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1 Un esempio introduttivo: i modelli epidemiologici

Un’applicazione interessante (e molto attuale) dei sistemi dinamici è quella dedicata allo studio della
diffusione di malattie contagiose. Vedremo in questa sezione alcuni semplici modelli introduttivi.
Denoteremo con 𝑆 (𝑡) il numero dei suscettibili (susceptible), cioè gli individui che possono ammalarsi,
con 𝐼 (𝑡) il numero degli infetti (infectious), che possono poi contagiare gli altri, e con 𝑅(𝑡) il numero
dei rimessi (recovered), cioè dei guariti dalla malattia e che non sono più contagiabili (in questo numero,
ahimé, possono rientrare anche i deceduti, nel caso in cui la malattia possa avere conseguenze gravi).
Per comodità supporremo 𝑆 + 𝐼 + 𝑅 = 𝑁 costante, dove 𝑁 è il numero totale di individui, e
normalizzeremo tutto con 𝑁 , in modo da avere

0 ⩽ 𝑆, 𝐼 , 𝑅 ⩽ 1, 𝑆 + 𝐼 + 𝑅 = 1.

Questi modelli si dicono compartimentali, perché la popolazione viene suddivisa in sottoinsiemi (com-
partimenti) e si assume che tutti gli elementi di ogni compartimento abbiano le stesse caratteristiche.
Tali modelli furono introdotti dagli scozzesi Kermack e McKendrick nel 1927.

1.1 Il modello SIS

Il modello più semplice è quello di una malattia non mortale che può essere contratta tante volte: in
questo caso non ci sono i rimessi e 𝑆 + 𝐼 = 1. La dinamica tipica è

S 𝜆𝐼𝑆−→←−
𝛾𝐼

I

ovvero il numero di infetti cresce in modo proporzionale sia al numero attuale di infetti che al numero
di suscettibili, mentre decresce in modo proporzionale al solo numero di infetti. Il parametro 𝜆, detto
tasso di contatto, è legato alla contagiosità e al numero di contatti (numero di contagi per infetto
nell’unità di tempo), mentre 𝛾 è legato alla velocità di guarigione (inverso della durata media della
malattia). Il modello diventa { ¤𝑆 = −𝜆𝐼𝑆 + 𝛾𝐼

¤𝐼 = 𝜆𝐼𝑆 − 𝛾𝐼

e poiché 𝑆 + 𝐼 = 1 ci si riduce a una sola ODE del primo ordine:

¤𝐼
𝐼
= 𝜆 − 𝛾 − 𝜆𝐼

che ha soluzione
𝐼 (𝑡) = 𝐾𝐼0

𝐼0 + (𝐾 − 𝐼0)𝑒−𝑞𝑡 ,

dove abbiamo posto 𝑞 = 𝜆 − 𝛾 e 𝐾 = 1 − 𝛾

𝜆
(si veda il modello logistico (9) nella Sezione 16). Quindi

per 𝑡 → +∞ la frazione degli infetti tende a 𝐾 nel caso 𝜆 > 𝛾 , resta costantemente 𝐼0 nel caso 𝜆 = 𝛾 , e
tende a 0 nel caso 𝜆 < 𝛾 . Nel primo caso si dice che la malattia resta endemica, perché il numero degli
infetti non tende a 0.

3



1.2 Il modello SIR

Si tratta del modello più famoso. La dinamica tipica è

S 𝜆𝐼𝑆−→ I
𝛾𝐼−→ R

dove i coefficienti 𝜆,𝛾 hanno lo stesso significato del modello SIS, ma stavolta i guariti non sono più
suscettibili. Il numero

𝑅0 := 𝜆

𝛾

viene chiamato basic reproduction number (numero di riproduzione di base) e rappresenta il numero
medio di individui contagiati da un singolo infetto durante tutta la fase infettiva.
Il modello differenziale diventa 

¤𝑆 = −𝜆𝐼𝑆
¤𝐼 = 𝜆𝐼𝑆 − 𝛾𝐼
¤𝑅 = 𝛾𝐼

e, poiché 𝑅 = 1 − 𝑆 − 𝐼 , possiamo ricondurlo al sistema bidimensionale{ ¤𝑆 = −𝜆𝐼𝑆
¤𝐼 = 𝜆𝐼𝑆 − 𝛾𝐼 .

Tale sistema dovrà essere dotato di condizioni iniziali 𝑆 (0), 𝐼 (0) > 0, 𝑆 (0) + 𝐼 (0) = 1, poiché all’inizio
non ci sono rimessi.
Studiamo questo sistema: le posizioni di equilibrio sono tutte le posizioni (𝑆, 0), che dunque prevedono
l’assenza della malattia, e la matrice del sistema linearizzato(1) è[

0 −𝜆𝑆
0 𝜆𝑆 − 𝛾

]
per cui se 𝑆 >

𝛾

𝜆
= 1

𝑅0
l’equilibrio è instabile e se 𝑆 ⩽ 1

𝑅0
non possiamo concludere niente. In

particolare, poiché 𝑆 ∈ [0, 1], se 𝑅0 > 1 esistono dei valori di 𝑆 per cui la posizione è instabile e quindi
la malattia si diffonde.
Cerchiamo di capire che cosa succede alle traiettorie: poiché ¤𝑆 (𝑡) ⩽ 0, la funzione 𝑆 (𝑡) è decrescente
e dunque 𝑆 (𝑡) ⩽ 𝑆 (0) per ogni 𝑡 ⩾ 0 ed esiste il limite

𝑆 (∞) := lim
𝑡→+∞ 𝑆 (𝑡) ∈ [0, 1] .

Inoltre anche la funzione 𝑆 (𝑡) + 𝐼 (𝑡) è decrescente, perché
¤𝑆 + ¤𝐼 = −𝛾𝐼 ⩽ 0 (1)

e quindi 𝑆 (𝑡) + 𝐼 (𝑡) ⩽ 𝑆 (0) + 𝐼 (0) per ogni 𝑡 ⩾ 0 ed esiste il limite

𝑆 (∞) + 𝐼 (∞) := lim
𝑡→+∞ 𝑆 (𝑡) + 𝐼 (𝑡) ∈ [0, 2] .

(1)Questi concetti sono introdotti e studiati più avanti, questo è solo un esempio introduttivo.
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In particolare esiste il limite 𝐼 (∞). Integrando la (1) da 0 a +∞ si ha

𝑆 (∞) + 𝐼 (∞) − 𝑆 (0) − 𝐼 (0) = −𝛾
∫ +∞

0
𝐼 (𝜏) 𝑑𝜏 ⇒

∫ +∞

0
𝐼 (𝜏) 𝑑𝜏 < +∞,

e dunque 𝐼 (𝑡) è una funzione integrabile su [0, +∞) che ammette limite 𝐼 (∞), quindi per forza
𝐼 (∞) = 0.
Ora analizziamo che cosa succede al variare della condizione iniziale:

• Se 𝑆 (0) ⩽ 1/𝑅0, allora dalla seconda equazione ¤𝐼 (𝑡) ⩽ 0 per ogni 𝑡 ⩾ 0 e quindi 𝐼 (𝑡) è
decrescente. Poiché 𝐼 (𝑡) → 0 per 𝑡 → +∞, la malattia decresce e scompare.

• Nel caso 𝑆 (0) > 1/𝑅0 si ha ¤𝐼 (0) > 0 e dunque inizialmente la malattia si diffonde. Poiché però
𝐼 (𝑡) è destinata a diventare 0, da un certo istante 𝑡∗ in poi il numero degli infetti comincerà a
decrescere e si dovrà avere 𝑆 (𝑡) ⩽ 1/𝑅0 per 𝑡 ⩾ 𝑡∗: l’istante 𝑡∗ in cui 𝑆 (𝑡∗) = 1/𝑅0 è il momento
del famoso picco dei contagi.

Si possono trovare in modo esplicito le orbite nel piano delle fasi: pensando 𝐼 (𝑆) come funzione di 𝑆
e dividendo la seconda equazione per la prima, si ottiene

𝐼 ′(𝑆) = 𝜆𝐼𝑆 − 𝛾𝐼
−𝜆𝐼𝑆 = −1 + 1

𝑅0𝑆

e quindi integrando rispetto a 𝑆 si ha

𝐼 (𝑆) = −𝑆 + 1
𝑅0

ln 𝑆 + 𝑐.

Imponendo la condizione iniziale 𝐼 (𝑆 (0)) = 𝐼 (0) si trova

𝐼 (0) = −𝑆 (0) + 1
𝑅0

ln 𝑆 (0) + 𝑐 ⇒ 𝑐 = 𝐼 (0) + 𝑆 (0) − 1
𝑅0

ln 𝑆 (0) = 1 − 1
𝑅0

ln 𝑆 (0)

e dunque
𝐼 (𝑆) = −𝑆 + 1

𝑅0
ln 𝑆 + 1 − 1

𝑅0
ln 𝑆 (0) = 1 − 𝑆 + 1

𝑅0
ln 𝑆

𝑆 (0) . (2)

Troviamo un grafico di tali orbite nella Figura 1.
È interessante capire dove si trova il massimo delle curve 𝐼 (𝑆), che rappresenta il picco del contagio:
basta calcolare

𝐼 ′(𝑆) = 0 ⇒ 1
𝑅0𝑆

= 1 ⇒ 𝑆 =
1
𝑅0

e dunque il punto di massimo non dipende dalle condizioni iniziali. Il valore massimo è

𝐼max = 𝐼
( 1
𝑅0

)
= 1 − 1

𝑅0
+ 1
𝑅0

ln 1
𝑅0𝑆 (0) .

Si veda la Figura 2. Per 𝑅0 grande, il numero massimo di contagi cresce, quindi c’è interesse a fare in
modo che 𝑅0 sia piccolo per “abbassare la curva” (flatten the curve).
Abbiamo detto che 𝐼 (𝑡) → 0 per 𝑡 → +∞; ma che cosa succede a 𝑆 (𝑡)? Denotiamo con 𝑆 (∞) il limite
di 𝑆 (𝑡) per 𝑡 → +∞: dall’equazione (2) otteniamo

0 = 1 − 𝑆 (∞) + 1
𝑅0

ln 𝑆 (∞)
𝑆 (0)
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Figura 1: Orbite nel piano 𝑆 − 𝐼 per 𝑅0 = 3.
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Figura 2: L’andamento di 𝐼max e di 𝑆 (∞) in funzione di 𝑅0, per 𝑆 (0) = 0.9.
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Figura 3: Alcune traiettorie del modello SIR.

da cui possiamo ricavare il valore di 𝑆 . Si tratta di un’equazione trascendente ma possiamo disegnare
il grafico della soluzione al variare di 𝑅0: si ottiene una curva decrescente. Anche in questo caso,
ridurre il valore di 𝑅0 significa mantenere elevato il numero di individui che non contraggono la
malattia.
Si possono studiare anche altri fenomeni interessanti nei modelli epidemiologici compartimentali.
Si può introdurre un tasso di natalità e di mortalità naturale nel modello SIR, oppure aggiungere
la classe 𝐷 dei deceduti per la malattia (modello SIRD). Se la malattia ha un tempo di incubazione
significativo, si introduce la classe 𝐸 degli esposti, cioè gli individui che hanno contratto la malattia
ma non sono ancora contagiosi, dando luogo ai modelli SEIR e SEIS. Se gli individui alla nascita
hanno una immunità temporanea (dovuta al sistema immunitario materno), si introduce la classe𝑀
dei neonati immuni, dando luogo ai modelli MSIR e MSEIR. Oppure si possono considerare modelli
stratificati in funzione dell’età (age-structured models), in cui la diffusione della malattia dipende
anche dall’età degli individui: in questo caso si ottengono equazioni integro-differenziali.

2 Sistemi di equazioni differenziali ordinarie del primo ordine

Definizione 2.1. Un sistema di equazioni differenziali ordinarie del primo ordine in forma normale è
dato da

¤u(𝑡) = F (u(𝑡), 𝑡)
dove u : 𝐼 → R𝑛 , 𝐼 intervallo aperto in R, F : R𝑛 × 𝐼 → R𝑛 . Se F non dipende esplicitamente da 𝑡 il
sistema si dice autonomo.
Si chiama problema ai valori iniziali il problema{

¤u(𝑡) = F (u(𝑡), 𝑡)
u(𝑡0) = u0

dove u0 ∈ R𝑛 e 𝑡0 ∈ 𝐼 . ★

Di solito si prende F regolare, ad esempio 𝐶1 (o almeno lipschitziana), in modo che valga il Teorema
di Cauchy di esistenza e unicità locale della soluzione del problema ai valori iniziali.
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Proposizione 2.2. Ogni problema ai valori iniziali su R𝑛 può essere scritto come problema autonomo
su R𝑛+1.

Dimostrazione. Sia v ∈ R𝑛+1, v := (u, 𝑢𝑛+1), e sia

G(v) := (F (u, 𝑢𝑛+1), 1) .

Consideriamo il problema ai valori iniziali autonomo{
¤v = G(v)
v(𝑡0) = (u0, 𝑡0).

Prendendo l’ultima componente dell’equazione si ha ¤𝑢𝑛+1 = 1 da cui, considerando anche la condizione
iniziale, 𝑢𝑛+1 = 𝑡 e quindi le prime 𝑛 componenti diventano{

¤u(𝑡) = F (u(𝑡), 𝑡)
u(𝑡0) = u0. □

Esempio 2.3. Per avere l’esistenza di soluzioni è sufficiente richiedere che F sia continua (Teorema
di Peano). Però se F è solo continua ci può essere molteplicità. Si consideri ad esempio il problema
autonomo unidimensionale {

¤𝑥 = 3 3√
𝑥2

𝑥 (0) = 0.

Chiaramente la soluzione nulla soddisfa il problema, ma separando le variabili si ha anche

1
3 ¤𝑥𝑥

−2/3 = 1 ⇒ 3√𝑥 = 𝑡 + 𝑐 ⇒ 𝑥 (𝑡) = 𝑡3

che è un’altra soluzione. Anzi, tutte le funzioni del tipo

𝑥 (𝑡) =
{

0 per 𝑡 ⩽ 𝑡0

(𝑡 − 𝑡0)3 per 𝑡 ⩾ 𝑡0

sono soluzioni per ogni 𝑡0 > 0 (pennello di Peano). ★

Esempio 2.4. Le soluzioni possono non essere globali: si consideri il problema unidimensionale{
¤𝑥 = 𝑥2

𝑥 (0) = 𝑥0 > 0.

Si ha
¤𝑥𝑥−2 = 1 ⇒ − 1

𝑥
= 𝑡 + 𝑐 ⇒ 𝑥 (𝑡) = 𝑥0

1 − 𝑥0𝑡

che è definita solo per 𝑡 < 1/𝑥0 e non c’è modo di estenderla oltre.
Se il secondo membro è sublineare in u, ovvero se

|F (u, 𝑡) | ⩽ 𝑎 + 𝑏 |u|

per qualche costante 𝑎, 𝑏, allora la soluzione è definita su tutto R. ★
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Osservazione 2.5. Il caso di sistemi del primo ordine non è restrittivo, infatti ogni sistema differen-
ziale di ordine 𝑘 può essere ricondotto ad uno del primo ordine: consideriamo il sistema

𝑑𝑘u

𝑑𝑡𝑘
(𝑡) = F

(
u(𝑡), 𝑑u

𝑑𝑡
(𝑡), 𝑑

2u

𝑑𝑡2 (𝑡), . . .
𝑑𝑘−1u

𝑑𝑡𝑘−1 (𝑡), 𝑡
)

dove F : R𝑛𝑘 × 𝐼 → R𝑛 . Introducendo la nuova variabile

R𝑛𝑘 ∋ v = (u, v2, . . . , v𝑘 )

e il sistema del primo ordine

¤v(𝑡) = (v2(𝑡), . . . , v𝑘 (𝑡),F (v(𝑡), 𝑡))

si ottiene 
¤u(𝑡) = v2(𝑡)
¤v2(𝑡) = v3(𝑡)
. . .

¤v𝑘 (𝑡) = F (v(𝑡), 𝑡) .
In particolare, l’ultima equazione corrisponde al sistema di partenza. ★

Il caso importante del problema ai valori iniziali per un sistema del secondo ordine
¥u(𝑡) = F (u(𝑡), ¤u(𝑡), 𝑡)
u(𝑡0) = u0

¤u(𝑡0) = u1

corrisponde quindi al problema del primo ordine
¤u(𝑡) = v2(𝑡)
¤v2(𝑡) = F (u(𝑡), v2(𝑡), 𝑡)
u(𝑡0) = u0

v2(𝑡0) = u1.

Definizione 2.6. Dato il problema ai valori iniziali{
¤u(𝑡) = F (u(𝑡), 𝑡)
u(𝑡0) = u0

con F regolare, denoteremo con
u(𝑡 ; 𝑡0,u0)

la sua (unica) soluzione calcolata all’istante 𝑡 . L’insieme

𝛾+(u0) := {u(𝑡 ; 𝑡0,u0) : 𝑡 ⩾ 𝑡0} ⊂ R𝑛

si dice orbita positiva uscente da u0, mentre l’insieme

𝛾 (u0) := {u(𝑡 ; 𝑡0,u0) : 𝑡 ∈ 𝐼 } ⊂ R𝑛
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si dice orbita completa uscente da u0. L’insieme

{(𝑡,u(𝑡 ; 𝑡0,u0)) : 𝑡 ∈ 𝐼 } ⊂ R𝑛+1

si dice traiettoria uscente da u0.
L’insieme R𝑛 è detto spazio delle fasi, l’insieme R𝑛+1 spazio esteso. ★

Esempio 2.7. Ad esempio, nel caso 𝑛 = 1 lo spazio delle fasi è R mentre lo spazio esteso è R2. Per il
sistema unidimensionale

¤𝑥 = 𝑥

si ha 𝑥 (𝑡 ; 0, 1) = 𝑒𝑡 e l’orbita positiva uscente da 1 è l’intervallo (1, +∞), l’orbita completa è l’intervallo
(0, +∞), mentre la traiettoria è la curva (𝑡, 𝑒𝑡 ), 𝑡 ∈ R. ★

Esempio 2.8. Per il sistema bidimensionale
¤𝑥 = −𝑦
¤𝑦 = 𝑥

𝑥 (0) = 1
𝑦 (0) = 0

la soluzione è (𝑥 (𝑡), 𝑦 (𝑡)) = (cos 𝑡, sin 𝑡), l’orbita è la circonferenza 𝑥2 +𝑦2 = 1 e la traiettoria è l’elica
cilindrica (𝑡, cos 𝑡, sin 𝑡). ★

3 Semigruppi e processi

Consideriamo il sistema autonomo
¤u = F (u) . (A)

Per i sistemi autonomi è sempre possibile “traslare l’origine del tempo”, ovvero se u : 𝐼 → R𝑛 è
soluzione di (A), allora anche v : (𝐼 − 𝜏) → R𝑛 definita da v(𝑡) := u(𝑡 + 𝜏) è ancora soluzione di (A).
Infatti si ha

¤v(𝑡) = ¤u(𝑡 + 𝜏) = F (u(𝑡 + 𝜏)) = F (v(𝑡)).
Quindi nei sistemi autonomi si può sempre scegliere 𝑡0 = 0, ovvero{

¤u = F (u)
u(𝑡0) = u0

⇐⇒
{
¤v = F (v)
v(0) = u0

con v(𝑡) = u(𝑡 + 𝑡0).
Definizione 3.1 (Semigruppo associato). Consideriamo il sistema autonomo (A). La famiglia di
funzioni {𝑆𝑡 }𝑡⩾0 definita da

𝑆𝑡 : R𝑛 → R𝑛

x ↦→ u(𝑡 ; 0,x)

si chiama semigruppo (continuo) associato al sistema. ★
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Quindi la funzione 𝑆𝑡 associa ad ogni “condizione iniziale” x il valore della soluzione all’istante 𝑡
uscente da 𝑥 . Si noti che un semigruppo è una famiglia di funzioni.

Esempio 3.2. Data l’equazione unidimensionale ¤𝑥 = 𝑥 , il suo semigruppo associato è

𝑆𝑡 : R→ R

𝑥 ↦→ 𝑒𝑡𝑥 . ★

Esempio 3.3. Il semigruppo associato all’equazione bidimensionale (oscillatore armonico){
¤𝑥 = −𝑦
¤𝑦 = 𝑥

è dato da

𝑆𝑡 : R2 → R2

(𝑥,𝑦) ↦→ (𝑥 cos 𝑡 − 𝑦 sin 𝑡, 𝑥 sin 𝑡 + 𝑦 cos 𝑡) =
[
cos 𝑡 − sin 𝑡
sin 𝑡 cos 𝑡

] [
𝑥
𝑦

]
. ★

Esercizio 3.4.

(1) Si trovi il semigruppo associato a ¤𝑥 = 1 + 𝑥2.

