N and
for δ > 0, (∫

{|u|>λδ}
|u|

Np
N−p dx

)N−p
Np

≤ C
(
Iδ(u)

)1/p
, ∀u ∈ Lp(RN ), (1.8)

for some positive constants C, λ depending only on N and p.
The first goal of this note is to prove that, however, the nonlocal energy Iδ fails to be decreasing upon

polarization. This supports yet again the idea (cf. [26]) that Iδ is a much more delicate approximation of
local norm with respect to the other mentioned above. More precisely, we have
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Theorem 1.1. Let N ≥ 1 and p ≥ 1. Then there exist δ0 > 0 and a closed half space H ⊂ RN with 0 ∈ H

such that for any 0 < δ < δ0 there exists a measurable function u : RN → R such that Iδ(uH) > Iδ(u).

The proof of Theorem 1.1 is given in Section 2.2. In Section 2.3, we present a proof of (1.2).
The second goal of this note is to prove some facts related to symmetric functions. Precisely:
• (Global compactness and Iδ). Let 1 < p < N , (δn) → 0+, and let {un}n∈N be a sequence of radially

symmetric decreasing functions. Assume that

{un}n∈N is bounded in Lp(RN ) and {Iδn(un)}n∈N is bounded in R.

Then {un}n∈N is pre-compact in Lr(RN ) for every p < r < Np/(N − p).
• (Decay and integrability of Iδ). If u : RN → R+ and there exists ϑ > 0 with∫ ∞

0

Iδ(u∗)ϑ/p

δ
dδ < ∞,

then there exists C > 0 depending on u, N, p, ϑ such that 0 ≤ u∗(x) ≤ C|x|−(N−p)/p
.

The proof of these two facts is given in Section 3 (see Theorems 3.2 and 3.4).

2. Symmetrization inequalities

2.1. The defect of decreasingness of Iδ

In the following H will denote a closed half-space of RN containing the origin. We denote by H the set of
these closed half-spaces. A reflection σH : RN → RN with respect to H is an isometry such that σ2

H = Id and
|x − y| < |x − σH(y)| for all x, y ∈ H. We also set Hc := RN \ H. Given x ∈ RN , σH(x) will also be denoted
by xH . The polarization (or two-point rearrangement) of a nonnegative real valued function u : RN → R+

with respect to a given H is defined as

uH(x) :=
{

max{u(x), u(σH(x))}, for x ∈ H,
min{u(x), u(σH(x))}, for x ∈ Hc.

(2.1)

Let us set

A :=
{

x ∈ int(H) : u(x) ≤ u(xH)
}

, B :=
{

x ∈ int(H) : u(x) > u(xH)
}

,

C :=
{

y ∈ Hc : u(y) ≥ u(yH)
}

, and D :=
{

y ∈ Hc : u(y) < u(yH)
}

.

It is clear that

C = σ(A) and D = σ(B).

We have

Iδ = I
(A∪C)(A∪C)
δ + I

(B∪D)(B∪D)
δ + I

(A∪C)(B∪D)
δ + I

(B∪D)(A∪C)
δ , (2.2)

where, for two measurable subsets O, P of RN , we denote

IOP
δ (u) :=

∫
O

∫
P {|u(y)−u(x)|>δ}

δp

|x − y|N+p
dxdy.

We claim that

I
(A∪C)(A∪C)
δ (uH) = I

(A∪C)(A∪C)
δ (u), (2.3)

I
(B∪D)(B∪D)
δ (uH) = I

(B∪D)(B∪D)
δ (u). (2.4)
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We begin with (2.3). Since

uH(x) = u(xH) if x ∈ A ∪ C and |x − y| = |xH − yH |,

by a change of variable x = xH and y = yH , we obtain

I
(A∪C)(A∪C)
δ (uH) = I

(A∪C)(A∪C)
δ (u),

which is (2.3). We next establish (2.4). This is a direct consequence of the fact

uH(x) = u(x), if x ∈ B ∪ D.

