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Abstract
In this paper, we establish some Stein–Weiss type inequalities with general kernels on the
upper half space and study the extremal functions of the optimal constant. Furthermore, we
also investigate the regularity, asymptotic estimates, symmetry and non-existence results of
positive solutions of corresponding Euler–Lagrange system. As an application, we derive
some Liouville type results for the Hartree type equations on the half space.
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1 Introduction andmain results

The geometric inequalities and the related problems have received a great deal of attention
in recent years. The inequalities such as the Sobolev inequality, the Hardy–Littlewood–
Sobolev inequality (HLS for short) and the Stein–Weiss type inequality play an essential
role in the theory of partial differential equations and geometric analysis. For instance, the
HLS inequality has been widely applied to investigate the qualitative properties and the
classification of solutions.Moreover, theHLS inequality implies the sharpSobolev inequality,
as well as Gross’s logarithmic Sobolev inequality, is the key ingredient in the study ofYamabe
problem and Ricci flow problem [30]. Let us first recall the classical version of the Hardy–
Littlewood–Sobolev inequality, which is established by Hardy, Littlewood and Sobolev in
[32, 47].

Proposition 1.1 Let 1 < p, q ′ < ∞, 0 < μ < n, f ∈ L p(Rn), and g ∈ Lq ′
(Rn). Then

there exists a sharp constant C
(
p, q ′, μ, n

)
such that

∫

Rn

∫

Rn

f (y)g(x)

|x − y|μ dxdy ≤ C(p, q ′, n, μ)‖ f ‖L p(Rn)‖g‖Lq′
(Rn)

, (1.1)

where 1
p + 1

q ′ + μ
n = 2 and C(p, q ′, n, μ) is independent of f and g. Moreover, the optimal

constant satisfy

C
(
p, q ′, μ, n

) ≤ n

(n − μ)

(|Sn−1|/n)
μ
n

1

pq ′

((
μ/n

1 − 1/p

)μ/n

+
(

μ/n

1 − q ′

)μ/n
)

,

where we use q ′ to stand for the dual index of q.

If one of p or q ′ equals 2 or p = q ′, the existence of extremals for the HLS inequality with
optimal constant was discussed by Lieb [39]. However, if p �= q ′, neither the sharp constant
nor the existence of extremals is known. Later, Frank and Lieb [27] explored the best constant
and extremals of the inequality for the case that p = q ′ = 2n

2n−μ
by the reflection positivity

of inversions in spheres. Carlen and Loss [6] also studied the problem via the competing
symmetry argument. In [7], Carlen et al. simplified the proof and obtained the sharp version
of inequality (1.1) with n ≥ 3 and μ = n − 2. Frank and Lieb [28] investigated the optimal
constant of (1.1) via the rearrangement free argument [29] and obtained the sharp constant of
HLS on the Heisenberg group, whichwas established by Folland and Stein [26]. Dou and Zhu
[23] investigated the reversed HLS inequality. Dou, Guo and Zhu [22] proved a version of
the reversed HLS inequality on the upper half by the subcritical argument. Ngô and Nguyen
[48] employed the layer cake representation to obtain the reversed HLS inequality.

In [38, 46] Stein and Weiss established the weighted HLS type inequality,
∫

Rn

∫

Rn

f (y)g(x)

|x |α|x − y|μ|y|β dxdy ≤ C(p, q ′, n, μ, α, β)‖ f ‖L p(Rn)‖g‖Lq′
(Rn)

, (1.2)

where p, q ′ > 1, 0 < μ < n, α+β ≥ 0 and the double weights satisfy 1
p + 1

q ′ + α+β+μ
n = 2

and 1− 1
p − μ

n < α
n < 1− 1

p . If p < q , Lieb [39] proved that the extremals for this inequality
can be obtained under the restriction α, β ≥ 0, and he also studied the non-existence of
extremal functions for inequality (1.2) in the case p = q . The same result was obtained by
Herbst [36] for the case μ = n − 1, p = q = 2, α = 0 and β = 1. In [4, 5], Beckner
established a new equivalent formulation to study the best constant of inequality with p = q .
Later, Chen, Lu and Tao [8] employed the concentration compactness principle to classify
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the extremal functions of (1.2) under the conditions p < q and α + β ≥ 0. Particularly,
they also generalized the results onto the Heisenberg group. It is worth mentioning that Han
et al.[35] also derived the Stein–Weiss type inequality on the Heisenberg group. Chen et
al.[10] considered the reversed Stein–Weiss inequality (1.2). Furthermore, the existence and
classification of solutions of the Euler–Lagrange equations related to the integral inequalities
have also attracted a lot of interest. By using the moving plane argument and regularity lifting
technique, Chen and Li [16] classified precisely the positive solutions to of the integral type
Euler–Lagrange equations related to theHLS inequality (1.1).Meanwhile, the authors studied
the qualitative property of the extremal functions of the Stein–Weiss inequality (1.2) in [14].
Bebernes et al. [3] established the asymptotic behavior of the solutions of the weighted
integral systems. For recent development and applications of the HLS inequalities and the
Stein–Weiss inequalities, we refer the readers to [41, 50] and the references therein.

In recent years, many people are interested in the integral inequalities on the upper half
space. In [33], Hang, Wang and Yan established the following integral inequality with har-
monic kernel,

‖
∫

∂Rn+
P(x, y) f (y)dy‖Lq(Rn+) ≤ C(n, p)‖ f ‖L p(∂Rn+), x = (

x ′, xn
) ∈ R

n+, y ∈ ∂Rn+,

(1.3)
where P(x, y) = c(n) xn

(|x ′−y|2+x2n)
n
2
and q = np

n−1 . In fact, inequality (1.3) can be regarded as

Carleman’s inequality in higher dimension, and it implies the sharp isoperimetric inequality,
see[34]. The authors considered the existence of extremal function for inequality (1.3) through
the method of symmetrization and the concentration compactness principle, and they also
discussed qualitative properties of extremal functions including regularity and symmetry.
Later, Chen [13] generalized the above inequality to the case with poly-harmonic extension.
More precisely, the author obtained the following integral inequality on the upper half space,

‖Pμ f ‖
L

np
n−1 (Rn+)

≤ C(n, μ, p)‖ f ‖L p(∂Rn+),

for all 1 < p < ∞ and n ≥ 2, where

Pμ( f )(x) :=
∫

∂Rn+

xμ+1−n
n

(|x ′ − y|2 + x2n
) μ
2
f (y)dy

is the poly-harmonic extensionoperator.Moreover, the author classified the positive extremals
via the rearrangement method for p = 2(n−1)

2n−2−μ
. Dou and Zhu [24] proved the existence of

extremals and computed explicitly the sharp constant by Riesz’s rearrangement technique.
Recently, Gluck [31] obtained the following sharp inequalities on the upper half space

∣∣∣∣∣

∫

∂Rn+

∫

R
n+
K
(
x ′ − y, xn

)
f (y)g(x)dxdy

∣∣∣∣∣
≤ C(n, μ, λ, p)‖ f ‖L p(∂Rn+)‖g‖Lq′

(Rn+),

(1.4)
where K is a family of kernels

K (x) = Kμ,λ(x) = xλ
n

(|x ′|2 + x2n
) μ
2
.

If μ > 0, the kernel K includes the Riesz kernel and the classical Poisson kernel as special
cases. By a subcritical method, Gluck computed the best constant for a family of HLS
inequalities (1.4) and gave a precise classification of the related extremals via the method of
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moving sphere. Liu [43] generalized the Hardy-Littlewood-Sobolev inequality with general
kernel in the conformal invariant case for all critical indices. For the case μ < 0, the authors
in [20] proved the reversed Hardy-Littlewood-Sobolev inequality with extended kernel K .
For the doubly weighted case, the Stein–Weiss inequality on the half space was established
byDou [21], the author also studied the existence of extremal functions. If the kernel function
in (1.3) is replaced by fractional Poisson kernel, Chen, Liu, Lu and Tao [12] investigated the
following inequality with the double weights,

∫

∂Rn+

∫

R
n+

|y|−αP(x, y, μ) f (y)g(x)|x |−βdxdy

≤ C(n, p, q ′, α, β, μ)‖ f ‖L p(∂Rn+)‖g‖Lq′
(Rn+), (1.5)

where 1 < p, q ′ < ∞, 2 ≤ μ < n satisfying

α <
n − 1

p′ , β <
n + q

q
, α + β ≥ 0,

n − 1

n

1

p
+ 1

q ′ + α + β + 2 − μ

n
= 1,

and P(x, y, μ) = xn

(|x ′−y|2+x2n)
n+2−μ

2
. By applying the rearrangement approach and Lorentz

interpolation inequality, they studied the existence of extremals for the sharp constant of
inequality (1.5). Moreover, they classified the extremals of this inequality via the regularity
lifting argument and Pohožaev type identity. Especially, if α = β = 0 in (1.5), the optimal
inequality with the fractional Poisson kernel was established by Chen et al. [9]. Meanwhile,
Chen and his collaborators [11], Tao [49] considered the reversed Stein–Weiss type inequality
on the upper half space respectively.

In the present paper, we are going to study the existence of extremal functions of the
Stein–Weiss type inequality with a general kernel on the half space Rn+. First of all, we will
establish the Stein–Weiss type inequality with general kernels on the half space. The first
main result of this paper is the following integral inequality.

Theorem 1.2 Let n ≥ 3, 1 < p, q ′ < ∞, λ ≥ 0, n−1
n

1
p + 1

q ′ ≥ 1 and μ < n−1+λ satisfies

n − 1

n

1

p
+ 1

q ′ + α + β + μ − λ

n
= 2n − 1

n
(1.6)

with α < n−1
p′ , β <

n+q
q and α + β ≥ 0. Then there exists some positive constant

C(n, p, q ′, α, β, λ, μ) such that for any functions f ∈ L p
(
∂Rn+

)
and g ∈ Lq ′ (

R
n+
)
, such

that
∫

∂Rn+

∫

R
n+

|y|−αPλ(x, y, μ) f (y)g(x)|x |−βdxdy

≤ C(n, p, q ′, α, β, λ, μ)‖ f ‖L p(∂Rn+)‖g‖Lq′
(Rn+), (1.7)

where Pλ(x, y, μ) = xλ
n

(|x ′−y|2+x2n)
μ
2
with x = (x ′, xn) ∈ R

n−1 × R
+.

In fact, by defining the following integral operator with double weights

V ( f )(x) :=
∫

∂Rn+
|y|−αPλ(x, y, μ) f (y)|x |−βdy, x ∈ R

n+,
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and

W (g)(y) :=
∫

R
n+

|y|−αPλ(x, y, μ)g(x)|x |−βdx, y ∈ ∂Rn+,

inequality (1.7) is equivalent to the following weighted inequality via a dual argument

‖V ( f )‖Lq(Rn+) ≤ C(n, p, q ′, α, β, λ, μ)‖ f ‖L p(∂Rn+), (1.8)

and
‖W (g)‖L p′(∂Rn+) ≤ C(n, p, q ′, α, β, λ, μ)‖g‖Lq′

(Rn+), (1.9)

where n−1
n

1
p + α+β+μ−λ−n+1

n = 1
q and 1

p′ = n
n−1

1
q ′ + α+β+μ−λ−n

n−1 .
Next, based on symmetric rearrangement inequality, we shall prove the existence of

extremal functions for inequality (1.7).

Theorem 1.3 Let n ≥ 3, 1 < p, q ′ < ∞, λ ≥ 0, n−1
n

1
p + 1

q ′ ≥ 1 and μ < n − 1 + λ

satisfying
n − 1

n

1

p
+ 1

q ′ + α + β + μ − λ

n
= 2n − 1

n
(1.10)

with α < n−1
p′ , β <

n+q
q and α, β ≥ 0. Then there exists some positive functions

f ∈ L p
(
∂Rn+

)
satisfying ‖ f ‖L p(∂Rn+) = 1 and ‖V ( f )‖Lq(Rn+) = C(n, p, q ′, α, β, λ, μ).