(2) Si trovi il semigruppo associato a {
¤𝑥 = −𝑥 − 3𝑦
¤𝑦 = 2𝑦

Teorema 3.5 (Proprietà dei semigruppi). Dato un semigruppo associato a un sistema autonomo,
per ogni 𝑡, 𝑠 ⩾ 0 si ha

(1) 𝑆0 = Id;

(2) 𝑆𝑡+𝑠 = 𝑆𝑡 ◦ 𝑆𝑠 .

Dimostrazione. La prima proprietà è ovvia.
Per la seconda: sia x ∈ R𝑛 e sia v(𝑡) := 𝑆𝑡+𝑠x = u(𝑡 + 𝑠; 0,x). Allora v è la soluzione di{

¤v = F (v)
v(0) = u(𝑠).

Ma poiché l’equazione differenziale non è cambiata, si ha

𝑆𝑡+𝑠x = v(𝑡) = 𝑆𝑡v(0) = 𝑆𝑡u(𝑠) = 𝑆𝑡𝑆𝑠x,

quindi 𝑆𝑡+𝑠 = 𝑆𝑡 ◦ 𝑆𝑠 . □

Definizione 3.6. Se le funzioni del semigruppo {𝑆𝑡 } sono invertibili, si dice che il semigruppo è
invertibile. Poniamo

𝑆−𝑡 := 𝑆−1
𝑡 . ★
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Teorema 3.7. Dato un semigruppo {𝑆𝑡 } invertibile, si ha

𝑆𝑡+𝑠 = 𝑆𝑡 ◦ 𝑆𝑠

per ogni 𝑠, 𝑡 ∈ R.

Dimostrazione. Vediamo il caso 𝑡 ⩽ 0, 𝑠 ⩾ 0, 𝑡 + 𝑠 ⩾ 0. Sia x ∈ R𝑛; dalle proprietà dei semigruppi si
ha

𝑆𝑠x = 𝑆−𝑡𝑆𝑡+𝑠x ⇒ 𝑆−1
−𝑡 𝑆𝑠x = 𝑆𝑡+𝑠x

da cui 𝑆𝑡 ◦ 𝑆𝑠 = 𝑆𝑡+𝑠 .
Vediamo ora il caso 𝑡 ⩽ 0, 𝑠 ⩾ 0, 𝑡 + 𝑠 ⩽ 0. Ponendo y = 𝑆−1

−𝑡x, si ha

𝑆−𝑡y = 𝑆−𝑡−𝑠𝑆𝑠y ⇒ x = 𝑆−𝑡−𝑠𝑆𝑠𝑆−1
−𝑡x

da cui
𝑆𝑡+𝑠 = 𝑆−1

−𝑡−𝑠 = 𝑆𝑠 ◦ 𝑆−1
−𝑡 = 𝑆𝑠 ◦ 𝑆𝑡 .

Per finire, vediamo il caso 𝑡 ⩽ 0, 𝑠 ⩽ 0, 𝑡 + 𝑠 ⩽ 0, che dà subito

𝑆−𝑠 ◦ 𝑆−𝑡 = 𝑆−𝑠−𝑡 ⇒ 𝑆𝑡+𝑠 = 𝑆−1
−𝑠−𝑡 = 𝑆

−1
−𝑡 ◦ 𝑆−1

−𝑠 = 𝑆𝑡 ◦ 𝑆𝑠 . □

Esempio 3.8. I semigruppi visti negli Esempi 3.2-3.3 sono invertibili e si ha

𝑆−𝑡𝑥 = 𝑒−𝑡𝑥

nel primo caso e

𝑆−𝑡 (𝑥,𝑦) =
[

cos 𝑡 sin 𝑡
− sin 𝑡 cos 𝑡

] [
𝑥
𝑦

]
nel secondo caso. ★

Definizione 3.9 (Semigruppo). Una famiglia di funzioni {𝑆𝑡 }𝑡 ∈R continue da R𝑛 a R𝑛 si dice
semigruppo (o sistema dinamico) se verifica

(1) 𝑆0 = Id;

(2) 𝑆𝑡+𝑠 = 𝑆𝑡 ◦ 𝑆𝑠 per ogni 𝑡, 𝑠 ∈ R. ★

Abbiamo visto che ad ogni sistema differenziale è associato un semigruppo. Sotto opportune regolarità
è vero anche il viceversa.

Proposizione 3.10. Dato un semigruppo {𝑆𝑡 }, se esiste ed è regolare la funzione

F (x) := 𝑑

𝑑𝑡
𝑆𝑡x

���
𝑡=0

allora {𝑆𝑡 } è il semigruppo associato al sistema ¤u = F (u).
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Dimostrazione. Per ognix ∈ R𝑛 definiamou(𝑡) := 𝑆𝑡 (x); allora dobbiamo verificare cheu è soluzione
del sistema ¤u = F (u).
Sapendo che

𝑆ℎ+𝑡x = 𝑆ℎ𝑆𝑡x = 𝑆ℎu(𝑡)
possiamo calcolare

¤u(𝑡) = 𝑑

𝑑𝑡
𝑆𝑡x = lim

ℎ→0

𝑆𝑡+ℎx − 𝑆𝑡x
ℎ

= lim
ℎ→0

(
𝑆ℎ − Id
ℎ

)
𝑆𝑡x =

𝑑

𝑑ℎ
𝑆ℎu(𝑡)

���
ℎ=0

= F (u(𝑡)) .
□

Passiamo ora ai sistemi differenziali non autonomi.

Definizione 3.11 (Processo associato). Dato un sistema differenziale ¤u(𝑡) = F (u(𝑡), 𝑡), la fami-
glia di funzioni {𝑈𝜏,𝑡 }𝜏,𝑡⩾0 data da

𝑈𝜏,𝑡 : R𝑛 → R𝑛

x ↦→ u(𝜏 + 𝑡 ;𝜏,x)

si chiama processo (continuo) associato al sistema. ★

Esempio 3.12. Il processo associato all’equazione differenziale unidimensionale

¤𝑥 = 2𝑡𝑥

è dato da
𝑈𝜏,𝑡𝑥0 = 𝑥0𝑒

𝑡 (𝑡+2𝜏 )
★

Teorema 3.13 (Proprietà dei processi). Dato un processo associato a un sistema differenziale, per
ogni 𝑠, 𝑡, 𝜏 ⩾ 0 si ha

(1) 𝑈𝜏,0 = Id;

(2) 𝑈𝜏,𝑡+𝑠 = 𝑈𝜏+𝑡,𝑠 ◦𝑈𝜏,𝑡 ;

(3) se il sistema è autonomo, allora𝑈𝜏,𝑡 non dipende da 𝜏 e𝑈𝑡 è il semigruppo associato al sistema.

Dimostrazione. La prima è facile.
Per la seconda: sia u(𝑡 ;𝜏,x) la soluzione del problema{

¤u(𝑡) = F (u(𝑡), 𝑡)
u(𝜏) = x.

Allora la quantità
𝑈𝜏+𝑡,𝑠𝑈𝜏,𝑡x = 𝑈𝜏+𝑡,𝑠u(𝜏 + 𝑡 ;𝜏,x)

è la soluzione al tempo 𝜏 + 𝑡 + 𝑠 del problema ai valori iniziali{
¤v = F (v, 𝑡)
v(𝜏 + 𝑡) = 𝑈𝜏,𝑡x = u(𝜏 + 𝑡 ;𝜏,x) .
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Ma la soluzione di questo problema ai valori iniziali è proprio u, quindi la quantità è proprio u
calcolato all’istante 𝜏 + 𝑡 + 𝑠 . Si ha allora

𝑈𝜏+𝑡,𝑠𝑈𝜏,𝑡x = 𝑈𝜏+𝑡,𝑠u(𝜏 + 𝑡 ;𝜏,x) = u(𝜏 + 𝑡 + 𝑠;𝜏,x) = 𝑈𝜏,𝑡+𝑠x.

Per la terza: se il sistema è autonomo poniamo

𝑈𝜏1,𝑡x = u(𝜏1 + 𝑡) dove u è soluzione di
{
¤u = F (u)
u(𝜏1) = x

𝑈𝜏2,𝑡x = v(𝜏2 + 𝑡) dove v è soluzione di
{
¤v = F (v)
v(𝜏2) = x.

Allora la funzione w(𝑡) := v(𝑡 + 𝜏2 − 𝜏1) è soluzione di{
¤w = F (w)
w(𝜏1) = v(𝜏2) = x

e quindi coincide con u. Per cui si ha

𝑈𝜏1,𝑡x = u(𝜏1 + 𝑡) = w(𝜏1 + 𝑡) = v(𝜏2 + 𝑡) = 𝑈𝜏2,𝑡x

e quindi𝑈𝜏,𝑡 non dipende da 𝜏 . □

4 Esistenza globale

Definizione 4.1. Siano F ,G di classe 𝐶1. I due sistemi differenziali autonomi

¤u = F (u), ¤u = G(u)

si dicono topologicamente equivalenti se esiste un omeomorfismo su R𝑛 che mappa le orbite del primo
in quelle del secondo, preservandone l’orientazione del tempo. ★

Teorema 4.2 (Esistenza globale). Se F ∈ 𝐶1(R𝑛 ;R𝑛), allora il problema autonomo ai valori iniziali{
¤u = F (u)

1+|F (u) |
u(0) = u0

ammette soluzione definita su tutto R per ogni u0 ∈ R𝑛 .

Inoltre, i sistemi differenziali

¤u =
F (u)

1 + |F (u) | , ¤u = F (u)

sono topologicamente equivalenti.

Per la dimostrazione si veda [Perko, pag. 184].
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Figura 4: Le traiettorie dell’Esempio 4.3.

Esempio 4.3. Abbiamo già visto che il sistema unidimensionale

¤𝑥 = 𝑥2

ha soluzione 𝑥 (𝑡) = 𝑥0/(1 − 𝑥0𝑡) per 𝑥 ≠ 0, che non è definita su tutto R. Se invece consideriamo il
sistema

¤𝑥 =
𝑥2

1 + 𝑥2

si ha la soluzione 𝑥 (𝑡) = 0 per 𝑥0 = 0 e

𝑥 (𝑡) = 𝑡 + 𝑥0
2 − 1

2𝑥0
+ 𝑥0

2|𝑥0 |

√︄
𝑡2 + 2

(
𝑥0 − 1

𝑥0

)
𝑡 +

(
𝑥0 + 1

𝑥0

)2

per 𝑥0 ≠ 0. Questa soluzione è definita su tutto R e le orbite sono omeomorfe a quelle di partenza. ★

5 Equilibrio e stabilità

Definizione 5.1. Una soluzione di equilibrio è una soluzione costante del sistema differenziale ¤u =
F (u, 𝑡), ovvero

u(𝑡) = ū per ogni 𝑡 ∈ 𝐼 . ★

Proposizione 5.2. Dato un sistema differenziale ¤u = F (u, 𝑡), una funzione costante u(𝑡) = ū è di
equilibrio se e solo se

F (ū, 𝑡) = 0 per ogni 𝑡 ∈ 𝐼 .

Dimostrazione. Immediata. □

In particolare, se il sistema è autonomo le soluzioni di equilibrio sono gli zeri di F .
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Esempio 5.3. Le funzioni costanti 𝑥 = 𝑘𝜋 , 𝑘 ∈ Z, sono soluzioni di equilibrio per l’equazione non
autonoma unidimensionale

¤𝑥 = 𝑡 sin𝑥 . ★

Esempio 5.4. Il sistema bidimensionale {
¤𝑥 = 𝑥𝑦 − 𝑦2

¤𝑦 = 𝑥3 − 𝑦

ha tre soluzioni di equilibrio: (0, 0), (1, 1), (−1,−1). ★

Si noti che le orbite delle soluzioni di equilibrio sono dei punti, mentre le traiettorie sono delle rette
parallele all’asse dei tempi.

Definizione 5.5. Una soluzione di equilibrio ū del sistema autonomo ¤u = F (u) si dice stabile
(secondo Ljapunov) se per ogni intorno 𝑉 di ū esiste un intorno 𝑈 di ū tale che per ogni u0 ∈ 𝑈 si
abbia

u(𝑡 ; 0,u0) ∈ 𝑉 per ogni 𝑡 ⩾ 0.

L’equilibrio si dice instabile se non è stabile. ★

Poiché R𝑛 è uno spazio normato e la topologia usata è quella indotta dalla norma euclidea, si dimostra
facilmente che una soluzione di equilibrio ū è stabile se e solo se

∀𝜀 > 0 ∃𝛿 > 0 : |u0 − ū| < 𝛿 ⇒ ∀𝑡 ⩾ 0 : |u(𝑡 ; 0,u0) − ū| < 𝜀.

Esempio 5.6. è facile dimostrare che l’origine è una soluzione di equilibrio stabile per l’oscillatore
armonico {

¤𝑥 = 𝑦

¤𝑦 = −𝑥 ★

Definizione 5.7. Si dice che una soluzione di equilibrio ū attrae puntualmente un suo intorno 𝑈 se
per ogni u0 ∈ 𝑈 si ha

lim
𝑡→+∞u(𝑡 ; 0,u0) = ū.

★

Definizione 5.8. Si dice che una soluzione di equilibrio ū è asintoticamente stabile se è stabile e se
attrae puntualmente un suo intorno.
Si dice che ū è globalmente asintoticamente stabile se è stabile e se attrae puntualmente R𝑛 , l’intero
spazio delle fasi.
Si dice che ū è stabile semplicemente se è stabile ma non lo è asintoticamente. ★

Il più grande insieme 𝑈 che è attratto da una posizione asintoticamente stabile ū è detto bacino
di attrazione di ū. Quindi una posizione globalmente asintoticamente stabile ha come bacino di
attrazione tutto lo spazio delle fasi.
Tra le soluzioni di equilibrio asintoticamente stabili ne esiste una classe speciale in cui la velocità di
convergenza è esponenziale, quindi è particolarmente veloce.

16



Definizione 5.9. Si dice che una soluzione di equilibrio ū è esponenzialmente stabile esistono un
suo intorno𝑈 e due costanti positive 𝛼, 𝜆 tali che per ogni u0 ∈ 𝑈 si abbia

|u(𝑡 ; 0,u0) − ū| ⩽ 𝛼𝑒−𝜆𝑡 |u0 − ū|.

Si dice che ū è globalmente esponenzialmente stabile se la proprietà precedente è vera per ogni
u0 ∈ R𝑛 . ★

Esempio 5.10. Nella Definizione 5.8 è importante richiedere che la soluzione sia stabile: ad esempio,
la soluzione (𝑟 = 1, 𝜗 = 0) del sistema in coordinate polari{

¤𝑟 = 𝑟 (1 − 𝑟 )
¤𝜗 = 𝑟 (1 − cos𝜗)

attrae puntualmente tutto R2 \ {0}, ma non è stabile. ★

Esempio 5.11. La soluzione nulla del sistema{
¤𝑥 = 𝑦 − 𝑥
¤𝑦 = −𝑥 − 𝑦

è globalmente esponenzialmente stabile. ★

Esempio 5.12. Tutte le soluzioni di equilibrio dello smorzatore lineare{
¤𝑥 = 𝑦

¤𝑦 = −𝜆2𝑦

sono stabili semplicemente. ★

6 Sistemi differenziali lineari

Un sistema differenziale lineare omogeneo è un sistema della forma

¤u(𝑡) = A(𝑡)u(𝑡) (3)

dove u(𝑡) ∈ R𝑛 e A(𝑡) è una matrice 𝑛 × 𝑛 che dipende con regolarità da 𝑡 . Nel caso autonomo, la
funzione A è costante e il sistema si dice a coefficienti costanti:

¤u = Au. (4)

I sistemi lineari sono caratterizzati dal fatto che la combinazione lineare di soluzioni è ancora soluzione
del sistema. Ci occuperemo d’ora in poi solo del caso autonomo (cioè a coefficienti costanti), di gran
lunga più semplice.
Se cerchiamo una soluzione esponenziale della forma

u(𝑡) = 𝑒𝜆𝑡p, 𝜆 ∈ R, p ∈ R𝑛, (5)
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otteniamo l’equazione
Ap = 𝜆p,

per cui (𝜆,p) deve essere una coppia autovalore/autovettore. Quindi, se la matrice A è diagonalizzabile,
essa ammette una base di autovettori ed è possibile trovare la più generale soluzione del sistema
come combinazione di esponenziali della forma (5).
Nel caso di matrice più generale, è utile introdurre il concetto di esponenziale di matrice. Denotiamo
conM(𝑛) l’insieme delle matrici quadrate di ordine 𝑛.

Definizione 6.1. L’esponenziale di una matrice quadrata 𝑆 ∈ M(𝑛) è definito da

𝑒S :=
∞∑︁
𝑘=0

S𝑘

𝑘!

(dalla disuguaglianza |S𝑘 | ⩽ |S|𝑘 è facile vedere che la serie è assolutamente convergente).(2) ★

Proposizione 6.2 (Proprietà dell’esponenziale di matrice). Per ogni S, T ∈ M(𝑛) valgono i se-
guenti fatti.

(1) L’esponenziale di S commuta con S.

(2) Se S, T commutano, allora
𝑒S+T = 𝑒S𝑒T

e quindi in particolare anche 𝑒S, 𝑒T commutano.

(3) La matrice 𝑒S è sempre invertibile e si ha (
𝑒S

)−1
= 𝑒−S.

(4) Se ST = −S, cioè se S è una matrice antisimmetrica, si ha che 𝑒S è ortogonale.

(5) Se S = diag(𝑠1, . . . , 𝑠𝑛) è diagonale, allora

𝑒S = diag(𝑒𝑠1, . . . , 𝑒𝑠𝑛 ) .

(6) Se P ∈ M(𝑛) è invertibile e T = P−1SP, allora

𝑒T = P−1𝑒SP.

Dimostrazione.

(1) è immediato dal fatto che S commuta con tutte le sue potenze.
(2)Denotiamo con |S| la norma euclidea o norma di Frobenius di S, definita da

|S|2 = S · S := tr(STS) =
𝑛∑︁

𝑖, 𝑗=1
𝑆2
𝑖 𝑗 .

Si veda anche la Definizione 18.13 più avanti.
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(2) Basta usare il prodotto secondo Cauchy delle due serie
∞∑︁
𝑘=0

S𝑘

𝑘! ,
∞∑︁
𝑘=0

T𝑘

𝑘! .

(3) Poiché S commuta con −S, si ha

I = 𝑒0 = 𝑒S−S = 𝑒S𝑒−S,

e dunque 𝑒−S è l’inversa di 𝑒S.
(4) Si verifica facilmente che la trasposta dell’esponenziale è l’esponenziale della trasposta, quindi(

𝑒S
)T

= 𝑒ST
= 𝑒−S =

(
𝑒S

)−1
.

(5) Si ha facilmente che
(diag(𝑠1, . . . , 𝑠𝑛))𝑘 = diag(𝑠𝑘1 , . . . , 𝑠𝑘𝑛),

quindi

∞∑︁
𝑘=0

(diag(𝑠1, . . . , 𝑠𝑛))𝑘
𝑘! =

∞∑︁
𝑘=0

diag(𝑠𝑘1 , . . . , 𝑠𝑘𝑛)
𝑘! = diag

( ∞∑︁
𝑘=0

𝑠𝑘1
𝑘! , . . . ,

∞∑︁
𝑘=0

𝑠𝑘𝑛
𝑘!

)
= diag(𝑒𝑠1, . . . , 𝑒𝑠𝑛 ) .

(6) Per induzione si vede facilmente che

(P−1SP)𝑘 = P−1S𝑘P,

e dunque
∞∑︁
𝑘=0

(P−1SP)𝑘
𝑘! = P−1

( ∞∑︁
𝑘=0

S𝑘

𝑘!

)
P = P−1𝑒SP.

□

Teorema 6.3. Il problema autonomo ai valori iniziali{
¤u = Au

u(0) = u0

ha soluzione globale data da
u(𝑡) = 𝑒𝑡Au0.

Dimostrazione. Usando il fatto che 𝑡A, ℎA commutano, si ha

𝑑

𝑑𝑡
𝑒𝑡A = lim

ℎ→0

𝑒 (𝑡+ℎ)A − 𝑒𝑡A

ℎ
= lim

ℎ→0

𝑒ℎA − I
ℎ

𝑒𝑡A = lim
ℎ→0

1
ℎ

∞∑︁
𝑘=1

A𝑘ℎ𝑘

𝑘! 𝑒𝑡A =
∞∑︁
𝑘=1

lim
ℎ→0

A𝑘ℎ𝑘−1

𝑘! 𝑒𝑡A = A𝑒𝑡A,

dove abbiamo potuto scambiare il limite con la serie grazie alla convergenza uniforme della serie.
Quindi

¤u(𝑡) = 𝑑

𝑑𝑡

(
𝑒𝑡Au0

)
=

(
𝑑

𝑑𝑡
𝑒𝑡A

)
u0 = A𝑒𝑡Au0 = Au(𝑡).

□
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Per chiudere la sezione, vediamo il caso di un sistema lineare non omogeneo.