We next concern about the validity of the inequality:

I
(A∪C)(B∪D)
δ (uH) ≤ I

(A∪C)(B∪D)
δ (u). (2.5)

By a change of variables, we obtain

I
(A∪C)(B∪D)
δ (v) =

∫
A

∫
B

(
L (v, x, y)
|x − y|N+p

+ L (v, x, yH)
|x − yH |N+p

+ L (v, xH , y)
|xH − y|N+p

+ L (v, xH , yH)
|xH − yH |N+p

)
dx dy,

where

L (v, x, y) := δp 1{|v(x)−v(y)|>δ}(x, y), x, y ∈ RN .

We have, for x ∈ A and y ∈ B,

uH(x) = u(xH), uH(xH) = u(x), uH(y) = u(y), and uH(yH) = u(yH).

It follows that, for x ∈ A and y ∈ B,

L (uH , x, y)
|x − y|N+p

= L (u, xH , y)
|x − y|N+p

,
L (uH , x, yH)
|x − yH |N+p

= L (u, xH , yH)
|x − yH |N+p

and

L (uH , xH , y)
|xH − y|N+p

= L (u, x, y)
|xH − y|N+p

,
L (uH , xH , yH)
|xH − yH |N+p

= L (u, x, yH)
|x − y|N+p

.

Setting

DH
δ (u, x, y) := L (u, xH , y) + L (u, x, yH) − L (u, x, y) − L (u, xH , yH),

we derive that inequality (2.5) is equivalent to

dH
δ (u) :=

∫
A

∫
B

DH
δ (u, x, y)

( 1
|x − y|N+p

− 1
|xH − y|N+p

)
dx dy ≤ 0. (2.6)

On the other hand, in general, concrete examples show that the inequality Du(x, y) fails, so that it is expected
that Iδ(uH) − Iδ(u) can be positive for some H, u and δ > 0, in which case the quantity dH

δ (u) provides a
measure of the defect of decreasingness.
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Remark 2.1 (Vanishing Defect). For any closed half space H ⊂ RN with 0 ∈ H there holds, for p > 1,

lim
δ↘0

dH
δ (u) = 0, for all u ∈ W 1,p(RN ).

In fact, we know that uH ∈ W 1,p(RN ) also and ∥∇uH∥Lp(RN ) = ∥∇u∥Lp(RN ) from formula (1.5).
Furthermore, from formulas (2.2)–(2.5), we infer

dH
δ (u) = 1

2Iδ(uH) − 1
2Iδ(u), for all δ > 0.

Then, from equality (1.7), we conclude

lim
δ↘0

dH
δ (u) = 1

2 lim
δ↘0

Iδ(uH) − 1
2 lim

δ↘0
Iδ(u) = KN,p

2p

(
∥∇uH∥p

Lp(RN ) − ∥∇u∥p

Lp(RN )

)
= 0,

proving the assertion.

2.2. Proof of Theorem 1.1

We first deal with the case N = 1. Here is a counterexample to (2.6) with p ∈ [1, +∞). Fix ε ∈ (0, 1/8)
and let u : R → R be defined by

u(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ for x ∈ (−2, −1],
linear for x ∈ [−1, −1 + δ],
−2εδ for x ∈ [−1 + δ, 0),
−εδ for x ∈ (0, 1),

δ − εδ for x ∈ (1, 2),
0 for x ̸∈ (−2, 2).

(2.7)

Let H = [0, ∞) and σ be the standard reflection. It is clear that uH satisfies

uH(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ − εδ for x ∈ (−2, −1],
−2εδ for x ∈ [−1 + δ, 0),
−εδ for x ∈ (0, 1 − δ),

δ for x ∈ (1, 2),
0 for x ̸∈ (−2, 2).

(2.8)

We derive from (2.7) and (2.8) that

Iδ(uH) − Iδ(u) ≥
∫ 1−δ

0

∫ 2

1

δp

|x − y|p+1 dx dy

− 2
∫ −1+δ

−1

∫ 0

−2
{|u(x)−u(y)|>δ}

δp

|x − y|p+1 dx dy − 2
∫ 0

−1

∫ 2

1

δp

|x − y|p+1 dx dy.