Moreover, if ( f (y), g(x)) is a pair of maximizer of inequality (1.7), then f (y) is radially
symmetric andmonotone decreasing about the origin, and there exists some positive constant
c0 such that g(x) = c0V ( f )(x).

Furthermore, we will study the properties of these extremal functions. For this goal, we
may maximize the following functional

J ( f , g) =
∫

∂Rn+

∫

R
n+

|y|−αPλ(x, y, μ) f (y)g(x)|x |−βdxdy, (1.11)

under the assumption ‖ f ‖L p(∂Rn+) = ‖g‖Lq′
(Rn+)

= 1. According to the Euler–Lagrange
multiplier theorem, we can deduce the following integral system with double weights

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

J ( f , g)g(x)q
′−1 =

∫

∂Rn+
|y|−αPλ(x, y, μ) f (y)|x |−βdy, x ∈ R

n+,

J ( f , g) f (y)p−1 =
∫

R
n+

|y|−αPλ(x, y, μ)g(x)|x |−βdx, y ∈ ∂Rn+.

(1.12)

In particular, we assume that u = c1 f p−1, v = c2gq
′−1, q0 = 1

q ′−1 and p0 = 1
p−1 with two

suitable constants c1 and c2 in (1.12), the system can be rewritten as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(y) =
∫

R
n+

|x |−β Pλ(x, y, μ)vq0(x)|y|−αdx, y ∈ ∂Rn+,

v(x) =
∫

∂Rn+
|y|−αPλ(x, y, μ)u p0(y)|x |−βdy, x ∈ R

n+,

(1.13)

where α, β ≥ 0,μ < n−1+λ and p0, q0 satisfies the identity n−1
n

1
p0+1 + 1

q0+1 = α+β+μ−λ
n .

By applying the regularity lifting arguments, we can derive the regularity results of the
positive solutions for system (1.13) under integral assumptions.
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Theorem 1.4 Let (u, v) ∈ L p0+1
(
∂Rn+

)× Lq0+1
(
R
n+
)
be a pair of positive solutions of the

integral system (1.13). Then (u, v) ∈ Lr
(
∂Rn+

)× Ls
(
R
n+
)
with

1

r
∈
(

α

n − 1
,
α + μ − λ + 1

n − 1

)
∩
(

1

p0 + 1
− n

n − 1

1

q0 + 1
+ β − 1

n − 1
,

1

p0 + 1

− n

n − 1

1

q0 + 1
+ β + μ − λ

n

)

and

1

s
∈
(

β − 1

n
,
β + μ − λ

n

)
∩
(

1

q0 + 1
− n − 1

n

1

p0 + 1
+ α

n
,

1

q0 + 1

−n − 1

n

1

p0 + 1
+ α + μ − λ + 1

n − 1

)
.

Next, we are going to consider the asymptotic behavior of positive solutions for system
(1.13). In light of the regularity lifting theorem, we derive the following result.

Theorem 1.5 Suppose that p0, q0 > 1. Let (u, v) ∈ L p0+1
(
∂Rn+

) × Lq0+1
(
R
n+
)
be a pair

of positive solutions of the integral system (1.13).

(1) If 1
q0

− μ+β−λ
q0n

>
β−1
n , then

lim|y|→0
u(y)|y|α =

∫

R
n+

xλ
n vq0(x)

|x |μ+β
dx .

(2) If 1
p0

− μ+α−λ+1
p0(n−1) > α

n−1 , then

lim|x |→0

v(x)|x |β
xλ
n

=
∫

∂Rn+

u p0(y)

|y|α+μ
dy.

In the spirit of inequality (1.7) and the integral assumptions, we will apply the method of
moving plane in integral form in [17, 18] to study the symmetry property of the solutions.

Theorem 1.6 Given p0, q0 > 1. If (u, v) ∈ L p0+1
(
∂Rn+

) × Lq0+1
(
R
n+
)
is pair of positive

solution of integral system (1.13), where p0 and q0 satisfying
n−1
n

1
p0+1 + 1

q0+1 = α+β+μ−λ
n ,

then u(y) and v(x)|∂Rn+ must be radially symmetric and monotonicity decreasing about some
point y0 ∈ ∂Rn+.

Finally, as a special case, our results can be applied to the study of the following integral
system with single weight

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(y) =
∫

R
n+

|x |−β Pλ(x, y, μ)vq0(x)dx, y ∈ ∂Rn+,

v(x) =
∫

∂Rn+
|y|−αPλ(x, y, μ)u p0(y)dy, x ∈ R

n+.

(1.14)

By the Pohožaev identity, we study the necessary condition for the existence of non-trivial
solutions for the single weighted system (1.14).

Theorem 1.7 Given λ ≥ 0, μ < n − 1 + λ and 0 < p0, q0 < ∞. Let (u, v) ∈ C1(∂Rn+) ×
C1(Rn+) be a pair of non-negative solutions of the integral system (1.14) with

(u, v) ∈ L p0+1 (|y|−αdy, ∂Rn+
)× Lq0+1 (|x |−βdx,Rn+

)
.
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Then it must hold that
n − 1 − α

p0 + 1
+ n − β

q0 + 1
= μ − λ.

Clearly, according to the above theorem, we have the following Liouville type result for
nonnegative solutions of the single weighted integral system (1.14).

Corollary 1.8 For μ < n − 1 + λ, assume that

n − 1 − α

p0 + 1
+ n − β

q0 + 1
�= μ − λ,

then there are no non-trivial solutions (u, v) ∈ L p0+1
(
∂Rn+

) × Lq0+1
(
R
n+
)
of the integral

system (1.14).

The second part of this paper is devoted to the study of someHartree type elliptic equations
on the half space. Consider

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�u(x) =
(∫

∂Rn+

F (u(y))

|x |β |x − y|μ|y|α dy
)

xλ
n g (u(x)) , x ∈ R

n+,

∂u

∂υ
(y) =

(∫

R
n+

G (u(x)) xλ
n

|x |β |x − y|μ|y|α dx
)

f (u(y)) , y ∈ ∂Rn+,

(1.15)

where the parametersλ, α, μ, β and the functionsG, F, f , g satisfy some specific conditions.
The Hartree type equation is very important in the study of the Hartree-Fock model. This
nonlocal equation has been widely used in Bose-Einstein condensates theory to study the
problem how to avoid collapse phenomena. Moreover, it is used to describe the source of
dark matter in classical quantum mechanics. For convenience, the reader may turn to [37,
40] and the references therein for more backgrounds about the Hartree type equations.

The qualitative properties of the solutions, such as symmetry, monotonicity and non-
existence have received a great deal of interest in the last years. By applying the various
versions of the method of moving plane, Lei [42], Du and Yang [25] classifid the positive
solutions of the Hartree type equation with critical exponent. In [19], the authors established
the same non-existence results for Hartree type equation with the boundary conditions on the
half space. As an application of inequality (1.7), we are ready to study the monotonicity and
non-existence results of positive solutions for problem (1.15) via moving plane argument.
To present our main results precisely, we first introduce the definition of the weak solution
to the Hartree type equations (1.15).

Definition 1.9 We call that u ∈ W 1,2
loc (Rn+) ∩ C0(Rn+) is a weak solution of Hartree type

elliptic equations (1.15) if it satisfies for all ϕ ∈ C∞
c (Rn+),

∫

R
n+

∇u(x)∇ϕ(x)dx =
∫

∂Rn+

∫

R
n+

F(u(y))xλ
n g(u(x))ϕ(x)

|x |β |x − y|μ|y|α dxdy

+
∫

∂Rn+

∫

R
n+

G(u(x))xλ
n f (u(y))ϕ(y)

|x |β |x − y|μ|y|α dxdy

on the upper half space.

Now we are in a position to state our main results.

123
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Theorem 1.10 Assume that λ ≥ 0, μ < n − 1 + λ, α ≤ n−μ
2 , β ≤ 2λ+4−μ

2 with α + β ≥ 0.

Let u ∈ W 1,2
loc (Rn+)∩C0(Rn+) be a positive solution of the system (1.15). Suppose further the

functions f (t), g(t), F(t), G(t) : [0,∞) → [0,∞) are continuous in [0,∞) satisfying
the following conditions,

(1) f (t), g(t), F(t) and G(t) are increasing in (0,+∞),
(2) H(t) = F(t)

t
2(n−1)−(2α+μ)

n−2
, K (t) = G(t)

t
2n+2λ−(2β+μ)

n−2
, k(t) = g(t)

t
n+2λ+2−(2β+μ)

n−2
and h(t) = f (t)

t
n−(2α+μ)

n−2

are non-increasing in (0,+∞).

Then u depend only on xn.

It is worth observing that Theorem 1.10 provide a useful method to discuss the non-
existence of positive solutions for Hartree type equations (1.15) with the special case α =
β = 0. The main content is the next result.

Corollary 1.11 Under the assumption of Theorem 1.10, Suppose that at least one of the

functions h, k, H and K is not a constant in
(
0, sup

y∈∂Rn+
u(y)

)
or
(
0, sup

x∈Rn+
u(x)

)
. Then u = c̃

with F(c̃) = G(c̃) = 0.

The paper is organized as follows. In Sect. 2, we establish the sharp Stein–Weiss type
inequalitywith a general kernel on the upper half space. Thenwe applyRiesz’s rearrangement
inequality and Lorentz norm to obtain the existence of extremals for this inequality. In Sect.
3, by applying the regularity lifting argument and the method of moving plane in integral
form, we obtain the qualitative properties of the non-negative solutions to the integral system
with double weights. In Sect. 4, by using the Pohožaev identity, we shall show the necessary
condition for the existence of solutions of the single weighted integral system. In the last
section, we study the weak solutions to Hartree type equation and prove the symmetry and
non-existence results.

2 Stein–Weiss type inequality and sharp constant

In this section, we will establish Stein–Weiss type inequality (1.7) and study the existence
of extremal functions for the sharp constant C(α, β, μ, λ, p, q ′, n). For simplicity, we firstly
introduce some symbols by defining

BR(x) = {
ξ ∈ R

n : |ξ − x | < R, x ∈ R
n} ,

Bn−1
R (x) = {

ξ ∈ ∂Rn+ : |ξ − x | < R, x ∈ ∂Rn
n

}
,

B+
R (x) = {

ξ = (ξ1, ξ2, ..., ξn) ∈ BR(x) : ξn > 0, x ∈ R
n} .

In particular, we write C or Ci to denote different non-negative constants, where the value
may be different from line to line.

2.1 Stein–Weiss type inequality

In this subsection, we will use the following integral estimates to prove Theorem 1.2. The
method of these integral estimates on the upper half space was established in [21].
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Lemma 2.1 Assume that W (x) andU (y) are two positive locally integrable functions defined
on R

n+ and ∂Rn+ respectively, for 1 < p ≤ q < ∞ and f is non-negative on ∂Rn+, then
(∫

R
n+
W (x)

(∫

Bn−1
|x |

f (y)dy

)q

dx

) 1
q

≤ C(p, q)

(∫

∂Rn+
f p(y)U (y)dy

) 1
p

, (2.1)

holds if and only if

A0 = sup
R>0

{(∫

|x |≥R
W (x)dx

) 1
q
(∫

|y|≤R
U 1−p′

(y)dy

) 1
p′
}

< ∞. (2.2)

While,

(∫

R
n+
W (x)

(∫

∂Rn+\Bn−1
|x | dy

f (y)

)q

dx

) 1
q

≤ C(p, q)

(∫

∂Rn+
f p(y)U (y)dy

) 1
p

, (2.3)

holds if and only if

A1 = sup
R>0

{(∫

|x |≤R
W (x)dx

) 1
q
(∫

|y|≥R
U 1−p′

(y)dy

) 1
p′
}

< ∞. (2.4)

By applying the above Lemma, we are ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 Without loss of generality, we may suppose that function f is positive.
In addition, we consider the double weighted integral operator related to a general kernel as
follows

Pλ( f )(x) =
∫

∂Rn+
Pλ(x, y, μ) f (y)dy.