Teorema 6.4. Sia ¤u(𝑡) = Au(𝑡) + f (𝑡) un sistema differenziale lineare a coefficienti costanti non
omogeneo, con f : R𝑛 → R𝑛 campo vettoriale continuo. Allora la soluzione del sistema con dato iniziale
u(0) = u0 è data da

u(𝑡) = 𝑒𝑡Au0 + 𝑒𝑡A
∫ 𝑡

0
𝑒−𝜏Af (𝜏) 𝑑𝜏 .

Dimostrazione. Si ha subito che u(0) = u0. Inoltre

¤u(𝑡) = A𝑒𝑡Au0 + A𝑒𝑡A
∫ 𝑡

0
𝑒−𝜏Af (𝜏) 𝑑𝜏 + 𝑒𝑡A𝑒−𝑡Af (𝑡) = Au(𝑡) + f (𝑡) .

□

7 Esponenziale delle matrici 2x2

Proposizione 7.1. Si ha:

A =

[
𝜆 𝑏
0 𝜆

]
⇒ 𝑒A = 𝑒𝜆

[
1 𝑏
0 1

]
,

A =

[
𝑎 −𝑏
𝑏 𝑎

]
⇒ 𝑒A = 𝑒𝑎

[
cos𝑏 − sin𝑏
sin𝑏 cos𝑏

]
.

Dimostrazione. Nel primo caso scriviamo A = 𝜆I + B, dove

B =

[
0 𝑏
0 0

]
.

La matrice B è nilpotente e si ha B2 = 0, quindi la serie dell’esponenziale di B contiene solo due
termini:

𝑒B = I + B.

Inoltre le matrici 𝜆I e B commutano banalmente, quindi

𝑒A = 𝑒𝜆I𝑒B = 𝑒𝜆 (I + B) = 𝑒𝜆
[
1 𝑏
0 1

]
.

Nel secondo caso, posto 𝜆 := 𝑎 + 𝑖𝑏, si dimostra per induzione che

A𝑘 =

[
Re(𝜆𝑘 ) − Im(𝜆𝑘 )
Im(𝜆𝑘 ) Re(𝜆𝑘 )

]
e dunque

𝑒A =
∞∑︁
𝑘=0

1
𝑘!

[
Re(𝜆𝑘 ) − Im(𝜆𝑘 )
Im(𝜆𝑘 ) Re(𝜆𝑘 )

]
=

[
Re(𝑒𝜆) − Im(𝑒𝜆)
Im(𝑒𝜆) Re(𝑒𝜆)

]
= 𝑒𝑎

[
cos𝑏 − sin𝑏
sin𝑏 cos𝑏

]
.

□

Vogliamo ora trovare l’esponenziale di A, una matrice 2 × 2. Si possono presentare tre casi:
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• La matrice 𝐴 è diagonalizzabile. In questo caso esiste una matrice invertibile P tale che

P−1AP =

[
𝜆 0
0 𝜇

]
e dunque

𝑒A = P
[
𝑒𝜆 0
0 𝑒𝜇

]
P−1.

• La matrice A ha un autovalore doppio non diagonalizzabile. In questo caso, per la forma
canonica di Jordan, esiste una matrice invertibile P tale che

P−1AP =

[
𝜆 1
0 𝜆

]
e dunque, per il lemma precedente,

𝑒A = P𝑒𝜆
[
1 1
0 1

]
P−1.

• La matrice A ha autovalori complessi coniugati 𝜆 = 𝑎±𝑖𝑏. Stavolta esiste una matrice invertibile
P tale che

P−1AP =

[
𝑎 −𝑏
𝑏 𝑎

]
e dunque, sempre per il lemma precedente,

𝑒A = P𝑒𝑎
[
cos𝑏 − sin𝑏
sin𝑏 cos𝑏

]
P−1.

Quindi possiamo scrivere la soluzione per un sistema differenziale autonomo lineare bidimensionale[ ¤𝑥
¤𝑦
]
= A

[
𝑥
𝑦

]
.

La soluzione si presenta nella forma [
𝑥 (𝑡)
𝑦 (𝑡)

]
= 𝑒𝑡A

[
𝑥0
𝑦0

]
dove 𝑒𝑡A è della forma

𝑒𝑡A = P
[
𝑒𝜆𝑡 0
0 𝑒𝜇𝑡

]
P−1 se A è diagonalizzabile

𝑒𝑡A = P𝑒𝜆𝑡
[
1 𝑡
0 1

]
P−1 se A ha una autovalore doppio non diagonalizzabile

𝑒𝑡A = P𝑒𝑎𝑡
[
cos𝑏𝑡 − sin𝑏𝑡
sin𝑏𝑡 cos𝑏𝑡

]
P−1 se A ha autovalori complessi coniugati

per opportune matrici invertibili P.
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Esercizio 7.2. Si mostri che le matrici esponenziali di

A =

[−1 −1
1 −1

]
, B =

[
3 1
1 3

]
, C =

[
1 3
3 1

]
sono, rispettivamente,

𝑒A =
1
𝑒

[
cos 1 − sin 1
sin 1 cos 1

]
, 𝑒B =

1
2

[
𝑒4 + 𝑒2 𝑒4 − 𝑒2

𝑒4 − 𝑒2 𝑒4 + 𝑒2

]
, 𝑒C 1

2𝑒2

[
𝑒6 + 1 𝑒6 − 1
𝑒6 − 1 𝑒6 + 1

]
.

Svolgimento. La matrice A si riconduce direttamente al secondo caso della Proposizione 7.1 con
𝑎 = −1 e 𝑏 = 1.
La matrice B è simmetrica e dunque diagonalizzabile. Ha autovalori 𝜆1 = 4 e 𝜆2 = 2, per trovare la
matrice P basta prendere le componenti di una base di autovettori e metterle in colonna: poiché gli
autovettori sono (1, 1) per 𝜆1 e (1,−1) per 𝜆2, si ha

P =

[
1 1
1 −1

]
, P−1 =

1
2

[
1 1
1 −1

]
e dunque

𝑒A = PAP−1 =

[
1 1
1 −1

] [
𝑒4 0
0 𝑒2

]
1
2

[
1 1
1 −1

]
.

Per la matrice C si procede allo stesso modo: anch’essa è simmetrica e quindi diagonalizzabile, gli
autovalori sono 𝜆1 = −2, 𝜆2 = 4 e gli autovettori rispettivamente (1,−1) e (1, 1). ♦

8 Sistemi lineari 2x2

Supponiamo che det A ≠ 0. Se gli autovalori della matrice A sono reali e distinti, le soluzioni del
sistema ¤u = Au sono della forma [

𝑥 (𝑡)
𝑦 (𝑡)

]
= P

[
𝑒𝜆𝑡 0
0 𝑒𝜇𝑡

]
P−1

[
𝑥0
𝑦0

]
.

In particolare:

• se 𝜆, 𝜇 < 0 si parla di nodo stabile;

• se 𝜆, 𝜇 > 0 si parla di nodo instabile;

• se 𝜆 > 0, 𝜇 < 0 si parla di sella.

Nella Figura 5 vediamo una rappresentazione del diagramma di fase in questi casi.
Se invece gli autovalori sono reali e coincidenti, o la matrice è un multiplo dell’identità oppure non è
diagonalizzabile. In ogni caso si parla ancora di nodo, stabile o instabile a seconda del segno dell’unico
autovalore.
Se infine gli autovalori sono complessi coniugati, la soluzione è della forma[

𝑥 (𝑡)
𝑦 (𝑡)

]
= P𝑒𝑎𝑡

[
cos𝑏𝑡 − sin𝑏𝑡
sin𝑏𝑡 cos𝑏𝑡

]
P−1

[
𝑥0
𝑦0

]
.
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Figura 5: Nodi e selle.

Figura 6: Fuochi e centri.
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Figura 7: A sinistra il caso in cui un solo autovalore è nullo, a destra quello in cui entrambi sono nulli
(ma la matrice non è nulla).

Se 𝑎 ≠ 0 si parla di fuoco, stabile se 𝑎 < 0 e instabile se 𝑎 > 0, mentre se 𝑎 = 0 si parla di centro. In
Figura 6 vediamo una rappresentazione del diagramma di fase in questi casi.
Se invece A è singolare, e dunque un autovalore è nullo, allora si ha:

• se l’altro autovalore non è nullo tutte le orbite sono semirette parallele, tranne una retta di
punti di equilibrio;

• se l’altro autovalore è pure nullo e la matrice non è diagonalizzabile, allora tutte le orbite sono
rette parallele, tranne una retta di punti di equilibrio;

• se la matrice è nulla, allora tutte le orbite sono punti (equilibrio indifferente).

Si dimostra facilmente il seguente teorema, che riassume quanto detto finora. Si veda anche la
Figura 8.

Teorema 8.1 (tau-delta). Sia A una matrice 2𝑥2, con traccia 𝜏 e determinante 𝛿 . Consideriamo il
sistema differenziale ¤u = Au. Allora si ha:

(1) se 𝛿 = 0, il sistema è degenere e le orbite sono tutte semirette, rette o punti;

(2) se 𝛿 < 0 si ha una sella;

(3) se 𝛿 > 0 e 𝜏2 ⩾ 4𝛿 si ha un nodo, stabile se 𝜏 < 0 e instabile se 𝜏 > 0;

(4) se 𝛿 > 0 e 𝜏2 < 4𝛿 si ha un fuoco, stabile se 𝜏 < 0 e instabile se 𝜏 > 0;

(5) se 𝛿 > 0 e 𝜏 = 0 si ha un centro.

9 Stabilità dei sistemi lineari

La stabilità delle posizioni di equilibrio dei sistemi lineari è completamente determinata dagli
autovalori della matrice del sistema, come spiegato nel teorema seguente.

Teorema 9.1. Sia A la matrice 𝑛 × 𝑛 di un sistema differenziale lineare e siano 𝜆1, . . . 𝜆𝑘 ∈ C, 𝑘 ⩽ 𝑛, i
suoi autovalori.
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Figura 8: Il piano 𝜏 − 𝛿 .

(1) Se Re 𝜆𝑖 < 0 per ogni 𝑖 , allora 0 è globalmente esponenzialmente stabile.

(2) Se Re 𝜆𝑖 > 0 per qualche 𝑖 , allora 0 è instabile.

(3) Se Re 𝜆𝑖 ⩽ 0 per ogni 𝑖 ma non siamo nel primo caso, allora:

(a) se per tutti gli autovalori 𝜆 𝑗 con Re 𝜆 𝑗 = 0 la molteplicità algebrica e geometrica coincidono,
allora 0 è stabile semplicemente;

(b) se per almeno un autovalore 𝜆 𝑗 con Re 𝜆 𝑗 = 0 le molteplicità non coincidono, allora 0 è
instabile.

(4) Se ci sono infinite posizioni di equilibrio, esse hanno tutte la stessa stabilità di 0 (in questo caso ci
sono autovalori nulli, quindi si ricade necessariamente nel terzo punto).

Dimostrazione. Si deve ridurre in forma canonica di Jordan la matrice A, per poterne calcolare la
matrice esponenziale. Consideriamo il caso di un autovalore 𝜆𝑖 reale; allora il corrispondente blocco
di Jordan è della forma 

𝜆𝑖 1 0 · · · 0

0 . . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 · · · · · · 0 𝜆𝑖


e la sua dimensione è uno più la differenza tra molteplicità algebrica e geometrica. Quindi il cor-
rispondente blocco della matrice esponenziale contiene termini della forma 𝑡𝑘𝑒𝜆𝑖𝑡 , dove il termine
polinomiale non è presente se il blocco di Jordan ha dimensione 1 (e quindi le due molteplicità
coincidono). In ogni caso, se 𝜆𝑖 < 0 tali termini sono limitati e vanno a 0 esponenzialmente, mentre
se 𝜆𝑖 > 0 tali termini divergono.
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Nel caso di autovalori complessi coniugati 𝜆 = 𝛼 + 𝑖𝛽 , si può introdurre il blocco di Jordan reale,

𝐷 𝐼2 0 · · · 0

0 . . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 𝐼2
0 · · · · · · 0 𝐷


, 𝐷 =

[
𝛼 −𝛽
𝛽 𝛼

]
, 𝐼2 =

[
1 0
0 1

]
,

la cui dimensione è 2(1 +𝑚𝑎 −𝑚𝑔). Il corrispondente blocco della matrice esponenziale contiene
termini della forma

𝑡𝑘𝑒𝛼𝑡 (cos 𝛽𝑡 + 𝑖 sin 𝛽𝑡)
con 𝑘 ⩽ 𝑚𝑎 − 𝑚𝑔. Quindi se 𝑚𝑎 = 𝑚𝑔 abbiamo termini limitati che danno l’origine stabile
semplicemente, mentre se𝑚𝑎 > 𝑚𝑔 abbiamo termini polinomiali che divergono.
Nel caso di più soluzioni di equilibrio, sia ū un’altra soluzione di equilibrio e facciamo il cambio di
variabili v(𝑡) = u(𝑡) − ū. Allora si ha che v è soluzione se e solo se u è soluzione, infatti

Av(𝑡) = A(u(𝑡) − ū) = Au(𝑡) = ¤u(𝑡) = ¤v(𝑡),

quindi la soluzione di equilibrio ū corrisponde alla soluzione di equilibrio v̄ = 0 dello stesso sistema
differenziale, e quindi ha la stessa stabilità. □

Esempio 9.2. La posizione nulla del sistema
¤𝑥 = 𝑥 + 𝑧
¤𝑦 = −𝑦
¤𝑧 = 𝑦 + 𝑧

è instabile, in quanto gli autovalori della matrice sono 𝜆1 = −1, 𝜆2,3 = 1. ★

Esempio 9.3. Tutte le posizioni del sistema
¤𝑥 = 𝑥 + 3𝑦 + 𝑧
¤𝑦 = −2𝑦 + 𝑧
¤𝑧 = −𝑥 − 𝑦 − 2𝑧

sono stabili, in quanto gli autovalori della matrice sono 𝜆1 = −2, 𝜆2 = −1, 𝜆3 = 0. ★

Esempio 9.4. La posizione nulla del sistema
¤𝑥 = 𝑦

¤𝑦 = −𝑥
¤𝑧 = 𝑤
¤𝑤 = −𝑧

è stabile semplicemente, in quanto gli autovalori della matrice sono 𝜆 = ±𝑖 con molteplicità 2, ma la
matrice ha i blocchi di Jordan reali di dimensione 2. ★
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Esempio 9.5. La posizione nulla del sistema
¤𝑥 = 𝑦

¤𝑦 = 𝑧

¤𝑧 = 𝑤
¤𝑤 = −𝑥 − 2𝑧

è instabile, in quanto gli autovalori della matrice sono 𝜆 = ±𝑖 con molteplicità 2, ma la matrice ha un
solo blocco di Jordan reale di dimensione 4. ★

Esercizio 9.6. Si studino le stabilità delle posizioni di equilibrio del sistema{
¤𝑥 = 𝑦

¤𝑦 = −𝜔2𝑥 − 2𝑝𝑦

al variare di 𝜔, 𝑝 . Si dimostri che:

• per 𝑝 > 0 c’è stabilità asintotica esponenziale globale (oscillatore armonico smorzato);

• per 𝑝 < 0 c’è instabilità;

• per 𝑝 = 0 e 𝜔 ≠ 0 c’è stabilità semplice;

• per 𝑝 = 0, 𝜔 = 0 c’è instabilità.

Per la stabilità nei sistemi lineari quindi è importante sapere se il polinomio caratteristico della
matrice del sistema ha tutte le soluzioni con parte reale strettamente negativa. Tali polinomi si dicono
stabili. Si verifica facilmente la seguente proprietà:

Proposizione 9.7. Se un polinomio è stabile, allora tutti i suoi coefficienti hanno lo stesso segno.

Si noti che la proposizione precedente fornisce soltanto una condizione necessaria per la stabilità. Un
criterio completo per verificare se un polinomio è stabile è il seguente, che non dimostriamo.

Teorema 9.8 (Criterio di Routh-Hurwitz). Un polinomio

𝑎0𝜆
𝑛 + 𝑎1𝜆

𝑛−1 + · · · + 𝑎𝑛−1𝜆 + 𝑎𝑛, 𝑎0 > 0

è stabile se e solo se sono strettamente positivi tutti i minori di nord-ovest della matrice 𝑛 × 𝑛

𝐻𝑖 𝑗 = 𝑎2𝑗−𝑖 , 𝑎𝑘 = 0 per 𝑘 < 0 o 𝑘 > 𝑛,

detta matrice di Hurwitz.

Ad esempio, il polinomio 𝜆3 + 3𝜆2 + 2𝜆 + 1 ha la matrice di Hurwitz
3 1 0
1 2 0
0 3 1


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e i minori di nord-ovest valgono Δ1 = 3, Δ2 = 5, Δ3 = 5, quindi il polinomio ha tutte radici con parte
reale strettamente negativa. Al contrario, il polinomio 𝜆3 + 3𝜆2 + 2𝜆 + 7 ha la matrice di Hurwitz

3 7 0
1 2 0
0 3 7


e i minori di nord-ovest valgono Δ1 = 3, Δ2 = −1, Δ3 = −7, quindi il polinomio non è stabile.

Osservazione 9.9 (Criterio di Liénard-Chipart). Esiste una versione un po’ più semplice del cri-
terio precedente, in cui basta calcolare solo alcuni minori. Infatti, si può dimostrare che, se 𝑎0 > 0, il
polinomio è stabile se e solo se

(1) 𝑎𝑖 > 0 per ogni 𝑖 = 1, . . . 𝑛;

(2) Δ𝑛−1 > 0, Δ𝑛−3 > 0, . . . , dove Δ𝑘 è il minore di nord-ovest di ordine 𝑘 della matrice di Hurwitz.

Quindi ad esempio, posto che tutti i coefficienti siano positivi, basta verificare:

• nel caso 𝑛 = 3 che Δ2 > 0;

• nel caso 𝑛 = 4 che Δ3 > 0;

• nel caso 𝑛 = 5 che Δ4 > 0, Δ2 > 0;

• nel caso 𝑛 = 6 che Δ5 > 0, Δ3 > 0.

Si veda [Gantmacher, pag. 199]. ★

Esempio 9.10. Si confrontino i due sistemi lineari
¤𝑥 = −𝑥 + 𝑦 + 𝑧
¤𝑦 = −2𝑥 − 𝑦 + 2𝑧
¤𝑧 = 2𝑦 − 2𝑧

e


¤𝑥 = −𝑥 + 𝑦 + 3𝑧
¤𝑦 = −2𝑥 − 𝑦 + 2𝑧
¤𝑧 = 2𝑦 − 2𝑧,

che differiscono solo per un coefficiente nella prima equazione. ★

Un modo più completo, in cui si hanno informazioni sia sulle parti reali positive che su quelle negative,
è quello di costruire la tabella di Routh:

𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3 · · ·
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3 · · ·
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3 · · ·
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3 · · ·
...

...
...

...
. . .

fatta da 𝑛 + 1 righe, dove nella prima riga mettiamo i coefficienti delle potenze pari decrescenti del
polinomio e nella seconda riga quelli delle potenze dispari decrescenti:

𝑎0, 𝑗 := 𝑎2𝑗 , 𝑎1, 𝑗 := 𝑎2𝑗+1.
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Le righe successive sono ottenute facendo l’operazione

[𝑎𝑖,0, 𝑎𝑖,1, 𝑎𝑖,2, . . . ] = [𝑎𝑖−2,1, 𝑎𝑖−2,2, 𝑎𝑖−2,3, . . . ] −
𝑎𝑖−2,0
𝑎𝑖−1,0

[𝑎𝑖−1,1, 𝑎𝑖−1,2, 𝑎𝑖−1,3, . . . ] 𝑖 ⩾ 2

che può anche essere scritta come

𝑎𝑖, 𝑗 =
𝑎𝑖−1,0 · 𝑎𝑖−2, 𝑗+1 − 𝑎𝑖−2,0 · 𝑎𝑖−1, 𝑗+1

𝑎𝑖−1,0
, 𝑖 ⩾ 2.

Poi si guarda la prima colonna: ad ogni variazione di segno corrisponde una soluzione con parte
reale positiva, ad ogni permanenza una soluzione con parte reale negativa (se compaiono degli zeri
nella prima colonna, il metodo va raffinato: ad esempio si può provare a moltiplicare il polinomio per
(𝑥 + 𝑘) per qualche 𝑘 fissato, sperando di eliminare gli zeri).
Riprendendo l’esempio precedente del polinomio 𝜆3 + 3𝜆2 + 2𝜆 + 1, la tabella di Routh è

1 2 0
3 1 0

5/3 0 0
1 0 0

ed essendo tutte permanenze, il polinomio è stabile.
Facendo un altro esempio: il polinomio 𝑥4 + 2𝑥3 + 3𝑥2 + 2𝑥 + 1 (che è il quadrato di 𝑥2 + 𝑥 + 1) ha la
tabella di Routh

1 3 1 0
2 2 0 0
2 1 0 0
1 0 0 0
1 0 0 0

e quindi è stabile. In questo caso la matrice di Hurwitz è
2 2 0 0
1 3 1 0
0 2 2 0
0 1 3 1

 .
10 I due metodi di Ljapunov

Ora vediamo due metodi per studiare la stabilità di un sistema autonomo non lineare. Il primo si
chiama metodo di linearizzazione.