A straightforward computation yields, for small δ and ε,∫ 1−δ

0

∫ 2

1

δp

|x − y|p+1 dx dy ≃
{

δ|ln δ| if p = 1
δ if p > 1,

∫ −1+δ

−1

∫ 0

−2
{|u(x)−u(y)|>δ}

δp

|x − y|p+1 dx dy ≃ εδ,

and ∫ −0

−1

∫ 2

1

δp

|x − y|p+1 dx dy ≃ δp.
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We obtain that, for small positive δ and ε, we have Iδ(uH) > Iδ(u).
This example can be modified to obtain similar conclusion in the case {0} ∈ H by considering the function

u(· + c) for some c > 0 where u is given above. In the above example, the function u is not non-negative.
However, this point can be handled by considering the function given by u(x)+2εδ if |x| < 3 and 0 otherwise.

We next consider the case N ≥ 2. Set

H = [0, +∞) × RN−1

and define U : RN → R as follows, for (x1, x′) ∈ R × RN−1,

U(x1, x′) =
{

u(x1) − δ/2 if |x|∞ ≤ 2,
0 otherwise,

where u is given in (2.7). One can check that

Iδ(UH) − Iδ(U) ≃ Iδ(uH) − Iδ(u) > 0.

In the above example, the function U is not non-negative and H does not contain the origin. However,
this point can be handled similarly as in the case N = 1.

The following question remains open:

Open problem 2.2. Let N ≥ 1. It is true that Iδ(u∗) ≤ Iδ(u) for any measurable u : RN → R+ and δ > 0?

2.3. Riesz two-point inequality

Let u ∈ L1
loc(RN ), let H be a closed half-space of RN and let G be a Young function, i.e. G : [0, +∞) → R,

G(0) = 0, G is non-decreasing, and G is convex, and let w be a non-negative, non-increasing radial function.
The above notations allow to prove the classical inequality∫∫

R2N
G(|uH(x) − uH(y)|)w(|x − y|) dx dy ≤

∫∫
R2N

G(|u(x) − u(y)|)w(|x − y|) dx dy, (2.9)

where G(u, x, y) means G(|u(x) − u(y)|). In fact, set

DH(u, x, y) := G(u, xH , y) + G(u, x, yH) − G(u, x, y) − G(u, xH , yH),

and define

dH(u) :=
∫∫

R2N
G(|uH(x) − uH(y)|)w(|x − y|) dx dy −

∫∫
R2N

G(|u(x) − u(y)|)w(|x − y|) dx dy.

As in (2.6), we have

dH(u) =
∫

A

∫
B

DH(x, y; u)
(

w(|x − y|) − w(|xH − y|)
)

dx dy.

We claim that

DH(u, x, y) ≤ 0, (2.10)

for each x ∈ A and y ∈ B. Assuming this, we then immediately get inequality (1.6) since w is non-decreasing.
We now prove (2.10). Observe that if a ≤ b and c ≤ d then

|a − c| + |b − d| ≤ |d − a| + |b − c|
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and

max{|a − c|, |b − d|} ≤ max{|d − a|, |b − c|}.

It follows that, for x ∈ A and y ∈ B,

|u(x) − u(yH)| + |u(xH) − u(y)| ≤ |u(y) − u(x)| + |u(xH) − u(yH)|

and

max{|u(x) − u(yH)|, |u(xH) − u(y)|} ≤ max{|u(y) − u(x)|, |u(xH) − u(yH)|}.

Assertion (2.10) follows from the properties of Young’s functions of G.
As a consequence of (2.9), one has

|uH |W s,p(RN ) ≤ |u|W s,p(RN ),

for s ∈ (0, 1) and p > 1. It follows that, for u ∈ W s,p(RN ) with u > 0,

|u∗|W s,p(RN ) ≤ |u|W s,p(RN ),

where u∗ denotes the spherical symmetric rearrangement of u. By the BBM formula (1.3), one reaches the
Polya–Szegö inequality.