Obviously, we note that inequality (1.7) is equivalent to the following inequality,

‖Pλ( f )|x |−β‖Lq (Rn+) ≤ C(n, α, β, λ, μ, p, q ′)‖ f |y|α‖L p(∂Rn+).

Since q > 1, we may split the integral items into the following three parts, that is

‖Pλ( f )|x |−β‖Lq (Rn+) � Pλ,1 + Pλ,2 + Pλ,3,

where

Pλ,1 =
∫

R
n+

⎛

⎜
⎝|x |−β

∫

Bn−1
|x |
2

xλ
n f (y)

(|x ′ − y|2 + x2n
) μ
2
dy

⎞

⎟
⎠

q

dx,

Pλ,2 =
∫

R
n+

⎛

⎝|x |−β

∫

∂Rn+\Bn−1
2|x |

xλ
n f (y)

(|x ′ − y|2 + x2n
) μ
2
dy

⎞

⎠

q

dx,

and

Pλ,3 =
∫

R
n+

⎛

⎜
⎝|x |−β

∫

Bn−1
2|x | \Bn−1

|x |
2

xλ
n f (y)

(|x ′ − y|2 + x2n
) μ
2
dy

⎞

⎟
⎠

q

dx .

Based on the above analysis, we only need to prove

Pλ,i ≤ C(n, α, β, λ, μ, p, q ′)‖ f |y|α‖qL p(∂Rn+)
, i = 1, 2, 3.
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Firstly, we estimate Pλ,1. From the definition of Pλ,1, we get

Pλ,1 =
∫

R
n+

⎛

⎜
⎝|x |−β

∫

Bn−1
|x |
2

xλ
n f (y)

(|x ′ − y|2 + x2n
) μ
2
dy

⎞

⎟
⎠

q

dx

�
∫

R
n+

|x |−βq−(μ−λ)q

⎛

⎜
⎝
∫

Bn−1
|x |
2

f (y)dy

⎞

⎟
⎠

q

dx .

(2.5)

Set W (x) = |x |−βq−(μ−λ)q and U (y) = |y|α p , according to Lemma 2.1, to verify

Pλ,1 ≤ C(n, α, β, λ, μ, p, q ′)‖ f |y|α‖qL p(∂Rn+)
,

one only need to show that W (x) and U (y) satisfy (2.2). In fact, since α < n−1
p′ , for any

R > 0, we have ∫

|x |≥R
W (x)dx =

∫

|x |≥R
|x |−βq−(μ−λ)qdx

=
∫

∂B+
1

dy
∫ ∞

R
r−βq−(μ−λ)qdr

= C(n, β, λ, μ, q)Rn−βq−(μ−λ)q ,

(2.6)

and
∫

|y|≤R
U 1−p′

(y)dy =
∫

|y|≤R

(|y|α p)1−p′
dy

=
∫

sn−2
dν

∫ R

0
rα p(1−p′)dr = C(n, α, p)Rα p(1−p′)+n−1.

(2.7)

It follows from (2.6), (2.7) and (1.7) that

(∫

|x |≥R
W (x)dx

) 1
q
(∫

|y|≤R
U 1−p′

(y)dy

)p′

< C(n, α, β, λ, μ, p, q ′)R−β−(μ−λ)+ n
q + α p(1−p′)+n−1

p′

= C(n, α, β, λ, μ, p, q ′).

Next, we consider Pλ,2. Noticing that |y| ≥ 2x , we know |y − x | ≥ |x |
2 . Setting W (x) =

|x |(−β+λ)q and U (y) = |y|(μ+α)p in (2.3), we know

Pλ,2 �
∫

R
n+

|x |(−β+λ)q

(∫

∂Rn+\Bn−1
2|x |

f (y)|y|−μdy

)q

dx

≤ C(n, α, β, λ, μ, p, q ′)‖ f |y|α‖qL p(∂Rn+)
.

We only need to check thatW (x) andU (y) satisfy the condition (2.4). Since β < n
q + λ, for

R > 0 we have
∫

|x |≥R
W (x)dx =

∫

|x |≥R
|x |(−β+λ)qdx =

∫

∂B+
1

dν

∫ ∞

R
r (−β+λ)qdr

= C(n, β, λ, q)R(−β+λ)q+n,
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and
∫

|y|≤R
U 1−p′

(y)dy =
∫

|y|≤R
|y|((μ+α)p)1−p′

dy =
∫

sn−2
dν

∫ R

0
r (μ+α)p(1−p′)dr

= C(n, αμ, p)R(μ+α)p(1−p′)+n−1.

Combining the above estimates, it’s easy to find the condition (2.4) holds.
Finally, we estimate Pλ,3. By virtue of |x |

2 < |y| < 2|x | and α + β ≥ 0, it follows that

|x − y|α+β < 3α+β |y|α+β ≤ 3α+β2β |x |β |y|α.

Furthermore, we get

Pλ,3 =
∫

R
n+

⎛

⎜
⎝|x |−β

∫

Bn−1
2|x | \Bn−1

|x |
2

xλ
n f (y)

(|x ′ − y|2 + x2n
) μ
2
dy

⎞

⎟
⎠

q

dx

≤
∫

R
n+

⎛

⎜
⎝
∫

Bn−1
2|x | \Bn−1

|x |
2

xλ
n f (y)|y|α

|x − y|μ+α+β
dy

⎞

⎟
⎠

q

dx

≤
∫

R
n+

(∫

∂Rn+

xλ
n f (y)|y|α

|x − y|μ+α+β
dy

)q

dx .

Under the assumptions of Theorem 1.2, we know μ + α + β < n − 1+ λ. Together with the
results in [43], we deduce

Pλ,3 ≤ C(n, α, β, λ, μ, p, q ′)‖ f |y|α‖qL p(∂Rn+)
.

Therefore, the proof is completed. �

2.2 The extremal functions for inequality (1.7)

In this subsection, we will prove the existence of extremal functions for inequality (1.7)
obtained in the previous subsection. More precisely, we point out that the study of the exis-
tence of extremal functions of the sharp constant is related to the followingvariational problem

C(α, β, μ, λ, p, q ′, n) := sup
{
‖V ( f )‖Lq (Rn+) : f ≥ 0, ‖ f ‖L p(∂Rn+) = 1

}
. (2.8)

We shall study the existence of maximiziers to the above supreme problem via the Riesz
rearrangement and Lorentz norm, which implies that the extremal functions of inequality
(1.7) are radially symmetric and decreasing about some point. For a measurable function f
on ∂Rn+, and we introduce the Lorentz norm with 0 < r , s < +∞ as follows

‖ f ‖Lr,s (∂Rn+) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∫ ∞

0

(
t
1
r f ∗(t)

)s dt
t

) 1
s

, if s < ∞,

sup
t>0

t
1
r f ∗(t), if s = ∞,

where f ∗(t) denote the decreasing and radially symmetric rearrangement function to f .
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Clearly, for 1 ≤ p ≤ ∞, given some positive functions f , g and h, then the following
Riesz rearrangement inequality holds (See [2, 38])

I ( f , g, h) ≤ I ( f ∗, g∗, h∗) (2.9)

with I ( f , g, h) :=
∫

∂Rn+

∫

R
n+
f (x)g(x − y)h(y)dxdy.

In the following, we are ready to investigate the existence of the extremal functions.

Proof of Theorem 1.3 Suppose that
{
f j
}
j is a maximizing sequence of problem (2.8), i.e.

‖ f j‖L p(∂Rn+) = 1 and lim
j→+∞ ‖V ( f j )‖Lq (Rn+) = C(α, β, μ, λ, p, q ′, n).

It follows from (2.9) that

‖ f ∗
j ‖L p(∂Rn+) = ‖ f j‖L p(∂Rn+) = 1, and lim

j→+∞ ‖V ( f j )‖Lq (Rn+) ≤ lim
j→+∞ ‖V ( f ∗

j )‖Lq (Rn+),

since α, β ≥ 0. As a consequence, we know that
{
f j
}
j is a positive radially non-increasing

sequence. Next we take any f ∈ L p(∂Rn+) and set f κ
j = κ

− n−1
p f ( y

κ
) with κ > 0. It’s suffice

to find that

‖ f κ
j ‖L p(∂Rn+) = ‖ f j‖L p(∂Rn+) and lim

j→+∞ ‖V ( f κ
j )‖Lq (Rn+) ≤ lim

j→+∞ ‖V ( f κ
j )‖Lq (Rn+),

which implies that
{
f κ
j

}

j
is still a maximizing sequence to problem (2.8). Furthermore, we

write
e1 := (1, 0, ..., 0) ∈ R

n−1, A j := sup
κ>0

f κ
j (e1) = sup

κ>0
κ

− n−1
p f j

(e1
κ

)
.

By direct calculation, we get

0 ≤ f j (y) ≤ A j |y|−
n−1
p and ‖ f j‖L p,∞(∂Rn+) ≤ w

1
p
n−2A j . (2.10)

Moreover, according to the Marcinkiewicz interpolation [44, 45] with (1.8), we can deduce
the following inequality

‖V ( f )‖Lq (Rn+) ≤ C(α, β, μ, λ, p, q ′, n)‖ f ‖L p,q (∂Rn+).

Thus, we have

‖V ( f j )‖Lq (Rn+) ≤ C(α, β, μ, λ, p, q ′, n)‖ f j‖L p,q (∂Rn+)

≤ C(α, β, μ, λ, p, q ′, n)‖ f j‖1−
p
q

L p,∞‖ f j‖
p
q
L p

≤ C(α, β, μ, λ, p, q ′, n)A
1− p

q
j ,

(2.11)

which immediately indicates that A j ≥ c0 for some positive constant c0.

On one hand, by choosing κ j > 0 satisfies f
κ j
j (e1) ≥ c0. We replace

{
f j
}
j with

{
f
κ j
j

}

j
,

and denoted as
{
f j
}
j , then for any j , we have

{
f j
}
j ≥ c0. For any R > 0, it holds that

ωn−1 f
p
j (R)Rn−1 ≤ ωn−2

∫ R

0
f pj (r)rn−2dr ≤ ωn−2

∫ ∞

0
f pj (r)rn−2dr

=
∫

∂Rn+
f pj (y)dy = 1.
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Based on the arguments above, we obtain

0 ≤ f j (y) ≤ ω
− 1

p
n−1|y|−

n−1
p .

According to Lieb’s results based on the Helly theorem as in [39], we infer that there exists
a positive, radially non-increasing function f such that

f j → f , a.e. ∂Rn+.

It’s clear that for |y| ≤ 1 and ‖ f ‖L p(∂Rn+) ≤ 1, we have f (y) ≥ c0. Furthermore, according
to the Brezis-Lieb Lemma [1], it holds that

lim
j→+∞ ‖ f j − f ‖p

L p(∂Rn+)
= lim

j→+∞ ‖ f j‖p
L p(∂Rn+)

− ‖ f ‖p
L p(∂Rn+)

= 1 − ‖ f ‖p
L p(∂Rn+)

.
(2.12)

For some constant C > 0, we have from (2.10),

V ( f j )(x) ≤ C |x |−β

∫

∂Rn+

xλ
n

|y|α (|x ′ − y| + xn)
μ
2

1

|y|− n−1
p

dy. (2.13)

In view of the assumptions of Theorem 1.3, it’s easy to find that the integral is finite.
Therefore, according to the dominated convergence theorem, for x ∈ R

n+, we deduce that
lim

j→+∞ V ( f j )(x) = V ( f )(x).

By virtue of the Brezis-Lieb Lemma, we obtain

lim
j→+∞ ‖V ( f j )‖qLq (Rn+)

= ‖V ( f )‖qLq (Rn+)
+ lim

j→+∞ ‖V ( f j ) − V ( f )‖qLq (Rn+)

≤ C(α, β, μ, λ, p, q ′, n)q‖ f ‖qL p(∂Rn+)
+ C(α, β, μ, λ, p, q ′, n)q lim

j→+∞ ‖ f j − f ‖qL p(∂Rn+)
.

