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1 Baricentro e tensore d’inerzia

Definizione 1.1 (Baricentro). Dato un sistema di N punti materiali P1, . . . , PN di masse,
rispettivamente, m1, . . . , mN , definiamo baricentro, o centro di massa del sistema il punto di
posizione (G − O) dato da

(G − O) = 1
M

N∑
s=1

ms(Ps − O)

dove M :=
N∑

s=1
ms è la massa totale del sistema. ⋆

Nel caso di distribuzioni di massa volumetriche V , superficiali S o lineari L, di densità
rispettivamente ρV , ρS , ρL, si hanno le espressioni

(G − O) = 1
M

∫
V

ρV (x)xdL3(x),

(G − O) = 1
M

∫
S

ρS(x)xdH2(x),

(G − O) = 1
M

∫
L

ρL(x)xdH1(x),

dove x è la posizione rispetto ad O.

Teorema 1.2 (Teorema della quantità di moto). In un sistema meccanico a masse co-
stanti di massa totale M e velocità del baricentro v(G) la quantità di moto totale p è data
da

p = Mv(G).

Dimostrazione. Supponendo il sistema fatto da un numero finito di punti materiali P1, . . . , PN

di masse m1, . . . , mN la quantità di moto totale è data da

N∑
s=1

msv(Ps).

Partendo dalla definizione di baricentro e derivando ambo i membri rispetto al tempo, tenendo
conto delle masse costanti si trova

Mv(G) = M
d

dt
(G − O) =

N∑
s=1

ms
d

dt
(Ps − O) =

N∑
s=1

msv(Ps) = p.
□

Proposizione 1.3 (Proprietà del baricentro). Dato un sistema meccanico, si ha:

(1) G appartiene al convessificato del sistema, ovvero al più piccolo insieme convesso che
contiene il sistema;

(2) se esiste un piano di simmetria materiale,(1) il baricentro appartiene ad esso;
(1)Un piano di simmetria materiale è un piano di riflessione rispetto a cui il simmetrico di ogni punto del

sistema è ancora un punto del sistema con la stessa massa (o la stessa densità di massa se il sistema è continuo).
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(3) si può fare il baricentro dei baricentri, ovvero: per trovare il baricentro di un sistema si
può sostituire ad un suo sottosistema un punto materiale avente la massa del sottosistema
e la posizione del baricentro del sottosistema.

Dimostrazione. La dimostrazione viene lasciata per esercizio. □

Consideriamo ora un corpo rigido con un punto fisso costituito da N punti materiali P1, . . . , PN

di masse, rispettivamente, m1, . . . , mN . Denotando con O il punto fisso e con (Ps − O) il
vettore posizione del punto Ps rispetto ad O, ricordando la legge dello stato cinetico di un
moto rigido si ha

vs = ω × (Ps − O),
dove v denota la velocità di Ps, ω la velocità angolare, e abbiamo tenuto conto che vO = 0
essendo fisso. Esprimiamo il momento della quantità di moto del corpo rigido rispetto a O:

KO =
N∑

s=1
(Ps − O) × msvs =

N∑
s=1

ms(Ps − O) ×
(
ω × (Ps − O)

)
.

La sommatoria può essere interpretata come una funzione che a ω associa un vettore in
modo lineare, dunque come un endomorfismo su R3. Tale endomorfismo, o tensore, dipende
ovviamente dal sistema di punti materiali e dalle loro masse, ma anche dal punto O, per cui lo
denoteremo col simbolo JO:

JOω :=
N∑

s=1
ms(Ps − O) ×

(
ω × (Ps − O)

)
. (1)

Elaborando il doppio prodotto vettoriale tramite la formula a × (b × c) = (a · c)b − (a · b)c
otteniamo

JOω =
N∑

s=1
ms

[
|Ps − O|2ω −

(
(Ps − O) · ω

)
(Ps − O)

]
.

Se ora scriviamo l’ultimo termine a destra come(
(Ps − O) · ω

)
(Ps − O) =

[
(Ps − O) ⊗ (Ps − O)

]
ω,

introducendo il tensore identità I possiamo riscrivere JO come somma di tensori:

JO =
N∑

s=1
ms

(
|Ps − O|2I − (Ps − O) ⊗ (Ps − O)

)
. (2)

Definizione 1.4 (Tensore d’inerzia). Il tensore JO definito in (2) si chiama tensore d’i-
nerzia rispetto ad O del corpo rigido. ⋆

Se il corpo rigido è una distribuzione di massa volumetrica, superficiale o lineare, si ha,
rispettivamente,

JO =
∫

V
ρV (x)(|x|2I − x ⊗ x) dL3(x),

JO =
∫

S
ρS(x)(|x|2I − x ⊗ x) dH2(x),

JO =
∫

L
ρL(x)(|x|2I − x ⊗ x) dH1(x),

dove x è la posizione rispetto ad O.
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Teorema 1.5 (Teorema del momento della quantità di moto). Il momento della quan-
tità di moto di un corpo rigido rispetto a un punto O solidale col corpo rigido è dato
da

KO =
N∑

s=1
(Ps − O) × msvs = M(G − O) × v(O) + JOω.

Dimostrazione. Nel ragionamento introduttivo, fatto su un corpo rigido con punto fisso, è
sufficiente considerare la legge dello stato cinetico in generale:

vs = v(O) + ω × (Ps − O),

da cui

KO =
N∑

s=1
ms(Ps − O) × v(O) +

N∑
s=1

ms(Ps − O) ×
(
ω × (Ps − O)

)
.

Usando la definizione di baricentro nella prima sommatoria e quella di tensore d’inerzia nella
seconda, si ottiene la tesi. □

Definizione 1.6 (Momento d’inerzia). Dato un asse r passante per O di versore r, si
definisce momento d’inerzia rispetto all’asse r la quantità

Ir = r · JOr.

Si verifica facilmente che

Ir =
N∑

s=1
msd(Ps, r)2,

essendo d(Ps, r) la distanza del punto Ps dall’asse r. In particolare Ir ⩾ 0, e dunque il tensore
JO è (semi)definito positivo. ⋆

Fissata una base ortonormale e1, e2, e3, è possibile rappresentare JO tramite una matrice
simmetrica e semidefinita positiva, detta matrice d’inerzia. Gli autovalori della matrice
vengono detti momenti principali d’inerzia, e gli assi corrispondenti agli autovettori si dicono
assi principali d’inerzia. Si noti che, grazie alla simmetria della matrice, esistono sempre
almeno tre assi principali d’inerzia mutuamente ortogonali.
Denotando con

JO = [Jhk]

le componenti di tale matrice, si ha che gli elementi sulla diagonale sono i momenti d’inerzia
rispetto ai tre assi del sistema di riferimento, mentre gli elementi fuori dalla diagonale vengono
detti prodotti d’inerzia o momenti di deviazione. Si ha poi che:

(1) se una distribuzione di massa è contenuta nel piano x1x2, si ha J33 = J11 + J22;

(2) se un piano coordinato, diciamo x3 = 0, è piano di simmetria materiale, i corrispondenti
momenti di deviazione J13 e J23 sono nulli;
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(3) supponiamo di avere una terna ortogonale di assi principali d’inerzia con origine nel
centro di massa; allora ogni terna ottenuta da questa traslandola lungo uno dei suoi assi,
è ancora fatta da assi principali d’inerzia.(2)

Vale poi il seguente teorema.

Teorema 1.7 (Teorema di Huygens-Steiner). Denotando con G il baricentro del corpo
rigido, per un sistema centrato in O e parallelo ad uno centrato in G vale

JO = JG + M(d2I − d ⊗ d),

dove M è la massa totale e d = (G − O).

Dimostrazione. Applichiamo la decomposizione vettoriale (Ps − O) = (Ps − G) + d nella
formula (2):

JO =
N∑

s=1
ms

[
(|Ps − G|2 + |d|2 + 2(Ps − G) · d)I

−(Ps − G) ⊗ (Ps − G) − (Ps − G) ⊗ d − d ⊗ (Ps − G) − d ⊗ d]

= JG + M(d2I − d ⊗ d) +
N∑

s=1
ms [2(Ps − G) · d)I − (Ps − G) ⊗ d − d ⊗ (Ps − G)] .

Ma i tre termini nell’ultima sommatoria sono tutti nulli, poiché per definizione di baricentro si
ha

N∑
s=1

ms(Ps − G) = 0. □

Il tensore d’inerzia è molto utile anche nel calcolo dell’energia cinetica di un corpo rigido,
grazie al seguente teorema.

Teorema 1.8 (Teorema di König). L’energia cinetica di un corpo rigido è data da

K = 1
2M |vO|2 + 1

2ω · JOω + MvO · ω × (G − O)

dove O è un punto del corpo rigido.

Dimostrazione. Nell’espressione dell’energia cinetica di un sistema di punti

K = 1
2

N∑
s=1

msvs · vs

sostituiamo l’espressione dello stato cinetico rigido vs = vO + ω × (Ps − O), ottenendo

K = 1
2

N∑
s=1

ms(vO + ω × (Ps − O)) · (vO + ω × (Ps − O))

= 1
2M |vO|2 + 1

2

N∑
s=1

ms(ω × (Ps − O)) · (ω × (Ps − O)) + vO · ω ×
N∑

s=1
ms(Ps − O).

(2)La dimostrazione di questo fatto diventa facile se si usa il Teorema di Huygens-Steiner dimostrato subito
sotto: nel caso in questione si ha che d = (G − O) è parallelo a un asse di riferimento, quindi d ⊗ d è diagonale
(tra l’altro un solo coefficiente è non nullo, ma questo importa poco). Quindi la matrice JO = JG +M(d2I−d⊗d)
è diagonale perché JG e Md2I sono diagonali, e in questo caso anche Md ⊗ d lo è.
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Per definizione di baricentro, l’ultimo termine diventa vO · ω × (G − O). Nel termine centrale
scambiamo il primo prodotto vettoriale col prodotto scalare e usiamo la formula (1):

1
2

N∑
s=1

ms(ω × (Ps − O)) · (ω × (Ps − O))

= 1
2ω ·

N∑
s=1

ms(Ps − O) × (ω × (Ps − O)) = 1
2ω · JOω. □

Alcuni casi particolari del Teorema di König sono molto importanti:

• se O è un punto fisso, si ha
K = 1

2ω · JOω;

• se si sceglie per O il baricentro G, si ha

K = 1
2M |vG|2 + 1

2ω · JGω;

• più in generale, se A è tale che il prodotto misto vA · ω × (G − A) = 0, allora si ha

K = 1
2M |vA|2 + 1

2ω · JAω.

1.1 Corpo rigido con punto fisso

Analizziamo brevemente il moto di un corpo rigido con punto fisso O: la seconda equazione
cardinale della dinamica si scrive

K̇O = MO

(siccome la reazione vincolare Φ è applicata in O, si ha che il momento della reazione vincolare
rispetto ad O si annulla: ΨO = 0). Ricordando che KO = JOω e usando un sistema (j1, j2, j3)
di assi principali d’inerzia,(3) si ha

K̇O = d

dt
(J1ω1j1 + J2ω2j2 + J3ω3j3)

e usando le formule di Poisson djk
dt = ω × jk, si ottiene

K̇O = JOω̇ + ω × JOω,

da cui, in componenti, 
J1ω̇1 + (J3 − J2)ω3ω2 = M1

J2ω̇2 + (J1 − J3)ω1ω3 = M2

J3ω̇3 + (J2 − J1)ω2ω1 = M3

(3)

che il celeberrimo sistema di equazioni di Eulero per il corpo rigido.
(3)Tale sistema, che esiste grazie alla simmetria di JO, è solidale al corpo rigido e si muove con esso.
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È interessante il caso di corpo a struttura giroscopica, ovvero quando J1 = J2 = J ̸= J3:
l’ultima equazione di Eulero diventa

J3ω̇3 = M3

e nel caso M3 = 0 ci dice che ω3 = ω3 è costante. Se poi anche M1 = M2 = 0, allora si dice
che il moto del corpo rigido avviene per inerzia e si ottiene il sistema{

Jω̇1 + (J3 − J)ω3ω2 = 0
Jω̇2 − (J3 − J)ω3ω1 = 0,

da cui, aumentando l’ordine di derivazione, ricaviamo

ω̈1 +
(

J3 − J

J
ω3

)2
ω1 = 0,

che è l’equazione del moto armonico. Si ottiene un’equazione identica anche per ω2. Quindi
ne risulta che, in un sistema solidale al corpo rigido, il vettore ω si muove periodicamente con
frequenza J3−J

J ω3 attorno alla superficie laterale di un cono di asse j3.