Teorema 10.1. Sia ¤u = F (u) un sistema differenziale autonomo con F ∈ 𝐶1 e sia ū una sua soluzione
di equilibrio. Poniamo

A = 𝐷F (ū),
detta matrice del sistema linearizzato attorno a ū.
Se tutti gli autovalori di A hanno parte reale strettamente negativa, allora ū è esponenzialmente stabile.
Se invece esiste un autovalore di A con parte reale strettamente positiva, allora ū è instabile.
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Dimostrazione. La dimostrazione userà dei fatti di Algebra Lineare che non dimostreremo.
Lo sviluppo di Taylor con resto di Peano di F attorno a ū si scrive

F (ū + v) = Av +R(v), lim
v→0

R(v)
|v | = 0.

Quindi, ponendo v(𝑡) = u(𝑡) − ū si ottiene il sistema differenziale

¤v(𝑡) = Av(𝑡) +R(v) (6)

che ha 0 come posizione di equilibrio. Chiaramente la stabilità di ū nel sistema iniziale corrisponde
alla stabilità di 0 in (6).
Supponiamo ora che tutti gli autovalori di A abbiano parte reale strettamente negativa; allora esiste
un prodotto scalare su R𝑛 per cui esiste 𝑐 > 0 tale che

⟨v,Av⟩ ⩽ −𝑐 ⟨v, v⟩ =: −𝑐 ∥v∥

per ogni v ∈ R𝑛 . Questa proprietà si dimostra facilmente per diagonalizzazione nel caso di A
simmetrica col prodotto scalare canonico, mentre il caso generale è un po’ più complicato.(3) Sia poi
𝑈 un intorno di 0 tale che ∥R(v)∥ ⩽ 𝑐

2 ∥v∥ per ogni v ∈ 𝑈 .
Ora per ogni v0 ∈ 𝑈 studiamo come varia nel tempo la distanza di v(𝑡 ; 0, v0), soluzione di (6),
dall’equilibrio 0:

1
2
𝑑

𝑑𝑡
∥v(𝑡)∥2 = ⟨v(𝑡), ¤v(𝑡)⟩ = ⟨v(𝑡),Av(𝑡) +R(v(𝑡))⟩ ⩽ −𝑐 ∥v(𝑡)∥2 + ∥R(v(𝑡))∥∥v(𝑡)∥.

Fintantoché v(𝑡) ∈ 𝑈 , si ha ∥R(v(𝑡))∥ ⩽ 𝑐
2 ∥v(𝑡)∥ e dunque

1
2
𝑑

𝑑𝑡
∥v(𝑡)∥2 ⩽ −𝑐2 ∥v(𝑡)∥

2,

da cui segue
∥v(𝑡)∥2 ⩽ ∥v0∥2𝑒−𝑐𝑡 .

Quindi si conclude che v(𝑡) non può abbandonare𝑈 e c’è stabilità esponenziale.
Per la seconda parte della dimostrazione, presentiamo quella di [HS, pag. 187]. Supponiamo che
esista almeno un autovalore di A con parte reale strettamente positiva: allora possiamo effettuare un
cambio di variabili lineare v = Pw per cui A si presenta in forma diagonale a blocchi[

A+ 0
0 A−

]
(3)Nella forma canonica di Jordan, gli elementi 1 sopra la diagonale possono essere resi piccoli a piacere, a patto di

scegliere opportunamente la matrice di passaggio P. Ad esempio, si può verificare che

P =

[
1 1
0 𝜀

]
⇒ P−1

[
𝜆 1
0 𝜆

]
P =

[
𝜆 𝜀
0 𝜆

]
.

Se ora P è la matrice di passaggio alla forma canonica di Jordan J = P−1AP, poniamo ⟨v,w⟩ := P−1v · P−1w, da cui

⟨v,Av⟩ = P−1v · P−1Av = w · Jw ⩽ −𝑐w ·w = −𝑐 ⟨v, v⟩,
dove abbiamo posto v = Pw.
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con 𝑛 = ℎ +𝑘 , A+ matrice ℎ ×ℎ con autovalori a parte reale positiva e A− matrice 𝑘 ×𝑘 con autovalori
a parte reale nulla o negativa(4) (nel caso di matrice simmetrica, A+ è la matrice che ha sulla diagonale
gli autovalori strettamente positivi e A− quella con gli autovalori minori o uguali a zero). Inoltre, se
𝑎 > 0 è più grande del minimo delle parti reali degli autovalori, allora su Rℎ si ha(5)

∀p ∈ Rℎ : ⟨p,A+p⟩+ ⩾ 𝑎 |p|2+

e per ogni 𝑏 > 0 su R𝑘 si ha

∀m ∈ R𝑘 : ⟨m,A−m⟩− ⩽ 𝑏 |m|2−,

dove abbiamo denotato con | · |+ la norma indotta su Rℎ e con | · |− la norma indotta su R𝑘 .
Considereremo R𝑛 dotato della norma

| (p,m) | =
√︃
|p|2+ + |m|2−

e del prodotto scalare associato.
Sia 0 < 𝜀 < 𝑎−𝑏

2
√

2 e consideriamo il sistema (6) e un intorno limitato𝑈 di 0 per cui |R(v) | ⩽ 𝜀 |v | per
ogni v ∈ 𝑈 . Sia poi 𝐾 il cono troncato dato da

𝐾 = 𝑈 ∩ {v = (p,m) : |p|2+ > |m|2−}.

Notiamo che per ogni v = (p,m) ∈ 𝐾 si ha

|R(v) |2 ⩽ 𝜀2 |v |2 = 𝜀2( |p|2+ + |m|2−) ⩽ 2𝜀2 |p|2+ ⇒ |R(v) | ⩽
√

2𝜀 |p|+. (7)

Consideriamo una condizione iniziale v0 ∈ 𝐾 . Poniamo v(𝑡) = (p(𝑡),m(𝑡)); fintantoché la soluzione
v(𝑡) sta in 𝐾 si ha, sostituendo nel sistema e moltiplicando per (p, 0) e per (0,m):

1
2
𝑑

𝑑𝑡
|p(𝑡) |2+ ⩾ 𝑎 |p|2+ + (p, 0) ·R(v) ⩾ 𝑎 |p|2+ − |p|+ |R(v) | ⩾ 𝑎 |p|2+ −

√
2𝜀 |p|2+,

1
2
𝑑

𝑑𝑡
|m(𝑡) |2− ⩽ 𝑏 |m|2− + (0,m) ·R(v) ⩽ 𝑏 |m|2− + |m|− |R(v) | ⩽ 𝑏 |p|2+ +

√
2𝜀 |p|2+.

Dalla prima disuguaglianza segue che |p(𝑡) |+ cresce esponenzialmente, e quindi v(𝑡) deve uscire da
𝐾 in un tempo finito. Ma la funzione

𝑔(𝑡) := 1
2 ( |p(𝑡) |

2
+ − |m(𝑡) |2−)

è tale che ¤𝑔(𝑡) ⩾ (𝑎 − 𝑏 − 2
√

2𝜀) |p|2+, quindi è strettamente crescente; inoltre 𝑔 deve annullarsi sulla
superficie laterale del cono, per cui w(𝑡) non può abbandonare il cono dalla superficie laterale. Ne
segue che w(𝑡) deve abbandonare𝑈 , quindi la posizione è instabile. □

(4)Ad esempio, se P è la matrice di passaggio alla forma canonica di Jordan J = P−1AP, possiamo porre v = Pw, da cui

¤v = P ¤w, 𝜕F

𝜕w
(0) = AP ⇒ ¤w = P−1APw +R(w) = Jw +R(w) .

(5)Si veda la nota a pag. 29
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Una posizione di equilibrio tale che tutti gli autovalori della matrice del sistema linearizzato siano
a parte reale non nulla si dice iperbolica. Il teorema precedente dice in particolare che le posizioni
di equilibrio iperboliche di un sistema non lineare si comportano come quelle di un sistema lineare
e o sono esponenzialmente stabili oppure sono instabili. In realtà esiste un importante risultato, il
Teorema di Hartman-Grobman, che dice che non solo una posizione di equilibrio iperbolica di un
sistema non lineare ha la stessa stabilità di quella del sistema linearizzato, ma addirittura i due sistemi,
non lineare e linearizzato, sono topologicamente equivalenti in un intorno della posizione di equilibrio
(si veda [Perko, pag. 119]). Quindi in particolare nel caso di dimensione due le posizioni di equilibrio
iperboliche si comportano localmente come fuochi, nodi o selle.
Visto che nel metodo di linearizzazione bisogna capire il segno della parte reale degli autovalori,
anche in questo caso sarà utile il criterio di Routh-Hurwitz 9.8.
Ora vediamo il cosiddetto metodo diretto di Ljapunov, che serve soprattutto per i casi in cui ci siano
autovalori a parte reale nulla.

Definizione 10.2. Sia ū una posizione di equilibrio per il sistema autonomo ¤u = F (u). Una funzione
𝑊 : 𝑈 → R, definita su un intorno𝑈 di ū è detta funzione di Ljapunov relativa a ū se:

(1) 𝑊 è di classe 𝐶1;

(2) 𝑊 ha un minimo assoluto stretto in ū;

(3) si ha
∀x ∈ 𝑈 : ¤𝑊 (x) := 𝜕𝑊

𝜕x
(x) · F (x) ⩽ 0,

★

Osservazione 10.3. La definizione può essere leggermente generalizzata richiedendo che la funzione
𝑊 sia solo continua e che

(3’) se u(𝑡) è una soluzione del sistema uscente da un punto di 𝑈 , la funzione composta {𝑡 ↦→
𝑊 (u(𝑡))} è non crescente in 𝑡 per ogni 𝑡 ⩾ 0. ★

L’importanza della funzione di Ljapunov sta nel seguente teorema di stabilità.

Teorema 10.4. Sia ū una posizione di equilibrio per il sistema autonomo ¤u = F (u). Se esiste una
funzione di Ljapunov relativa a ū, allora ū è stabile.

Dimostrazione. Poiché possiamo sommare una costante arbitraria a𝑊 , possiamo supporre che𝑊 ⩾ 0
e che𝑊 (x) = 0 se e solo se 𝑥 = ū.
Sia 𝜀 > 0 tale che

𝐵𝜀 (ū) = {x ∈ R𝑛 : |x − ū| ⩽ 𝜀} ⊆ 𝑈 .
Poiché ū ∉ 𝜕𝐵𝜀 (ū), si ha che𝑊 è strettamente positiva su 𝜕𝐵𝜀 (ū), che è un compatto. Quindi, per la
continuità di𝑊 e il Teorema di Weierstrass, si ha

𝑚𝜀 := min
𝜕𝐵𝜀 (ū)

𝑊 > 0.

Sia ora 𝑈𝜀 = {𝑥 ∈ 𝑈 : 𝑊 (x) < 𝑚𝜀}; si ha che 𝑈𝜀 è un intorno di ū contenuto in 𝑈 , quindi esiste
𝛿 > 0 tale che 𝐵𝛿 (ū) ⊆ 𝑈𝜀 . Dalla terza condizione, per ogni soluzione u(𝑡) uscente da 𝐵𝛿 (ū) si ha
che la funzione

𝑡 ↦→𝑊 (u(𝑡))
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ha derivata negativa, cioè è non crescente, quindi𝑊 (u(𝑡)) < 𝑚𝜀 e u(𝑡) non può uscire da 𝐵𝜀 (ū) (per
assurdo: se esiste un istante 𝑡 tale che u(𝑡) ∉ 𝐵𝜀 (ū), allora per continuità esiste un istante 𝑡∗ tale che
u(𝑡∗) ∈ 𝜕𝐵𝜀 (ū), da cui𝑊 (u(𝑡∗)) ⩾ 𝑚𝜀 , che è una contraddizione). □

Esempio 10.5. Consideriamo il sistema del pendolo semplice{
¤𝑥 = 𝑦

¤𝑦 = −𝜔2 sin𝑥

che ha le posizioni di equilibrio (𝑘𝜋, 0). La matrice del sistema linearizzato attorno alle posizioni
((2𝑘 + 1)𝜋, 0) è [

0 1
𝜔2 0

]
che ha autovalori reali e discordi, quindi le posizioni sono instabili (selle).
Se linearizziamo attorno a (2𝑘𝜋, 0) invece otteniamo[

0 1
−𝜔2 0

]
che ha solo autovalori con parte reale nulla, quindi il metodo di linearizzazione fallisce.
Consideriamo allora (0, 0) e il suo intorno𝑈 = (−𝜋, 𝜋) × R; la funzione

𝑊 (𝑥,𝑦) := −𝜔2 cos𝑥 + 𝑦
2

2
è funzione di Ljapunov, infatti:

(1) 𝑊 è 𝐶1;

(2) si verifica che𝑊 ha un minimo stretto in (0, 0);
(3) ¤𝑊 (𝑥,𝑦) = 𝜕𝑊

𝜕x · (𝑦,−𝜔2 sin𝑥) = (𝜔2 sin𝑥,𝑦) · (𝑦,−𝜔2 sin𝑥) = 0. ★

Quindi (0, 0) è stabile, analogamente a tutte le posizioni del tipo (2𝑘𝜋, 0).
Inoltre, avendo trovato una funzione costante sulle traiettorie, ed essendo in dimensione due, possiamo
anche disegnare il ritratto di fase per questo sistema: basta rappresentare le curve di livello della
funzione𝑊 .

Ora vediamo un metodo per verificare la stabilità asintotica. Premettiamo un lemma.

Lemma 10.6. Consideriamo un sistema autonomo ¤u = F (u) e sia𝑊 : R𝑛 → R una funzione continua
tale che

𝑡 ↦→𝑊 (u(𝑡 ; 0,u0))
sia strettamente decrescente per ogni u0 non di equilibrio.

Allora i punti limite delle traiettorie u(𝑡 ; 0,u0), ovvero i punti y ∈ R𝑛 tali che esiste una successione
𝑡ℎ → +∞ con

lim
ℎ

u(𝑡ℎ ; 0,u0) = y,

sono di equilibrio per il sistema.
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Figura 9: Le curve di livello della funzione𝑊 (𝑥,𝑦) := 1 − cos𝑥 + 𝑦2

2 .

Dimostrazione. Dalla stretta decrescenza di𝑊 si ha

∀𝑡 > 0 :𝑊 (u(𝑡 ; 0,u0) >𝑊 (y) . (8)

Per assurdo sia y non di equilibrio e consideriamo il prolungamento della soluzione u(𝑠; 0,y).
Per 𝑠 > 0 fissato, dalla dipendenza continua dai dati iniziali e dalla continuità di𝑊 segue che la
funzione

x ↦→𝑊 (u(𝑠; 0,x)) −𝑊 (y)
è continua; inoltre essendo𝑊 strettamente decrescente sulle traiettorie non di equilibrio, si ha
𝑊 (u(𝑠 ; 0,y)) −𝑊 (y) < 0 per ogni 𝑠 > 0. Quindi dal Teorema della permanenza del segno si ha che
esiste un intorno 𝑉 di y tale che

∀x ∈ 𝑉 : 𝑊 (u(𝑠; 0,x)) −𝑊 (y) < 0.

Ma per ℎ abbastanza grande si deve avere u(𝑡ℎ ; 0,u0) ∈ 𝑉 , quindi

𝑊 (u(𝑡ℎ + 𝑠; 0,u0) =𝑊 (u(𝑠; 0,u(𝑡ℎ ; 0,u0)) <𝑊 (y),

che è in contraddizione con la (8). □

Teorema 10.7 (Teorema di Ljapunov sulla stabilità asintotica). Sia ū una posizione di equili-
brio per il sistema autonomo ¤u = F (u). Supponiamo che esista una funzione di Ljapunov relativa a ū
tale che u(𝑡) ≡ ū sia l’unica orbita contenuta nell’insieme

{𝑥 ∈ 𝑈 : ¤𝑊 (𝑥) = 0}.

Allora ū è asintoticamente stabile.

Osservazione 10.8. Si noti che la condizione del teorema può essere rimpiazzata da una condizione
lievemente più generale:
supponiamo che esista una funzione di Ljapunov (continua) relativa a ū tale che la funzione

𝑡 ↦→𝑊 (u(𝑡 ; 0,u0))

sia strettamente decrescente per ogni u0 ∈ 𝑈 , u0 ≠ ū. ★
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Dimostrazione. Per il teorema precedente la posizione ū è sicuramente stabile, poiché ammette una
funzione di Ljapunov. Quindi per ogni 𝜀 > 0 esiste 𝛿 > 0 tale che per ogni u0 ∈ 𝐵𝛿 (ū) ⊆ 𝑈 si abbia

u(𝑡 ; 0,u0) ∈ 𝐵𝜀 (ū)

per ogni 𝑡 ⩾ 0.
Sia u0 ≠ ū; poiché l’orbita {u(𝑡 ; 0,u0) : 𝑡 ⩾ 0} sta in un limitato, allora ha chiusura compatta, quindi
esiste una successione divergente (𝑡ℎ) tale che

u(𝑡ℎ ; 0,u0) → y ∈ 𝐵𝜀 (ū) .

Poiché y è un punto limite di una traiettoria ed esiste una funzione continua strettamente decrescente
sulle traiettorie, dal Lemma 10.6 troviamo che y è soluzione di equilibrio. Visto che l’unica soluzione
di equilibrio in𝑈 è ū, risulta che tutti i punti limite delle traiettorie coincidono con ū, che quindi è
asintoticamente stabile. □

Osservazione 10.9. La costruzione di una funzione di Ljapunov per una posizione asintoticamente
stabile è utile per determinarne il bacino di attrazione: la componente connessa dell’intorno𝑈 su cui
è definita la funzione, che contiene la posizione di equilibrio, è contenuta nel bacino di attrazione
dell’equilibrio.
Se invece abbiamo una funzione di Ljapunov per una soluzione stabile (semplicemente) che rimane
costante sulle traiettorie, ovvero tale che

∀x ∈ 𝑈 : ¤𝑊 (x) = 0 ★

allora le orbite delle soluzioni staranno sulle superfici di livello della 𝑊 ; come abbiamo visto
nell’Esempio 10.5, in dimensione due le curve di livello danno proprio le orbite del sistema.

Ora vediamo un metodo per dedurre l’instabilità di una soluzione di equilibrio.

Teorema 10.10 (Teorema di Četaev). Sia ū una posizione di equilibrio per il sistema autonomo
¤u = F (u) e sia 𝑈 un suo intorno aperto. Supponiamo che esista un aperto 𝐴 ⊆ 𝑈 tale che ū ∈ 𝐴 e una
funzione𝑊 : 𝑈 → R di classe 𝐶1 tale che

• 𝑊 (x) > 0 e ¤𝑊 (x) > 0 per ogni x ∈ 𝐴;
• 𝑊 (x) = 0 per ogni x ∈ 𝑈 ∩ 𝜕𝐴.(6)

Allora ū è instabile.

Dimostrazione. Sia 𝜀 > 0 tale che𝐵𝜀 (ū) ⊆ 𝑈 e siau(𝑡) l’orbita uscente dau0 ∈ 𝐴∩𝐵𝜀 (ū); ovviamente
si ha𝑊 (u0) > 0. Consideriamo l’insieme

𝐾 = 𝐴 ∩ 𝐵𝜀 (ū) ∩ {u : 𝑊 (u) ⩾𝑊 (u0)};

esso è un compatto contenuto in𝑈 , e inoltre si ha 𝐾 ⊆ 𝐴: infatti, se esistesse u ∈ 𝐾 ∩ 𝜕𝐴, allora si
avrebbe𝑊 (u) > 0, mentre per ipotesi𝑊 = 0 su𝑈 ∩ 𝜕𝐴. Ma allora la funzione ¤𝑊 ammette minimo

(6)In particolare, poiché ¤𝑊 (ū) = 0, deve essere che ū ∈ 𝜕𝐴.
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𝑚 su 𝐾 e tale minimo è strettamente positivo. Si ha u0 ∈ 𝐾 : fintantoché u(𝑡) ∈ 𝐾 , allora si ha la
disequazione differenziale

𝑑

𝑑𝑡
𝑊 (u(𝑡)) ⩾ 𝑚

e integrando da 0 a 𝑡 si ottiene

𝑊 (u(𝑡)) ⩾ 𝑚𝑡 +𝑊 (u0) per 𝑡 ⩾ 0.