(2.14)
Combining (2.12) and (2.14), lt holds that

1 ≤ ‖ f ‖qL p(∂Rn+)
+
(
1 − ‖ f ‖p

L p(∂Rn+)

) q
p
.

Since p < q and f �= 0, we deduce that ‖ f ‖L p(∂Rn+) = 1. With all the analysis above, it’s
clear that f is a maximizer to the problem (2.8). The proof is completed. �

3 Qualitative analysis of the positive solutions

In this section, we study the qualitative properties of positive solutions to integral equations
(1.13). More precisely, we are ready to obtain the regularity, asymptotic behaviors and sym-
metry. First of all, we introduce some basic definitions. Suppose that V is a topological vector
space, and we define two fundamental norms ‖ · ‖X and ‖ · ‖Y on V ,

‖ · ‖X , ‖ · ‖Y : V → [0,∞].
Let

X := {v ∈ V : ‖v‖X < ∞}, Y := {v ∈ V : ‖v‖Y < ∞}.
We recall that the operator T : X → Y
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• is said to be contracting if for any f , h ∈ X , there exists some constant  ∈ (0, 1) such
that

‖T ( f ) − T (h)‖X ≤ ‖ f − h‖Y .

• is said to be shrinking if for any h ∈ X , there exists some constant δ ∈ (0, 1) such that

‖T (h)‖X ≤ δ‖h‖Y .

Clearly, it is not difficult to see that, a linear shrinking operator must be contracting.
Next, we recall the regularity lifting lemma in [15], which will play an essential role in

the discussion.

Lemma 3.1 [15] Let T be a contraction map from X → X and Y → Y , f ∈ X and there
exists a function g ∈ X ∩ Y such that f = T f + g in X. Then f ∈ X ∩ Y .

Proof of Theorem 1.4 For any constant A > 0, we define

uA(y) =
{
u(y), |u(y)| > A or |y| > A,

0, otherwise,
vA(x) =

{
v(x), |v(x)| > A or |x | > A,

0, otherwise,

uB(y) = u(y) − uA(y) and vB(x) = v(x) − vA(x). Define the linear operator T1 as

T1(h)(y) =
∫

R
n+

|x |−β Pλ(x, y, μ)v
q0−1
A (x)h(x)|y|−αdx, y ∈ ∂Rn+,

and

T2(h)(x) =
∫

∂Rn+
|y|−αPλ(x, y, μ)u p0−1

A h(x)|x |−βdy, x ∈ R
n+.

Noticing that (u, v) ∈ L p0+1
(
∂Rn+

)× Lq0+1
(
R
n+
)
is a pair of non-negative solutions of the

integral system (1.13), we have

u(y) =
∫

R
n+

|y|−αPλ(x, y, μ)vq0(x)|x |−αdx

=
∫

R
n+

|y|−αPλ(x, y, μ) (vA(x) + vB(x))q0−1 v(x)|x |−αdx

=
∫

R
n+

|y|−αPλ(x, y, μ)v
q0−1
A (x)v(x)|x |−αdx +

∫

R
n+

|y|−αPλ(x, y, μ)v
q0
B (x)|x |−αdx

:= T1(v)(y) + F(y).

Similarly,

v(x) =
∫

∂Rn+
|y|−αPλ(x, y, μ)u p0(y)|x |−βdy

=
∫

∂Rn+
|y|−αPλ(x, y, μ) (uA(y) + uB(y))p0−1 u(y)|x |−βdy

=
∫

∂Rn+
|y|−αPλ(x, y, μ)u p0−1

A (y)u(y)|x |−βdy

+
∫

∂Rn+
|y|−αPλ(x, y, μ)uA(y) + u p0

B (y)|x |−βdy

:=T2(u)(x) + G(x),
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where

F(y) =
∫

R
n+

|y|−αPλ(x, y, μ)v
q0
B (x)|x |−αdx,

G(x) =
∫

∂Rn+
|y|−αPλ(x, y, μ)uA(y) + u p0

B (y)|x |−βdy.

Furthermore, we may define the operator T : Lr (∂Rn+) × Ls(Rn+),

T (h1, h2) = (T1(h2), T2(h1))

with norm ‖ (h1, h2) ‖r ,s = ‖h1‖Lr (∂Rn+) + ‖h2‖Ls (Rn+). Obviously, it holds that

(u, v) = T (u, v) + (F,G).

To take advantage of the regularity lifting argument via contracting map, we set the
parameters r and s satisfy

1

s
+ n − 1

n

1

p0 + 1
= 1

q0 + 1
+ n − 1

n

1

r
.

Noticing that under the hypothesis of Theorem 1.4, the existence of parameters r and s can
be ensured. To prove that (u, v) ∈ Lr

(
∂Rn+

) × Ls
(
R
n+
)
, we only need to show that, for A

sufficiently large, the following hold.

(1) T is shrinking from L p0+1
(
∂Rn+

)× Lq0+1
(
R
n+
)
to L p0+1

(
∂Rn+

)× Lq0+1
(
R
n+
)
.

(2) T is shrinking from Lr
(
∂Rn+

)× Ls
(
R
n+
)
to Lr

(
∂Rn+

)× Ls
(
R
n+
)
.

(3) (F,G) ∈ L p0+1
(
∂Rn+

)× Lq0+1
(
R
n+
) ∩ Lr

(
∂Rn+

)× Ls
(
R
n+
)
.

For the proof of (1). In fact, by applying the weighted integral inequality (1.8) and the Hölder
inequality, for (h1, h2) ∈ L p0+1

(
∂Rn+

)× Lq0+1
(
R
n+
)
, we know

‖T1(h2)‖L p0+1(∂Rn+) ≤ C1‖vq0−1
A ‖

L
q0+1
q0−1 (Rn+)

‖h2‖Lq0+1(Rn+)

≤ C1‖vA‖q0−1
Lq0+1(Rn+)

‖h2‖Lq0+1(Rn+),

and
‖T2(h1)‖Lq0+1(Rn+) ≤ C2‖u p0−1

A ‖
L

p0+1
p0−1 (∂Rn+)

‖h1‖L p0+1(∂Rn+)

≤ C2‖uA‖p0−1
L p0+1(∂Rn+)

‖h1‖L p0+1(∂Rn+),

where constant C1,C2 > 0.
Notice that since the integrability L p0+1

(
∂Rn+

) × Lq0+1
(
R
n+
)
, for A sufficiently large,

we deduce

‖T (h1, h2) ‖p0+1,q0+1 = ‖T1(h2)‖p0+1 + ‖T2(h1)‖q0+1 ≤ 1

2
‖ (h1, h2) ‖p0+1,q0+1

which immediately implies that T is a shrinking operator from L p0+1
(
∂Rn+

)× Lq0+1
(
R
n+
)

to itself.
Next,wewill use Stein–Weiss type inequality (1.7)with general kernels to prove (2),which

is similar to the arguments for (1). For convenience, we only verify that ‖T2(h1)‖Ls(Rn+) ≤
1
2‖h1‖Lr (∂Rn+), since ‖T1(h2)‖Lr (∂Rn+) ≤ 1

2‖h2‖Ls(Rn+) can be proved in same way.
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Actually, there exists positive constant C such that

‖T2(h1)‖Ls(Rn+) ≤ C‖u p0−1
A h1‖Lz(∂Rn+)

≤ C‖uA‖p0−1
L p0+1(∂Rn+)

‖h1‖Lr (∂Rn+).
(3.1)

In view of u ∈ L p0+1
(
∂Rn+

)
, by selecting A sufficiently large in (3.1), we have

‖T2(h1)‖Ls(Rn+) ≤ 1

2
‖h1‖Lr (∂Rn+), ∀h1 ∈ Lr (∂Rn+

)
.

In conclusion, we require the parameters r , s and z satisfy

1

z
− 1

r
= p0 − 1

p0 + 1
,

and
1

s
= α + β + μ − λ − n + 1

n
+ n − 1

n

1

z

= α + β + μ − λ − n + 1

n
+ n − 1

n

(
p0 − 1

p0 + 1
+ 1

r

)

= n − 1

n

1

p0 + 1
+ 1

q0 + 1
− n − 1

n
+ n − 1

n

(
p0 − 1

p0 + 1
+ 1

r

)

= n − 1

n

1

r
+ 1

q0 + 1
− n − 1

n

1

p0 + 1
,

where we applied
n − 1

n

1

p0 + 1
+ 1

q0 + 1
= α + β + μ − λ

n
.

Based on the analysis above, we conclude that ‖T (h1, h2)‖r ,s ≤ 1
2‖h1, h2‖r ,s , which

indicates that T is a shrinking operator from Lr
(
∂Rn+

)× Ls
(
R
n+
)
to itself.

Finally, we prove (3), that is (F,G) ∈ L p0+1
(
∂Rn+

)×Lq0+1
(
R
n+
)∩Lr

(
∂Rn+

)×Ls
(
R
n+
)
.

It should be noted that, uB and vB are uniformly bounded by A. Thus the proof of Theorem
1.4 is completed by using the regularity lifting Lemma 3.1. �

3.1 Asymptotic estimates

In this subsection, we are going to study the asymptotic behaviors of non-negative solutions
of integral system (1.13).

Proof of Theorem 1.5 In order to prove that

lim|y|→0
u(y)|y|α =

∫

R
n+

xλ
n vq0(x)

|x |μ+β
dx, (3.2)

first, we verify that
∫
R
n+

vq0 (x)
|x |μ+β−λ dx < +∞. In fact, for any R > 0, we observe that

∫

R
n+

xλ
n vq0(x)

|x |μ+β
dx =

∫

B+
R

xλ
n vq0(x)

|x |μ+β
dx +

∫

R
n+\B+

R

xλ
n vq0(x)

|x |μ+β
dx .
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On one hand, since u ∈ L p0+1
(
∂Rn+

)
, then there exists y0 ∈ ∂Rn+ satisfies |y0| < R

2 such
that u(y0) < +∞. From the system (1.13),

∫

R
n+\B+

R

xλ
n vq0(x)

|x |μ+β
dx ≤ C

∫

R
n+\B+

R

Pλ(x, y, μ)vq0(x)|x |−βdx

+
∫

B+
R

Pλ(x, y, μ)vq0(x)|x |−βdx

≤ C
∫

R
n+
Pλ(x, y, μ)vq0(x)|x |−βdx = |y0|αu(y0) < +∞,

since |x − y| < |x |.
On the other hand, by using the Hölder inequality, we get

∫

B+
R

xλ
n vq0(x)

|x |μ+β
dx ≤ C

(∫

B+
R

(
1

|x |μ+β−λ

)t ′

dx

) 1
t ′
(∫

B+
R

vq0t (x)dx

) 1
t

.

With the aim of
∫
R
n+

vq0 (x)
|x |μ+β−λ dx < +∞, now we require that (μ + β − λ) t ′ < n and

1

q0t
∈
(

β − 1

n
,
β + μ − λ

n

)
∩
(

1

q0 + 1
− n − 1

n

1

p0 + 1
+ α

n
,

1

q0 + 1

−n − 1

n

1

p0 + 1
+ α + μ − λ + 1

n − 1

)
.

Noting that (μ + β − λ) t ′ < n, we have

μ + β − λ

q0n
<

1

q0
− 1

q0t
.

Therefore, since q0 > 1 and 1
p0+1 > α

n−1 , it is easy to find that

1

q0
− μ + β − λ

q0n
= 1

q0
− 1

q0

(
n − 1

n

1

p0 + 1
+ 1

q0 + 1
− α

n

)

= 1

q0 + 1
− 1

q0

(
n − 1

n

1

p0 + 1
− α

n

)

>
1

q0 + 1
− n − 1

n

1

p0 + 1
+ α

n
,

here we applied the condition

n − 1

n

1

p0 + 1
+ 1

q0 + 1
= α + β + μ − λ

n
.

With the above analysis, we can select a suitable parameter t such that (μ + β − λ) t ′ < n
and ‖v‖Lq0 t (Rn+) < +∞, which immediately means that

∫
R
n+

vq0 (x)
|x |μ+β−λ dx < +∞.