1.2 Stabilità delle rotazioni attorno agli assi principali

Poniamoci ora nel caso J1 > J2 > J3 e supponiamo di nuovo che il moto sia per inerzia, cioè
che M = 0. Il sistema delle equazioni di Eulero diventa

ω̇1 + A1ω3ω2 = 0
ω̇2 + A2ω1ω3 = 0
ω̇3 + A3ω2ω1 = 0,

dove abbiamo posto

A1 = J3 − J2
J1

< 0, A2 = J1 − J3
J2

> 0, A3 = J2 − J1
J3

< 0.

Le soluzioni costanti sono tutte e sole le rotazioni uniformi attorno a un asse principale. Tali
rotazioni però non si comportano tutte allo stesso modo: le rotazioni attorno agli assi j1 e j3,
corrispondenti ai momenti principali d’inerzia più piccolo e più grande, sono stabili, mentre
quelle attorno all’asse intermedio sono instabili.(4)

Infatti, consideriamo una perturbazione della soluzione ω = (p0, 0, 0) del tipo ωε(t) = (p0 +
εp(t), εq(t), εr(t)), dove ε è un parametro piccolo. Sostituendo nel sistema differenziale si ha

εṗ + A1ε2qr = 0
εq̇ + A2(εp0r + ε2qr) = 0
εṙ + A3(εp0q + ε2pq) = 0.

(4)Per ora lasciamo a livello intuitivo il concetto di stabilità, che verrà formalizzato nella Sezione 6 per i
sistemi del secondo ordine.
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Semplificando ε e mandando ε → 0 si ottiene
ṗ = 0
q̇ + A2p0r = 0
ṙ + A3p0q = 0.

Dalla prima si ha che p resta costante, mentre dalle altre due equazioni si ricava

q̈ − A2A3p2
0q = 0.

Essendo A2A3 < 0, tale equazione ha soluzioni limitate

q(t) = A sin(kt + α), k2 = −A2A3p2
0.

Anche r(t) ha un comportamento simile, quindi le soluzioni perturbate (p0 + p(t), q(t), r(t))
restano vicine alla soluzione (p0, 0, 0). Questo vuol dire che la rotazione attorno a j1 è stabile.
Se ora facciamo lo stesso conto rispetto alla rotazione (0, 0, r0), riotteniamo ancora un’equazione
del moto armonico, quindi anche questa è stabile. Se invece proviamo con la soluzione (0, q0, 0),
trroviamo l’equazione differenziale

q̈ − A1A3q2
0x = 0, A1A3q2

0 > 0,

che ha come soluzioni delle esponenziali reali, che non sono limitate, quindi la rotazione attorno
all’asse intermedio è instabile.

1.3 Matrici d’inerzia notevoli

Per gli esercizi è utile conoscere la matrice d’inerzia di alcune figure omogenee notevoli, rispetto
a sistemi di riferimento opportuni. Ricordiamo che:

• la matrice d’inerzia di un’asta omogenea di massa m e lunghezza ℓ, in un sistema
baricentrale in cui l’asta sta lungo l’asse y, è data da

JG =

mℓ2

12 0 0
0 0 0
0 0 mℓ2

12

 ;

• la matrice d’inerzia di un’asta omogenea di massa m e lunghezza ℓ, in un sistema
baricentrale in cui l’asta sta ne piano xy e forma un angolo α con la parte positiva
dell’asse x, è data da

JG =


mℓ2

12 sin2 α −mℓ2

12 sin α cos α 0
−mℓ2

12 sin α cos α mℓ2

12 cos2 α 0
0 0 mℓ2

12

 ;

• la matrice d’inerzia di una lamina omogenea di massa m a forma di triangolo rettangolo,
relativamente a un sistema disposto con gli assi x, y rispettivamente lungo i cateti a, b, è
data da

JO =

 1
6mb2 − 1

12mab 0
− 1

12mab 1
6ma2 0

0 0 1
6m(a2 + b2)

 ;
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• la matrice d’inerzia di una lamina rettangolare omogenea di massa m, relativamente a
un sistema disposto con gli assi x, y rispettivamente lungo i lati a, b, è data da

JO =

 1
3mb2 −1

4mab 0
−1

4mab 1
3ma2 0

0 0 1
3m(a2 + b2)

 ;

• la matrice d’inerzia di una circonferenza omogenea di raggio R e massa m, giacente nel
piano xy di un sistema di riferimento centrato nel centro G della circonferenza, è data da

JG =

1
2mR2 0 0

0 1
2mR2 0

0 0 mR2

 ;

• la matrice d’inerzia di un disco omogeneo di raggio R e massa m, giacente nel piano xy
di un sistema di riferimento centrato nel centro G del disco, è data da

JG =

1
4mR2 0 0

0 1
4mR2 0

0 0 1
2mR2

 .

2 I sistemi olonomi

I sistemi olonomi sono caratterizzati dall’avere N punti materiali Ps, ms sottoposti a vincoli
esprimibili mediante k ⩽ 3N equazioni della forma

f1(x1, y1, z1, . . . , xN , yN , zN , t) = 0
f2(x1, y1, z1, . . . , xN , yN , zN , t) = 0
. . .

fk(x1, y1, z1, . . . , xN , yN , zN , t) = 0

dove (xs, ys, zs) sono le coordinate del punto Ps e t è il tempo. Le funzioni fi verranno supposte
almeno di classe C1. Se le varie equazioni dei vincoli sono indipendenti, ovvero se lo jacobiano

∂f1
∂x1

∂f1
∂y1

. . . ∂f1
∂zN

. . .
∂fk
∂x1

∂fk
∂y1

. . . ∂fk
∂zN


ha rango massimo k, allora si dice che il sistema ha n = 3N − k gradi di libertà, e in questo
caso esistono n parametri lagrangiani

q1, . . . , qn

per cui, almeno localmente, le coordinate di tutti i punti materiali del sistema si possono
scrivere in funzione di questi parametri e del tempo. Useremo la notazione

(Ps − O) = cs(q1, . . . , qn, t) = cs(q, t)
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e chiameremo i cs vettori configurazione.
Dal punto di vista geometrico, nel caso di un sistema olonomo l’insieme delle configurazioni
costituisce una varietà differenziale di dimensione n dipendente dal tempo; purtroppo non
abbiamo il tempo di sviscerare questo concetto.
Se i vincoli non dipendono esplicitamente dal tempo, si parla di sistema meccanico sclerònomo
(dal greco σκληρóς, skleros: rigido, νóµoς, nomos: legge); altrimenti si parla di sistema
reònomo (ρέω, rheo: scorrere).

Esempi di sistemi meccanici olonomi sono tutti i sistemi di punti a vincoli posizionali lisci e
bilateri, tra cui i corpi rigidi, oppure i vincoli di puro rotolamento nel piano (che possono essere
espressi come vincoli di posizione). Non sono invece olonomi i sistemi che contengono vincoli
unilateri (come quelli di appoggio), sistemi che hanno vincoli sulle velocità non riconducibili a
vincoli posizionali (si veda l’esempio del pattino), sistemi con vincoli posizionali non regolari
(come un punto vincolato a una superficie conica).

Esempio 2.1 (Vincolo integrabile). Supponiamo di avere un punto materiale P sottoposto
al seguente vincolo: la sua velocità resta sempre perpendicolare al vettore posizione (P − O).
Tale vincolo si esprime tramite la formula

vP · (P − O) = 0,

che si può scrivere come
1
2

d

dt
|P − O|2 = 0 ⇒ |P − O| = costante.

Quindi il vincolo è riconducibile a un vincolo posizionale: il sistema è olonomo. ⋆

Esempio 2.2 (Il pattino). Consideriamo un sistema di due punti materiali A, B che si
muovono sul piano xy restando a distanza fissa ℓ e in modo che il loro punto medio abbia
velocità parallela alla retta che passa per i due punti.
Con ovvie notazioni i vincoli si possono esprimere mediante le relazioni

zA = 0, zB = 0 (4)
(xB − xA)2 + (yB − yA)2 − ℓ2 = 0 (5)
ẋA + ẋB

xA − xB
= ẏA + ẏB

yA − yB
⇒ (yA − yB)(ẋA + ẋB) − (xA − xB)(ẏA + ẏB) = 0. (6)

L’ultima relazione però non è esprimibile come vincolo sulle posizioni (si dice che non è
integrabile), quindi il sistema non è olonomo.(5) Infatti, supponiamo per assurdo che esista

(5)Una dimostrazione rigorosa si basa sul Teorema di Frobenius, che ha come conseguenza il seguente

Corollario 2.3. Un vincolo (pfaffiano) del tipo

A1(x)ẋ1 + · · · + Ak(x)ẋk = 0, x = (x1, . . . , xk)

è integrabile, cioè si può ottenere derivando rispetto al tempo una funzione f(x), se e solo se

Aα

(
∂Aγ

∂β
− ∂Aβ

∂γ

)
+ Aβ

(
∂Aα

∂γ
− ∂Aγ

∂α

)
+ Aγ

(
∂Aβ

∂α
− ∂Aα

∂β

)
= 0

per ogni α, β, γ = 1, . . . , k.
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una funzione regolare f tale che il vincolo si esprima come

f(xA, yA, xB, yB) = 0.

Allora, derivando (totalmente) rispetto al tempo si ottiene

∂f

∂xA
ẋA + ∂f

∂yA
ẏA + ∂f

∂xB
ẋB + ∂f

∂yB
ẏB = 0

e questa espressione deve essere equivalente alla (6). Ma per l’arbitrarietà delle velocità
dovrebbe essere

∂f

∂xA
= k(yA − yB), ∂f

∂yA
= −k(xA − xB),

per qualche costante k ̸= 0, e questo non è possibile perché dalle condizioni delle derivate
incrociate deve essere

k = ∂

∂yA

(
∂f

∂xA

)
= ∂

∂xA

(
∂f

∂yA

)
= −k,

da cui ne verrebbe k = 0, che è assurdo. ⋆

3 Le tre forme delle equazioni di Lagrange

Dato il vettore configurazione cs(q, t), la velocità in coordinate lagrangiane del punto Ps si
scrive usando il Teorema del differenziale totale come

vs(q, q̇, t) =
n∑

i=1

∂cs

∂qi
(q, t) q̇i + ∂cs

∂t
(q, t). (7)

Si noti che, anche se l’indice di sommatoria è muto, tenderemo ad utilizzare l’indice s quando
le somme sono sui punti materiali, mentre useremo l’indice i quando sono sui parametri
lagrangiani.
Poiché le velocità virtuali ws si considerano a vincoli congelati nell’istante t, in coordinate
lagrangiane si ha

ws(q, t) =
n∑

i=1

∂cs

∂qi
(q, t) wi, wi ∈ R.

Denotando con Fs la risultante delle forze esterne sul punto Ps e con ps = msvs la quantità
di moto del punto Ps, il principio di D’Alembert dice che il moto di un sistema meccanico è
caratterizzato da

N∑
s=1

(Fs − ṗs) · ws = 0, ∀ws.

Sostituendo l’espressione delle velocità virtuali otteniamo
N∑

s=1
(Fs − ṗs) ·

n∑
i=1

∂cs

∂qi
wi =

n∑
i=1

(
N∑

s=1
(Fs − ṗs) · ∂cs

∂qi

)
wi = 0, ∀wi ∈ R,

dove abbiamo usato la bilinearità del prodotto scalare. Poniamo ora

Qi :=
N∑

s=1
Fs · ∂cs

∂qi
, τi :=

N∑
s=1

ṗs · ∂cs

∂qi
, i = 1, . . . , n
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dette rispettivamente componenti lagrangiane delle forze e componenti lagrangiane delle
accelerazioni. Dall’arbitrarietà delle wi otteniamo le n equazioni

τi = Qi, i = 1, . . . , n, (8)

dette equazioni di Lagrange nella prima forma.
Dimostriamo ora un teorema.