Ma poiché𝑊 è limitata su 𝐾 , ne segue che u(𝑡) deve uscire da 𝐾 ; essendo𝑊 crescente sulle orbite,
la condizione𝑊 (u(𝑡)) ⩾𝑊 (u0) non è violata; inoltre u(𝑡) non può uscire da 𝐴 perché dovrebbe
attraversarne la frontiera, ma𝑊 = 0 su 𝜕𝐴 mentre la𝑊 deve crescere lungo l’orbita. Quindi deve
accadere che u(𝑡) abbandoni l’intorno 𝐵𝜀 (ū).(7) □

Esiste anche un metodo per capire se la soluzione instabile è di tipo sorgente, cioè se, localmente, tutte
le traiettorie si allontanano dall’equilibrio equilibrio. Premettiamo un lemma.

Lemma 10.11. Sia ū una posizione di equilibrio per il sistema autonomo ¤u = F (u). Supponiamo che
esista u0 ∈ R𝑛 , u0 ≠ ū, tale che

lim
𝑡→−∞u(𝑡 ; 0,u0) = ū.

Allora ū è instabile.

Dimostrazione. Sia 𝑟 := |u0 − ū| e sia 𝑉 = 𝐵𝑟/2(ū). Allora per ogni ℎ ∈ N esiste 𝑡ℎ > 0 tale che
u(−𝑡ℎ) ∈ 𝐵1/ℎ (ū) e

u(𝑡ℎ ; 0,u(−𝑡ℎ)) = u0 ∉ 𝑉 . □

Teorema 10.12. Sia ū una posizione di equilibrio per il sistema autonomo ¤u = F (u). Supponiamo
che esista un intorno 𝑈 di ū e una funzione continua𝑊 : 𝑈 → R tale che𝑊 (ū) = 0,𝑊 (u) > 0 per
u ≠ ū e ¤𝑊 ⩾ 0. Supponiamo poi che u(𝑡) ≡ ū sia l’unica orbita contenuta nell’insieme

{𝑥 ∈ 𝑈 : ¤𝑊 (𝑥) = 0}.

Allora ū è instabile (sorgente).

Dimostrazione. Consideriamo il sistema differenziale ¤v = −F (v), le cui soluzioni sono le stesse del
problema di partenza ma con 𝑡 cambiato di segno. Allora siamo nelle condizioni del Teorema di
Ljapunov sulla stabilità asintotica, quindi ū è asintoticamente stabile per ¤v = −F (v). Questo significa
che

lim
𝑡→−∞u(𝑡 ; 0,u0) = lim

𝑡→+∞v(𝑡 ; 0,u0) = ū

per ogni u0 ∈ 𝑈 , e dunque dal Lemma precedente ū è instabile per ¤u = F (u). □

Esempio 10.13. Studiamo il sistema {
¤𝑥 = 𝑦

¤𝑦 = −𝜔2𝑥 + 𝛼𝑦 |𝑦 |
(7)Ho appreso questa dimostrazione dal sito del corso MMA420 di Hjalmar Rosengren, che ringrazio.
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al variare di 𝛼 ∈ R e 𝜔 ≠ 0 (per 𝛼 < 0 tale sistema rappresenta un oscillatore armonico soggetto a un
attrito quadratico).
L’unica posizione di equilibrio è (0, 0) e la matrice di linearizzazione ha autovalori ±𝑖𝜔 ; nel caso
𝛼 = 0 il sistema è lineare e dunque la posizione è stabile (centro); nel caso 𝛼 ≠ 0 invece non possiamo
usare il Teorema di linearizzazione. Cerchiamo allora una funzione di Ljapunov: moltiplicando la
prima equazione per 𝜔2𝑥 e la seconda per 𝑦 e integrando troviamo che la funzione

𝑊 (𝑥,𝑦) = 1
2𝜔

2𝑥2 + 1
2𝑦

2

definita su tutto R2 ha un minimo (globale) stretto nella posizione di equilibrio; inoltre

¤𝑊 (𝑥,𝑦) = grad𝑊 · F = 𝛼𝑦2 |𝑦 |,
che per 𝑦 ≠ 0 ha il segno di 𝛼 . Per 𝛼 ≠ 0, poiché

¤𝑊 = 0 ⇒ 𝑦 ≡ 0 ⇒ ( ¤𝑥, ¤𝑦) ≡ (0, 0),
si ha che l’unica orbita che annulla ¤𝑊 è l’equilibrio, e quindi se 𝛼 < 0 la posizione di equilibrio è
asintoticamente stabile per il Teorema 10.7.
Se 𝛼 > 0, la stessa funzione𝑊 soddisfa le ipotesi del Teorema 10.12, quindi otteniamo che l’equilibrio
è instabile (sorgente).
Poiché nella matrice di linearizzazione il coefficiente 𝛼 non compare neppure, questo esempio mostra
che il metodo di linearizzazione non può essere esaustivo. ★

Esempio 10.14. Studiamo la posizione di equilibrio (0, 0) del sistema{
¤𝑥 = −𝑥2

¤𝑦 = −𝑥𝑦.

Il metodo di linearizzazione fallisce, mostriamo che l’origine è una posizione di equilibrio instabile
mediante il Teorema di Cetaev. Data la funzione𝑊 : R2 → R definita da𝑊 (𝑥,𝑦) = 𝑥𝑦 e dato l’aperto
𝐴 = {(𝑥,𝑦) : 𝑥 < 0, 𝑦 < 0} (cioè il III quadrante), si ha che

• 𝑊 è regolare,

• 𝑊 > 0 su 𝐴 e𝑊 = 0 su 𝜕𝐴,

• ¤𝑊 = −𝑥2𝑦 − 𝑥2𝑦 = −2𝑥2𝑦 > 0 su 𝐴,

quindi (0, 0) è instabile per il Teorema di Cetaev.
Allo stesso modo si può mostrare che ogni punto di equilibrio (0, 𝑦) è instabile: se 𝑦 < 0 si usa la
stessa funzione𝑊 appena vista, mentre se 𝑦 > 0 si può usare la funzione𝑊 (𝑥,𝑦) = −𝑥𝑦 e come
aperto 𝐴 il II quadrante.
Se invece il sistema fosse {

¤𝑥 = −𝑥3

¤𝑦 = −𝑥𝑦
allora in questo caso ancora tutte le posizioni di equilibrio dovrebbero essere instabili, ma non riesco
a trovare una funzione di Cetaev! ★
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Esempio 10.15. Studiamo le posizioni di equilibrio del sistema{
¤𝑥 = −𝑥𝑦
¤𝑦 = 𝑥𝑦.

I punti degli assi cartesiani (𝑥, 0) e (0, 𝑦) sono tutte e sole le posizioni di equilibrio. Linearizzando si
ha

A(𝑥,𝑦) =
[−𝑦 −𝑥
𝑦 𝑥

]
⇒ A(𝑥, 0) =

[
0 −𝑥
0 𝑥

]
, A(0, 𝑦) =

[−𝑦 0
𝑦 0

]
quindi per 𝑥 > 0 e 𝑦 < 0 le rispettive posizioni di equilibrio sono instabili.
Consideriamo ora una posizione di equilibrio (0, 𝑦) con 𝑦 > 0 e prendiamo la funzione(8)

𝑊 (𝑥,𝑦) = (𝑥 + 𝑦 − 𝑦)2 + 𝑥2𝑦2.

Tale funzione ha un minimo locale stretto nel punto di equilibrio e

¤𝑊 = [2(𝑥 + 𝑦 − 𝑦) + 2𝑥𝑦2] (−𝑥𝑦) + [2(𝑥 + 𝑦 − 𝑦) + 2𝑥2𝑦] (𝑥𝑦) = 4𝑥2𝑦2(𝑥 − 𝑦),

che in un intorno di (0, 𝑦) è negativa (ricordando che 𝑦 > 0). Quindi𝑊 è una funzione di Ljapunov
e la posizione (0, 𝑦) è stabile. Tale stabilità non può essere asintotica perché queste posizioni di
equilibrio non sono isolate.
Si dimostra che la stessa funzione

𝑊 (𝑥,𝑦) = (𝑥 + 𝑦 − 𝑥)2 + 𝑥2𝑦2

è di Ljapunov per le posizioni (𝑥, 0) nel caso 𝑥 < 0, quindi anche tali posizioni sono stabili semplice-
mente.
Resta da classificare soltanto la posizione nulla: col successivo metodo delle isocline si vede che tale
posizione è instabile. Più in generale, una posizione di equilibrio che sia punto di accumulazione di
posizioni di equilibrio instabili, dovrebbe essere instabile (ma bisognerebbe dimostrarlo). ★

11 Metodo delle isocline

In questa breve sezione vediamo un metodo grafico per ricavare qualitativamente la forma delle
orbite di un sistema differenziale bidimensionale. Consideriamo il sistema{

¤𝑥 = 𝑓 (𝑥,𝑦)
¤𝑦 = 𝑔(𝑥,𝑦),

(8)Abbiamo trovato questa funzione così: col cambio di variabili 𝑥 = 𝜉 + 𝜂, 𝑦 = 𝜉 − 𝜂 si ottiene il sistema{ ¤𝜉 = 0
¤𝜂 = 𝜂2 − 𝜉2 = 𝑓 (𝜉, 𝜂)

in cui la prima equazione è banale. Data una posizione di equilibrio (𝜉, 𝜂), se c’è stabilità (linearizzata) per ¤𝜂 = 𝑓 (𝜉, 𝜂), cioè
se 𝜕𝑓

𝜕𝜂 (𝜉, 𝜂) < 0 nella posizione di equilibrio, allora è facile vedere che la funzione𝑊 = (𝜉 − 𝜉)2 + 𝑓 (𝜉, 𝜂)2 è di Ljapunov per
la posizione di equilibrio.
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allora si ha che la pendenza 𝜗 di un’orbita rispetto all’orizzontale è data da

tan𝜗 =
𝑔(𝑥,𝑦)
𝑓 (𝑥,𝑦) .

Fissato 𝜗 , la curva precedente viene detta isoclina di angolo 𝜗 . Disegnare alcune isocline può aiutare
a capire la forma di alcune orbite, senza dover risolvere il sistema. Due isocline particolari molto
importanti sono

𝑔(𝑥,𝑦) = 0 : l’insieme dei punti in cui le orbite hanno tangente orizzontale
𝑓 (𝑥,𝑦) = 0 : l’insieme dei punti in cui le orbite hanno tangente verticale.

Inoltre, il segno di 𝐹 e il segno di 𝑔 ci dicono quale sia il segno di ¤𝑥 e di ¤𝑦, e quindi come sono orientati
i vettori tangenti e dunque le orbite. Ad esempio, se 𝑓 (𝑥,𝑦) = 𝑔(𝑥,𝑦) > 0 si ha che la tangente è
parallela alla bisettrice del I-III quadrante e orientata verso NE; invece, se 𝑓 (𝑥,𝑦) = 𝑔(𝑥,𝑦) < 0 si ha
sempre che la tangente è parallela alla bisettrice del I-III quadrante, ma stavolta è orientata verso SW.

12 Sistemi hamiltoniani e sistemi gradiente

Vediamo in questa sezione alcuni particolari tipi di sistemi dinamici, che compaiono spesso nelle
applicazioni fisiche.

Definizione 12.1 (Sistema hamiltoniano). Un sistema dinamico in R2𝑛 si dice hamiltoniano se
esiste una funzione𝐻 ∈ 𝐶2(R2𝑛) tale che, denotando con (x,y), il generico elemento diR2𝑛 ,x,y ∈ R𝑛 ,
si ha {

¤𝑥𝑖 = 𝜕𝐻
𝜕𝑦𝑖

¤𝑦𝑖 = − 𝜕𝐻
𝜕𝑥𝑖

𝑖 = 1, . . . , 𝑛.

La funzione 𝐻 si dice hamiltoniana del sistema. ★

Se si ha un sistema del tipo {
¤𝑥𝑖 = 𝐹𝑖 (x,y)
¤𝑦𝑖 = 𝐺𝑖 (x,y)

𝑖 = 1, . . . , 𝑛,

si verifica che il sistema è hamiltoniano se e solo se

𝜕𝐹𝑖
𝜕𝑥 𝑗

= − 𝜕𝐺 𝑗

𝜕𝑦𝑖
, 𝑖 = 1, . . . , 𝑛.

È facile vedere che i punti di equilibrio di un sistema hamiltoniano sono tutti e soli i punti critici di 𝐻 .
Inoltre vale la seguente:

Proposizione 12.2. In un sistema hamiltoniano la funzione 𝐻 è costante sulle traiettorie..

Dimostrazione. Si ha

𝑑𝐻

𝑑𝑡
=
𝜕𝐻

𝜕x
· ¤x + 𝜕𝐻

𝜕y
· ¤y =

𝜕𝐻

𝜕x
· 𝜕𝐻
𝜕y
− 𝜕𝐻
𝜕y
· 𝜕𝐻
𝜕x

= 0.
□
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In particolare, le orbite stanno sulle superfici di livello {𝐻 = cost}.
Sia ora 𝑛 = 1; in questo caso le orbite del sistema sono proprio (pezzi di) curve di livello di 𝐻 . Inoltre:

• se (𝑥,𝑦) è un minimo stretto per 𝐻 , allora 𝐻 è una funzione di Ljapunov e (𝑥,𝑦) è stabile
(centro);

• se (𝑥,𝑦) è un massimo stretto per 𝐻 , allora −𝐻 è una funzione di Ljapunov e di nuovo (𝑥,𝑦) è
stabile (centro);

• se linearizzando attorno a (𝑥,𝑦) si ha

det
[

𝜕2𝐻
𝜕𝑥𝜕𝑦

𝜕2𝐻
𝜕𝑦2

− 𝜕2𝐻
𝜕𝑥2 − 𝜕2𝐻

𝜕𝑥𝜕𝑦

]
< 0,

allora il punto (𝑥,𝑦) è instabile (sella).

Un caso particolare di sistema hamiltoniano è il sistema newtoniano (per 𝑛 = 1):

¥𝑥 = 𝑓 (𝑥) ⇒
{
¤𝑥 = 𝑦

¤𝑦 = 𝑓 (𝑥).

L’hamiltoniana è data da 𝐻 (𝑥,𝑦) = 𝑦2/2 − 𝐹 (𝑥), dove 𝐹 è una primitiva di 𝑓 . Quindi:

• gli equilibri sono del tipo (𝑥, 0) con 𝑓 (𝑥) = 0;

• se 𝑥 è un massimo stretto per 𝐹 , allora (𝑥, 0) è una sella;
• se 𝑥 è un minimo stretto per 𝐹 , allora (𝑥, 0) è un centro;

• il ritratto di fase è simmetrico rispetto all’asse 𝑦.

Definizione 12.3 (Sistema gradiente). Un sistema dinamico ¤u = F (u) è di tipo gradiente se

F = −∇𝑉

per qualche funzione 𝑉 . ★

Per tali sistemi si ha che i punti di equilibrio ū sono i punti critici di 𝑉 . Inoltre:

• se ū è un minimo stretto per𝑉 , allora ū è asintoticamente stabile: 𝑉 è una funzione di Ljapunov;

• se ū è un massimo stretto per 𝑉 , allora ū è instabile (sorgente): 𝑉 è una antifunzione di
Ljapunov nel senso del Teorema 10.12;

• se ∇𝑉 (u) ≠ 0, allora l’orbita per u è ortogonale alla superficie di livello di 𝑉 passante per u.

La matrice di linearizzazione A(ū) =
[
− 𝜕2𝑉

𝜕𝑢𝑖𝜕𝑢 𝑗

]
è simmetrica, quindi gli autovalori sono tutti reali. In

particolare, nel caso 𝑛 = 2 non esistono fuochi.
Infine, nel caso bidimensionale i sistemi hamiltoniani e gradiente sono legati tra loro tramite la
relazione di ortogonalità:
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Definizione 12.4. In R2, i due sistemi{
¤𝑥 = 𝑓 (𝑥,𝑦)
¤𝑦 = 𝑔(𝑥,𝑦),

{
¤𝑥 = 𝑔(𝑥,𝑦)
¤𝑦 = −𝑓 (𝑥,𝑦)

si dicono ortogonali. ★

Si verifica subito che due sistemi ortogonali hanno gli stessi equilibri e orbite ortogonali. Inoltre i
centri di uno vanno in nodi dell’altro, le selle vanno in selle e i fuochi vanno in fuochi.

Esercizio 12.5. Si studino i sistemi hamiltoniani con

• 𝐻 (𝑥,𝑦) = 𝑥2 + 2𝑦2

• 𝐻 (𝑥,𝑦) = 𝑥2 − 𝑦2

• 𝐻 (𝑥,𝑦) = 𝑦 sin𝑥

• 𝐻 (𝑥,𝑦) = 𝑥2 − 𝑦2 − 2𝑥 + 4𝑦 + 5

e i loro ortogonali.

13 Stabilità nel caso unidimensionale e biforcazione dell’equilibrio

Nel caso unidimensionale ¤𝑥 = 𝑓 (𝑥) esiste un modo semplice per classificare la stabilità di una
posizione di equilibrio 𝑥 . Si ha 𝑓 (𝑥) = 0: se in un intorno di 𝑥 abbiamo 𝑓 (𝑥) > 0 per 𝑥 < 𝑥 e 𝑓 (𝑥) < 0
per 𝑥 > 𝑥 , allora la posizione è asintoticamente stabile. Infatti, si ha che ¤𝑥 è positiva a sinistra di 𝑥 , e
quindi le orbite vanno verso l’equilibrio, e la stessa cosa a destra.(9) Quindi se per 𝑥 ≠ 𝑥 abbiamo

(𝑥 − 𝑥) 𝑓 (𝑥) < 0,

allora 𝑥 è asintoticamente stabile. Se invece la condizione è violata con un maggiore stretto, allora la
posizione è instabile.
Consideriamo ora un sistema differenziale dipendente da un parametro reale 𝜇:

¤u = F (u, 𝜇) .

Si dice che 𝜇 è un valore di biforcazione se c’è un cambiamento qualitativo nelle posizioni di equilibrio
tra 𝜇 < 𝜇 e 𝜇 > 𝜇.
Vediamo degli esempi nel caso unidimensionale.

• ¤𝑥 = 𝜇 − 𝑥2. Ha le posizioni di equilibrio 𝑥1,2 = ±√𝜇, che esistono solo per 𝜇 ⩾ 0. Si verifica che
quella positiva è stabile mentre quella negativa è instabile; nel caso 𝜇 = 0 l’origine è instabile.
Nel diventare 𝜇 positivo, “nascono” due posizioni di equilibrio dove prima non ce n’erano.
Quindi 𝜇 = 0 è un valore di biforcazione, detto biforcazione a sella.

(9)Più rigorosamente, in questo caso si può dimostrare che𝑊 (𝑥) = [𝑓 (𝑥)]2 è una funzione di Ljapunov relativa a 𝑥 .
Inoltre, se 𝑓 ′ non si annulla in un intorno di 𝑥 , tranne eventualmente in 𝑥 , allora anche ¤𝑊 si annulla solo nella posizione di
equilibrio e quindi la posizione è asintoticamente stabile.
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Figura 10: I tre tipi di biforcazione nel caso unidimensionale.

• ¤𝑥 = 𝜇𝑥 −𝑥2. Ha le posizioni di equilibrio 𝑥1 = 0 e 𝑥2 = 𝜇. La prima è stabile per 𝜇 < 0 e instabile
per 𝜇 > 0, viceversa per la seconda; per 𝜇 = 0 l’origine è instabile. C’è uno “scambio di stabilità”
tra le due posizioni di equilibrio. Quindi 𝜇 = 0 è un valore di biforcazione, detto biforcazione
transcritica.

• ¤𝑥 = 𝜇𝑥 − 𝑥3. Ha sempre la posizione di equilibrio 𝑥1 = 0; se poi 𝜇 > 0 ha anche 𝑥2,3 =
√
𝜇. La

prima è stabile per 𝜇 < 0 e instabile per 𝜇 > 0, le altre due sono stabili quando esistono; per
𝜇 = 0 l’origine è stabile. C’è una “perdita di stabilità” della posizione nulla e “nascono” due
nuove posizioni di equilibrio. Quindi 𝜇 = 0 è un valore di biforcazione, detto biforcazione a
forca (pitchfork).
Se cambiamo segno al secondo membro, cioè ¤𝑥 = 𝑥3 − 𝜇𝑥 , otteniamo una situazione simile con
le stabilità scambiate: si parla sempre di biforcazione a forca.

In generale, nel caso unidimensionale ¤𝑥 = 𝑓 (𝑥, 𝜇), se

𝑓 (𝑥, 𝜇) = 𝑓 ′(𝑥, 𝜇) = · · · = 𝑓 (𝑚−1) (𝑥, 𝜇) = 0, 𝑓 (𝑚) (𝑥, 𝜇) ≠ 0,

allora l’equazione ha un punto critico di molteplicità𝑚 in 𝑥 , quindi ci possono essere al più𝑚 punti
critici che si biforcano da esso. Nei tre esempi precedenti si ha rispettivamente𝑚 = 2,𝑚 = 2 e𝑚 = 3.
Ora vediamo un esempio importante di biforcazione nel caso bidimensionale. Enunciamo un teorema
ma non lo dimostriamo.