Remark 2.3. Recall that H is the set of half-spaces which contain the origin. One can endow H with
a metric that ensures that Hn → H if there exists a sequence of isometries in : RN → RN such that
Hn = in(H) and in converges to the identity as n → +∞, moreover, H is separable with respect to this
metric. Let {Hn}n∈N be a dense set in H. For any u ∈ Lp(RN ), let {un}n∈N be the sequence defined by

u0 := u and un+1 := u
H1···Hn+1
n for n ≥ 0. (2.11)

Assume that

sup
n∈N

Iδn(un) < +∞, for some {δn} → 0.

Then u∗ ∈ W 1,p(RN ) (p > 1), where u∗ denotes the Schwarz symmetrization of u. In fact, by [38, Theorem
1], we have un → u∗ strongly in Lp(RN ) as n → ∞. Then, the assertion follows by the Gamma-convergence
result in [26, Theorem 2]. If in addition, for all δ > 0,∫∫

{|u(y)−u(x)|>δ}
|x − y|−N−p

dxdy =
∫∫

{|u∗(y)−u∗(x)|>δ}
|x − y|−N−p

dxdy,

then u is radially symmetric about some point x0 ∈ RN provided that LN ({∇u∗ = 0}) = 0. This follows by
the Brothers–Ziemer result [15, Theorem 1.1] jointly with [23, Theorem 2].

3. Radially decreasing functions and Iδ

For every measurable function u : RN → R we define its distribution function

µu(t) =
⏐⏐{x : |u(x)| > t}

⏐⏐, t > 0.
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Let 0 < q < ∞ and 0 < ϑ < ∞, the Lorentz space Lq,ϑ(RN ) (cf. [21,22,28]) is defined by

Lq,ϑ(RN ) :=
{

u : RN → R :
∫ ∞

0
tϑ−1 µu(t)ϑ/q dt < ∞

}
.

In the limit case ϑ = ∞, this is defined by

Lq,∞(RN ) :=
{

u : RN → R : sup
t>0

t µu(t)1/q < ∞
}

.

We recall from [8, Lemma 2.9] the following

Lemma 3.1. Let 0 < ϑ ≤ ∞ and 0 < q < ∞. Let u ∈ Lq,ϑ(RN ) be a non-negative and radially symmetric
decreasing function. Then

0 ≤ u(x) ≤
(

ϑ ω
− ϑ

q

N

∫ ∞

0
tϑ−1 µu(t)

ϑ
q dt

) 1
ϑ

|x|−
N
q , if ϑ < ∞,

0 ≤ u(x) ≤
(

ω
− 1

q

N sup
t>0

t µu(t)
1
q

)
|x|−

N
q , if ϑ = ∞.

The next proposition shows that the measure of the superlevels of a nonnegative function u is controlled
by a quantity involving Iδ(u∗). Set p∗ := Np/(N − p) for 1 ≤ p < N .

Theorem 3.2. Let 1 < p < N and u : RN → R be a non-negative function. Then there exist two positive
constants C and λ depending only on N and p such that⏐⏐{x ∈ RN : u(x) > λδ}

⏐⏐ ≤ Cδ
− Np

N−p min
{

Iδ(u∗)
N

N−p , Iδ(u∗)
N

N−p
}

, (3.1)

where u∗ is the Schwarz symmetric rearrangement of u. Assume that there exists ϑ > 0 such that∫ ∞

0

Iδ(u)
ϑ
p

δ
dδ < ∞ or

∫ ∞

0

Iδ(u∗)
ϑ
p

δ
dδ < ∞. (3.2)

Then u, u∗ ∈ Lp∗,ϑ(RN ) and there exists a positive constant C depending on u, N, p, ϑ such that

0 ≤ u∗(x) ≤ C|x|−
N−p

p .