Teorema 3.1. Se le masse sono costanti,(6) allora

τi = d

dt

∂K

∂q̇i
− ∂K

∂qi
, i = 1, . . . , n,

dove

K(q, q̇, t) = 1
2

N∑
s=1

ms|vs(q, q̇, t)|2

è l’energia cinetica di un sistema olonomo.

Dimostrazione. Dalla (7) si ha, derivando rispetto a q̇i,

∂vs

∂q̇i
= ∂cs

∂qi
.

Per definizione di τi e usando la formula appena trovata segue

τi =
N∑

s=1
msv̇s · ∂cs

∂qi
=

N∑
s=1

ms
d

dt

(
vs · ∂cs

∂qi

)
−

N∑
s=1

msvs · d

dt

∂cs

∂qi

= d

dt

(
N∑

s=1
msvs · ∂vs

∂q̇i

)
−

N∑
s=1

msvs · ∂

∂qi

dcs

dt

dove nell’ultimo termine abbiamo scambiato la derivata rispetto a t con quella rispetto a qi. Il
termine tra la parentesi è la derivata di K rispetto a q̇i, mentre dcs

dt è la velocità vs, quindi

τi = d

dt

∂K

∂q̇i
−

N∑
s=1

msvs · ∂vs

∂qi
= d

dt

∂K

∂q̇i
− ∂K

∂qi
.

□

Da questo teorema segue immediatamente la seconda forma delle equazioni di Lagrange:

d

dt

∂K

∂q̇i
− ∂K

∂qi
= Qi, i = 1, . . . , n. (9)

Esempio 3.2 (Pendolo con polo mobile). In un piano verticale, un corpo rigido è formato
da due punti materiali P e Q, entrambi di massa m, posti a distanza 2ℓ. Il punto P è vincolato
a muoversi in modo liscio su un asse fisso orizzontale e il sistema è soggetto alla forza peso.

(6)Il teorema vale anche nel caso in cui le masse dipendano dal tempo; l’essenziale è che non dipendano dalle
q e dalle q̇.
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P,m

Q,m

2ℓ

ϑ

O ξ

Il sistema ha due gradi di libertà. Usando i parametri indicati in figura, si ha

(P − O) = ξex, (Q − O) = (ξ + 2ℓ cos ϑ)ex − 2ℓ sin ϑey.

Si trova che
K = mξ̇2 − 2mℓξ̇ϑ̇ sin ϑ + 2mℓ2ϑ̇2,

e dunque

τξ = 2mξ̈ − 2mℓϑ̈ sin ϑ − 2mℓϑ̇2 cos ϑ

τϑ = −2mℓξ̈ sin ϑ + 4mℓ2ϑ̈.

Inoltre le componenti lagrangiane delle forze si scrivono

Qξ = 0, Qϑ = 2mgℓ cos ϑ.

Quindi le equazioni di Lagrange nella seconda forma si scrivono{
2mξ̈ − 2mℓϑ̈ sin ϑ − 2mℓϑ̇2 cos ϑ = 0
− 2mℓξ̈ sin ϑ + 4mℓ2ϑ̈ = 2mgℓ cos ϑ. ⋆

Definizione 3.3. Un campo di forze di componenti lagrangiane Qi si dice che ammette un
potenziale generalizzato se esiste una funzione

U(q, q̇, t)

tale che
Qi = − d

dt

∂U

∂q̇i
+ ∂U

∂qi
, i = 1, . . . , n.

⋆

Se q ammette un potenziale generalizzato, si giunge alla terza forma delle equazioni di Lagrange:
definendo la funzione lagrangiana

L(q, q̇, t) := K(q, q̇, t) + U(q, q̇, t)

le equazioni del moto di un sistema sono date da
d

dt

∂L
∂q̇i

(q, q̇, t) = ∂L
∂qi

(q, q̇, t), i = 1, . . . , n. (10)

Esse vengono anche dette semplicemente equazioni di Lagrange. Nel caso di un sistema
olonomo, quindi, se le forze ammettono potenziale generalizzato la funzione lagrangiana
permette di ricavare il moto del sistema.
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Definizione 3.4 (Sistema lagrangiano). Un sistema meccanico olonomo dotato di po-
tenziale generalizzato, ovvero per cui è possibile definire la lagrangiana L, si dice sistema
lagrangiano. ⋆

4 L’azione lagrangiana

Vediamo ora un modo completamente diverso di ottenere le equazioni di Lagrange del moto
di un sistema. Tale modo è basato sul cosiddetto Calcolo delle variazioni, un settore molto
importante dell’Analisi matematica.

Definizione 4.1 (Azione lagrangiana). Siano t0, t1 ∈ R con t0 < t1. Denotiamo con
C2([t0, t1];Rn) l’insieme delle funzioni q : [t0, t1] → Rn derivabili due volte con derivata
seconda continua. Data una lagrangiana L(q, q̇, t), l’azione lagrangiana è il funzionale

SL : C2([t0, t1];Rn) → R

definito da
SL[q] :=

∫ t1

t0
L(q(t), q̇(t), t) dt.

⋆

Vogliamo ora dare una definizione di punto critico o stazionario per il funzionale SL. Avendo
come dominio uno spazio di dimensione infinita, è più complicato introdurre un concetto di
gradiente. La derivata direzionale però è più facile da introdurre (ovviamente la “direzione”
sarà data da una funzione η). Quindi diremo che un punto è stazionario se tutte le derivate
direzionali calcolate in quel punto sono nulle. La derivata direzionale di SL nel punto q lungo
la direzione η è data da

d

ds
SL[q + sη]

∣∣∣∣
s=0

.

Definizione 4.2 (Punto stazionario). Una funzione q ∈ C2([t0, t1];Rn) è un punto stazio-
nario per l’azione lagrangiana SL se per ogni η ∈ C2([t0, t1];Rn) con η(t0) = η(t1) = 0 si
ha

d

ds
SL[q + sη]

∣∣∣∣
s=0

= 0.
⋆

Si noti che si considerano solo le funzioni η che si annullano agli estremi dell’intervallo, in
modo che le condizioni iniziali e finali per le funzioni q e q + sη siano le stesse per ogni s.
Vediamo ora che esiste un legame molto importante tra i moti del sistema e i punti stazionari
di SL.

Teorema 4.3 (Principio dell’azione stazionaria lagrangiana). Una funzione

q ∈ C2([t0, t1];Rn)

è moto di un sistema con lagrangiana L se e solo se essa è un punto stazionario per l’azione
lagrangiana SL.
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Dimostrazione. Per ogni funzione η ∈ C2([t0, t1];Rn) con η(t0) = η(t1) = 0, calcoliamo la
derivata direzionale in q lungo η, usando il Teorema di derivazione sotto il segno di integrale:

d

ds
SL[q + sη]

∣∣∣∣
s=0

= d

ds

∫ t1

t0
L(q(t) + sη(t), q̇(t) + sη̇(t), t) dt

∣∣∣∣
s=0

=
∫ t1

t0

[
∂L
∂q

(q(t), q̇(t), t) · η(t) + ∂L
∂q̇

(q(t), q̇(t), t) · η̇(t)
]

dt

Ora riscriviamo l’ultimo addendo come derivata di un prodotto:∫ t1

t0

∂L
∂q̇

(q(t), q̇(t), t) · η̇(t) dt

=
∫ t1

t0

[
d

dt

(
∂L
∂q̇

(q(t), q̇(t), t) · η(t)
)

− d

dt

(
∂L
∂q̇

(q(t), q̇(t), t)
)

· η(t)
]

dt

= −
∫ t1

t0

d

dt

(
∂L
∂q̇

(q(t), q̇(t), t)
)

· η(t) dt

dove abbiamo tenuto conto del fatto che η si annulla agli estremi dell’intervallo. Quindi in
definitiva troviamo l’interessante formula

d

ds
SL[q + sη]

∣∣∣∣
s=0

=
∫ t1

t0

[
∂L
∂q

(q(t), q̇(t), t) − d

dt

(
∂L
∂q̇

(q(t), q̇(t), t)
)]

· η(t) dt (11)

Supponiamo ora che q sia un moto del sistema: allora esso soddisfa le equazioni di Lagrange
d

dt

(
∂L
∂q̇

(q(t), q̇(t), t)
)

− ∂L
∂q

(q(t), q̇(t), t) = 0

e quindi la parentesi quadra nella (11) si annulla per ogni t ∈ [t0, t1]. Quindi il membro di
destra della (11) è nullo per ogni η, e dunque q è un punto stazionario per SL.
Viceversa, supponiamo che q sia stazionario per SL; allora il membro di destra della (11) è
nullo per ogni η. Poniamo per un attimo

g(t) := ∂L
∂q

(q(t), q̇(t), t) − d

dt

(
∂L
∂q̇

(q(t), q̇(t), t)
)

,

e notiamo che g è una funzione continua del tempo. Allora abbiamo che∫ t1

t0
g(t) · η(t) dt = 0

per ogni η ∈ C2([t0, t1];Rn) con η(t0) = η(t1) = 0. Da qui si deduce che g = 0. Infatti,
supponiamo per assurdo che esista t0 < t∗ < t1 tale che g(t∗) ̸= 0. Questo vuol dire che
per almeno una componente gi si ha gi(t∗) > 0 oppure gi(t∗) < 0. Nel primo caso, per il
Teorema della permanenza del segno esiste un intorno (t∗ − ε, t∗ + ε), strettamente contenuto
in (t0, t1), tale che gi > 0 su tutto l’intorno; scegliendo η di classe C2 in modo che ηi > 0 solo
su quell’intorno(7) e ηj = 0 per j ̸= i, si ha∫ t1

t0
g(t) · η(t) dt =

∫ t∗+ε

t∗−ε
gi(t)ηi(t) dt > 0,

(7)Si può ad esempio usare la funzione

ηi(t) =

{(
ε2 − (t − t∗)2)3 se |t − t∗| ⩽ ε

0 altrimenti.
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contro l’ipotesi. Se gi(t∗) < 0 si procede in modo analogo. □

Il Principio dell’azione stazionaria lagrangiana è anche noto come Principio di minima azione,
perché si può dimostrare che i moti del sistema non solo rendono stazionaria l’azione SL, ma
la rendono anche localmente minima, in un senso opportuno. Per una dimostrazione di questo
fatto si veda [1].

5 Potenziale generalizzato ed energia cinetica

Analizziamo ora in dettaglio i campi di forze che ammettono potenziale generalizzato. Il
seguente teorema mostra che il potenziale generalizzato, se esiste, deve essere una funzione di
primo grado in q̇ e anche il campo di forze che lo ammette deve essere di primo grado in q̇
con matrice antisimmetrica.

Teorema 5.1. Sia Q(q, q̇, t) un campo di forze che ammette potenziale generalizzato U(q, q̇, t).
Allora esistono una matrice antisimmetrica U(q, t), un vettore u(q, t) di Rn e un potenziale
ordinario U0(q, t) tali che

U(q, q̇, t) = u(q, t) · q̇ + U0(q, t), (12)

Q(q, q̇, t) = U(q, t)q̇ − ∂u

∂t
(q, t) + ∂U0

∂q
(q, t). (13)

Dimostrazione. Il potenziale generalizzato è tale che Qi = − d
dt

∂U
∂q̇i

+ ∂U
∂qi

. Esprimiamo la
derivata temporale mediante il teorema del differenziale totale:

Qi = −
n∑

j=1

∂2U

∂qj∂q̇i
q̇j −

n∑
j=1

∂2U

∂q̇j∂q̇i
q̈j − ∂2U

∂t∂q̇i
+ ∂U

∂qi
.