123



   22 Page 18 of 35 X. Li et al.

Next, we prove (3.2). Direct calculation yields that
∣
∣
∣
∣
∣

∫

R
n+
Pλ(x, y, μ)vq0(x)|x |−βdx −

∫

R
n+

xλ
n vq0(x)

|x |μ+β
dx

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫

B+
ρ

(
Pλ(x, y, μ)vq0(x)|x |−β − xλ

n vq0(x)

|x |μ+β

)
dx

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫

R
n+\B+

ρ

(
Pλ(x, y, μ)vq0(x)|x |−β − xλ

n vq0(x)

|x |μ+β

)
dx

∣
∣
∣
∣
∣

:= A1 + A2.

(3.3)

On one hand, for A1, we have
∫

B+
ρ

Pλ(x, y, μ)vq0(x)|x |−βdx ≤
∫

B+
ρ (y)

vq0(x)

|x − y|μ+β−λ
dx +

∫

B+
ρ

vq0(x)

|x − y|μ+β−λ
dx

≤ 2‖vq0‖Lt (Rn+)‖ 1

|x |μ+β−λ
‖Lt ′ (B+

ρ )
.

(3.4)
Taking the limit in (3.4), which leads to lim

ρ→0
lim|y|→0

A1 = 0.

On the other hand, according to the Lebesgue dominated convergence theorem for A2, we
get

lim|y|→0

∫

R
n+\B+

ρ

(
Pλ(x, y, μ)vq0(x)|x |−β − xλ

n vq0(x)

|x |μ+β

)
dx = 0. (3.5)

With the help of (3.4) and (3.5), we derive

lim|y|→0

∣∣∣∣∣

∫

R
n+
Pλ(x, y, μ)vq0(x)|x |−βdx −

∫

R
n+

(
xλ
n vq0(x)

|x |μ+β

)
dx

∣∣∣∣∣

= lim
ρ→0

lim|y|→0
A1 + lim

ρ→0
lim|y|→0

A2 = 0.

For the other case, if 1
p0

− μ+α−λ+1
p0(n−1) > α

n−1 , then

lim|x |→0

v(x)|x |β
xλ
n

=
∫

∂Rn+

u p0(y)

|y|α+μ
dy.

Similarly, we can prove the second conclusion. In conclusion, the proof of Theorem 1.5
is completed. �

3.2 Symmetry via themoving plane argument

In this subsection, we will prove the symmetry of positive solutions under the integral con-
ditions. In order to apply the moving plane argument, we give some basic notations. For any
τ ∈ R, one write

yτ = (2τ − y1, ..., yn−1) , xτ = (2τ − x1, ..., xn) , u(yτ ) = uτ (y), v(xτ ) = vτ (x),

and

Tτ = {
x ∈ R

n : x1 = τ
}
, �y,τ = {

y ∈ ∂Rn+ : y1 < τ
}
, �x,τ = {

x ∈ R
n+ : x1 < τ

}
.
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Next, we will show the following equalities, which are useful in the method of moving
plane.

Lemma 3.2 Supposed that (u, v) is a pair of non-negative solution of the integral system
(1.13), for any y ∈ ∂Rn+ and x ∈ R

n+, it holds that

u(y) − uτ (y) =
∫

�x,τ

Pλ(x, y, μ)
(|y|−αvq0(x)|x |−β − |yτ |−αvq0τ (x)|xτ |−β

)
dx

+
∫

�x,τ

Pλ(x
τ , y, μ)

(|y|−αvq0τ (x)|x |−β − |yτ |−αvq0(x)|x |−β
)
dx,

(3.6)

and

v(x) − vτ (x) =
∫

�y,τ

Pλ(x, y, μ)
(|y|−αu p0(y)|x |−β − |yτ |−αu p0

τ (y)|xτ |−β
)
dy

+
∫

�y,τ

Pλ(x
τ , y, μ)

(|y|−αu p0
τ (y)|x |−β − |yτ |−αu p0(y)|x |−β

)
dy,

(3.7)

Proof By direct computation, we know

u(y) =
∫

R
n+

|y|−αPλ(x, y, μ)vq0(x)|x |−βdx

=
∫

�x,τ

|y|−αPλ(x, y, μ)vq0(x)|x |−βdx +
∫

�x,τ

|y|−αPλ(x
τ , y, μ)vq0τ (x)|xτ |−βdx,

and

uτ (y) =
∫

R
n+

|yτ |−αPλ(x, y
τ , μ)vq0(x)|x |−βdx

=
∫

�x,τ

|yτ |−αPλ(x, y
τ , μ)vq0(x)|x |−βdx

+
∫

�x,τ

|yτ |−αPλ(x
τ , yτ , μ)vq0τ (x)|xτ |−βdx .

Since Pλ(xτ , yτ , μ) = Pλ(x, y, μ) and Pλ(x, yτ , μ) = Pλ(xτ , y, μ), it’s not difficult to find
that

u(y) − uτ (y) =
∫

�x,τ

Pλ(x, y, μ)
(|y|−αvq0(x)|x |−β − |yτ |−αvq0τ (x)|xτ |−β

)
dx

+
∫

�x,τ

Pλ(x
τ , y, μ)

(|y|−αvq0τ (x)|x |−β − |yτ |−αvq0(x)|x |−β
)
dx .

Clearly, in the same ways, we get

v(x) − vτ (x) =
∫

�y,τ

(|y|−αPλ(x, y, μ)|x |−β − |yτ |−αPλ(x, y
τ , μ)|x |−β

)
u p0(y)dy

+
∫

�y,τ

(|y|−αPλ(x, y
τ , μ)|xτ |−β − |yτ |−αPλ(x

τ , yτ , μ)|xτ |−β
)
u p0

τ (y)dy

=
∫

�y,τ

Pλ(x, y, μ)
(|y|−αu p0(y)|x |−β − |yτ |−αu p0

τ (y)|xτ |−β
)
dy

+
∫

�y,τ

Pλ(x
τ , y, μ)

(|y|−αu p0
τ (y)|x |−β − |yτ |−αu p0(y)|x |−β

)
dy.
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This finishes the proof. �
Proof of Theorem 1.6 We divide the proof into two steps.

Step 1. We claim that for τ sufficiently negative, there holds

uτ (y) ≥ u(y), vτ (x) ≥ v(x), ∀x ∈ �x,τ , y ∈ �y,τ . (3.8)

Let
�u

y,τ = {
y ∈ �y,τ |u(y) > uτ (y)

}
, �v

x,τ = {
x ∈ �x,τ |v(x) > vτ (x)

}
.

Thus, we will show that for τ sufficiently negative, the sets�v
y,τ and�u

x,τ must have measure
zero.

For any x ∈ �v
x,τ and y ∈ �u

y,τ , since |xτ | < |x |, we know from (3.6)

u(y) − uτ (y) ≤
∫

�x,τ

|y|−α
(
Pλ(x, y, μ)−Pλ(x

τ , y, μ)
) (

vq0(x)|x |−β −vq0τ (x)|xτ |−β
)
dx

≤
∫

�v
x,τ

|y|−αPλ

(
vq0(x) − vq0τ (x)

)
dx .

Applying the Mean Value Theorem, we get

u(y) − uτ (y) ≤ q0

∫

�v
x,τ

|y|−αPλ(x, y, μ)vq0−1(x) (v(x) − vτ (x)) dx .

Similarly,

v(x) − vτ (x) ≤ p0

∫

�u
y,τ

|y|−αPλ(x, y, μ)u p0−1(y) (u(y) − uτ (y)) dy.

Using the Hölder inequality and Theorem 1.2, we obtain

‖u − uτ‖L p0+1(�u
y,τ ) ≤ C‖v‖q0−1

Lq0+1(�x,τ )
‖v − vτ‖Lq0+1(�v

x,τ ), (3.9)

and
‖v − vτ‖Lq0+1(�v

x,τ ) ≤ C‖u‖p0−1
L p0+1(�y,τ )

‖u − uτ‖L p0+1(�u
y,τ ). (3.10)

In view of (u, v) ∈ L p0+1
(
∂Rn+

)× Lq0+1
(
R
n+
)
, for τ sufficiently negative, it holds that

‖v‖Lq0+1(�x,τ ) ≤ 1

2
, ‖u‖L p0+1(�y,τ ) ≤ 1

2
,

which indicates that

‖u − uτ‖L p0+1(�u
y,τ ) = 0, ‖v − vτ‖Lq0+1(�v

x,τ ) = 0. (3.11)

Therefore, we deduce that �u
y,τ and �v

x,τ must be empty set. This implies that (3.8) holds.
Step 2. Inequality (3.8) provides a starting point to move the plane Tτ . Furthermore, we

move the plane Tτ from −∞ to the right as long as (3.8) holds. One can denote

τ0 = sup
{
τ |uρ(y) ≥ u(y), vρ(x) ≥ v(x), ρ ≤ τ,∀y ∈ �y,τ , x ∈ �x,τ

}
. (3.12)

Assume that τ0 < 0, then we will show that the solution u and v must be symmetric and
monotone about the limiting plane. Namely,

uτ0(y) ≡ u(y), vτ0(x) ≡ v(x), ∀y ∈ �y,τ0 , x ∈ �x,τ0 . (3.13)
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Suppose for such a τ0, on �y,τ0 and �x,τ0 , we get

u(y) ≤ uτ0(y), v(x) ≤ vτ0(x), but u(y) �= uτ0(y), v(x) �= vτ0(x). (3.14)

We will show that the plane can be moved further to the right. To be precise, there exists
a positive parameter ε such that for any x ∈ �x,τ and y ∈ �y,τ ,

u(y) ≤ uτ (y), v(x) ≤ vτ (x), ∀τ ∈ [τ0, τ0 + ε) , (3.15)

which would contradict with the definition of τ0.
Combining with the first step and (3.14), we know that u(y) < uτ0(y) and v(x) < vτ0(x)

in the interior of �y,τ0 and �x,τ0 respectively. Moreover, we define

�ṽ
x,τ0 = {

x ∈ �x,τ0 |v(x) ≥ vτ (x)
}
, �ũ

y,τ0 = {
y ∈ �y,τ0 |u(y) ≥ uτ (y)

}
.

Therefore, it’s easy tofind that�ṽ
x,τ0 and�ũ

y,τ0 havemeasure zero, and limτ→τ0 �u
y,τ ⊂ �ũ

y,τ0 ,
limτ→τ0 �v

x,τ ⊂ �ṽ
x,τ0 . Furthermore, By virtue of (u, v) ∈ L p0+1

(
∂Rn+

)× Lq0+1
(
R
n+
)
, we

can select a adequate small ε such that for any τ in [τ0, τ0 + ε),

‖v‖Lq0+1(�x,τ ) ≤ 1

2
, ‖u‖L p0+1(�y,τ ) ≤ 1

2
.

In fact, the estimate is similar to (3.11), it holds that

‖u − uτ‖L p0+1(�u
y,τ ) = 0, ‖v − vτ‖Lq0+1(�v

x,τ ) = 0.

Based on the above discussion, we conclude that �u
y,τ and �v

x,τ must be empty set. This
proves (3.15) and hence (3.13).