Proof. By the definition of u∗ we have that µu(t) = µu∗(t) for t > 0. Then, by applying inequality (1.8)
to u∗, we have, for all δ > 0,

λδµu(λδ)
N−p
Np = λδµu∗(λδ)

N−p
Np ≤

(∫
{|u∗|>λδ}

|u∗|
Np

N−p dx

)N−p
Np

≤ CIδ(u∗)
1
p

and

λδµu∗(λδ)
N−p
Np = λδµu(λδ)

N−p
Np ≤

(∫
{|u∗|>λδ}

|u|
Np

N−p dx

)N−p
Np

≤ CIδ(u)
1
p ,

which implies (3.1). By virtue of (3.2), it follows from (3.1) that∫ ∞

0
δϑ−1µu(δ)

ϑ
p∗ dδ < ∞ and

∫ ∞

0
δϑ−1µu∗(δ)

ϑ
p∗ dδ < ∞,

which yields u, u∗ ∈ Lp∗,ϑ(RN ) and the final assertions follow from Lemma 3.1. □

Remark 3.3. Since Lq,q(RN ) = Lq(RN ), it follows that u, u∗ ∈ Lp∗(RN ) if∫ ∞

0

Iδ(u)N/(N−p)

δ
dδ < ∞ or

∫ ∞

0

Iδ(u∗)N/(N−p)

δ
dδ < ∞.
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Concerning the compactness related to Iδ, the following result was shown in [27, Theorem 2]. Let p > 1,
(δn) → 0+ and (un) ⊂ Lp(RN ). Assume that

{un}n∈N is bounded in Lp(RN ) and {Iδn(un)}n∈N is bounded. (3.3)

Then

{un}n∈N is pre-compact in Lp
loc(RN ). (3.4)

In this paper, we prove the following global compactness result:

Theorem 3.4. Let 1 < p < N , (δn) → 0+, and let {un}n∈N be a sequence of radially symmetric decreasing
functions. Assume that{

un

}
n∈N is bounded in Lp(RN ) and

{
Iδn(un)

}
n∈N is bounded.

Then
{

un

}
n∈N is pre-compact in Lr(RN ) for every p < r < Np/(N − p).

Proof. From (1.8), (3.3), and (3.4), we derive that

(un) is pre-compact in Lr
loc(RN ). (3.5)

Since (un) is decreasing and (un) is bounded in Lp(RN ), for any δ > 0 there exists Rδ such that, for all n,

|un(x)| ≤ δ for |x| > Rδ. (3.6)

Fix ε > 0. By (3.5), there exists a finite subset J of N such that{
un ∈ Lr(BRε); n ∈ N

}
⊂
⋃
j∈J

{
u ∈ Lr(BRε) : ∥u − uj∥Lr(BRε ) < ε

}
, (3.7)

where BR denotes the open ball centered at the origin and of radius R in RN for R > 0. On the other hand,
by (3.6), we have

∥un∥Lr(RN \BRε ) ≤ ε(r−p)/r∥un∥p/r

Lp(RN \BRε ) ≤ Cε1−p/r, (3.8)

since (un) is bounded in Lp(RN ). A combination of (3.7) and (3.8) yields, for ε small enough such that
ε < Cε1−p/r, {

un ∈ Lr(RN ); n ∈ N
}

⊂
⋃
j∈J

{
u ∈ Lr(RN ); ∥u − uj∥Lr(RN ) < 3Cε1−p/r

}
, (3.9)

where C is the constant in (3.8). Since (3.9) holds for small ε and 1 − r/p > 0, it follows that (un) is
pre-compact in Lr(RN ). □

Remark 3.5. Let N ≥ 1 and p ≥ N . It was shown in [27, Theorem 1] that if u ∈ Lp(RN ) and Iδ(u) < +∞
for some δ > 0 then u ∈ BMOloc(RN ) where BMO denotes the space of functions of bounded mean
oscillation. By the same proof, under the same assumptions on {un}, one obtains the compactness result for
Lr(RN ) for p < r < p∗ with p∗ = ∞.

As a consequence of Theorem 3.4, we have the following
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Corollary 3.6. Let 1 < p < N and let {un}n∈N be a nonnegative sequence of functions bounded in Lp(RN )
such that

lim inf
n→∞

Iδn(u∗
n) < ∞,

for some sequence {δn}n∈N → 0+. Then, up to a subsequence, {u∗
n}n∈N converges strongly in Lr(RN ) to a

radial decreasing function, for any p < r < Np/(N − p).