Poiché però le forze non possono dipendere da q̈, si deve avere

∂2U

∂q̇j∂q̇i
= 0 per ogni i, j

e dunque U deve essere di primo grado in q̇. La (12) è così dimostrata. Se ora risostituiamo
la formula appena trovata nell’espressione di Qi abbiamo

Qi = −
n∑

j=1

∂ui

∂qj
q̇j − ∂ui

∂t
+

n∑
j=1

∂uj

∂qi
q̇j + ∂U0

∂qi
=

n∑
j=1

(
∂uj

∂qi
− ∂ui

∂qj

)
q̇j − ∂ui

∂t
+ ∂U0

∂qi
.

Ponendo Uij = ∂uj

∂qi
− ∂ui

∂qj
otteniamo la tesi. □

Tutti i campi di forze conservativi ammettono potenziale generalizzato: basta considerare
il potenziale ordinario U0. Sono invece poche le forze veramente dipendenti dalla velocità
che ammettono potenziale generalizzato: tra queste troviamo la forza di Lorentz e la forza di
Coriolis.
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Esempio 5.2 (Forza di Lorentz). La forza di Lorentz F = qv × B agente su un punto
materiale di carica elettrica q, se il campo magnetico B è costante, ammette potenziale
generalizzato. Infatti: denotiamo con x = (x1, x2, x3) la posizione del punto e consideriamo la
funzione

U(x, ẋ) := 1
2F · x = 1

2qẋ × B · x.

Si ha, usando le proprietà del prodotto misto:

∂U

∂ẋ
= 1

2qB × x,
∂U

∂x
= 1

2qẋ × B,

e dunque
− d

dt

∂U

∂ẋ
+ ∂U

∂x
= −1

2qB × ẋ + 1
2qẋ × B = qẋ × B.

Si noti che in questo caso si ha

U = q

 0 B3 −B2
−B3 0 B1
B2 −B1 0


dove B = (B1, B2, B3). ⋆

Teorema 5.3 (Rappresentazione dell’energia cinetica). In un sistema olonomo, l’ener-
gia cinetica è un polinomio di secondo grado nelle q̇, in cui il termine di secondo grado è una
forma quadratica definita positiva. Se i vincoli sono fissi, allora il polinomio è anche omogeneo
nelle q̇. Quindi

K(q, q̇, t) = 1
2 q̇ · K(q, t)q̇ + k0(q, t) · q̇ + 1

2K00(q, t),

dove K(q, t) è una matrice n × n simmetrica e definita positiva, k0(q, t) è un vettore di Rn e
K00(q, t) uno scalare.

Dimostrazione. Sostituendo l’espressione della velocità (7) nell’energia cinetica K = 1
2

N∑
s=1

ms|vs|2

e svolgendo i conti, si trova la formula ponendo

Kij :=
N∑

s=1
ms

∂cs

∂qi
· ∂cs

∂qj
, k0i :=

N∑
s=1

ms
∂cs

∂qi
· ∂cs

∂t
, K00 :=

N∑
s=1

ms

∣∣∣∂cs

∂t

∣∣∣2.

Si vede facilmente che se i vincoli sono fissi (ovvero se cs non dipende esplicitamente da t), si
ha k0 = 0 e K00 = 0.
Ora mostriamo che K è definita positiva. Se i vincoli sono fissi si ha

0 ⩽ K = 1
2 q̇ · K(q)q̇

e dunque K è semidefinita positiva. Se poi K = 0, allora vs = 0 per ogni s = 1, . . . , N e
dunque

0 = vs =
n∑

i=1

∂cs

∂qi
q̇i per ogni s ⇒ q̇i = 0 per ogni i
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(segue dal fatto che i parametri lagrangiani sono necessari e sufficienti per descrivere le posizioni
di un sistema olonomo). Quindi K è definita positiva.
Se i vincoli non sono fissi, diagonalizziamo la matrice K (che è simmetrica) e mettiamoci nella
base degli autovettori, in modo che si abbia, denotando con λi gli autovalori di K,

K(q, q̇, t) = 1
2

n∑
i=1

λiq̇
2
i +

n∑
i=1

k0iq̇i + 1
2K00.

Fissiamo ora un indice j tra 1 e n e scegliamo q̇i = 0 per ogni i ̸= j. Si ottiene

0 ⩽ K = 1
2λj q̇2

j + k0j q̇j + 1
2K00,

che è un polinomio di secondo grado in q̇j . Poiché tale polinomio non può mai diventare
negativo, il coefficiente di grado massimo deve essere non negativo, cioè λj ⩾ 0.
Se poi fosse λj = 0, allora si avrebbe

0 ⩽ K = k0j q̇j + 1
2K00,

che è di primo grado in q̇j e deve essere sempre positivo. Questo è possibile solo se k0j = 0,
ma ne seguirebbe che i cs non dipendono dal tempo, contro l’ipotesi che i vincoli non siano
fissi. Quindi tutti gli autovalori sono strettamente positivi. □

Dalla definitezza positiva di K segue un fatto molto importante dal punto di vista analitico.

Teorema 5.4 (Forma normale delle equazioni del moto). Il sistema di equazioni del
moto di Lagrange τi = Qi si può sempre mettere in forma normale.

Dimostrazione. Dai teoremi 3.1 e 5.3 segue che la dipendenza di τ da q̈ è lineare:

τ = K(q, t)q̈ + R(q, q̇, t).(8)

Poiché K è definita positiva, in particolare è invertibile e dunque il sistema di equazioni
differenziali si può scrivere come

q̈ = K−1(q, t)
(
Q(q, q̇, t) − R(q, q̇, t)

)
,

ovvero è esprimibile in forma normale. □

Teorema 5.5 (Teorema delle forze vive). In un sistema olonomo a vincoli fissi, lungo
un moto la derivata dell’energia cinetica eguaglia la potenza delle forze, ovvero:

dK

dt
=

n∑
i=1

Qiq̇i = Q · q̇.

(8)Nel caso di sistema a vincoli fissi si ha

τi = (K̇q̇ + Kq̈)i − 1
2 q̇ · ∂K

∂qi
q̇ ⇒ Ri(q, q̇) = (K̇q̇)i − 1

2 q̇ · ∂K
∂qi

q̇.
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Dimostrazione. Tenendo conto che K(q, q̇) non dipende dal tempo, mediante il teorema del
differenziale totale sviluppiamone la derivata:

dK

dt
= ∂K

∂q
· q̇ + ∂K

∂q̇
· q̈ = ∂K

∂q
· q̇ + d

dt

(∂K

∂q̇
· q̇
)

− d

dt

(∂K

∂q̇

)
· q̇

=
[

∂K

∂q
− d

dt

(∂K

∂q̇

)]
· q̇ + d

dt

(∂K

∂q̇
· q̇
)

= −τ · q̇ + d

dt

(∂K

∂q̇
· q̇
)

= −Q · q̇ + d

dt

(∂K

∂q̇
· q̇
)
.

Visto che K = 1
2 q̇ · Kq̇, l’ultimo termine tra parentesi si scrive come

∂K

∂q̇
· q̇ = q̇ · Kq̇ = 2K

e quindi
dK

dt
= −Q · q̇ + 2dK

dt

da cui la tesi. □

Se ora consideriamo delle forze Q che ammettono potenziale generalizzato, abbiamo

Q · q̇ = q̇ · Uq̇ − ∂u

∂t
· q̇ + ∂U0

∂q
· q̇ =

(
−∂u

∂t
+ ∂U0

∂q

)
· q̇

dove abbiamo tenuto conto che U è antisimmetrica. Poiché si ha, dal Teorema del differenziale
totale,

dU0
dt

= ∂U0
∂q

· q̇ + ∂U0
∂t

,

applicando il Teorema delle forze vive troviamo

dK

dt
= Q · q̇ = dU0

dt
− ∂U0

∂t
− ∂u

∂t
· q̇,

e ponendo E(q, q̇, t) := K(q, q̇) − U0(q, t), detta energia meccanica, troviamo

dE

dt
= −∂U0

∂t
− ∂u

∂t
· q̇.

In particolare, nel caso in cui anche le forze non dipendano dal tempo, resta dimostrato il
seguente teorema:

Teorema 5.6 (Teorema dell’energia meccanica). In un sistema meccanico lagrangiano
a vincoli fissi e forze indipendenti dal tempo, lungo ogni moto del sistema si ha

dE

dt
= 0,

dove E = K − U0 è l’energia meccanica. Quindi E è costante lungo ogni moto.
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6 Stabilità dell’equilibrio

In un sistema meccanico olonomo le equazioni differenziali del moto si presentano nella forma

q̈ = G(q, q̇, t);

ponendo v := q̇, il sistema si può riscrivere facendo comparire solo le derivate prime (ma
raddoppiando il numero delle incognite):{

q̇ = v

v̇ = G(q,v, t).
(14)

Definizione 6.1. Un sistema di equazioni differenziali ordinarie del primo ordine in forma
normale è dato da

u̇(t) = F (u(t), t)

dove u : I → Rm, I intervallo aperto in R, F : Rm × I → Rm.
Se F non dipende esplicitamente dal tempo, cioè se il sistema si presenta nella forma u̇ = F (u),
allora il sistema si dice autonomo. ⋆

Definizione 6.2. Una soluzione di equilibrio è una soluzione costante del sistema differenziale
u̇ = F (u, t), ovvero

u(t) = ū per ogni t ∈ I.

Le soluzioni di equilibrio si trovano risolvendo l’equazione

F (ū, t) = 0 per ogni t ∈ I.

Nel caso di un sistema autonomo le soluzioni di equilibrio sono gli zeri della funzione F . ⋆

Definizione 6.3. Una soluzione di equilibrio ū del sistema autonomo u̇ = F (u) si dice stabile
se per ogni intorno V di ū esiste un intorno U di ū tale che per ogni u0 ∈ U si abbia

u(t; 0,u0) ∈ V per ogni t ⩾ 0,

dove u(t; 0,u0) è la soluzione al tempo t con condizione iniziale u(0) = u0.
L’equilibrio si dice instabile se non è stabile. ⋆

Poiché Rm è uno spazio normato e la topologia usata è quella indotta dalla norma euclidea, si
dimostra facilmente che una soluzione di equilibrio ū è stabile se e solo se

∀ε > 0 ∃δ > 0 : |u0 − ū| < δ ⇒ ∀t ⩾ 0 : |u(t; 0,u0) − ū| < ε.

Tornando a un sistema meccanico olonomo nella forma (14), le posizioni di equilibrio si trovano
risolvendo {

v = 0

G(q̄,v, t) = 0,

ossia cercando le posizioni q̄ tali che

G(q̄,0, t) = 0 per ogni t.
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Consideriamo ora un sistema meccanico lagrangiano con vincoli fissi e forze indipendenti dal
tempo:

L = K(q, q̇) + U(q, q̇).
Per v = q̇ = 0, si ha K(q,0) = 0 e U(q,0) = U0(q), dove U0 è il potenziale ordinario, e
dunque l’equazione per le posizioni di equilibrio diventa semplicemente

∂U0
∂q

= 0.

Quindi in questo caso le posizioni di equilibrio sono i punti stazionari del potenziale ordinario.
Per studiare la stabilità delle posizioni di equilibrio, abbiamo a disposizione un teorema molto
importante.
Teorema 6.4 (Teorema di Dirichlet-Lagrange). Consideriamo ora un sistema meccani-
co lagrangiano con vincoli fissi e forze indipendenti dal tempo. Se il potenziale ordinario U0
ha un massimo locale stretto in q̄, allora q̄ è una posizione di equilibrio stabile.