If τ0 = 0, then we can repeat the arguments in the opposite direction. Indeed, we will
get two situations. If the plane Tτ stop at some point before the origin, we can deduce that
u(y) and v(x) must be symmetric and monotone decreasing in the x1-direction based on the
previous analysis. If it stays at the origin again, we also have the symmetry and monotonicity
result with x1 = 0. Since x1 direction can be chosen arbitrarily, we deduce that u(y) and
v(x)|∂Rn+ must be radially symmetry and monotone decreasing about some point y0 ∈ ∂Rn+.
The proof is accomplished. �

4 The single weighted integral system

In this section, we will consider the necessary condition for the existence of non-negative
solutions of the integral system (1.14) with single weight.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(y) =
∫

R
n+

|x |−β Pλ(x, y, μ)vq0(x)dx, y ∈ ∂Rn+,

v(x) =
∫

∂Rn+
|y|−αPλ(x, y, μ)u p0(y)dy, x ∈ R

n+.
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Proof of Theorem 1.7 Firstly, according to the integration by parts, we get

∫

Bn−1
R \Bn−1

ε

|y|−αu p0(y) (y · ∇u(y)) dy

= 1

p0 + 1

∫

Bn−1
R \Bn−1

ε

|y|−α y · ∇ (u p0+1(y)
)
dy

= R1−α

p0 + 1

∫

∂Bn−1
R

u p0+1(y)dτ + ε1−α

p0 + 1

∫

∂Bn−1
ε

u p0+1(y)dτ

− n − 1 − α

p0 + 1

∫

Bn−1
R \Bn−1

ε

u p0+1(y)|y|−αdy.

Similarly, we know

∫

B+
R \B+

ε

|x |−βvq0(x) (x · ∇v(x)) dx

= 1

q0 + 1

∫

B+
R \B+

ε

|x |−βx · ∇ (vq0+1(x)
)
dx

= R1−β

q0 + 1

∫

∂B+
R

vq0+1(y)dτ + ε1−β

q0 + 1

∫

∂B+
ε

vq0+1(x)dτ

− n − β

q0 + 1

∫

B+
R \B+

ε

vq0+1(x)|x |−βdx .

In particular, under the assumptions ofTheorem1.7,weknow (u, v) ∈ L p0+1
(|y|−αdy, ∂Rn+

)

× Lq0+1
(|x |−βdx, Rn+

)
, then there exist Ri → +∞ and εi → 0 such that

R1−α
i

∫

∂Bn−1
Ri

u p0+1(y)dτ → 0, R1−β
i

∫

∂B+
Ri

vq0+1(x)dτ → 0.

Similarly, we obtain

ε1−α
i

∫

∂Bn−1
εi

u p0+1(y)dτ → 0, ε
1−β
i

∫

∂B+
εi

vq0+1(x)dτ → 0.

Based on the above analysis, we get

∫

∂Rn+
|y|−αu p0(y) (y · ∇u(y)) dy +

∫

R
n+

|x |−βvq0(x) (x · ∇v(x)) dx

= −n − 1 − α

p0 + 1

∫

∂Rn+
|y|−αu p0+1(y)dy − n − β

q0 + 1

∫

R
n+

|x |−βvq0+1(x)dx .
(4.1)

Noticing that the weighted integral equations (1.14), by direct calculation, we obtain

∇u(y) · y = du(ρy)

dρ
|ρ=1

= −μ

∫

R
n+
Pλ(x, y, μ)|x − y|−2(y − x) · y|x |−βvq0(x)dx,

(4.2)
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and

∇v(x) · x = dv(ρx)

dρ
|ρ=1

= −μ

∫

∂Rn+
Pλ(x, y, μ)|x − y|−2(x − y) · x |y|−αu p0(y)dy

+ λ

∫

∂Rn+
Pλ(x, y, μ)|y|−αu p0(y)dy.

(4.3)

It follows from (4.2) and (4.3) that

∫

∂Rn+
|y|−αu p0(y) (y · ∇u(y)) dy +

∫

R
n+

|x |−βvq0(x) (x · ∇v(x)) dx

= − (μ − λ)

∫

R
n+

∫

∂Rn+
|y|−αPλ(x, y, μ)u p0+1(y)vq0+1(x)|x |−βdydx

= − (μ − λ)

∫

R
n+
Pλ(x, y, μ)vq0+1(x)|x |−βdx

= − (μ − λ)

∫

∂Rn+
Pλ(x, y, μ)u p0+1(y)|y|−αdy.

Combining (4.1) and the above identity, we know that n−1−α
p0+1 + n−β

q0+1 = μ − λ, which
completes the proof. �

5 Application to nonlocal elliptic equation on the upper half space

In this section, as an application of Stein–Weiss type inequality (1.7), we are interested in
studying the symmetry and non-existence of positive solutions for equations (1.15) by the
method of moving plane in half space. In fact, since the nonlinear term is non-local, we fail
to obtain the symmetry result for positive solutions via the maximum principle. Therefore,
we provide a different proof using the integral inequality to establish the symmetry and
non-existence of weak solutions for the equations (1.15). For convenience, we first write

m(x) =
∫

∂Rn+

F(u(y))

|x |β |x − y|μ|y|α dy, η(y) =
∫

R
n+

G(u(x))xλ
n

|x |β |x − y|μ|y|α dx, (5.1)

then the equations (1.15) can be rewritten by the following form,

⎧
⎨

⎩

−�u(x) = xλ
nm(x)g(u(x)), x ∈ R

n+,

∂u

∂υ
(y) = η(y) f (u(y)), y ∈ ∂Rn+.

(5.2)

Next, due to the lack of the decay property of those solutions, it is not convenient to prove
symmetry and nonexistence results for equations (1.15) via the moving plane arguments
directly. To overcome this difficulty, we will introduce the Kelvin transform of centered at a
point. Then let us take any point xp ∈ ∂Rn+ and define the Kelvin transform of u(x), m(x)
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and η(y) as follows.

v(x) = 1

|x − xρ |n−2 u

(
x − xρ

|x − xρ |2 + xρ

)
, ω(x) = 1

|x − xρ |2β+μ
m

(
x − xρ

|x − xρ |2 + xρ

)
,

z(y) = 1

|y − yρ |2α+μ
η

(
y − yρ

|y − yρ |2 + yρ

)
.

Obviously, by the above definition, for |x − xp| ≥ 1, we have

v(x) ≤ C

|x − xp|n−2 , ω(x) ≤ C

|x − xp|2β+μ
,

and

z(y) ≤ C

|y − yp|2α+μ
. (5.3)

It’s easy to find that (v, ω, z) has the singularities at point xp . Here and the rest of this paper,
without loss of generality, we take xp = 0.

In addition, by a straightforward computation, we obtain v(x), ω(x), z(y) satisfies the
following elliptic system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�v(x) = xλ
nω(x)k

(|x |n−2v(x)
)
v(x)

2λ+n+2−(2β+μ)
n−2 , x ∈ R

n+,

∂v

∂υ
(y) = z(y)h

(|y|n−2v(y)
)
v(y)

n−(2α+μ)
n−2 , y ∈ ∂Rn+\ {0} ,

ω(x) =
∫

∂Rn+

H(|y|n−2v(y))

|x |β |x − y|μ|y|α v(y)
2(n−1)−(2α+μ)

n−2 dy, x ∈ R
n+,

z(y) =
∫

R
n+

K (|x |n−2v(x))xλ
n

|x |β |x − y|μ|y|α v(x)
2n+2λ−(2β+μ)

n−2 dx, y ∈ ∂Rn+\ {0} .

(5.4)

Nowwe turn to the symmetry andmonotonicity of v(x).We introduce the following notation.
For δ > 0, we define

�δ = {
x ∈ R

n+|x1 > δ
}
, ∂�δ = {

x ∈ ∂Rn+|x1 > δ
}
, Tδ = {

x ∈ R
n+|x1 = δ

}
,

and we also denote the reflected point and functions relate to the hyperplane Tδ by

xδ = (2δ − x1, ..., xn) , vδ(x) = v(xδ), pδ = (2δ, 0, ..., 0) .

Furthermore, we write

�v
δ = {x ∈ �δ|v(x) > vδ(x)} , ∂�v

δ = {x ∈ ∂�δ|v(x) > vδ(x)} .

In light of the above preparations, we shall give two basic inequality, which is useful in
the later proof.

Lemma 5.1 Assume that v(x) is non-negative weak solution of the equations (1.15), then we
have

ω(x) − ωδ(x) ≤
∫

∂�v
δ

H
(|y|n−2v(y)

)

|x |β |x − y|μ|y|α
(
v(y)

2(n−1)−(2α+μ)
n−2 − vδ(y)

2(n−1)−(2α+μ)
n−2

)
dy, (5.5)

and

z(y) − zδ(y) ≤
∫

�v
δ

K
(|x |n−2v(x)

)
xλ
n

|x |β |x − y|μ|y|α
(
v(x)

2n+2λ−(2β+μ)
n−2 − vδ(x)

2n+2λ−(2β+μ)
n−2

)
dx . (5.6)
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Proof By direct calculation, we get

ω(x) =
∫

∂�v
δ

H
(|y|n−2v(y)

)

|x |β |x − y|μ|y|α v(y)
2(n−1)−(2α+μ)

n−2 dy

+
∫

∂�v
δ

H
(|yδ|n−2vδ(y)

)

|x |β |x − yδ|μ|yδ|α vδ(y)
2(n−1)−(2α+μ)

n−2 dy,

and

ωδ(x) =
∫

∂�v
δ

H
(|y|n−2v(y)

)

|xδ|β |xδ − y|μ|y|α v(y)
2(n−1)−(2α+μ)

n−2 dy

+
∫

∂�v
δ

H
(|yδ|n−2vδ(y)

)

|xδ|β |xδ − yδ|μ|yδ|α vδ(y)
2(n−1)−(2α+μ)

n−2 dy.

Since x ∈ �δ and y ∈ ∂�δ , then we get

ω(x) − ωδ(x) =
∫

∂�δ

1

|x − y|μ

⎛

⎝ H
(|y|n−2v(y)

)
v(y)

2(n−1)−(2α+μ)
n−2

|x |β |y|α

− H
(|yδ |n−2vδ(y)

)
vδ(y)

2(n−1)−(2α+μ)
n−2

|xδ |β |yδ |α

⎞

⎠ dy

+
∫

∂�δ

1

|xδ − y|μ

⎛

⎝ H
(|yδ |n−2vδ(y)

)
vδ(y)

2(n−1)−(2α+μ)
n−2

|x |β |yδ |α − H
(|y|n−2v(y)

)
v(y)

2(n−1)−(2α+μ)
n−2

|x |β |y|α

⎞

⎠ dy

≤
∫

�δ

1

|x |β |y|α
(

1

|x − y|μ − 1

|xδ − y|μ
)

·
(
H
(
|y|n−2v(y)

)
v(y)

2(n−1)−(2α+μ)
n−2 − H

(
|yδ |n−2vδ(y)

)
vδ(y)

2(n−1)−(2α+μ)
n−2

)
dy.

If y ∈ ∂�v
δ , together with the monotonicity of H , then we know

H
(|y|n−2v(y)

) ≤ H
(|yδ|n−2vδ(y)

)
.

If y ∈ ∂�δ\∂�v
δ , then we have

H
(|y|n−2v(y)

)
v(y)

2(n−1)−(2α+μ)
n−2 = F

(|y|n−2v(y)
)

|y|2(n−1)−(2α+μ)
≤ F

(|y|n−2vδ(y)
)

|y|2(n−1)−(2α+μ)

≤ F
(|yδ|n−2vδ(y)

)

(|yδ|n−2vδ(y)
) 2(n−1)−(2α+μ)

n−2

vδ(y)
2(n−1)−(2α+μ)

n−2

= H
(|yδ|n−2vδ(y)

)
vδ(y)

2(n−1)−(2α+μ)
n−2 .

From the analysis above, we immediately get the identity (5.5).
Similarly, from

z(y) =
∫

�v
δ

K
(|x |n−2v(x)

)
xλ
n

|x |β |x − y|μ|y|α v(x)
2n+2λ−(2β+μ)

n−2 dx

+
∫

�v
δ

K
(|xδ|n−2vδ(x)

)
xλ
n

|xδ|β |xδ − y|μ|y|α vδ(x)
2n+2λ−(2β+μ)

n−2 dx,
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and

zδ(y) =
∫

�v
δ

K
(|x |n−2v(x)

)
xλ
n

|x |β |x − yδ|μ|yδ|α v(x)
2n+2λ−(2β+μ)

n−2 dx

+
∫

�v
δ

K
(|xδ|n−2vδ(x)

)
xλ
n

|xδ|β |xδ − yδ|μ|yδ|α vδ(x)
2n+2λ−(2β+μ)

n−2 dx,

we arrive at (5.6). The proof is completed. �

Lemma 5.2 Under the conditions of Theorem 1.10, for any fixed parameter δ > 0, then it
holds that

(1) v(x) ∈ L
2n
n−2 (�δ) ∪ L∞(�δ),

(2) (v − vδ)
+ ∈ L

2n
n−2 (�δ) ∪ L∞(�δ).