Teorema 13.1 (Biforcazione di Hopf). Consideriamo il generico sistema bidimensionale{
¤𝑥 = 𝑓 (𝑥,𝑦, 𝜇)
¤𝑦 = 𝑔(𝑥,𝑦, 𝜇)

dove 𝜇 è un parametro reale. Supponiamo che esista un punto di equilibrio (𝑥,𝑦), eventualmente
dipendente da 𝜇, tale che gli autovalori della matrice linearizzata attorno ad esso siano

𝜆(𝜇) = 𝛼 (𝜇) ± 𝑖𝛽 (𝜇)

e supponiamo che esista 𝜇 tale che:

(1) 𝛼 (𝜇) = 0, 𝛽 (𝜇) ≠ 0, 𝑑𝛼
𝑑𝜇
(𝜇) > 0;
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(2) 𝑎 := (𝑓𝑥𝑥𝑥 + 𝑓𝑥𝑦𝑦 +𝑔𝑥𝑥𝑦 +𝑔𝑦𝑦𝑦) +
(
𝑓𝑥𝑦 (𝑓𝑥𝑥 + 𝑓𝑦𝑦) −𝑔𝑥𝑦 (𝑔𝑥𝑥 +𝑔𝑦𝑦) − 𝑓𝑥𝑥𝑔𝑥𝑥 + 𝑓𝑦𝑦𝑔𝑦𝑦

)
/𝛽 (𝜇) ≠ 0,

dove gli indici denotano le derivate rispetto a quella variabile e tutto è calcolato in (𝑥,𝑦, 𝜇), e per
𝛽 (𝜇) scegliamo il segno di 𝜕𝑔

𝜕𝑥
(𝑥,𝑦, 𝜇).

Allora il punto di equilibrio è stabile per 𝜇 < 𝜇 e instabile per 𝜇 > 𝜇; se 𝑎 < 0 c’è un’orbita periodica
stabile per 𝜇 > 𝜇 (caso supercritico), mentre se 𝑎 > 0 c’è un’orbita periodica instabile per 𝜇 < 𝜇 (caso
sottocritico).

Esempio 13.2. L’esempio più semplice è dato dal sistema{
¤𝑥 = −𝑦 + 𝑥 (𝜇 − 𝑥2 − 𝑦2)
¤𝑦 = 𝑥 + 𝑦 (𝜇 − 𝑥2 − 𝑦2)

che in coordinate polari si scrive {
¤𝑟 = 𝑟 (𝜇 − 𝑟 2)
¤𝜗 = 1. ★

Esercizio 13.3. Si dica se è applicabile il Teorema di Hopf al sistema{
¤𝑥 = 𝜇𝑥 + 𝑦 − 𝑥𝑦2

¤𝑦 = −𝑥 + 𝜇𝑦 − 𝑦3.

Esercizio 13.4. Si dica se è applicabile il Teorema di Hopf al sistema{
¤𝑥 = 𝑦

¤𝑦 = −𝑥 + 𝜇𝑦 − 𝑥2𝑦

Esercizio 13.5. Si dica se esiste una biforcazione di Hopf per l’equazione di Van der Pol

¥𝑥 − 𝜇 (1 − 𝑥2) ¤𝑥 + 𝑥 = 0.

14 Insiemi invarianti e attrattori

Sia 𝑆𝑡 un semigruppo continuo.

Definizione 14.1. Sia 𝑋 ∈ R𝑛 . Poniamo

𝑆𝑡𝑋 := {𝑆𝑡x : x ∈ 𝑋 }.

Diremo che 𝑋 è positivamente invariante se 𝑆𝑡𝑋 ⊆ 𝑋 per ogni 𝑡 ⩾ 0.
Diremo che 𝑋 è negativamente invariante se 𝑆𝑡𝑋 ⊇ 𝑋 per ogni 𝑡 ⩾ 0.
Diremo che 𝑋 è invariante se 𝑆𝑡𝑋 = 𝑋 per ogni 𝑡 ⩾ 0. ★

Esempio 14.2. Data l’equazione ¤𝑥 = 𝑥 , si ha

𝑆𝑡 [0, 1] = [0, 𝑒𝑡 ] .
In particolare, [0, 1] è negativamente invariante. ★
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Teorema 14.3. Se il semigruppo è invertibile, allora ogni orbita completa è invariante.

Dimostrazione. Ricordiamo che l’orbita passante per x è data da

𝛾 (x) = {y ∈ R𝑛 : ∃𝑡 ∈ R,y = 𝑆𝑡x}.
Quindi, se y ∈ 𝛾 (x), si ha y = 𝑆𝑡x per qualche 𝑡 , e dunque 𝑆𝜏y = 𝑆𝑡+𝜏x ∈ 𝛾 (x) per ogni 𝜏 ⩾ 0, da cui

∀𝜏 ⩾ 0 : 𝑆𝜏𝛾 (x) ⊆ 𝛾 (x) .

Viceversa, sia y ∈ 𝛾 (x), sia 𝑡 ⩾ 0 e sia z = 𝑆−𝑡y. Allora z ∈ 𝛾 (x) e 𝑆𝑡z = y, dunque y ∈ 𝑆𝑡𝛾 (x), da
cui

∀𝑡 ⩾ 0 : 𝛾 (x) ⊆ 𝑆𝑡𝛾 (x) . □

Ricordiamo che l’orbita positiva uscente da x è la curva

𝛾+(x) = {y ∈ R𝑛 : ∃𝑡 ⩾ 0,y = 𝑆𝑡x}.
Definizione 14.4. Dato 𝑋 ⊆ R𝑛 , il suo insieme 𝜔-limite è dato da

𝜔 (𝑋 ) :=
⋂
𝑠>0

⋃
𝑡⩾𝑠

𝑆𝑡𝑋 .

Denoteremo con 𝜔 (x) l’insieme 𝜔 ({x}).
Allo stesso modo chiamiamo insieme 𝛼-limite di 𝑋 l’insieme

𝛼 (𝑋 ) :=
⋂
𝑠<0

⋃
𝑡⩽𝑠

𝑆𝑡𝑋 .
★

Ponendo
𝑊𝑠 :=

⋃
𝑡⩾𝑠

𝑆𝑡𝑋

si ha che (𝑊𝑠) è una famiglia monotona decrescente di chiusi in R𝑛 , quindi la prima intersezione per
𝑠 > 0 è una sorta di “limite” della successione di insiemi per 𝑠 → +∞.
Teorema 14.5. Si ha

𝜔 (x) = {y ∈ R𝑛 : ∃(𝑡𝑘 ) → +∞, lim
𝑘→+∞

𝑆𝑡𝑘x = y}.

Dimostrazione. Nel caso del singoletto si ha

𝑊𝑠 =
⋃
𝑡⩾𝑠

𝑆𝑡x = 𝛾+(𝑆𝑠x) .

Sia y ∈ 𝜔 (x), allora y ∈𝑊𝑠 per ogni 𝑠 > 0, quindi in particolare y ∈ 𝛾+(𝑆𝑘x) per ogni 𝑘 ∈ N, 𝑘 ⩾ 1.
Quindi per ogni 𝑘 esiste y𝑘 ∈ 𝛾+(𝑆𝑘x) con |y𝑘 − y | < 1/𝑘 , ovvero esiste 𝑡𝑘 ⩾ 𝑘 tale che y𝑘 = 𝑆𝑡𝑘x. Si
ha 𝑡𝑘 → +∞ e

lim
𝑘→+∞

𝑆𝑡𝑘x = lim
𝑘→+∞

y𝑘 = y.

Viceversa, sia y ∈ R𝑛 e (𝑡𝑘 ) → +∞ tale che

lim
𝑘→+∞

𝑆𝑡𝑘x = y.

Allora y ∈𝑊𝑡𝑘 per ogni 𝑘 ∈ N e, dalla monotonia decrescente di𝑊𝑠 si ha y ∈𝑊𝑠 per ogni 𝑠 > 0, da
cui y ∈ 𝜔 (x). □
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Teorema 14.6 (Proprietà di 𝝎 (x)). Supponiamo che il semigruppo {𝑆𝑡 } dipenda con continuità da 𝑡
(che è vero se proviene da un’equazione differenziale).

Allora l’insieme 𝜔 (x) è chiuso, positivamente invariante e si ha

∀𝑡 ∈ R : 𝜔 (𝑆𝑡x) = 𝜔 (x),

cioè l’insieme 𝜔-limite di un punto dipende solo dall’orbita che passa per quel punto.

Inoltre, se 𝛾+(x) è limitata, allora 𝜔 (x) è compatto, non vuoto, connesso e invariante.

Dimostrazione. Poniamo al solito

𝑊𝑠 =
⋃
𝑡⩾𝑠

𝑆𝑡x = 𝛾+(𝑆𝑠x) .

Poiché 𝜔 (x) è intersezione di chiusi, allora è un chiuso.
Vediamo che è positivamente invariante: sia y ∈ 𝜔 (x), dal Teorema precedente esiste 𝑡𝑘 → +∞ tale
che 𝑆𝑡𝑘x→ y per 𝑘 → +∞. Sia 𝑡 ⩾ 0 e poniamo 𝜏𝑘 := 𝑡 + 𝑡𝑘 ; allora

lim
𝑘
𝑆𝜏𝑘x = 𝑆𝑡 lim

𝑘
𝑆𝑡𝑘x = 𝑆𝑡y,

dove abbiamo usato la continuità di 𝑆𝑡 rispetto a 𝑡 . Quindi abbiamo trovato una successione illimitata
𝜏𝑘 che produce il termine 𝑆𝑡y. Sempre dal Teorema precedente, 𝑆𝑡y ∈ 𝜔 (x) e dunque l’insieme è
positivamente invariante.
Ora calcoliamo 𝜔 (𝑆𝑡x):

𝜔 (𝑆𝑡x) =
⋂
𝑠>0

⋃
𝜏⩾𝑠

𝑆𝜏𝑆𝑡x =
⋂
𝑠>0

⋃
𝜏⩾𝑠+𝑡

𝑆𝜏x =
⋂
𝑠>0

𝑊𝑠+𝑡 =
⋂
𝑠>0

𝑊𝑠 = 𝜔 (x)

dove nell’ultimo passaggio abbiamo sfruttato la decrescenza della successione (𝑊𝑠).
Infine, se 𝛾+(x) è limitata, allora𝑊0 è compatto e quindi𝑊𝑠 è compatto per ogni 𝑠 > 0. Inoltre ogni
𝑊𝑠 è non vuoto, quindi 𝜔 (x) è intersezione di compatti non vuoti.
Ogni𝑊𝑠 è anche connesso, e non è difficile dimostrare che l’intersezione di compatti connessi di R𝑛 è
connessa.
Resta da dimostrare che 𝜔 (x) è negativamente invariante, ovvero che

𝜔 (x) ⊆ 𝑆𝑡𝜔 (x) per ogni 𝑡 ⩾ 0.

Siano 𝑡 ⩾ 0, y ∈ 𝜔 (x) e 𝑡𝑘 → +∞ tale che 𝑆𝑡𝑘x → y per 𝑘 → +∞; vogliamo trovare un elemento
w ∈ 𝜔 (x) tale che 𝑆𝑡w = x. Ponendo 𝜏𝑘 := 𝑡𝑘 − 𝑡 , si ha che 𝜏𝑘 → +∞ e per compattezza esiste una
sottosuccessione 𝜏𝑘ℎ ew ∈ 𝜔 (x) tale che 𝑆𝜏𝑘ℎx→ w. Ora calcoliamo, usando la continuità in 𝑡 di 𝑆𝑡 :

𝑆𝑡w = 𝑆𝑡 lim
ℎ
𝑆𝜏𝑘ℎx = lim

ℎ
𝑆𝑡𝑘ℎx = x.

□
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15 Attrattori e cicli limite

Definizione 15.1. Un chiuso invariante𝐶 ⊆ R𝑛 si chiama attrattivo per un semigruppo (𝑆𝑡 ) se esiste
un intorno𝑈 di 𝐶 (cioè𝑈 è un intorno di ogni punto di 𝐶) tale che per ogni u ∈ 𝑈 si abbia

∀𝑡 ⩾ 0 : 𝑆𝑡u ∈ 𝑈 , lim
𝑡→+∞ dist(𝑆𝑡u,𝐶) = 0,

dove dist(x,𝐶) := inf
c∈𝐶
|x − c|. ★

Gli insiemi attrattivi possono essere molto grandi: ad esempio R𝑛 è sempre attrattivo. Vediamo invece
una definizione che richiede che l’insieme non debba essere troppo grande.

Definizione 15.2. Un attrattore per un semigruppo è un insieme attrattivo che contiene un’orbita
densa. ★

Per esempio, se 𝑥 è un punto di equilibrio asintoticamente stabile, allora il singoletto {𝑥} è un
attrattore. Se invece 𝑥 è una sella, allora {𝑥} è l’insieme 𝜔-limite di alcune traiettorie ma non è un
attrattore.

Esempio 15.3. Dato il sistema{
¤𝑥 = −𝑦 + 𝑥 (1 − 𝑥2 − 𝑦2)
¤𝑦 = 𝑥 + 𝑦 (1 − 𝑥2 − 𝑦2) ⇒

{
¤𝑟 = 𝑟 (1 − 𝑟 2)
¤𝜗 = 1

si ha che la circonferenza 𝑥2 + 𝑦2 = 1 (𝑟 = 1) è un attrattore. ★

Esempio 15.4. Il sistema di Lorenz, studiato poi dal matematico e meteorologo Edward Lorenz nel
1963, è dato da 

¤𝑥 = −𝜎𝑥 + 𝜎𝑦
¤𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧
¤𝑧 = −𝑏𝑧 + 𝑥𝑦

con 𝜎,𝑏, 𝑟 positivi (𝑟 è il numero di Rayleigh per il moto di un fluido).
Per 𝑟 ⩽ 1 esiste solo la posizione di equilibrio nulla, per 𝑟 > 1 esistono anche le due posizioni
(±

√︁
𝑏 (𝑟 − 1),±

√︁
𝑏 (𝑟 − 1), 𝑟 − 1). La posizione nulla è stabile per 𝑟 < 1 e anche per 𝑟 = 1 (con funzione

di Ljapunov𝑊 = 𝑥2 + 𝜎𝑦2 + 𝜎𝑧2), mentre per le altre due posizioni il polinomio caratteristico della
matrice di linearizzazione è

𝜆3 + (𝜎 + 𝑏 + 1)𝜆2 + (𝑟 + 𝜎)𝑏𝜆 + 2𝜎𝑏 (𝑟 − 1) = 0

e col criterio di Liénard-Chipart si può dimostrare che sono stabili per

1 < 𝑟 < 𝑟 := 𝜎 (𝜎 + 𝑏 + 3)
𝜎 − 𝑏 − 1 .

Dunque in 𝑟 = 1 c’è una biforcazione a forca, mentre per 𝑟 = 𝑟 si può dimostrare che c’è una
biforcazione di Hopf. I cicli stabili di Hopf però restano stabili per valori di 𝑟 di poco superiori a 𝑟 .
Nel caso studiato da Lorenz i parametri valgono 𝜎 = 10, 𝑏 = 8/3, 𝑟 = 28, dunque si ha

𝑟 > 𝑟 = 470/19 ≃ 24.74 ★

e sia le posizioni di equilibrio che i cicli di Hopf sono instabili. In questo caso esiste un attrattore
strano, ovvero un attrattore di dimensione frattale, e il sistema è caotico.
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Figura 11: Un’orbita del sistema di Lorenz che tende verso l’attrattore.

Esercizio 15.5. Disegnare le orbite del sistema{
¤𝑥 = 𝑥 − 𝑥3

¤𝑦 = −𝑦.
Mostrare che [−1, 1] × {0} è attrattivo. Tale insieme è anche un attrattore? E l’insieme ]0, 1] × {0}?
Definizione 15.6. Un ciclo, o orbita periodica, è un’orbita fatta da una linea chiusa 𝛾 .
Un ciclo 𝛾 si dice ciclo stabile se per ogni 𝜀 > 0 esiste 𝛿 > 0 tale che

∀u : dist(u, 𝛾) < 𝛿 ⇒ ∀𝑡 ⩾ 0 : dist(𝑆𝑡u, 𝛾) < 𝜀.

Un ciclo 𝛾 si dice ciclo asintoticamente stabile se è stabile e esiste 𝛿 > 0 tale che

∀u : dist(u, 𝛾) < 𝛿 ⇒ lim
𝑡→+∞ dist(𝑆𝑡u, 𝛾) = 0.

★

Per esempio, i cicli di un centro sono stabili ma non asintoticamente, mentre il ciclo 𝑟 = 1 dell’Esem-
pio 15.3 è asintoticamente stabile.
Ora ci mettiamo in R2.

Definizione 15.7. Un ciclo limite è un ciclo che è anche insieme 𝜔-limite di un punto fuori da
esso. ★

Si verifica facilmente che un ciclo limite stabile è anche asintoticamente stabile, ed è un attrattore.
Legato ai cicli limite c’è un famoso problema di Hilbert, il XVI: quanti cicli limite ci sono al massimo
per un sistema (bidimensionale) polinomiale?
Si sa che nel caso di polinomi di grado uno non esistono cicli limite: è il caso lineare. Ma già se i
polinomi a secondo membro hanno grado due la risposta non è nota; per anni si è creduto che fosse
al più tre cicli limite, finché nel 1979 il matematico cinese Shi Songling ha mostrato un esempio di
grado due con quattro cicli limite. L’esempio è veramente pazzesco:{

¤𝑥 = −𝜆𝑥 − 𝑦 − 10𝑥2 + (5 − 𝛿)𝑥𝑦 + 𝑦2

¤𝑦 = 𝑥 + 𝑥2 + (9𝛿 − 8𝜀 − 25)𝑥𝑦
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con 𝛿 = 10−13, 𝜀 = 10−52 e (udite udite) 𝜆 = 10−200. Tale sistema non è neppure lontanamente
simulabile al calcolatore.
Comunque esiste un teorema di Dulac-Il’iashenko che garantisce che in ogni sistema analitico (e
quindi anche in ogni sistema polinomiale) il numero di cicli limite debba essere finito. Vale anche il
seguente teorema, sempre nel caso piano:

Teorema 15.8 (Teorema di Poincaré-Bendixson). Sia 𝑛 = 2 e sia dato il sistema piano ¤u = F (u)
con F di classe 𝐶1. Supponiamo che esista un punto u0 ∈ R2 tale che 𝛾+(u0) sia limitata. Allora, o
𝜔 (u0) contiene almeno un punto di equilibrio, o 𝜔 (u0) è un’orbita periodica (e quindi un ciclo limite).

Il Teorema di Poincaré-Bendixson ci dice che nei sistemi bidimensionali non possono esistere orbite
caotiche (usiamo questa locuzione anche se non l’abbiamo mai definita precisamente): infatti, se
abbiamo un’orbita positiva limitata, o tale orbita tende verso un punto di equilibrio, o tende verso
un’orbita periodica. Non può avvenire un fenomeno come quello del sistema di Lorenz.

Esempio 15.9. Il sistema bidimensionale in coordinate polari{
¤𝑟 = 𝑟 (1 − 𝑟 2) + 𝜇𝑟 cos𝜗
¤𝜗 = 1

con 0 < 𝜇 < 1 ammette la regione limitata positivamente invariante√︁
1 − 𝜇 < 𝑟 <

√︁
1 + 𝜇

che non contiene punti di equilibrio, e dunque per il Teorema di Poincaré-Bendixson contiene un
ciclo limite. ★

Esempio 15.10 (Glicolisi). La glicolisi è la reazione chimica organica che produce energia partendo
dal glucosio. In un modello estremamente semplificato si ha{

¤𝑥 = −𝑥 + 𝑎𝑦 + 𝑥2𝑦

¤𝑦 = 𝑏 − 𝑎𝑦 − 𝑥2𝑦 ★

dove i parametri 𝑎, 𝑏 sono positivi, 𝑥 è legata alla concentrazione di ADP (adenosildifosfato) e 𝑦 a
quella di F6P (fruttosio 6-fosfato, ricavato dal glucosio), e il sistema è stato adimensionalizzato.

Tale sistema, che ha senso nel primo quadrante, ammette una sola posizione di equilibrio
(
𝑏, 𝑏

𝑎+𝑏2

)
che linearizzando risulta essere una sorgente per alcuni valori di 𝑎, 𝑏 (precisamente quelli per cui
𝑏4+ (2𝑎−1)𝑏2+𝑎(𝑎+1) < 0). Si può poi dimostrare che esiste una regione pentagonale positivamente
invariante che contiene la posizione di equilibrio. Poiché la posizione è una sorgente, il Teorema di
Poincaré-Bendixson garantisce l’esistenza di un ciclo limite.

16 Modelli di dinamica delle popolazioni

16.1 Modelli a una popolazione

Denotiamo con 𝑥 (𝑡) una misura della quantità di una specie all’istante 𝑡 e facciamo alcune ipotesi:
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Figura 12: La regione pentagonale positivamente invariante del sistema della glicolisi.
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Figura 13: Il ciclo limite del sistema della glicolisi nel caso 𝑎 = 0.05, 𝑏 = 0.5.
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• 𝑥 è una variabile continua, cioè un numero reale; più che il numero di individui, 𝑥 denota una
grandezza come la biomassa o la densità.