Dimostrazione. Per comodità, supponiamo che U0(q̄) = 0 e poniamo u = (q, q̇), ū = (q̄,0).
Consideriamo l’energia meccanica

E(u) = K(u) − U0(q) = K(q, q̇) − U0(q);
si ha E(ū) = 0 e, poiché K è positiva e U0 ha un massimo stretto in q̄, per ogni ε > 0
sufficientemente piccolo si ha che l’intorno di ū

Bε(ū) = {u ∈ R2n : |u − ū| < ε}

è tale che E(u) > 0 per ogni u che sta nella chiusura di Bε(ū), u ̸= ū. Poniamo
mε := min{E(u) : u ∈ ∂Bε(ū)}

e osserviamo che mε > 0 poiché ∂Bε(ū) è compatto. Dalla continuità di E segue anche che
l’insieme

{u ∈ R2n : E(u) < mε} = E−1 (] − ∞, mε[)
è un aperto che contiene ū, quindi esiste δ > 0 tale che E(u) < mε per ogni u ∈ Bδ(ū).
Per il Teorema dell’energia meccanica 5.6, la funzione E è costante sui moti del sistema, quindi

E(u(t)) < mε per ogni u0 ∈ Bδ(ū) e per ogni t ⩾ 0, (15)
dove u(t) è la soluzione all’istante t con condizione iniziale u0. Questo implica che u(t) ∈ Bε(ū)
per ogni t ⩾ 0, perché altrimenti per assurdo si troverebbe un istante t̄ > 0 in cui

E(u(t̄)) ⩾ mε,

contro la (15). □

Si noti che il teorema vale anche nel caso più generale in cui il sistema sia soggetto anche a
forze dissipative, cioè forze per cui la potenza sia negativa:

Q · q̇ ⩽ 0.

In questo caso infatti la funzione
t 7→ E(u(t))

è non crescente in t (anche se potrebbe non essere costante) e la dimostrazione del teorema
vale comunque.
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7 Integrali primi e Teorema di Noether

Definizione 7.1 (Integrale primo). Una funzione F (q, q̇, t) si dice integrale primo, o quan-
tità conservata, se per ogni moto {t 7→ q(t)} del sistema la quantità

t 7→ F (q(t), q̇(t), t)

è costante, cioè (nel caso di F di classe C1) se

dF

dt
= 0. ⋆

Definizione 7.2. Data un sistema lagrangiano con lagrangiana L, definiamo

pi := ∂L
∂q̇i

il momento cinetico associato a qi. ⋆

Quando una lagrangiana L non dipende esplicitamente da una coordinata lagrangiana qi (ma
dipenderà comunque da q̇i), si dice che qi è una coordinata ciclica o una variabile ignorata.
Si dimostra immediatamente il seguente

Teorema 7.3. Se qi è una coordinata ciclica, allora momento cinetico associato pi è un
integrale primo.

Esempio 7.4. Con riferimento all’Esempio 3.2 del pendolo con polo mobile, si ha

K = mξ̇2 − 2mℓξ̇ϑ̇ sin ϑ + 2mℓ2ϑ̇2, U = 2mgℓ sin ϑ

e dunque
L(ξ, ϑ, ξ̇, ϑ̇) = mξ̇2 − 2mℓξ̇ϑ̇ sin ϑ + 2mℓ2ϑ̇2 + 2mgℓ sin ϑ.

Poiché L non dipende esplicitamente da ξ, la quantità

pξ = 2mξ̇ − 2mℓϑ̇ sin ϑ

è un integrale primo del sistema. Tale integrale rappresenta la conservazione della componente
orizzontale della quantità di moto, visto che le forze esterne hanno componente orizzontale
nulla.
In questo caso, visto che il sistema ha vincoli fissi e le forze sono indipendenti dal tempo, si ha
un altro integrale primo: l’energia meccanica

E = K − U.

I due integrali primi del moto forniscono due equazioni differenziali del primo ordine, sufficienti
per determinare il moto del sistema. ⋆

Il teorema di Noether generalizza l’idea dell’esistenza di una coordinata ciclica al caso di una
invarianza più generale. Esso stabilisce che se la lagrangiana ammette certe simmetrie, ovvero
è invariante rispetto a certe trasformazioni, allora tali trasformazioni producono un integrale
primo.
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Definizione 7.5. Sia hs : Rn → Rn una famiglia di diffeomorfismi che dipenda con regolarità
dal parametro s in un intorno di 0, tale che h0 = Id. Diciamo che una lagrangiana L(q, q̇, t) è
(infinitesimamente) invariante rispetto alla famiglia di diffeomorfismi se, posto qs(t) = hs

(
q(t)

)
,

si ha
d

ds
L(qs(t), q̇s(t), t)

∣∣∣∣
s=0

= 0 per ogni t ∈ I.
⋆

Spesso si ha addirittura che la funzione L(qs(t), q̇s(t), t) non dipende esplicitamente da s,
ovvero che

L(qs(t), q̇s(t), t) = L(q(t), q̇(t), t)

per ogni s. In questo caso si dice che la lagrangiana è finitamente invariante.
Ad esempio, se qi è una coordinata ciclica per L, allora la lagrangiana è (finitamente) invariante
per la famiglia di trasformazioni

hs(q) = (q1, . . . , qi + s, . . . qn).

Teorema 7.6 (Teorema di Noether). Se L(q, q̇, t) è (infinitesimamente) invariante ri-
spetto a una famiglia di trasformazioni {hs}, allora la quantità

I(q, q̇, t) := ∂L
∂q̇

(q, q̇, t) · ∂hs(q)
∂s

∣∣∣∣
s=0

è un integrale primo.

Dimostrazione. Sia q(t) un moto del sistema e poniamo qs(t) = hs
(
q(t)

)
. Allora si ha

d

dt
I(q, q̇, t) = d

dt

(
∂L
∂q̇

· ∂qs(t)
∂s

∣∣∣∣
s=0

)
=
[

d

dt

(
∂L
∂q̇

)
· ∂qs(t)

∂s
+ ∂L

∂q̇
· d

dt

(
∂qs(t)

∂s

)]
s=0

=
[

∂L
∂q

· ∂qs(t)
∂s

+ ∂L
∂q̇

· ∂q̇s(t)
∂s

]
s=0

= d

ds
L(qs(t), q̇s(t), t)

∣∣∣∣
s=0

= 0

e quindi la quantità I(q, q̇, t) è un integrale primo. □

Nell’esempio dato sopra di lagrangiana con variabile ciclica, si ha

∂hs(q)
∂s

∣∣∣∣
s=0

= (0, . . . , 1, . . . , 0),

da cui
I(q, q̇, t) = ∂L

∂q̇
· (0, . . . , 1, . . . , 0) = ∂L

∂q̇i

e quindi si ottiene la conservazione del momento cinetico associato.

Esempio 7.7 (Punto soggetto a una forza elastica). Si consideri in un piano orizzonta-
le un punto materiale libero di massa m soggetto a una forza elastica di coefficiente k > 0 e
polo l’origine.
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Scegliendo x e y del punto come parametri lagrangiani, si ha

L(x, y, ẋ, ẏ) = 1
2m(ẋ2 + ẏ2) − 1

2k(x2 + y2).

In questo caso non ci sono variabili cicliche, ma considerando la famiglia di trasformazioni
hs(x, y) = (x − sy, y + sx) si ha

L(x − sy, y + sx, ẋ − sẏ, ẏ + sẋ) = L(x, y, ẋ, ẏ) + 1
2ms2(ẋ2 + ẏ2) − 1

2ks2(x2 + y2).

Poiché il parametro s compare solo elevato al quadrato, è facile vedere che la lagrangiana è
infinitesimamente invariante rispetto alla famiglia di trasformazioni proposta, cioè

d

ds
L(qs(t), q̇s(t), t)

∣∣∣∣
s=0

= 0.

Quindi il Teorema di Noether implica che la quantità

I = mẋy − mẏx = m(ẋy − ẏx)

è un integrale primo (che in questo caso corrisponde alla conservazione del momento della
quantità di moto).
Come si può notare, a volte non è semplice intuire se esista e quale sia la trasformazione che
lascia invariata la lagrangiana. Molto dipende dali parametri lagrangiani scelti: se invece di
usare (x, y) avessimo usato le coordinate polari (r, ϑ), la lagrangiana sarebbe diventata

L(r, ϑ, ṙ, ϑ̇) = 1
2m(ṙ2 + r2ϑ̇2) − 1

2kr2,

lasciando immediatamente trasparire che ϑ è variabile ciclica e quindi

∂L
∂ϑ̇

= mr2ϑ̇

è integrale primo (ed è lo stesso di prima). ⋆

8 Hamiltoniana

Consideriamo un sistema lagrangiano con lagrangiana L(q, q̇, t).

Definizione 8.1 (Hamiltoniana). Per ogni (q,p, t) ∈ Rn × Rn × I definiamo

H(q,p, t) := sup
v∈Rn

{p · v − L(q,v, t)}. (16)

La funzione H viene detta funzione di Hamilton o hamiltoniana del sistema meccanico. ⋆

Si noti che la variabile muta v ha il ruolo di q̇ nella lagrangiana. La definizione (16) viene
detta trasformata di Legendre di L e si basa sulla convessità della lagrangiana rispetto a q̇. Si
verifica che la trasformata di Legendre è un’operazione involutoria, ovvero la trasformata di
Legendre di H torna ad essere L.
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Proposizione 8.2. Il sup nella formula (16) è un massimo assoluto e il punto di massimo è
unico. Tale punto di massimo verrà denotato come v̄(q,p, t).

Dimostrazione. Consideriamo la funzione da Rn in R

v 7→ p · v − L(q,v, t)

e cerchiamone i punti critici facendone il gradiente rispetto a v:

p − ∂L
∂q̇

(q,v, t) = 0. (17)

Tenendo conto della struttura della lagrangiana (grazie ai teoremi di rappresentazione dell’e-
nergia cinetica e del potenziale generalizzato) troviamo

p − K(q, t)v − k0(q, t) − u(q, t) = 0

Otteniamo così un sistema lineare nell’incognita v, che ammette soluzione unica poiché la
matrice K è invertibile. Tale soluzione è data da

v̄(q,p, t) = K−1(q, t)
(
p − k0(q, t) − u(q, t)

)
. (18)

Se ora si calcola l’hessiano della funzione di partenza derivando un’altra volta rispetto a v, si
ottiene la matrice

−∂2L
∂q̇2 (q,v, t) = −K(q, t),

che è definita negativa, quindi il punto trovato è di massimo (assoluto). □

L’equazione (17) è molto importante perché ci dà un legame tra le “nuove” variabili p e le
variabili lagrangiane: grazie alla Definizione 7.2 abbiamo che le variabili p nell’hamiltoniana
sono proprio i momenti cinetici associati alle q.
Sostituendo l’espressione del punto di massimo nella (16), si ottiene la definizione esplicita

H(q,p, t) = 1
2
(
p − k0(q, t) − u(q, t)

)
· K−1(q, t)

(
p − k0(q, t) − u(q, t)

)
− 1

2K00(q, t) − U0(q, t). (19)

In particolare, nel caso a vicoli fissi e forze indipendenti dal tempo e conservative, si ha
k0 = u = 0 e K00 = 0, da cui

p = Kq̇, H(q,p, t) = 1
2p · K−1(q, t)p − U0(q, t).

Poiché il primo termine è l’energia cinetica (espressa in funzione di p e non di q̇), si ottiene
proprio l’energia meccanica. Quindi in questo caso l’hamiltoniana è un integrale primo del
moto.

Esempio 8.3. Nel caso di un punto materiale di massa m che si muove su una retta fissa
sotto l’azione di forze conservative indipendenti dal tempo di potenziale U(x), si ha

L(x, ẋ) = 1
2mẋ2 + U(x) ⇒ H(x, p) = p2

2m
− U(x). ⋆
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Esempio 8.4. Nel caso del pendolo con polo mobile studiato negli Esempi 3.2 e 7.4, abbiamo
che

L(ξ, ϑ, ξ̇, ϑ̇) = mξ̇2 − 2mℓξ̇ϑ̇ sin ϑ + 2mℓ2ϑ̇2 + 2mgℓ sin ϑ.

Con alcuni passaggi, in questo caso si verifica che

H(ξ, ϑ, pξ, pϑ) = 1
2 − sin2 ϑ

(
p2

ξ

m
+ pξpϑ

mℓ
sin ϑ + p2

ϑ

2mℓ2

)
− 2mgℓ sin ϑ.