Proof. Since the sequence {un}n∈N is bounded in Lp(RN ), it follows that sequence {u∗
n}n∈N is also bounded

in Lp(RN ) by Cavalieri’s principle. Then, by Theorem 3.4, it follows that u∗
n → v in Lr(RN ) strongly for

any p < r < Np/(N − p). □

4. An open problem for Riesz fractional gradients

Recently, a notion of fractional gradients (more precisely distributional Riesz fractional gradients) has been
introduced in the literature by Shieh and Spector in the papers [31,32], where several basic properties of
local Sobolev spaces (e.g. Sobolev, Morrey, Hardy, Trudinger inequalities) are proven to extend to fractional
spaces defined through this new notion.

More precisely, the fractional gradient Dsu(x) at a point x ∈ RN is defined for locally Lipschitz compactly
supported functions u : RN → R, for any s ∈ (0, 1), by

Dsu(x) := cN,s

∫
RN

u(x) − u(y)
|x − y|N+s

x − y

|x − y|
dy, for x ∈ RN ,

for a suitable positive constant cN,s depending on N and s. This is reminiscent of the classical scalar notion
of s

2 -fractional laplacian

(−∆)s/2u(x) = CN,s

∫
RN

u(x) − u(y)
|x − y|N+s

dy, for x ∈ RN ,

for a suitable normalization constant CN,s depending on N and s. Notice also that [31,32]

Dsu = I1−s ∗ Du, u ∈ C∞
c (RN ), I1−s(x) := γ(N, s)

|x|N+s−1 .

According to [31,32], one can define, for p > 1 and s ∈ (0, 1), the space

Ls,p(RN ) := C∞
c (RN )

∥·∥Lp +∥Ds·∥Lp
.

We now formulate a related open problem.

Open problem 4.1. Let p > 1, s ∈ (0, 1) and u ∈ Ls,p(RN ) with u ≥ 0. Prove or disprove that
Dsu∗ ∈ Ls,p(RN ) and the inequality holds∫

RN
|Dsu∗|pdx ≤

∫
RN

|Dsu|pdx. (4.1)

In general the inequality ∫
RN

|Ds|u||pdx ≤
∫
RN

|Dsu|pdx.

for all u ∈ Ls,p(RN ) is not expected to hold. In particular, one cannot obtain inequality (4.1) for sign-
changing functions. The solution of the above open problem would be very useful in connection with compact
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injections for radially symmetric functions of Ls,p(RN ). In fact, assume N ≥ 2. Notice that, since for any
ε ∈ (0, s) the injection

Ls,p(RN ) ↪→ W s−ε,p(RN ),

is continuous (cf. [31, (g) of Theorem 2.2]) and the injection

W s−ε,p
rad (RN ) ↪→ Lq(RN ),

is compact (cf. [20, Theorem II.1]) for all p < q < p∗
s−ε it follows that the injection

Ls,p
rad(RN ) ↪→ Lq(RN ),

is compact for p < q < Np/(N − sp). In particular, nonnegative minimizing sequences for

u ↦→
∫
RN

|Dsu|pdx,

could be replaced by new minimizing sequences which are radially symmetric decreasing and strongly
converging in Lq(RN ) for any p < q < Np/(N − sp).

Remark 4.2. Aiming to prove (4.1), with no loss of generality one may assume u ∈ C∞
c (RN ). Let H be

an arbitrary closed given half-space with 0 ∈ H. Define the function J(u) : RN → R,

J(u)(x) :=

⏐⏐⏐⏐⏐
∫
RN

u(x) − u(y)
|x − y|N+s

x − y

|x − y|
dy

⏐⏐⏐⏐⏐
p

, for all x ∈ RN .