• si suppone 𝑥 ⩾ 0

• le popolazioni si riproducono in modo continuo e non discreto.

Introduciamo la quantità
¤𝑥 (𝑡)
𝑥 (𝑡)

detta tasso di crescita o tasso di riproduzione.

16.1.1 Modello di Malthus

Nel modello di Malthus si fa l’ipotesi più semplice, ovvero che il tasso di riproduzione sia costante:

¤𝑥
𝑥
= 𝛾

da cui si ottiene subito l’equazione differenziale

¤𝑥 (𝑡) = 𝛾𝑥 (𝑡) ⇒ 𝑥 (𝑡) = 𝑥0𝑒
𝛾𝑡 .

Se 𝛾 > 0, la popolazione cresce esponenzialmente, se 𝛾 < 0 la popolazione decresce esponenzialmente
e tende all’estinzione.

16.1.2 Modello logistico

La crescita esponenziale può essere ragionevole per brevi periodi, ma per tempi lunghi le risorse
limitate cominceranno a pesare molto. Si introduce quindi ilmodello logistico, in cui si suppone che

¤𝑥
𝑥
= 𝛾

(
1 − 𝑥

𝐾

)
, 𝛾, 𝐾 > 0.

Il tasso di crescita viene quindi supposto decrescente nel numero di individui, in modo lineare.
L’equazione differenziale che ne risulta è

¤𝑥 (𝑡) = 𝛾𝑥 (𝑡)
(
1 − 𝑥 (𝑡)

𝐾

)
, (9)

che ha soluzione

𝑥 (𝑡) = 𝐾𝑥0
𝑥0 + (𝐾 − 𝑥0)𝑒−𝛾𝑡 .

Per 𝑡 → +∞ si ha quindi che 𝑥 (𝑡) → 𝐾 e la popolazione non cresce illimitatamente; 𝐾 rappresenta la
capacità massima di sopportazione dell’ambiente.
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Figura 14: L’andamento nel tempo delle soluzioni del modello logistico.

16.1.3 Caso generale a una popolazione

In generale, per tener conto delle risorse limitate dell’ambiente, si hanno modelli del tipo

¤𝑥
𝑥
= 𝑓 (𝑥)

dove 𝑓 (𝑥) è una funzione decrescente in 𝑥 , che parte da valori positivi e arriva a valori negativi: nel
caso logistico si ha

𝑓 (𝑥) = 𝛾
(
1 − 𝑥

𝐾

)
.

L’unico valore 𝑥 per cui 𝑓 (𝑥) = 0 è l’equilibrio del sistema ecologico e poiché

(𝑥 𝑓 (𝑥))′
��
𝑥
=

[
𝑓 (𝑥) + 𝑥 𝑓 ′(𝑥)

]
𝑥
= 𝑥 𝑓 ′(𝑥),

se 𝑓 ′(𝑥) < 0 si ha che 𝑥 è asintoticamente stabile (e in ogni caso, poiché il problema è unidimensionale,
se 𝑓 è decrescente la posizione 𝑥 è stabile).

16.2 Modelli preda-predatore

Passiamo ora a modelli a due specie: i più studiati sono quelli di tipo preda-predatore, in cui una specie
è la fonte principale di cibo per l’altra. Denotando con 𝑥 le prede e con 𝑦 i predatori, si costruisce un
modello del tipo {

¤𝑥 = 𝑥 𝑓 (𝑥,𝑦)
¤𝑦 = 𝑦𝑔(𝑥,𝑦)

in cui il tasso di crescita delle prede 𝑓 (𝑥,𝑦) deve essere una funzione decrescente in 𝑦 mentre il tasso
di crescita dei predatori 𝑔(𝑥,𝑦) deve essere una funzione crescente in 𝑥 .
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Figura 15: L’andamento della funzione 𝑓 (𝑥) = 𝑥𝐷𝑒−𝐶𝑥 .

16.2.1 Modello di Lotka-Volterra

Se facciamo la scelta lineare 𝑓 (𝑥,𝑦) = 𝐴 − 𝐵𝑦 e 𝑔(𝑥,𝑦) = 𝐶𝑥 − 𝐷 , con 𝐴, 𝐵,𝐶, 𝐷 > 0, otteniamo il
celeberrimo sistema di Lotka-Volterra {

¤𝑥 = 𝑥 (𝐴 − 𝐵𝑦)
¤𝑦 = 𝑦 (𝐶𝑥 − 𝐷) .

Tale sistema ha le posizioni di equilibrio (0, 0) e (𝐷/𝐶,𝐴/𝐵), entrambe biologicamente accettabili.
Procedendo per linearizzazione, la posizione nulla è instabile (sella), mentre sull’altra non possiamo
pronunciarci, essendo gli autovalori immaginari puri.
Per questa posizione però possiamo costruire una funzione di Ljapunov:

𝑊 (𝑥,𝑦) = 𝐶𝑥 − 𝐷 ln𝑥 + 𝐵𝑦 −𝐴 ln𝑦.

Infatti, tale funzione è definita su tutto il primo quadrante e ha un minimo stretto nella posizione di
equilibrio. Inoltre

∇𝑊 · 𝐹 = 𝑥

(
𝐶 − 𝐷

𝑥

)
(𝐴 − 𝐵𝑦) + 𝑦

(
𝐵 − 𝐴

𝑦

)
(𝐶𝑥 − 𝐷) = 0.

Quindi la posizione (𝐷/𝐶,𝐴/𝐵) è stabile semplicemente e le traiettorie stanno sulle curve di livello
della funzione𝑊 .
Per disegnare tali curve, cambiamo segno e passiamo all’esponenziale:

𝑊 = cost ⇒ 𝑒−𝑊 = cost ⇒ 𝑥𝐷

𝑒𝐶𝑥
𝑦𝐴

𝑒𝐵𝑦
= 𝑓 (𝑥)𝑔(𝑦) = cost.

Studiamo brevemente la funzione 𝑓 (𝑥) = 𝑥𝐷𝑒−𝐶𝑥 per 𝑥 > 0: essa è sempre positiva, tende a 0 per
𝑥 → 0+ e per 𝑥 → +∞, ha un solo massimo in 𝐷/𝐶 e tale massimo vale𝑀𝑥 := (𝐷/𝐶)𝐷𝑒−𝐷 (si veda la
Figura 15) .
Analogamente, la funzione 𝑔(𝑦) = 𝑦𝐴𝑒−𝐵𝑦 ha un solo massimo in 𝐴/𝐵 e tale massimo vale 𝑀𝑦 :=
(𝐴/𝐵)𝐴𝑒−𝐴.
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Figura 16: Orbite del sistema di Lotka-Volterra.

Poiché le curve di livello sono della forma

𝑓 (𝑥)𝑔(𝑦) = 𝑘,

si hanno i seguenti casi:

• se 𝑘 > 𝑀𝑥𝑀𝑦 non ci sono punti;

• se 𝑘 = 𝑀𝑥𝑀𝑦 la curva si riduce al solo punto (𝐷/𝐶,𝐴/𝐵);

• se 0 < 𝑘 < 𝑀𝑥𝑀𝑦 , si ha che 𝑘/𝑀𝑦 < 𝑀𝑥 , dunque l’equazione 𝑓 (𝑥) = 𝑘/𝑀𝑦 ha esattamente
due soluzioni 𝑥𝑚 < 𝐷/𝐶 < 𝑥𝑀 e per tali soluzioni si deve avere per forza 𝑔(𝑦) = 𝑀𝑦 , da cui
𝑦 = 𝐴/𝐵 e troviamo due punti (𝑥𝑚, 𝐴/𝐵), (𝑥𝑀 , 𝐴/𝐵). Allo stesso modo 𝑘/𝑀𝑥 < 𝑀𝑦 , dunque
l’equazione 𝑔(𝑦) = 𝑘/𝑀𝑥 ha esattamente due soluzioni 𝑦𝑚 < 𝐴/𝐵 < 𝑦𝑀 e per tali soluzioni si
ha 𝑓 (𝑥) = 𝑀𝑦 , da cui 𝑥 = 𝐷/𝐶 e troviamo due punti (𝐷/𝐶,𝑦𝑚), (𝐷/𝐶,𝑦𝑀 ). Tutta la curva di
livello risulta compresa nel rettangolo delimitato dalle rette 𝑥 = 𝑥𝑚,𝑀 e 𝑦 = 𝑦𝑚,𝑀 .
Fissato poi 𝑥 ∈ (𝑥𝑚, 𝑥𝑀 ), l’equazione 𝑔(𝑦) = 𝑘/𝑓 (𝑥) ha esattamente due soluzioni 𝑦1(𝑥) <
𝐴/𝐵 < 𝑦2(𝑥), quindi per ogni 𝑥𝑚 < 𝑥 < 𝑥𝑀 troviamo due punti (𝑥,𝑦1(𝑥)) e (𝑥,𝑦2(𝑥)).

In particolare le orbite hanno i vertici tutti allineati sulle rette 𝑥 = 𝐷/𝐶 e 𝑦 = 𝐴/𝐵.

16.2.2 Numero medio di prede e predatori

Abbiamo visto che le soluzioni del sistema sono periodiche. Anche se il periodo 𝑇 dipende dalle
condizioni iniziali, e non è semplice da calcolare,(10) possiamo calcolare qual è il numero medio di
individui: consideriamo la prima equazione e integriamola da 0 a 𝑇 :∫ 𝑇

0

¤𝑥 (𝑡)
𝑥 (𝑡) 𝑑𝑡 =

∫ 𝑇

0
(𝐴 − 𝐵𝑦 (𝑡)) 𝑑𝑡 ⇒ ln 𝑥 (𝑇 )

𝑥 (0) = 𝐴𝑇 − 𝐵
∫ 𝑇

0
𝑦 (𝑡) 𝑑𝑡 .

(10)Linearizzando il sistema, è facile vedere che per condizioni iniziali vicino alla posizione di equilibrio stabile le traiettorie
hanno periodo 𝑇 = 2𝜋/√𝐴𝐷 . Per condizioni iniziali più lontane, invece, il periodo aumenta.
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prede

predatori

Figura 17: Le due componenti di una traiettoria del sistema di Lotka-Volterra.

Poiché 𝑥 (0) = 𝑥 (𝑇 ), il primo termine si annulla e troviamo

1
𝑇

∫ 𝑇

0
𝑦 (𝑡) 𝑑𝑡 = 𝐴

𝐵
.

Quindi il numero medio di predatori in un periodo coincide col valore dei predatori nella posizione di
equilibrio. La stessa cosa vale per le prede.
Questo significa che, indipendentemente dalle condizioni iniziali, tutte le soluzioni del sistema di
Lotka-Volterra hanno lo stesso numero medio di individui.

16.2.3 Il caso della pesca

Vito Volterra inventò e studiò il modello che porta il suo nome stimolato da un problema riguardante
la pesca nel Mare Adriatico durante la I Guerra Mondiale, postogli dal genero, il medico Umberto
D’Ancona, nel 1926. La domanda è: se aggiungiamo un termine negativo proporzionale alla quantità
di individui di entrambe le specie (tipo pesca), come cambia la posizione di equilibrio?
La risposta è semplice. Denotiamo con 𝑃 > 0 la proporzione di pesce pescata; il sistema diventa{

¤𝑥 = 𝑥 (𝐴 − 𝐵𝑦) − 𝑃𝑥
¤𝑦 = 𝑦 (𝐶𝑥 − 𝐷) − 𝑃𝑦 ⇒

{
¤𝑥 = 𝑥 ((𝐴 − 𝑃) − 𝐵𝑦)
¤𝑦 = 𝑦 (𝐶𝑥 − (𝐷 + 𝑃)) .

Nel caso 𝐴 > 𝑃 otteniamo ancora un sistema di Lotka-Volterra, la cui posizione di equilibrio stabile è(
𝐷 + 𝑃
𝐶

,
𝐴 − 𝑃
𝐵

)
.

Rispetto alla situazione senza pesca, la posizione si sposta in basso a destra, col risultato che l’azione
della pesca fa crescere il numero medio delle prede e calare quello dei predatori.
Se invece 𝐴 < 𝑃 , il sistema non è più di Lotka-Volterra: l’unica posizione di equilibrio è (0, 0) e si
prova subito per linearizzazione che è asintoticamente stabile. Quindi il sistema va verso l’estinzione.
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16.2.4 Modello preda-predatore logistico

Nelmodello di Lotka-Volterra, se non ci sono prede i predatori decrescono verso l’estinzione. Viceversa,
se non ci sono predatori le prede sono destinate a crescere esponenzialmente; se si vuole invece tenere
conto delle risorse limitate, si può mettere un termine di correzione logistica nella prima equazione:{

¤𝑥 = 𝑥 (𝐴 − 𝐵𝑦 − 𝐸𝑥)
¤𝑦 = 𝑦 (𝐶𝑥 − 𝐷) 𝐸 > 0.

In questo caso si trovano tre posizioni di equilibrio:

𝑂 (0, 0), 𝑃1

(
𝐴

𝐸
, 0

)
, 𝑃2

(
𝐷

𝐶
,
𝐴𝐶 − 𝐷𝐸
𝐵𝐶

)
,

con 𝑃2 accettabile solo se 𝐴𝐶 > 𝐷𝐸. Per linearizzazione si trova che 𝑂 è instabile (sella), mentre
𝑃1 è asintoticamente stabile per 𝐴𝐶 < 𝐷𝐸; in questo caso si arriva all’estinzione dei predatori. Per
𝐴𝐶 > 𝐷𝐸 la posizione 𝑃1 diventa instabile mentre 𝑃2 è asintoticamente stabile (si tratta di nodo o di
fuoco?).
Il caso 𝐴𝐶 = 𝐷𝐸 non può essere studiato per linearizzazione.

16.2.5 Modelli preda-predatore con tasso di crescita non lineare

Tra questi è notevole il modello di Gomatam (1974), che è molto simile al Lotka-Volterra ma assume
tassi di crescita logaritmici: {

¤𝑥 = 𝑥 (𝐴 − 𝐵 ln𝑦)
¤𝑦 = 𝑦 (𝐶 ln𝑥 − 𝐷) .

Anche se sembra più complicato, in realtà il cambio di variabili

𝜉 = ln𝑥, 𝜂 = ln𝑦

permette di trasformarlo in un sistema lineare, quindi completamente risolubile.
Anche il modello di Gomatam logistico{

¤𝑥 = 𝑥 (𝐴 − 𝐵 ln𝑦 − 𝐸 ln𝑥)
¤𝑦 = 𝑦 (𝐶 ln𝑥 − 𝐷 − 𝐹 ln𝑦)

diventa lineare con lo stesso cambio di variabili.
Un problema di questi modelli è che il tasso di crescita delle specie non è limitato; è stato quindi
proposto il seguente modello {

¤𝑥 = 𝑥 (𝐴 − 𝐵(1 − 𝑒−𝛼𝑦))
¤𝑦 = 𝑦 (𝐶 (1 − 𝑒−𝛽𝑥 ) − 𝐷)

in cui si deve assumere che 𝛼, 𝛽 > 0 e 𝐵 > 𝐴, 𝐶 > 𝐷 . In questo modello il comportamento è simile a
quello del sistema di Lotka-Volterra, ma i tassi di crescita sono limitati.
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Figura 18: Orbite del sistema di Gomatam.

Figura 19: Orbite del sistema con tassi di crescita limitati.
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Esercizio 16.1. P. H. Leslie, (Biometrika, Vol. 35, No. 3/4, 1948, pp. 213–245) ha proposto un modello
preda-predatore leggermente diverso da quello di Lotka-Volterra, dato da

¤𝑥 = 𝑥 (𝐴 − 𝐵𝑦)
¤𝑦 = 𝑦

(
𝐶 − 𝐷𝑦

𝑥

)
in cui il tasso di crescita dei predatori tiene conto del rapporto tra numero di predatori e numero di
prede. Si studi questo modello confrontandolo col Lotka-Volterra classico.

16.3 Altri modelli a due popolazioni

Si possono descrivere altri modi di interazione tra due specie: noi vedremo il commensalismo, il
mutualismo o simbiosi e la competizione.
In generale se i tassi di crescita sono supposti affini, il modello a due specie si scrive

¤𝑥 = 𝛾1𝑥

(
1 − 𝑥

𝐾1
+ 𝑎12𝑦

)
¤𝑦 = 𝛾2𝑦

(
1 + 𝑎21𝑥 − 𝑦

𝐾2

)
,

𝛾𝑖 , 𝐾𝑖 > 0, 𝑎𝑖 𝑗 ∈ R (10)

dove 𝐾1, 𝐾2 rappresentano le capacità del sistema biologico rispettivamente per le specie 𝑥,𝑦 (il
modello di Lotka-Volterra non è compreso in questo sistema: per averlo bisognerebbe prendere
𝐾1, 𝐾2 →∞ e 𝛾2 < 0). Poniamo poi

A :=
[−1/𝐾1 𝑎12
𝑎21 −1/𝐾2

]
. (11)

Se 𝑎21 > 0 e 𝑎12 = 0 si parla di commensalismo: la prima specie non sente nessuna influenza da parte
della seconda, mentre la seconda guadagna dalla presenza della prima. In questo caso esiste una
posizione di equilibrio senza estinzioni asintoticamente stabile.
Se 𝑎12, 𝑎21 > 0 si parla di mutualismo: ogni specie guadagna dalla presenza dell’altra. Qui si ha una
posizione di equilibrio che cambia la stabilità in funzione del segno di det A.
Infine, se 𝑎12, 𝑎21 < 0 si parla di competizione: le due specie si svantaggiano a vicenda. In questo caso
la situazione è più varia e possono distinguersi tre casi:

• c’è solo una posizione di equilibrio asintoticamente stabile, che prevede l’estinzione dell’una o
dell’altra specie;

• c’è una posizione asintoticamente stabile che prevede la coesistenza delle due specie;

• a seconda delle condizioni iniziali il sistema tende verso l’estinzione dell’una o dell’altra specie.

Questo fatto mette in dubbio il cosiddetto principio di esclusione competitiva, spesso assunto in Biologia,
secondo cui tra due specie in competizione la più avvantaggiata prenderà sempre il sopravvento.
Invece, secondo il modello presentato, il sopravvento può dipendere dalle condizioni iniziali e non
solo dalle prerogative di ogni specie. Inoltre, per altre scelte dei coefficienti esiste anche una posizione
di equilibrio asintoticamente stabile in cui le due specie coesistono.
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Studiamo il modello (10). Per ridurre il numero dei parametri introduciamo le quantità

𝑥 := 𝑥/𝐾1, 𝑦 := 𝑦/𝐾2, 𝑡 := 𝑡/𝛾1,

in modo che il sistema si possa riscrivere come{
𝑥 ′ = 𝑥 (1 − 𝑥 + (𝑎 − 1)𝑦)
𝑦′ = 𝛾𝑦 (1 + (𝑏 − 1)𝑥 − 𝑦) (12)

dove 𝑥 ′, 𝑦′ sono le derivate rispetto al nuovo tempo 𝑡 e abbiamo posto, per comodità,

𝑎 := 1 + 𝑎12𝐾2, 𝑏 := 1 + 𝑎21𝐾1, 𝛾 := 𝛾2
𝛾1
.

In questo modo il sistema (12) dipende solo da tre parametri: 𝑎, 𝑏 ∈ R e 𝛾 > 0 e le condizioni sul tipo
di sistema (mutualismo, commensalismo, competizione) si danno sui segni di 𝑎 − 1 e 𝑏 − 1. Si verifica
che le posizioni di equilibrio sono

𝑂 = (0, 0), 𝑃1 = (1, 0), 𝑃2 = (0, 1), 𝑃3 =
( 𝑎

𝑎 + 𝑏 − 𝑎𝑏 ,
𝑏

𝑎 + 𝑏 − 𝑎𝑏
)

e l’ultima è accettabile solo per certe condizioni di segno sui parametri. La matrice jacobiana del
sistema è

𝐽 (𝑥,𝑦) =
[
1 − 2𝑥 + (𝑎 − 1)𝑦 (𝑎 − 1)𝑥

𝛾 (𝑏 − 1)𝑦 𝛾 (1 + (𝑏 − 1)𝑥 − 2𝑦)
]

e si ha

𝐽 (𝑂) =
[
1 0
0 𝛾

]
, 𝐽 (𝑃1) =

[−1 𝑎 − 1
0 𝛾𝑏

]
,

𝐽 (𝑃2) =
[

𝑎 0
𝛾 (𝑏 − 1) −𝛾

]
, 𝐽 (𝑃3) = 1

𝑎 + 𝑏 − 𝑎𝑏

[ −𝑎 𝑎(𝑎 − 1)
𝛾𝑏 (𝑏 − 1) −𝛾𝑏

]
.