⋆

Teorema 8.5. Tra le derivate di L e di H valgono le seguenti relazioni:

∂H
∂q

(q,p, t) = −∂L
∂q

(q, v̄(q,p, t), t) (20)

∂H
∂p

(q,p, t) = v̄(q,p, t) (21)

∂H
∂t

(q,p, t) = −∂L
∂t

(q, v̄(q,p, t), t) (22)

dove v̄ è data da (18).

Dimostrazione. Usando il fatto che

H(q,p, t) = p · v̄(q,p, t) − L(q, v̄(q,p, t), t),

e che
p = ∂L

∂q̇
(q, v̄(q,p, t), t),

deriviamo per composizione:

∂H
∂qi

= p · ∂v̄

∂qi
− ∂L

∂qi
− ∂L

∂q̇
· ∂v̄

∂qi
= − ∂L

∂qi

∂H
∂pi

= v̄i + p · ∂v̄

∂pi
− ∂L

∂q̇
· ∂v̄

∂pi
= v̄i

∂H
∂t

= p · ∂v̄

∂t
− ∂L

∂q̇
· ∂v̄

∂t
− ∂L

∂t
= −∂L

∂t
. □

Teorema 8.6 (Equazioni di Hamilton). Sia q(t) una funzione del tempo e sia

p(t) := ∂L
∂q̇

(q(t), q̇(t), t). (23)

Allora q(t) è un moto del sistema se e solo se la coppia (q(t),p(t)) soddisfa le equazioni
q̇(t) = ∂H

∂p
(q(t),p(t), t)

ṗ(t) = −∂H
∂q

(q(t),p(t), t).
(24)
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Dimostrazione. Poiché per ogni (q,p, t) si ha che v̄ è l’unica soluzione del sistema p =
∂L
∂q̇ (q, v̄, t), dalla (23) segue subito che

q̇(t) = v̄(q(t),p(t), t).

Quindi dalla (21) si ha

∂H
∂p

(q(t),p(t), t) = v̄(q(t),p(t), t) = q̇(t)

che è la prima equazione.
Supponiamo ora che q(t) sia un moto del sistema; allora dalle equazioni di Lagrange si ha

ṗ(t) = d

dt

∂L
∂q̇

(q(t), q̇(t), t) = ∂L
∂q

(q(t), q̇(t), t) = −∂H
∂q

(q(t),p(t), t)

che è la seconda equazione. Viceversa, se la coppia (q(t),p(t)) soddisfa le equazioni (24), allora

d

dt

∂L
∂q̇

(q(t), q̇(t), t) = ṗ(t) = −∂H
∂q

(q(t),p(t), t) = ∂L
∂q

(q(t), q̇(t), t)

e dunque valgono le equazioni di Lagrange, cioè q(t) è moto del sistema. □

Le equazioni (24) vengono dette equazioni di Hamilton. Si tratta di un sistema differenziale di
2n equazioni del primo ordine nelle incognite (q,p). Il sistema è già scritto in forma normale.

Teorema 8.7. Lungo le soluzioni (q(t),p(t)) si ha

dH
dt

= ∂H
∂t

.

In particolare, se H non dipende esplicitamente dal tempo, allora è un integrale primo del
sistema.

Dimostrazione. Derivando per composizione e usando le equazioni di Hamilton si ha

dH
dt

= ∂H
∂q

· q̇ + ∂H
∂p

· ṗ + ∂H
∂t

= −ṗ · q̇ + q̇ · ṗ + ∂H
∂t

= ∂H
∂t

.
□

Mostriamo ora che anche le equazioni di Hamilton possono essere ottenute da un principio di
stazionarietà.

Definizione 8.8 (Azione hamiltoniana). Siano t0, t1 ∈ R con t0 < t1. Denotiamo con
C1([t0, t1];Rn) l’insieme delle funzioni derivabili con derivata continua. Data una hamiltoniana
H(q,p, t), si definisce azione hamiltoniana il funzionale

SH : C1([t0, t1];Rn) × C1([t0, t1];Rn) → R

definito da
SH[q,p] :=

∫ t1

t0
[p(t) · q̇(t) − H(q(t),p(t), t)] dt.

⋆
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Si noti che l’integrando è simile alla trasformata di Legendre di H (anche se in questo caso
non viene calcolato un massimo), che è proprio L, e quindi l’azione hamiltoniana assomiglia
molto a quella lagrangiana.

Teorema 8.9 (Principio dell’azione stazionaria hamiltoniana). Una coppia di funzio-
ni

(q,p) ∈ C1([t0, t1];Rn) × C1([t0, t1];Rn)

è soluzione delle equazioni di Hamilton (24) con hamiltoniana H se e solo se essa è un punto
stazionario per l’azione hamiltoniana SH.

Dimostrazione. Poniamo

z(t) := (q(t),p(t)), M(z, ż, t) := p · q̇ − H(q,p, t),

dunque

SH[z] =
∫ t1

t0
M(z, ż, t) , dt.

Ripercorrendo la dimostrazione del Teorema 4.3 si mostra che

z è punto stazionario per SH ⇐⇒ d

dt

∂M

∂ż
− ∂M

∂z
= 0.

Prendendo le prime n componenti di z, cioè q, si ha

∂M

∂q̇
= p,

∂M

∂q
= −∂H

∂q

e dunque
d

dt

∂M

∂q̇
− ∂M

∂q
= 0 ⇒ ṗ + ∂H

∂q
= 0

che sono le seconde n equazioni di Hamilton. Se ora prendiamo le seconde n componenti di z,
cioè p, abbiamo

∂M

∂ṗ
= 0,

∂M

∂p
= q̇ − ∂H

∂p

e dunque
d

dt

∂M

∂ṗ
− ∂M

∂p
= 0 ⇒ q̇ − ∂H

∂p
= 0

che sono le prime n equazioni di Hamilton. E viceversa. □

9 Trasformazioni canoniche

La scelta dei parametri lagrangiani q = (q1, . . . , qn), e di conseguenza dei momenti p =
(p1, . . . , pn), può influenzare notevolmente la forma delle equazioni del moto, e quindi anche
la loro difficoltà di risoluzione. Quindi può essere utile cercare delle nuove variabili in cui le
equazioni del moto risultino più semplici.
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Trattando la coppia (q,p) come un elemento di R2n (e quindi essendo disposti a “mescolare”
tra loro variabili di tipo q con variabili di tipo p), un cambio di variabili è dato da

Q1 = Q1(q1, . . . , qn, p1, . . . , pn, t)
. . .

Qn = Qn(q1, . . . , qn, p1, . . . , pn, t)
P1 = P1(q1, . . . , qn, p1, . . . , pn, t)
. . .

Pn = Pn(q1, . . . , qn, p1, . . . , pn, t)

o anche
{
Q = Q(q,p, t)
P = P (q,p, t).

(25)

Naturalmente, per essere ben definito, un cambio di variabili dovrà essere invertibile almeno
localmente, dunque il determinante della matrice jacobiana deve essere non nullo. A noi
però interessano i cambi di variabili che rispettano la struttura hamiltoniana, come meglio
specificato nella seguente definizione

Definizione 9.1 (Trasformazione canonica). Un cambio di variabili del tipo (25) è detto
trasformazione canonica se per ogni hamiltoniana H(q,p, t) esiste una hamiltoniana H̃(Q,P , t)
tale che le equazioni di Hamilton

q̇ = ∂H
∂p

, ṗ = −∂H
∂q

vengano trasformate nelle equazioni

Q̇ = ∂H̃
∂P

, Ṗ = −∂H̃
∂Q

.

In questo caso le funzioni H, H̃ si dicono canonicamente coniugate. ⋆

Una trasformazione canonica quindi conserva l’“hamiltonianità” del sistema di equazioni,
qualsiasi sia la funzione di Hamilton di partenza.

Esempio 9.2. In R2n, il cambio di variabili{
Q = αq

P = βp
α, β ̸= 0

è una trasformazione canonica e vale la relazione

H̃(Q,P , t) = αβH
(
Q

α
,
P

β
, t

)
.

Infatti si ha
∂H̃
∂Q

= β
∂H
∂q

= −βṗ = −Ṗ ,
∂H̃
∂P

= α
∂H
∂p

= αq̇ = Q̇.
⋆

Esempio 9.3. In R2n, il cambio di variabili{
Q = q + αtp

P = p
α ∈ R
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è una trasformazione canonica e vale la relazione

H̃(Q,P , t) = H (Q − αtP ,P , t) + 1
2αP · P .

Infatti si ha
∂H̃
∂Q

= ∂H
∂q

= −ṗ = −Ṗ ,
∂H̃
∂P

= −αt
∂H
∂q

+ ∂H
∂p

+ αP = αtṗ + q̇ + αp = Q̇.

In questo caso, se si considera un punto materiale libero di massa m in assenza di forze esterne,
si ha

H(q,p, t) = 1
2m

p · p ⇒ H̃(Q,P , t) = 1
2

( 1
m

+ α

)
P · P

e scegliendo α := −1/m si ottiene H̃ = 0. Quindi le equazioni di Hamilton nelle nuove variabili
diventano banali:

Q̇ = 0, Ṗ = 0.

Tutta la dinamica del sistema è riassunta nella trasformazione canonica. ⋆

Esempio 9.4 (Esempio di trasformazione non canonica). Per n = 1 prendiamo{
q = P sin Q

p = P cos Q
⇒

{
Q = arctan q

p

P =
√

q2 + p2

e consideriamo un punto materiale libero di massa unitaria e senza forze esterne, per cui
H = p2/2 e

q̇ = p, ṗ = 0.

Riscriviamo le equazioni del moto nelle nuove variabili: dalla seconda si ha

ṗ = Ṗ cos Q − PQ̇ sin Q = 0 ⇒ Ṗ = PQ̇ tan Q

e sostituendola nella prima:

q̇ = Ṗ sin Q + PQ̇ cos Q = P cos Q ⇒ Q̇
sin2 Q

cos Q
+ Q̇ cos Q = cos Q ⇒ Q̇ = cos2 Q

e quindi si trova il sistema di equazioni differenziali{
Q̇ = cos2 Q

Ṗ = P sin Q cos Q.

Ma tale sistema non è hamiltoniano, perché se lo fosse si avrebbe

0 = ∂(cos2 Q)
∂Q

+ ∂(P sin Q cos Q)
∂P

= − sin Q cos Q

che è assurdo. ⋆

In generale si può dimostrare che per una trasformazione canonica il legame tra la vecchia
hamiltoniana e la nuova è tale che

H̃ = cH + K

(scritte nelle variabili giuste) con c ∈ R e K funzione indipendente da H. Se la trasformazione
canonica è indipendente dal tempo, si ha K ≡ 0. La costante c viene detta valenza e noi
studieremo per semplicità le trasformazioni canoniche per cui c = 1, dette univalenti o
simplettiche.
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10 Gruppo simplettico

Esiste un modo geometrico, di capire se una trasformazione è canonica, tramite il gruppo
simplettico. Denotiamo con J la matrice antisimmetrica di ordine 2n data da

J :=
(

0 I
−I 0

)

dove I è la matrice identica di ordine n e 0 la matrice nulla di ordine n. La matrice J è
ortogonale e ha determinante 1.

Definizione 10.1. Una matrice quadrata A di ordine 2n si dice simplettica se

AJAT = J.

Si verifica facilmente (provare per credere) che l’insieme delle matrici simplettiche è chiuso
rispetto al prodotto di matrici. Meno facilmente si può dimostrare che anche l’inversa e
la trasposta di una matrice simplettica sono simplettiche; quindi l’insieme delle matrici
simplettiche costituisce il cosiddetto gruppo simplettico, che è appunto un gruppo rispetto
alla moltiplicazione di matrici ed è chiuso rispetto alla trasposizione. Inoltre se una matrice è
simplettica vale anche l’identità

ATJA = J. ⋆

Allora vale il seguente teorema.

Teorema 10.2. Un cambio di variabili indipendente dal tempo{
Q = Q(q,p)
P = P (q,p)

è una trasformazione canonica univalente se e solo se lo jacobiano del cambio di variabile è
una matrice simplettica per ogni (q,p).