Moreover, there exists positive constant Cδ , which is non-increasing in δ, such that

∫

�δ

|∇ (v − vδ)
+ |2dx

≤ Cδ

⎡

⎣‖v(x)‖
2λ+n+2−(2β+μ)

n−2

L
2n
n−2 (�v

δ
)

‖v(y)‖
n−(2α+μ)

n−2

L
2(n−1)
n−2 (∂�v

δ
)

+ ‖ω(x)‖
L

2n
(2β+μ)−2λ (�v

δ
)

‖v(x)‖
2λ+4−(2β+μ)

2n

L
2n
n−2 (�v

δ
)

+‖z(y)‖
L
2(n−1)
n−2 (∂�v

δ
)

‖v(y)‖
2−(2α+μ)
2(n−1)

L
2(n−1)
n−2 (∂�v

δ
)

⎤

⎦
(∫

�v
δ

|∇ (v − vδ)
+ |2dx

)

.

(5.7)

Proof Actually, because of δ > 0, there exists a parameter r > 0 such that�δ ⊂ R
n+\B+

r (0).
Therefore, in light of the definition and decay property of v(x), we have

v(x), (v − vδ)
+ ∈ L

2n
n−2 (�δ) ∪ L∞(�δ),

where we denote B+
r (0) = {

x ∈ R
n+||x | < r

}
.

Next, in order to remove the singularity of v(x), ω(x) and z(y), we need to introduce a
cut-off function φ = φε(x) ∈ C1(Rn, [0, 1]) as below

φε(x) =

⎧
⎪⎨

⎪⎩

1, 2ε ≤ |x − pδ| ≤ 1

ε
,

0, |x − pδ| < ε, |x − pδ| >
2

ε
.

Furthermore, we require that |∇φ| ≤ 2
ε
for ε < |x − pδ| < 2ε and |∇φ| ≤ 2ε for 1

ε
<

|x − pδ| < 2
ε
. In addition, we also define two functions ψ(x) and ϕ(x) satisfy ϕ = ϕε =

φ2
ε (v − vδ)

+ and ψ = ψε = φε (v − vδ)
+ respectively, it’s easy to find that

|∇ψ |2 = ∇ (v − vδ)
+ ∇ϕ + [

(v − vδ)
+]2 |∇φ|2.
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Now, based on the above preparation, we deduce from (5.4)
∫

�δ∪
{
2ε≤|x−pδ |≤ 1

ε

} |∇ (v − vδ)
+ |2dx

≤
∫

�v
δ

|∇ψ(x)|2dx ≤
∫

�δ

∇ (v(x) − vδ(x))
+ ∇ϕdx +

∫

�v
δ

[
(v(x) − vδ(x))

+]2 |∇φε |2dx

=
∫

�v
δ

−�(v − vδ) ϕ(x)dx +
∫

∂�v
δ

∂ (v − vδ) (y)

∂υ
ϕ(y)dy +

∫

�v
δ

[
(v(x) − vδ(x))

+]2 |∇φε |2dx

=
∫

�v
δ

[
xλ
nω(x)k

(
|x |n−2v(x)

)
v(x)

2λ+n+2−(2β+μ)
n−2 − xλ

nω(xδ)k
(
|xδ |n−2vδ(x)

)
vδ(x)

2λ+n+2−(2β+μ)
n−2

× (v(x) − vδ(x))
+ φ2

ε (x)dx
]

−
∫

∂�v
δ

[
z(y)h

(
|y|n−2v(y)

)
v(y)

n−(2α+μ)
n−2

− z(yδ)h
(
|yδ |n−2vδ(y)

)
vδ(y)

n−(2α+μ)
n−2

× (v(y) − vδ(y))
+ φ2

ε (y)dy
]

+
∫

�v
δ

[
(v(x) − vδ(x))

+]2 |∇φε |2dx

:= I1 + I2 + I3.
(5.8)

Apparently, we are going to consider the three integrals above. For integrals I1, if x ∈ �v
δ ,

then we have
k
(|x |n−2v(x)

) ≤ k
(|xδ|n−2vδ(x)

)
,

where we used the monotonicity of k. Meanwhile, we treat the domain �v
δ as

�1 = {
x ∈ �v

δ |ω(x) > ωδ(x)
}

and
�2 = {

x ∈ �v
δ |ω(x) ≤ ωδ(x)

}
.

If x ∈ �1, we know

xλ
nω(x)k

(|x |n−2v(x)
)
v(x)

2λ+n+2−(2β+μ)
n−2 − xλ

nω(xδ)k
(|xδ|n−2vδ(x)

)
vδ(x)

2λ+n+2−(2β+μ)
n−2

= [
ω(x) − ω(xδ)

]
k
(|x |n−2v(x)

)
v(x)

2λ+n+2−(2β+μ)
n−2

+ xλ
nω(xδ)

[
k
(|x |n−2v(x)

)
v(x)

2λ+n+2−(2β+μ)
n−2 − k

(|xδ|n−2vδ(x)
)
vδ(x)

2λ+n+2−(2β+μ)
n−2

]

≤ xλ
n

[
ω(x) − ω(xδ)

]
k
(|x |n−2v(x)

)
v(x)

2λ+n+2−(2β+μ)
n−2

+ xλ
nω(x)k

(|x |n−2v(x)
) [

v(x)
2λ+n+2−(2β+μ)

n−2 − vδ(x)
2λ+n+2−(2β+μ)

n−2

]
.

(5.9)
If x ∈ �2, then we have

xλ
nω(x)k

(|x |n−2v(x)
)
v(x)

2λ+n+2−(2β+μ)
n−2 − xλ

nω(xδ)k
(|xδ|n−2vδ(x)

)
vδ(x)

2λ+n+2−(2β+μ)
n−2

≤ xλ
nω(x)

[
k
(|x |n−2v(x)

)
v(x)

2λ+n+2−(2β+μ)
n−2 − k

(|xδ|n−2vδ(x)
)
vδ(x)

2λ+n+2−(2β+μ)
n−2

]

≤ xλ
nω(x)k

(|x |n−2v(x)
) [

v(x)
2λ+n+2−(2β+μ)

n−2 − vδ(x)
2λ+n+2−(2β+μ)

n−2

]
.

(5.10)
Clearly, integral I2 can be estimated in the same way. Therefore, for y ∈ ∂�v

δ , it follow from
the monotonicity of h that,

h
(|y|n−2v(y)

) ≤ h
(|yδ|n−2vδ(y)

)
.
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Similarly, we can divide domain ∂�v
δ into

�3 = {
y ∈ ∂�v

δ |z(y) > zδ(y)
}

and
�4 = {

y ∈ ∂�v
δ |z(y) ≤ zδ(y)

}
.

If y ∈ �3, then we have

z(y)h
(|y|n−2v(y)

)
v(y)

n−(2α+μ)
n−2 − z(yδ)h

(|yδ|n−2vδ(y)
)
vδ(y)

n−(2α+μ)
n−2

≤ z(y)h
(|y|n−2v(y)

) [
v(y)

n−(2α+μ)
n−2 − vδ(y)

n−(2α+μ)
n−2

]

+ h
(|y|n−2v(y)

)
v(y)

n−(2α+μ)
n−2

[
z(y) − z(yδ)

]
,

(5.11)

it also holds that for y ∈ �4,

z(y)h
(|y|n−2v(y)

)
v(y)

n−(2α+μ)
n−2 − z(yδ)h

(|yδ|n−2vδ(y)
)
vδ(y)

n−(2α+μ)
n−2

≤ z(y)h
(|y|n−2v(y)

) [
v(y)

n−(2α+μ)
n−2 − vδ(y)

n−(2α+μ)
n−2

]
.

(5.12)

Consequently, inserting (5.9), (5.10), (5.11) and (5.12) into (5.8), we must have
∫

�δ∪
{
2ε≤|x−pδ |≤ 1

ε

} |∇ (v − vδ)
+ |2dx

≤ I3 + C
∫

�v
δ

xλ
n

[
ω(x) − ω(xδ)

]
k
(
|x |n−2v(x)

)
v(x)

2λ+n+2−(2β+μ)
n−2 (v(x) − vδ(x))

+ φ2
ε (x)dx

+ C
∫

�v
δ

xλ
nω(x)k

(
|x |n−2v(x)

)
v(x)

2λ+4−(2β+μ)
n−2

[
(v(x) − vδ(x))

+]2 φ2
ε (x)dx

+ C
∫

∂�v
δ

z(y)h
(
|y|n−2v(y)

)
v(y)

2−(2α+μ)
n−2

[
(v(y) − vδ(y))

+]2 φ2
ε (y)dy

+ C
∫

∂�v
δ

h
(
|y|n−2v(y)

)
v(y)

n−(2α+μ)
n−2

[
z(y) − z(yδ)

]
(v(y) − vδ(y))

+ φ2
ε (y)dy

= I3 + A1 + A2 + A3 + A4.
(5.13)

In fact, based on the discussion above, we focus on estimating the five integrals in the
remaining of proof.

Firstly, to estimate integrals I3 accurately, we write M1 = {
x ∈ �δ|ε < |x − pδ| < 2ε

}

and M2 = {
x ∈ �δ| 1ε < |x − pδ| < 2

ε

}
, then we have

∫

M1

|∇φ|ndx ≤ C
1

εn
· εn = C .

Similarly, ∫

M2

|∇φ|ndx ≤ C
1

εn
· εn = C .

As a consequence, when ε → 0, by the Hölder inequality and (v − vδ)
+ ∈ L

2n
n−2 (�δ), we

conclude

I3 ≤
(∫

M1⊂M2

[
(v − vδ)

+] 2n
n−2 dx

) n−2
n
(∫

�δ

|∇φ|ndx
) 2

n → 0.
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Secondly, for integral A1, according to Theorem 1.2, we infer from (1.11) and the Hölder
inequality that

A1 ≤ Cδ

∫

�v
δ

xλ
n

[
ω(x) − ω(xδ)

]
v(x)

2λ+n+2−(2β+μ)
n−2 (v(x) − vδ(x))

+ dx

≤ Cδ

∫

�v
δ

∫

∂�v
δ

xλ
n v(x)

2λ+n+2−(2β+μ)
n−2 (v(x) − vδ(x))+

(
v(y)

2(n−1)−(2α+μ)
n−2 − vδ(y)

2(n−1)−(2α+μ)
n−2

)

|x |β |x − y|μ|y|α dxdy

≤ Cδ‖v(x)
2λ+n+2−(2β+μ)

n−2 (v(x) − vδ(x))
+ ‖

L
2n

2n+2λ−(2β+μ) (�v
δ )

‖

v(y)
n−(2α+μ)

n−2 (v(y) − vδ(y))
+ ‖

L
2(n−1)

2n−2−(2α+μ) (∂�v
δ )

≤ Cδ‖v(x)‖
2λ+n+2−(2β+μ)

n−2

L
2n
n−2 (�v

δ )

‖ (v(x) − vδ(x)) ‖
L

2n
n−2 (�v

δ )
‖

v(y)‖
n−(2α+μ)

n−2

L
2(n−1)
n−2 (∂�v

δ )

‖ (v(y) − vδ(y)) ‖
L

2(n−1)
n−2 (∂�v

δ )
.