Then J(u) ∈ L1(RN ). Setting v(x) := u(xH) and w(x) := uH(xH) for all x ∈ RN , we have

uH(x) = v(x) + (u(x) − v(x))+, w(x) = u(x) − (u(x) − v(x))+, for x ∈ H. (4.2)

Writing xH = x0 + Rx where R is a rotation, a change of variable yields

J(u)(xH) =

⏐⏐⏐⏐⏐
∫
RN

u(xH) − u(y)
|xH − y|N+s

xH − y

|xH − y|
dy

⏐⏐⏐⏐⏐
p

=

⏐⏐⏐⏐⏐
∫
RN

u(xH) − u(yH)
|xH − yH |N+s

xH − yH

|xH − yH |
dy

⏐⏐⏐⏐⏐
p

=

⏐⏐⏐⏐⏐R
∫
RN

v(x) − v(y)
|x − y|N+s

x − y

|x − y|
dy

⏐⏐⏐⏐⏐
p

= J(v)(x),

and, analogously, J(uH)(xH) = J(w)(x). In turn, we conclude that∫
RN

J(u)dx =
∫

H

J(u)dx +
∫

H

J(v)dx,

∫
RN

J(uH)dx =
∫

H

J(uH)dx +
∫

H

J(w)dx.

If one was be able to prove that

J(uH)(x) + J(w)(x) ≤ J(u)(x) + J(v)(x), for all x ∈ H, (4.3)

then (4.1) would follow by standard approximations. In the local case (4.3) follows immediately in light of
(4.2), while for J, which is a nonlocal function, the situation is rather unclear.

If instead one finds u and H such that (4.3) holds with opposite inequality, then the Riesz gradients
would already fail the basic polarization inequality.



12 H.-M. Nguyen, M. Squassina / Nonlinear Analysis 162 (2017) 1–12

Acknowledgments

The authors would like to warmly thank Daniel Spector for providing some useful remarks about the
content of his works

References

[1] F.J. Almgren, E.H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989)
683–773.
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[30] G. Polya, G. Szegö, Inequalities for the capacity of a condenser, Amer. J. Math. 67 (1945) 1–32.
[31] T.-T. Shieh, D.E. Spector, On a new class of fractional partial differential equations, Adv. Calc. Var. 8 (2015) 321–336.
[32] T.-T. Shieh, D.E. Spector, On a new class of fractional partial differential equations II, Adv. Calc. Var. (2017) in press.
[33] M. Squassina, On a result by boccardo-ferone-fusco-orsina, Rend. Lincei Mat. Appl. 22 (2011a) 505–511.
[34] M. Squassina, Radial symmetry of minimax critical points for nonsmooth functionals, Commun. Contemp. Math. 13 (2011)

487–508.
[35] M. Squassina, Symmetry in variational principles and applications, J. Lond. Math. Soc. 85 (2012) 323–348.
[36] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353–372.
[37] J. Van Schaftingen, Symmetrization and minimax principles, Commun. Contemp. Math. 7 (2005) 463–481.
[38] J. Van Schaftingen, Explicit approximation of the symmetric rearrangement by polarizations, Arch. Math. 93 (2009)

181–190.

http://refhub.elsevier.com/S0362-546X(17)30166-9/sb1
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb1
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb1
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb2
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb3
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb3
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb3
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb4
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb4
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb4
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb4
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb4
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb5
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb5
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb5
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb6
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb6
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb6
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb7
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb8
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb8
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb8
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb9
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb9
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb9
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://arxiv.org/abs/1608.08204
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb11
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb11
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb11
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb12
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb13
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb14
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb15
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb16
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb17
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb18
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb18
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb18
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb19
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb19
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb19
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb20
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb21
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb22
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb23
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb24
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb25
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb26
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb27
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb28
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb28
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb28
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb29
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb29
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb29
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb30
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb31
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb32
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb33
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb34
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb34
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb34
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb35
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb36
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb37
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb38
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb38
http://refhub.elsevier.com/S0362-546X(17)30166-9/sb38

	Some remarks on rearrangement for nonlocal functionals
	Introduction
	Symmetrization inequalities
	The defect of decreasingness of Iδ
	Proof of Theorem 1.1
	Riesz two-point inequality

	Radially decreasing functions and Iδ
	An open problem for Riesz fractional gradients
	Acknowledgments
	References