Dimostrazione. Si noti che la matrice J è legata alla meccanica hamiltoniana, infatti: ponendo
z = (q,p) e data un’hamiltoniana H(z), le equazioni di Hamilton si possono scrivere nella
forma

ż = J∂H
∂z

. (26)

Ora consideriamo un cambio di variabili indipendente dal tempo Z(z), dove Z = (Q,P ): si
avrà

Ż = A(z)ż, dove Aij = ∂Zi

∂zj
è la matrice jacobiana del cambio di variabili.

Poniamo H̃(Z) := H(z(Z)), da cui H(z) = H̃(Z(z)). Allora si ha

∂H
∂zj

=
2n∑
i=1

∂H̃
∂Zi

∂Zi

∂zj
⇒ ∂H

∂z
= AT ∂H̃

∂Z
.
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Usando le equazioni di Hamilton (26) otteniamo

Ż = Aż = AJ∂H
∂z

= AJAT ∂H̃
∂Z

.

Dunque le equazioni nelle nuove variabili sono in forma hamiltoniana se e solo se AJAT = J, e
dunque se e solo se lo jacobiano è simplettico. □

Osservazione 10.3. È facile vedere che tutte le matrici simplettiche hanno determinante
±1 (in realtà si può dimostrare che hanno tutte determinante 1, anche se questo fatto non è
banale). Cerchiamo di caratterizzare brevemente una matrice simplettica. Scriviamo

A =
(

a b
c d

)
, a, b, c, d matrici di ordine n.

Imponendo la condizione di simpletticità si ha(
0 I
−I 0

)
=
(

aT cT

bT dT

)(
0 I
−I 0

)(
a b
c d

)
=
(

aT cT

bT dT

)(
c d

−a −b

)

da cui (
0 I
−I 0

)
=
(

aTc − cTa aTd − cTb
bTc − dTa bTd − dTb

)
.

Quindi otteniamo il sistema
aTc = cTa ⇒ aTc è simmetrica
bTd = dTb ⇒ bTd è simmetrica
aTd − cTb = I

dove abbiamo eliminato alcune equazioni ridondanti. Le prime due equazioni corrispondono
in tutto a n(n − 1) condizioni, mentre la terza aggiunge ancora n2 condizioni, quindi in tutto
ci sono 2n2 − n condizioni. Da ciò risulta che la dimensione del gruppo simplettico è

4n2 − 2n2 + n = n(2n + 1). ⋆

11 Funzione generatrice

Cerchiamo ora un modo per “generare” delle trasformazioni canoniche univalenti. L’obiettivo
è quello di avere a disposizione delle famiglie di trasformazioni canoniche per andare a cercare
tra loro quella che semplifica maggiormente l’hamiltoniana (si veda più avanti il cenno al
metodo di Hamilton-Jacobi).
Consideriamo quindi un cambio di variabili{

Q = Q(q,p, t)
P = P (q,p, t)

⇒
{
q = q(Q,P , t)
p = p(Q,P , t).
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Un modo per richiedere che il cambio di variabili sia una trasformazione canonica (univalente)
è quello di chiedere che l’azione hamiltoniana nelle nuove variabili si scriva ancora nella forma
usuale, ovvero che∫ t1

t0

(
p(t) · q̇(t) − H(q(t),p(t), t)

)
dt =

∫ t1

t0

(
P (t) · Q̇(t) − H̃(Q(t),P (t), t)

)
dt + c.

Infatti, se le due azioni coincidono a meno di una costante additiva, allora sicuramente avranno
gli stessi punti stazionari, quindi le stesse soluzioni del moto. Per l’arbitrarietà dei tempi t0, t1
e dell’hamiltoniana H, gli integrandi devono coincidere a meno di una derivata totale, cioè:

p(t) · q̇(t) − H(q(t),p(t), t) = P (t) · Q̇(t) − H̃(Q(t),P (t), t) + dF

dt
(27)

dove F è un’arbitraria funzione del tempo.
Scegliamo ora F della forma

F (t) := F1(q(t),Q(t), t)
dove la funzione F1(q,Q, t) è arbitraria e regolare e soddisfa l’ipotesi

∂2F1
∂q∂Q

non singolare. (28)

Allora derivando per composizione si ha
dF

dt
= ∂F1

∂q
· q̇ + ∂F1

∂Q
· Q̇ + ∂F1

∂t

e sostituendo nella (27) e raccogliendo si trova(
p − ∂F1

∂q

)
· q̇ −

(
P + ∂F1

∂Q

)
· Q̇ + H̃ − H − ∂F1

∂t
= 0.

Per l’arbitrarietà dei moti si ottiene
p = ∂F1

∂q

P = −∂F1
∂Q

,

H̃ = H + ∂F1
∂t

. (29)

Da questo sistema, grazie all’ipotesi (28) si possono esprimere le variabili nuove in funzione di
quelle vecchie. Quindi, assegnando una generica funzione regolare F1(q,Q, t), tramite (29)
si ottiene una trasformazione canonica. La funzione F1 viene detta funzione generatrice del
primo tipo, perché “genera” delle trasformazioni canoniche.

Esempio 11.1. Per n = 1, sia F1(q, Q) = ln(q + Q) (supponiamo q, Q > 0). Dalla (29)
abbiamo

p = ∂F1
∂q

= 1
q + Q

, P = −∂F1
∂Q

= − 1
q + Q

da cui ricaviamo, esplicitando le variabili nuove,{
Q = −q + 1

p

P = −p.

Si può verificare che tale trasformazione è certamente canonica, ad esempio mostrando che lo
jacobiano è simplettico. ⋆
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Le funzioni generatrici più interessanti sono quelle del secondo tipo: esse si ottengono scegliendo

F (t) := F2(q(t),P (t), t) − Q(t) · P (t),

sempre con l’ipotesi
∂2F2
∂q∂P

non singolare.

In questo caso, derivando per composizione si ha

dF

dt
= ∂F2

∂q
· q̇ + ∂F2

∂P
· Ṗ + ∂F2

∂t
− Q̇ · P − Q · Ṗ

e sostituendo nella (27) si trova(
p − ∂F2

∂q

)
· q̇ +

(
Q − ∂F2

∂P

)
· Ṗ + H̃ − H − ∂F2

∂t
= 0.

Di nuovo, per l’arbitrarietà dei moti si ottiene
p = ∂F2

∂q

Q = ∂F2
∂P

,

H̃ = H + ∂F2
∂t

. (30)

Esempio 11.2. Per n = 1, sia F2(q, P ) = q1+αP , α > 0. Dalla (30) abbiamo

p = ∂F2
∂q

= (1 + α)qαP, Q = ∂F2
∂P

= q1+α.

Anche qui esplicitiamo le variabili nuove:{
Q = q1+α

P = pq−α

1+α

ottenendo una trasformazione canonica. ⋆

Esistono anche funzioni generatrici del terzo tipo, che si ottengono scegliendo

F (t) := F3(Q(t),p(t), t) + q · p

con l’ipotesi
∂2F3
∂p∂Q

non singolare

e in questo caso si ha 
q = −∂F3

∂p

P = −∂F3
∂Q

,

H̃ = H + ∂F3
∂t

. (31)

Infine, si hanno anche funzioni generatrici del quarto tipo, che si ottengono scegliendo

F (t) := F4(p(t),P (t), t) + q · p − Q · P
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con l’ipotesi
∂2F4
∂p∂P

non singolare

e in questo caso si ha 
q = −∂F4

∂p

Q = ∂F4
∂P

,

H̃ = H + ∂F4
∂t

. (32)

Le funzioni generatrici del secondo tipo sono interessanti per vari motivi. Tra questi c’è il
fatto che la trasformazione identica, cioè il cambio di variabili banale che non cambia niente,
può essere ottenuto solo con un procedimento del secondo tipo, in questo modo:

F2(q,P ) = q · P .

È chiaro che tale cambio in sé non è molto interessante, ma spesso si lavora in un “intorno
dell’identità”, soprattutto quando si usano dei metodi di perturbazione, e quindi è comodo
partire da una classe di funzioni generatrici che possano generare l’identità.

Teorema 11.3 (del sollevamento). Ogni cambio di coordinate Q(q) che coinvolga solo i
parametri lagrangiani può essere esteso a una trasformazione canonica del secondo tipo.

Dimostrazione. Poniamo

F2(q,P ) := P · Q(q) =
n∑

j=1
PjQj(q).

Si ha che la matrice
∂2F2
∂q∂P

= ∂Q

∂q

è non singolare poiché Q(q) è un cambio di variabili. Inoltre
pi = ∂F2

∂qi
=

n∑
j=1

Pj
∂Qj

∂qi

Qi = ∂F2
∂Pi

= Qi(q)

e dalla prima equazione si possono esprimere le P in funzione delle (q,p) proprio perché
la matrice ∂Q/∂q è invertibile, mentre la seconda è proprio il cambio di variabili Q(q) di
partenza. □

12 Cenno al metodo di Hamilton-Jacobi

Abbiamo già accennato al fatto che uno degli scopi di studiare le trasformazioni canoniche
è quello di fare in modo che la funzione di Hamilton sia più semplice, così da avere anche
equazioni differenziali del moto più semplici. Un metodo è il seguente.
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Scegliamo per esempio una funzione generatrice del secondo tipo F2(q,P , t). Sappiamo
dalla (30) che

H̃ = H + ∂F2
∂t

e cerchiamo una funzione F2 che renda nulla (o costante) la nuova hamiltoniana:

H + ∂F2
∂t

= 0.

Ricordando che p = ∂F2
∂q e sostituendo nell’hamiltoniana, si trova la cosiddetta equazione di

Hamilton-Jacobi
H
(
q,

∂F2
∂q

(q,P , t), t

)
+ ∂F2

∂t
(q,P , t) = 0 (33)

che è un’equazione differenziale alle derivate parziali (PDE) del primo ordine, in cui l’incognita
è la funzione F2(q,P , t).
Di solito si interpreta questa equazione come funzione delle sole variabili (q, t), e trovare un
integrale completo di tale equazione significa trovare una famiglia di soluzioni

F2(q, ξ1, . . . , ξn, t)

dipendente dagli n parametri ξ1, . . . , ξn tale che la matrice hessiana

∂2F2
∂qi∂ξj

sia non singolare per ogni q, ξ, t.
Poiché l’hamiltoniana nelle nuove variabili è nulla, le equazioni del moto sono immediate:{

Q̇ = 0

Ṗ = 0
⇒

{
Q = cost.
P = cost.

quindi in particolare ξ è costante. Quindi si determina la costante ξ in funzione delle condizioni
iniziali e per tornare nelle variabili originarie si ha subito

p = ∂F2
∂q

(q, ξ, t),

e poi si calcola
Qi = cost. ⇒ ∂F2

∂ξi
(q, ξ, t) = cost.

e si risolve rispetto a q.

13 Parentesi di Poisson

Definizione 13.1 (Parentesi di Poisson). Siano F, G : R2n+1 → R due funzioni di classe
C1 delle variabili (q,p, t). La funzione [F, G] : R2n+1 → R data da

[F, G](q,p, t) := ∂F

∂q
· ∂G

∂p
− ∂F

∂p
· ∂G

∂q
=

n∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
si dice parentesi di Poisson delle funzioni F, G. ⋆

36



C’è uno stretto legame tra le parentesi di Poisson e la matrice J di ordine 2n introdotta in
precedenza

J =
(

0 I
−I 0

)
.

Infatti, con la notazione z = (q,p) ∈ R2n si ha

[F, G] =
2n∑

i,j=1
Jij

∂F

∂zi

∂G

∂zj
= ∇zF · J∇zG. (34)

Teorema 13.2 (Proprietà delle parentesi di Poisson). La parentesi di Poisson è un’o-
perazione bilineare e antisimmetrica. Se poi le funzioni sono di classe C2 si ha

∂

∂x
[F, G] =

[
∂F

∂x
, G

]
+
[
F,

∂G

∂x

]
(Regola di Leibniz)[

[F, G], H
]

+
[
[G, H], F

]
+
[
[H, F ], G

]
= 0 (Identità di Jacobi),

dove il simbolo x nella prima equazione denota una qualsiasi tra le variabili scalari qi, pj , t da
cui dipendono le funzioni F, G.