(5.14)
Next, for integral A2, combining the Hölder inequality with the decay estimate of v, there

exists a positive constant Cδ , which is non-increasing in δ, such that

A2 ≤
∫

�v
δ

xλ
n

[
ω(x) − ω(xδ)

]
k
(|x |n−2v(x)

)
v(x)

2λ+n+2−(2β+μ)
n−2 (v(x) − vδ(x))

+ dx

≤ Cδ

(∫

�v
δ

ω(x)
2n

(2β+μ)−2λ dx

) (2β+μ)−2λ
2n

(∫

�v
δ

v(x)
2n
n−2 dx

) 2λ+4−(2β+μ)
2n

(∫

�v
δ

[
(v(x) − vδ(x))

+] 2n
n−2 dx

) n−2
n

,

(5.15)
where we used the monotonicity of k.

Furthermore, for integral A3, in view of the Hölder inequality, we have

A3 ≤
∫

∂�v
δ

z(y)h
(|y|n−2v(y)

)
v(y)

2−(2α+μ)
n−2

[
(v(y) − vδ(y))

+]2 dy

≤ Cδ

(∫

∂�v
δ

v(y)
2(n−1)
n−2 dy

) 2−(2α+μ)
2(n−1)

(∫

∂�v
δ

z(y)
2(n−1)
2α+μ dy

) 2α+μ
2(n−1)

(∫

∂�v
δ

[
(v(y) − vδ(y))

+] 2(n−1)
n−2 dy

) n−2
n−1

.

(5.16)
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Finally, we estimate integral A4. According to Theorem 1.2, it follows from (1.12) and
the Hölder inequality that

A4 ≤ Cδ

∫

∂�v
δ

v(y)
n−(2α+μ)

n−2
[
z(y) − z(yδ)

]
(v(y) − vδ(y))

+ dy

≤ Cδ

∫

�v
δ

∫

∂�v
δ

xλ
n v(y)

n−(2α+μ)
n−2 (v(y) − vδ(y))+ v(x)

n+2+2λ−(2β+μ)
n−2 (v(x) − vδ(x))+

|x |β |x − y|μ|y|α dxdy

≤ Cδ‖v(y)
n−(2α+μ)

n−2 (v(y) − vδ(y))
+ ‖

L
2(n−1)

2n−2−(2α+μ) (∂�v
δ )

‖

v(x)
n+2+2λ−(2β+μ)

n−2 (v(x) − vδ(x))
+ ‖

L
2n

2n+2λ−(2β+μ) (�v
δ )

≤ Cδ‖v(x)‖
2λ+n+2−(2β+μ)

n−2

L
2n
n−2 (�v

δ )

‖ (v(x) − vδ(x)) ‖
L

2n
n−2 (�v

δ )
‖

v(y)‖
n−(2α+μ)

n−2

L
2(n−1)
n−2 (∂�v

δ )

‖ (v(y) − vδ(y)) ‖
L

2(n−1)
n−2 (∂�v

δ )
. (5.17)

Hence, insertting (5.14), (5.15), (5.16) and (5.17) into (5.13) and taking ε → 0, then by
Lebesgue’s dominated convergence theorem, the Sobolev trace inequality and the Sobolev
inequality, it holds that

∫

�δ

|∇ (v − vδ)
+ |2dx

≤ Cδ

⎡

⎣‖v(x)‖
2λ+n+2−(2β+μ)

n−2

L
2n
n−2 (�v

δ )

‖v(y)‖
n−(2α+μ)

n−2

L
2(n−1)
n−2 (∂�v

δ )

+
(∫

�v
δ

ω(x)
2n

(2β+μ)−2λ dx

) (2β+μ)−2λ
2n

(∫

�v
δ

v(x)
2n
n−2 dx

) 2λ+4−(2β+μ)
2n

+
(∫

∂�v
δ

v(y)
2(n−1)
n−2 dy

) 2−(2α+μ)
2(n−1)

(∫

∂�v
δ

z(y)
2(n−1)
2α+μ dy

) 2α+μ
2(n−1)

⎤

⎦

·
(∫

�v
δ

|∇ (v − vδ)
+ |2dx

)

,

which leads to (5.7). This accomplishes the proof. �

Next, based on Lemmas 5.1 and 5.2, we give the following frequently useful lemma.

Lemma 5.3 Under the hypothesis of Theorem 1.10, there exists a non-negative constant δ0,
such that for any δ ≥ δ0, x ∈ �δ and y ∈ ∂�δ , we have

ω(x) ≤ ω(xδ), z(y) ≤ z(yδ), v(x) ≤ vδ(x). (5.18)
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Proof Actually, since ω(x), z(y) and v(x) possess better decay properties, we can take δ0
sufficiently large, such that for δ > δ0, it holds that

Cδ

(

‖v(x)‖
2λ+n+2−(2β+μ)

n−2

L
2n
n−2 (�v

δ )

‖v(y)‖
n−(2α+μ)

n−2

L
2(n−1)
n−2 (∂�v

δ )

+ ‖ω(x)‖
L

2n
(2β+μ)−2λ (�v

δ )
‖v(x)‖

2λ+4−(2β+μ)
2n

L
2n
n−2 (�v

δ )

+‖z(y)‖
L

2(n−1)
n−2 (∂�v

δ )
‖v(y)‖

2−(2α+μ)
2(n−1)

L
2(n−1)
n−2 (∂�v

δ )

)

≤ 1

2
.

Further, according to Lemma 5.1 and Lemma 5.2, for any x ∈ �δ and y ∈ ∂�δ , we obtain
ω(x) ≤ ω(xδ), z(y) ≤ z(yδ) and v(x) ≤ vδ(x). �

Based on the above analysis, we find the starting point tomove plane Tδ0 . Nowwe are ready
to move the plane from the right to the left provided (5.18). To state the process accurately,
we write

δ1 = inf
{
δ|ω(x) ≤ ω(xδ), z(y) ≤ z(yδ), v(x) ≤ vδ(x), ∀x ∈ �δ, ∀y ∈ ∂�δ

}
. (5.19)

Then we deduce the following important result.

Lemma 5.4 If δ1 > 0, then for any x ∈ �δ1 and y ∈ ∂�δ1 , it holds that ω(x) ≡ ω(xδ1),
z(y) ≡ z(yδ1) and v(x) ≡ vδ1(x).

Proof Suppose that ω(x) �≡ ω(xδ1), z(y) �≡ z(yδ1) and v(x) �≡ vδ1(x). On one hand, by
means of the continuity of ω(x), v(x) and z(y), for any x ∈ �δ1 and y ∈ ∂�δ1 , we have

ω(x) ≤ ω(xδ1), v(x) ≤ vδ1(x), z(y) ≤ z(yδ1). (5.20)

Moreover, from the monotonicity of g and k, we know

xλ
nω(x)k

(|x |n−2v(x)
)
v(x)

2λ+n+2−(2β+μ)
n−2 = xλ

nω(x)
g
(|x |n−2v(x)

)

|x |2λ+n+2−(2β+μ)

≤ xλ
nω(xδ1)

g
(|x |n−2vδ1(x)

)

|x |2λ+n+2−(2β+μ)

≤ xλ
nω(xδ1)

g
(|x |n−2vδ1(x)

)

(|x |n−2vδ1(x)
) 2λ+n+2−(2β+μ)

n−2

vδ(x)
2λ+n+2−(2β+μ)

n−2

≤ xλ
nω(xδ1)

g
(|x |n−2vδ1(x)

)

(|xδ1 |n−2vδ1(x)
) 2λ+n+2−(2β+μ)

n−2

vδ(x)
2λ+n+2−(2β+μ)

n−2

= xλ
nω(xδ1)k

(|xδ1 |n−2vδ1(x)
)
vδ1(x)

2λ+n+2−(2β+μ)
n−2 ,

which immediately implies that

−�v(x) ≤ −�v(xδ1), x ∈ �δ1 .

Furthermore, according to the strong maximum principle, for any x ∈ �δ1 and y ∈ ∂�δ1 ,
we obtain ω(x) < ω(xδ1), v(x) < vδ1(x) and z(y) < z(yδ1).

On the other hand, when δ → δ1, we get 1
|x |2n χ�v

δ

a.e.−→ 0 and 1
|y|2(n−1) χ∂�v

δ

a.e.−→ 0.

Therefore, there exists τ > 0 such that for δ ∈ [δ1 − τ, δ1], 1
|x |2n χ�v

δ
≤ 1

|x |2n χ�v
δ1−τ

and
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1
|y|2(n−1) χ∂�v

δ
≤ 1

|y|2(n−1) χ∂�v
δ1−τ

. Here, applyingLebesgue’s dominated convergence theorem,
when δ → δ1, we know

∫

∂�v
δ

1

|x |2n dx → 0,
∫

∂�v
δ

1

|y|2(n−1)
dy → 0.

Finally, using the decay properties of ω(x), z(y) and v(x), we point out that there exists
τ0 such that for any δ ∈ [δ1 − τ0, δ1], it holds

Cδ

(

‖v(x)‖
2λ+n+2−(2β+μ)

n−2

L
2n
n−2 (�v

δ )

‖v(y)‖
n−(2α+μ)

n−2

L
2(n−1)
n−2 (∂�v

δ )

+ ‖ω(x)‖
L

2n
(2β+μ)−2λ (�v

δ )
‖v(x)‖

2λ+4−(2β+μ)
2n

L
2n
n−2 (�v

δ )

+‖z(y)‖
L

2(n−1)
n−2 (∂�v

δ )
‖v(y)‖

2−(2α+μ)
2(n−1)

L
2(n−1)
n−2 (∂�v

δ )

)

<
1

2
.

Therefore, by using Lemmas 5.1 and 5.2, we have for any δ ∈ [δ1 − τ0, δ1],

ω(x) ≤ ω(xδ), v(x) ≤ vδ(x), z(y) ≤ z(yδ), x ∈ �δ, y ∈ ∂�δ,

which contradicts the definition of δ1. The proof is finished. �
It’s clear that, the proof of Theorem 1.10 relies on the above results.

Proof of Theorem 1.10 In fact, we can move plane Tδ from ∞ to the left, and continue this
proof until δ = δ1. If δ1 > p1, then we obtain

ω(x) ≡ ω(xδ1), z(y) ≡ z(yδ1), v(x) ≡ vδ1(x), x ∈ �δ1 , y ∈ ∂�δ1 .

However, this is impossible. Therefore, we get δ1 ≤ p1. Similarly, we can move the plane
from −∞ to the right as we did in the previous discussion, then we derive δ′

1 and δ′
1 ≥ p1.

Furthermore, we conclude δ1 = δ′
1 = p1. Since x1 direction can be taken arbitrarily, then

the fact implies that, ω(x), v(x) and z(y) are symmetric with respect to any plane, which is
passing through p and perpendicular to xi (i = 1, 2...n − 1) axis.

Finally, for any p ∈ ∂Rn+, v(x), ω(x) and z(y) are symmetric about the plane that passing
through p and is parallel to xn axis. Hence we derive that u(x) and m(x) depend only on xn
and η is constant. This proof is accomplished. �

Next, we will pay attention to studying the existence of positive solution for Hartree type
equations (1.15). By virtue of Theorem 1.10, we give the proof of Corollary 1.11.

Proof of Corollary 1.11 Naturally, according to Theorem 1.10, we conclude that m(x), u(x)
dependonly xn andη(y) are constant function.As a consequence,we can rewrite the equations
(1.15) in the following form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− d2u(xn)

dx2n
=
(∫

∂Rn+

F (u(0))

|x − y|μ dy

)

xλ
n g (u(xn)) , xn > 0,

− ∂u

∂xn
(0) =

(∫

R
n+

G (u(xn)) xλ
n

|x − y|μ dx

)

f (u(0)) .

It is worth noting that the first equation yield u(x) is concave function. Moreover, from
the later equation, we have

du

dxn
(0) =

(∫

R
n+

G (u(xn)) xλ
n

|x − y|μ dx

)

f (u(0)) ≥ 0.
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Thus, we conclude that u(x) is concave and decreasing unless u ≡ c̃ with F(c̃) = G(c̃) = 0.
On the one hand, if u is strictly decreasing with respect to xn , then we have du

dxn
(0) ≤ 0,

which is impossible. The fact implies that this case will not happen. Hence we immediately
deduce the desired result. The proof is accomplished. �
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