L’identità di Jacobi è tipica delle cosiddette algebre di Lie, ed è verificata per esempio dal
prodotto vettoriale in R3.

Dimostrazione. La bilinearità e l’antisimmetria sono ovvie. Verifichiamo la regola di Leibniz:

∂

∂x
[F, G] = ∂

∂x

(
∂F

∂q
· ∂G

∂p
− ∂F

∂p
· ∂G

∂q

)
= ∂2F

∂x∂q
· ∂G

∂p
+ ∂F

∂q
· ∂2G

∂x∂p
− ∂2F

∂x∂p
· ∂G

∂q
− ∂F

∂p
· ∂2G

∂x∂q

=
[

∂F

∂x
, G

]
+
[
F,

∂G

∂x

]
dove abbiamo accorpato il primo addendo col terzo e il secondo col quarto, e usato la
commutatività della derivata seconda.
La verifica dell’identità di Jacobi è piuttosto lunga e noiosa, cerchiamo di affrontarla semplifi-
cando le notazioni. Dalla formula (34)

[F, G] =
2n∑

i,j=1
Jij

∂F

∂zi

∂G

∂zj

e dalla regola di Leibniz segue che

[
[F, G], H

]
=

2n∑
i,j=1

Jij
∂[F, G]

∂zi

∂H

∂zj
=

2n∑
i,j=1

Jij

([
∂F

∂zi
, G

]
+
[
F,

∂G

∂zi

])
∂H

∂zj

=
2n∑

i,j,k,h=1
JijJhk

(
∂2F

∂zh∂zi

∂G

∂zk
+ ∂F

∂zh

∂2G

∂zk∂zi

)
∂H

∂zj
.
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Analogamente, gli altri due addendi dell’identità di Jacobi si trovano facendo una permutazione
ciclica delle funzioni F, G, H:

[
[G, H], F

]
=

2n∑
i,j,k,h=1

JijJhk

(
∂2G

∂zh∂zi

∂H

∂zk
+ ∂G

∂zh

∂2H

∂zk∂zi

)
∂F

∂zj
,

[
[F, G], H

]
=

2n∑
i,j,k,h=1

JijJhk

(
∂2H

∂zh∂zi

∂F

∂zk
+ ∂H

∂zh

∂2F

∂zk∂zi

)
∂G

∂zj
.

Sommiamo ora i termini contenenti le derivate seconde di F :
2n∑

i,j,k,h=1
JijJhk

∂2F

∂zh∂zi

∂G

∂zk

∂H

∂zj
+

n∑
i,j,k,h=1

JijJhk
∂H

∂zh

∂2F

∂zk∂zi

∂G

∂zj
.

Se nella seconda sommatoria cambiamo nome agli indici (muti) h → j → k → i → h, otteniamo

2n∑
i,j,k,h=1

JijJhk
∂2F

∂zh∂zi

∂G

∂zk

∂H

∂zj
+

n∑
h,k,i,j=1

JhkJji
∂H

∂zj

∂2F

∂zi∂zh

∂G

∂zk

e dalla antisimmetria di J e la commutatività delle derivate seconde
2n∑

i,j,k,h=1
JijJhk

∂2F

∂zh∂zi

∂G

∂zk

∂H

∂zj
−

2n∑
h,k,i,j=1

JhkJij
∂H

∂zj

∂2F

∂zh∂zi

∂G

∂zk
= 0.

Lo stesso succede quando consideriamo i termini contenenti le derivate seconde di G o quelle
di H, quindi l’identità di Jacobi è verificata. □

Vediamo ora alcune proprietà che legano le parentesi di Poisson agli integrali primi.

Proposizione 13.3. Sia (q(t),p(t)) moto di un sistema con hamiltoniana H, e sia F (q,p, t)
una quantità. Allora si ha

dF

dt
= [F, H] + ∂F

∂t
.

In particolare, F è un integrale primo del sistema se e solo se [F, H] + ∂F
∂t = 0. Se F non

dipende esplicitamente dal tempo, F è un integrale primo del sistema se e solo se [F, H] = 0.

Dimostrazione. Applichiamo il Teorema del differenziale totale alla funzione t 7→ F (q(t),p(t), t):

dF

dt
= ∂F

∂q
· q̇ + ∂F

∂p
· ṗ + ∂F

∂t
.

Se (q,p) è moto del sistema, allora valgono le equazioni di Hamilton

q̇ = ∂H
∂p

, ṗ = −∂H
∂q

,

quindi
dF

dt
= ∂F

∂q
· ∂H

∂p
− ∂F

∂p
· ∂H

∂q
+ ∂F

∂t
= [F, H] + ∂F

∂t
.

□
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Si noti che da questa proposizione segue immediatamente che H non dipende esplicitamente
dal tempo se e solo se è un integrale primo del sistema; infatti dall’antisimmetria è ovvio che
[H, H] = 0.

Teorema 13.4 (Teorema di Jacobi-Poisson). Siano F, G due funzioni come nella Defi-
nizione 13.1. Allora lungo un moto (q(t),p(t)) del sistema si ha

d

dt
[F, G] =

[
dF

dt
, G

]
+
[
F,

dG

dt

]
.

In particolare, se F, G sono due integrali primi del sistema, allora anche [F, G] è un integrale
primo del sistema.

Dimostrazione. Dalla proposizione precedente si ha

dF

dt
= [F, H] + ∂F

∂t
,

dG

dt
= [G, H] + ∂G

∂t
,

d

dt
[F, G] =

[
[F, G], H

]
+ ∂

∂t
[F, G].

Applichiamo al membro di destra dell’ultima formula l’identità di Jacobi e la regola di Leibniz:

d

dt
[F, G] = −

[
[G, H], F

]
−
[
[H, F ], G

]
+
[

∂F

∂t
, G

]
+
[
F,

∂G

∂t

]
.

Associando il primo e l’ultimo addendo e scambiando [G, H] con F , otteniamo

−
[
[G, H], F

]
+
[
F,

∂G

∂t

]
=
[
F, [G, H]

]
+
[
F,

∂G

∂t

]
=
[
F, [G, H] + ∂G

∂t

]
=
[
F,

dG

dt

]
.

Allo stesso modo col secondo e il terzo addendo:

−
[
[H, F ], G

]
+
[

∂F

∂t
, G

]
=
[
[F, H], G

]
+
[

∂F

∂t
, G

]
=
[
[F, H] + ∂F

∂t
, G

]
=
[

dF

dt
, G

]
.

Quindi ne risulta la tesi. □

Il Teorema di Jacobi-Poisson è uno strumento utile per procurarsi nuovi integrali primi a
partire da integrali primi già noti; però può capitare che la quantità che si ottiene da [F, G]
sia funzionalmente dipendente da F e G e quindi non aggiunga nulla di nuovo alla conoscenza
di integrali primi.

Osservazione 13.5. Le parentesi di Poisson offrono anche un modo alternativo per scrivere
le equazioni di Hamilton. Infatti, consideriamo le funzioni proiezione

qi : (q,p) 7→ qi, pj : (q,p) 7→ pj .

Poiché non dipendono esplicitamente dal tempo, dalla Proposizione 13.3 si ha che, lungo un
moto,

q̇i = dqi

dt
= [qi, H] = ∂qi

∂q
· ∂H

∂p
− ∂qi

∂p
· ∂H

∂q
= ∂H

∂pi

ṗj = dpj

dt
= [pj , H] = ∂pj

∂q
· ∂H

∂p
− ∂pj

∂p
· ∂H

∂q
= −∂H

∂qj
.
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Quindi le equazioni di Hamilton si possono scrivere come{
q̇i = [qi, H]
ṗj = [pj , H]

i, j = 1, . . . , n

o anche come
żi = [zi, H] i = 1, . . . , 2n. ⋆

Le parentesi di Poisson forniscono un criterio per verificare se un cambio di variabili indipendenti
dal tempo sia una trasformazione canonica (univalente) oppure no. Vale infatti il seguente
teorema:

Teorema 13.6 (Criterio di canonicità con le parentesi di Poisson). Un cambio di va-
riabili indipendente dal tempo {

Q = Q(q,p)
P = P (q,p)

è una trasformazione canonica univalente se e solo se valgono le n(2n − 1) condizioni

[Qi, Qj ] = 0, [Pi, Pj ] = 0, [Qi, Pj ] = δij per ogni i, j = 1 . . . , n,

dove δij è il simbolo di Kronecker, ovvero δij = 1 se i = j e δij = 0 se i ̸= j.
In particolare, nel caso n = 1 un cambio di variabili indipendente dal tempo è canonico se e
solo se

[Q, P ] = 1.

Dimostrazione. Per il Teorema 10.2 un cambio di variabili indipendente dal tempo è una
trasformazione canonica se e solo se

AJAT = J

dove A è lo jacobiano del cambio di variabili. Usando la notazione Z(z) = (Q(q,p),P (q,p)),
si ha che il cambio è canonico se e solo se

2n∑
h,k=1

Jhk
∂Zi

∂zh

∂Zj

∂zk
= Jij per ogni i, j = 1, . . . , 2n.

Scegliendo 1 ⩽ i, j ⩽ n e usando la (34) si ha
2n∑

h,k=1
Jhk

∂Qi

∂zh

∂Qj

∂zk
= [Qi, Qj ] = 0 per ogni i, j = 1, . . . , n.

Allo stesso modo, scegliendo i = n + r e j = n + s per 1 ⩽ r, s ⩽ n si ha
2n∑

h,k=1
Jhk

∂Pr

∂zh

∂Ps

∂zk
= [Pr, Ps] = 0 per ogni r, s = 1, . . . , n.

Infine, scegliendo 1 ⩽ i ⩽ n e j = n + s per 1 ⩽ s ⩽ n si ha
2n∑

h,k=1
Jhk

∂Qi

∂zh

∂Ps

∂zk
= [Qi, Ps] = δis per ogni i, s = 1, . . . , n.

□
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Corollario 13.7. Siano F (q,p), G(q,p) due funzioni e sia{
Q = Q(q,p)
P = P (q,p)

una trasformazione canonica indipendente dal tempo. Ponendo

F̃ (Q,P ) := F (q(Q,P ),p(Q,P )), G̃(Q,P ) := G(q(Q,P ),p(Q,P ))

si ha
[F̃ , G̃](Q,P ) = [F, G](q,p)

dove il pedice indica rispetto a quali coordinate vengono calcolate le parentesi di Poisson.

Dimostrazione. Partiamo dal fatto che

F (q,p) = F̃ (Q(q,p),P (q,p)), G(q,p) = G̃(Q(q,p),P (q,p))

e deriviamo per composizione. Si ha

[F, G](q,p) =
n∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)

=
n∑

i,h,k=1

[(
∂F

∂Qk

∂Qk

∂qi
+ ∂F

∂Pk

∂Pk

∂qi

)(
∂G

∂Qh

∂Qh

∂pi
+ ∂G

∂Ph

∂Ph

∂pi

)

−
(

∂F

∂Qk

∂Qk

∂pi
+ ∂F

∂Pk

∂Pk

∂pi

)(
∂G

∂Qh

∂Qh

∂qi
+ ∂G

∂Ph

∂Ph

∂qi

)]
.

Se ora svolgiamo tutti i prodotti e raccogliamo i termini simili come derivate di F e G otteniamo

[F, G](q,p) =
n∑

h,k=1

(
∂F

∂Qk

∂G

∂Qh
[Qk, Qh] + ∂F

∂Qk

∂G

∂Ph
[Qk, Ph]

+ ∂F

∂Pk

∂G

∂Qh
[Pk, Qh] + ∂F

∂Pk

∂G

∂Ph
[Pk, Ph]

)
.

Applicando il Teorema 13.6 troviamo quindi

[F, G](q,p) =
n∑

h,k=1

(
∂F

∂Qk

∂G

∂Ph
δkh − ∂F

∂Pk

∂G

∂Qh
δhk

)

=
n∑

k=1

(
∂F

∂Qk

∂G

∂Pk
− ∂F

∂Pk

∂G

∂Qk

)
= [F, G](Q,P ). □
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