La posizione 𝑂 è sempre instabile (sorgente), mentre la stabilità delle altre dipende dai segni dei
coefficienti. Inoltre si verifica che

det 𝐽 (𝑃3) = 𝛾 𝑎𝑏

𝑎 + 𝑏 − 𝑎𝑏 .

Si noti inoltre che

𝑎 > 0⇔ 𝑎12 > −1/𝐾2, 𝑏 > 0⇔ 𝑎21 > −1/𝐾1, 𝑎 + 𝑏 − 𝑎𝑏 > 0⇔ 𝑎12𝑎21 >
1

𝐾1𝐾2
⇔ det A > 0

dove A è la matrice definita in (11).
Cominciamo studiando il caso 𝑎 + 𝑏 − 𝑎𝑏 < 0, cioè det A < 0:

• se 𝑎 < 0 e 𝑏 < 0 le posizioni 𝑃1, 𝑃2 sono asintoticamente stabili e 𝑃3 è accettabile ma è una sella;

• se 𝑎 > 0 e 𝑏 < 0, 𝑃1 è asintoticamente stabile, 𝑃2 è instabile e 𝑃3 non è accettabile;

• se 𝑎 < 0 e 𝑏 > 0, 𝑃2 è asintoticamente stabile, 𝑃1 è instabile e 𝑃3 non è accettabile;
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• se 𝑎 > 0 e 𝑏 > 0, non ci sono posizioni stabili e 𝑃3 non è accettabile: in questo caso il numero di
individui esplode (non può succedere nel caso competitivo).

Nel caso 𝑎 + 𝑏 − 𝑎𝑏 > 0, cioè det A > 0, invece si ha:

• se 𝑎 < 0 e 𝑏 < 0 non può essere 1 − 𝑎𝑏 > 0;

• se 𝑎 > 0 e 𝑏 < 0, 𝑃1 è asintoticamente stabile, 𝑃2 è instabile e 𝑃3 non è accettabile;

• se 𝑎 < 0 e 𝑏 > 0, 𝑃2 è asintoticamente stabile, 𝑃1 è instabile e 𝑃3 non è accettabile;

• se 𝑎 > 0 e 𝑏 > 0, 𝑃1 e 𝑃2 sono instabili e 𝑃3 è asintoticamente stabile.

Esercizio 16.2. Si studi il sistema (10) con i coefficienti (di tipo competitivo)

𝛾1 = 1, 𝛾2 = 3, A =

[−1 −2
−4 −3

]
,

𝛾1 = 1, 𝛾2 = 3, A =

[−1 −4
−4 −3

]
,

𝛾1 = 1, 𝛾2 = 3, A =

[−3 −1
−1 −2

]
.

17 Modelli economici

Vedremo in questa sezione alcuni semplici modelli economici.

17.1 Modelli economici a domanda e offerta

Denotiamo con 𝐷 la domanda di un bene, con 𝑆 (supply) la sua offerta e con 𝑃 il prezzo.

Postulato 1 (Legge della domanda e dell’offerta) Il prezzo 𝑃 di un bene cresce nel tempo se 𝐷 ⩾ 𝑆 ,
decresce se 𝐷 ⩽ 𝑆 . Usando le derivate possiamo scrivere

¤𝑃 (𝐷 − 𝑆) ⩾ 0.

Nel modello più semplice possiamo supporre una dipendenza lineare di ¤𝑃 da 𝐷 − 𝑆 , ovvero esiste una
funzione del tempo 𝐽 (𝑡) non negativa tale che

¤𝑃 = 𝐽 (𝑡) (𝐷 (𝑡) − 𝑆 (𝑡)) . (13)

Alcuni modelli più sofisticati considerano la 𝐽 positiva solo in media, oppure mettono un termine di
ritardo nella 𝐽 , o ancora suppongono una dipendenza non lineare.
Restano però tre incognite e una sola equazione. Aggiungiamo quindi un’altra ipotesi.

Postulato 2 Supporremo che𝐷 sia una funzione decrescente di 𝑃 , mentre 𝑆 sia una funzione crescente
di 𝑃 .
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Anche in questo caso, la scelta più semplice ci porta ad assumere

𝐷 (𝑃) = 𝛼 − 𝛽𝑃, 𝑆 (𝑃) = −𝛾 + 𝛿𝑃

dove le costanti 𝛼, 𝛽,𝛾, 𝛿 sono strettamente positive. Sostituendo in (13), otteniamo l’equazione
differenziale

¤𝑃 = 𝐽 (𝑡) (𝛼 + 𝛾 − (𝛽 + 𝛿)𝑃),
che ammette la posizione di equilibrio

𝑃 =
𝛼 + 𝛾
𝛽 + 𝛿 .

Se supponiamo 𝐽 (𝑡) costante, l’equazione è autonoma e la posizione 𝑃 è globalmente esponenzialmente
stabile. La soluzione generale è

𝑃 (𝑡) = (𝑃0 − 𝑃)𝑒− 𝐽 (𝛽+𝛿 )𝑡 + 𝑃 .

Quindi il mercato tende all’equilibrio (si noti che per avere stabilità del mercato è sufficiente richiedere
che 𝛽 + 𝛿 > 0, e non che entrambi siano positivi).
Si può invece assumere che la domanda non sia lineare nel prezzo, ma ad esempio quadratica:

𝐷 (𝑃) = 𝑎 + 𝑏𝑃 − 𝑐𝑃2, 𝑎, 𝑐 > 0.

Se 𝑏 < 0 la domanda è sempre decrescente nel prezzo, se invece 𝑏 > 0 si possono avere situazioni per
prezzi bassi (prima del vertice della parabola) in cui la domanda cresce anche se cresce il prezzo, per
poi decrescere rapidamente. Se supponiamo di nuovo l’offerta lineare in 𝑃 e 𝐽 costante, otteniamo

¤𝑃 = 𝐽
(
𝑎 + 𝛾 + (𝑏 − 𝛿)𝑃 − 𝑐𝑃2) ,

che è un’equazione di Bernoulli. Anche in questo caso si trova una sola posizione di equilibrio
accettabile, cioè positiva, data da

𝑃 =
1
2𝑐

(
𝑏 − 𝛿 +

√︁
(𝑏 − 𝛿)2 + 4𝑐 (𝑎 + 𝛾)

)
ed è sempre asintoticamente stabile.

17.1.1 Modelli a più beni

Si possono trattare anche modelli in cui più beni competono sul mercato:

P = (𝑃1, . . . , 𝑃𝑛), D = (𝐷1, . . . , 𝐷𝑛), S = (𝑆1, . . . , 𝑆𝑛) .

Facendo ancora la scelta lineare si può ipotizzare che

D = α + AP , S = β + BP

doveα,β sono vettori costanti e A,B sono matrici quadrate definite rispettivamente la prima negativa
e la seconda positiva. Se si considera la matrice diagonale

J = diag(𝐽1, . . . , 𝐽𝑛)
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si ottiene il sistema differenziale

¤P = 𝐽 [α − β + (A − B)P ] ,

che ha la posizione di equilibrio
P̄ = (B − A)−1(α − β) .

Poiché il gradiente del secondo membro è costante ed è dato da 𝐽 (A − B), che è definita negativa, la
posizione è stabile e il mercato tende all’equilibrio.

17.1.2 Modelli ad aspettativa di prezzo

In questi modelli si suppone che 𝐷 ed 𝑆 possano dipendere anche da ¤𝑃 , e non solo da 𝑃 . In questo
modo anche la “storia” del prezzo può influire sulla domanda e sull’offerta. Facendo l’ipotesi di
dipendenza lineare si ha

𝐷 (𝑃, ¤𝑃) = 𝛼 − 𝛽𝑃 + 𝑎 ¤𝑃, 𝑆 (𝑃, ¤𝑃) = −𝛾 + 𝛿𝑃 + 𝑏 ¤𝑃, 𝑎, 𝑏 ∈ R.

Supponendo al solito 𝐽 costante si ha

(1 − 𝐽 (𝑎 − 𝑏)) ¤𝑃 = 𝐽 (𝛼 + 𝛾 − (𝛽 + 𝛿)𝑃)

e, se 𝐽 (𝑎 − 𝑏) ≠ 1, si trova di nuovo la posizione di equilibrio

𝑃 =
𝛼 + 𝛾
𝛽 + 𝛿 .

Stavolta tale posizione è asintoticamente stabile se 𝐽 (𝑎 − 𝑏) < 1, mentre è instabile se 𝐽 (𝑎 − 𝑏) > 1.
In quest’ultimo caso si ha che il prezzo tende all’infinito!
Si può introdurre allora un fattore di correzione in modo che il termine 𝐽 (𝑎 −𝑏) sia decrescente con 𝑃 :

𝐽 (𝑎 − 𝑏) = 1 + 𝑐 −𝑚𝑃, 𝑚 > 0

e dunque si ottiene l’equazione

¤𝑃 =
𝐽 (𝛼 + 𝛾 − (𝛽 + 𝛿)𝑃)

𝑚𝑃 − 𝑐 =: 𝐹 (𝑃) .

L’unica posizione di equilibrio è ancora 𝑃 , e si ha

𝐹 ′(𝑃) = −𝐽 𝛽 + 𝛿
𝑚𝑃 − 𝑐 ,

quindi l’equilibrio è stabile se 𝑐/𝑚 < 𝑃 (ovvero 𝑐/𝑚 non deve essere troppo grande).

17.2 Modelli economici di crescita

In questi modelli, basati sulla teoria di Keynes, si studia l’evoluzione del prodotto interno lordo di
uno stato.
Sia 𝑌 il prodotto interno di uno stato e 𝐶 il consumo, con l’ipotesi che

0 < 𝐶 < 𝑌 .
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Denotiamo con 𝑐 := 𝐶/𝑌 la propensione al consumo; si ha 0 < 𝑐 < 1. Sia 𝐼 l’investimento privato e 𝐺
l’investimento statale, assunto come funzione nota del tempo, di modo che

𝑌 = 𝐶 + 𝐼 +𝐺. (14)

Si suppone che 𝐼 sia una funzione crescente di ¤𝐶 . Facendo la scelta lineare

𝐼 = 𝛽 ¤𝐶
da (14) si ottiene l’equazione differenziale

𝑌 = 𝑐𝑌 + 𝛽 ¤𝑐𝑌 + 𝛽𝑐 ¤𝑌 +𝐺
da cui

¤𝑌 =
(1 − 𝑐)𝑌 −𝐺

𝛽𝑐
.

Supponendo 𝑐,𝐺 costanti si trova la posizione di equilibrio instabile

𝑌 =
𝐺

1 − 𝑐
(la stabilità in questi modelli è vista in modo negativo, perché sintomo di stagnazione) e la soluzione è

𝑌 (𝑡) = (𝑌0 − 𝑌 )𝑒
1−𝑐
𝛽𝑐

𝑡 + 𝑌,
che tende a +∞.
Cambiamo ora ipotesi e supponiamo che 𝐼 , oltre a essere una funzione crescente di ¤𝐶 , sia decrescente
in ¤𝐼 . Nel caso lineare si ha

𝐼 = 𝛽 ¤𝐶 − 𝛾 ¤𝐼
e si pone un limite alla crescita degli investimenti. Supponiamo poi che la (14) sia modificata in

𝑌 = 𝐶 + 𝐼 +𝐺 − 𝜆 ¤𝑌, 𝜆 > 0

in modo che se 𝑌 è inferiore alla quantità 𝐶 + 𝐼 + 𝐺 ci sia una tendenza ad aumentare 𝑌 . Allora,
ricordando che 𝐶 = 𝑐𝑌 , si ottiene

¤𝐼 = 1
𝛾
(𝛽 ¤𝐶 − 𝐼 ) = 1

𝛾
(𝛽𝑐 ¤𝑌 − 𝐼 )

e
¤𝑌 =

1
𝜆
(𝐶 + 𝐼 +𝐺 − 𝑌 ) = 1

𝜆
(𝐼 +𝐺 − (1 − 𝑐)𝑌 ),

da cui si ricava il sistema bidimensionale del primo ordine{ ¤𝐼 = 1
𝜆𝛾
[(𝛽𝑐 − 𝜆)𝐼 − 𝛽𝑐 (1 − 𝑐)𝑌 + 𝛽𝑐𝐺]

¤𝑌 = 1
𝜆
[𝐼 − (1 − 𝑐)𝑌 +𝐺] .

La matrice del sistema è
1
𝜆𝛾

[
𝛽𝑐 − 𝜆 −𝛽𝑐 (1 − 𝑐)
𝛾 −𝛾 (1 − 𝑐)

]
e ha determinante sempre positivo, mentre la traccia è

1
𝜆𝛾
((𝛽 + 𝛾)𝑐 − 𝜆 − 𝛾).

Quindi l’equilibrio è asintoticamente stabile (stagnazione) per 𝑐 < (𝜆 +𝛾)/(𝛽 +𝛾), è un centro (quindi
produce oscillazioni) per 𝑐 = (𝜆 + 𝛾)/(𝛽 + 𝛾) ed è instabile per 𝑐 > (𝜆 + 𝛾)/(𝛽 + 𝛾).

62



18 Sistemi dinamici discreti

Definizione 18.1 (Sistema dinamico discreto). Dato un insieme 𝐷 ⊆ R𝑛 e una funzione F :
𝐷 × N→ 𝐷 , un sistema dinamico discreto (o mappa iterata) è un’equazione del tipo

uℎ+1 = F (uℎ, ℎ) . (15)

Dato ū ∈ 𝐷 , un sistema dinamico discreto definisce una successione per ricorsione data da{
uℎ+1 = F (uℎ, ℎ)
u0 = ū.

(16)
★

Osservazione 18.2. Nel caso in cui F non dipenda da ℎ, diremo che il sistema dinamico discreto
è autonomo. Anche in questo caso, come in quello continuo, è possibile trasformare un sistema
dinamico discreto generale in uno autonomo aggiungendo una variabile. Infatti, partiamo da (15) e
definiamo il sistema dinamico discreto autonomo in R𝑛+1

vℎ+1 = G(vℎ) dove v := (u, 𝑦), G(v) := (F (v), 𝑦 + 1) .
La successione definita da {

vℎ+1 = G(vℎ)
v0 = (ū, 0)

è tale che per l’ultima componente si ha{
𝑦ℎ+1 = 𝑦ℎ + 1
𝑦0 = 0.

⇒ 𝑦ℎ = ℎ ∀ℎ ∈ N ⇒ vℎ = (uℎ, ℎ)

e dunque le prime 𝑛 componenti danno la successione (16). ★

D’ora in poi quindi considereremo solo sistemi dinamici discreti autonomi.
Un concetto equivalente a quello di mappa iterata (autonoma) è il seguente:

Definizione 18.3 (Semigruppo discreto). Una famiglia numerabile di funzioni {𝑆ℎ}ℎ∈N da 𝐷 a 𝐷 ,
𝐷 ⊆ R𝑛 , si dice semigruppo discreto se verifica

(1) 𝑆0 = Id;

(2) 𝑆ℎ+𝑘 = 𝑆ℎ ◦ 𝑆𝑘 per ogni ℎ, 𝑘 ∈ N. ★

Proposizione 18.4. Data una mappa iterata autonoma uℎ+1 = F (uℎ) con condizione iniziale u0 = u,
ponendo

∀ℎ ∈ N : 𝑆ℎu := uℎ

si ottiene un semigruppo discreto.

Viceversa, dato un semigruppo discreto {𝑆ℎ}ℎ∈N, ponendo
F := 𝑆1, uℎ+1 = F (uℎ)

si ottiene la mappa iterata che dà il semigruppo.
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Dimostrazione. La dimostrazione si basa sulla semplice osservazione che la soluzione del sistema
dinamico discreto autonomo è data da

uℎ = F ℎ (u) = (F ◦ · · · ◦ F︸        ︷︷        ︸
ℎ volte

) (u),

mentre per un semigruppo discreto la seconda proprietà implica che

𝑆ℎ = 𝑆ℎ1 = 𝑆1 ◦ · · · ◦ 𝑆1︸        ︷︷        ︸
ℎ volte

.

Entrambe le proprietà si dimostrano per induzione. □

Quindi d’ora in poi i concetti di mappa iterata e di semigruppo discreto verranno identificati.

Esempio 18.5. Si consideri il sistema dinamico discreto in R2{
𝑥ℎ+1 = 𝑦ℎ
𝑦ℎ+1 = 𝑥ℎ + 𝑦ℎ .

(17)

Con la condizione iniziale (𝑥0, 𝑦0) = (0, 1) si verifica che (𝑥ℎ) è la successione dei numeri di Fibonacci.
Per determinare il semigruppo discreto associato, visto che il sistema è lineare abbiamo che

F (𝑥,𝑦) = A
[
𝑥
𝑦

]
dove A =

[
0 1
1 1

]
.

Quindi dobbiamo calcolare F ℎ = Aℎ . Gli autovalori e autovettori di A sono

1 − √5
2 ,

[
1

1−√5
2

]
1 + √5

2 ,

[
1

1+√5
2

]
e diagonalizzando si ha

Aℎ = P


(

1−√5
2

)ℎ
0

0
(

1+√5
2

)ℎ P−1 dove P =

[
1 1

1−√5
2

1+√5
2

]
.

★

Definizione 18.6 (Punto di equilibrio). Un punto di equilibrio per un sistema dinamico discreto è
un elemento ū ∈ 𝐷 tale che la successione generata da (16) è costante:

uℎ = ū per ogni ℎ ∈ N. ★

Proposizione 18.7. Un punto ū ∈ 𝐷 è di equilibrio per uℎ+1 = F (uℎ) se e solo se ū è un punto fisso
per F , cioè

F (ū) = ū.
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Dimostrazione. Se ū ∈ 𝐷 è punto di equilibrio, allora

ū = u1 = F (u0) = F (ū).

Il viceversa si dimostra per induzione. □

Definizione 18.8 (Orbita periodica). Dato un sistema dinamico discreto uℎ+1 = F (uℎ), l’orbita
uscente da u0 è l’insieme

{F ℎ (u0) : ℎ ∈ N} ⊆ 𝐷.
Un’orbita periodica o ciclo è un’orbita

{u0,F (u0),F 2(u0), . . . ,F 𝑝−1(u0)}

tale che F 𝑝 (u0) = u0. Se tutti gli elementi del ciclo sono distinti, si dice che il ciclo ha periodo 𝑝 e si
parla di 𝑝-ciclo. ★

Si noti che il singoletto fatto da un punto di equilibrio è un ciclo (degenere) di periodo 1.
Si verifica facilmente che

Proposizione 18.9. Ogni punto di un 𝑝-ciclo è un punto fisso di F 𝑝 . Viceversa, ogni punto fisso di F 𝑝

ha un’orbita periodica di periodo che divide 𝑝 .

Anche per i sistemi dinamici discreti si possono dare le definizioni di equilibrio stabile ed equilibrio
asintoticamente stabile.

Definizione 18.10. Un punto di equilibrio ū del sistema dinamico discreto uℎ+1 = F (uℎ) si dice
stabile se per ogni intorno 𝑉 di ū esiste un intorno𝑈 di ū tale che per ogni u0 ∈ 𝑈 si abbia

F ℎ (u0) ∈ 𝑉 per ogni ℎ ∈ N.

L’equilibrio si dice instabile se non è stabile.
Si dice che un punto di equilibrio ū è asintoticamente stabile se è stabile e se inoltre per ogni u0 ∈ 𝑈
si ha

lim
ℎ→+∞

F ℎ (u0) = ū.
★

Vogliamo ora dare un criterio di stabilità per i sistemi dinamici discreti. Richiamiamo un teorema
importante.

Teorema 18.11 (Teorema delle contrazioni). Sia 𝐶 ⊆ R𝑛 un insieme chiuso e F : 𝐶 → 𝐶 tale che

∃𝛿 < 1 : ∀x,y ∈ 𝐶 : |F (x) − F (y) | ⩽ 𝛿 |x − y |

(ovvero F è lipschitziana di costante minore di 1). Allora il sistema dinamico discreto

uℎ+1 = F (uℎ)

ammette un unico punto di equilibrio in 𝐶 , che inoltre è asintoticamente stabile.
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Dimostrazione. Sia u0 ∈ 𝐶 e definiamo uℎ := F ℎ (u0). Allora per ogni ℎ, 𝑘 ∈ N si ha

|uℎ+𝑘 − uℎ | ⩽ |uℎ+𝑘 − uℎ+𝑘−1 | + · · · + |uℎ+1 − uℎ |

⩽ (𝛿ℎ+𝑘−1 + 𝛿ℎ+𝑘−2 + · · · + 𝛿ℎ) |u1 − u0 | ⩽ 𝛿ℎ

1 − 𝛿 |u1 − u0 |

quindi la successione (uℎ) è di Cauchy in 𝐶 (che è uno spazio metrico completo) e dunque converge
a un certo u. Ma poiché F è continua, si ha che

u = F (u)

e dunque u è punto di equilibrio. Si mostra facilmente che esso è unico.
Infine, passando al limite per 𝑘 →∞ nella disuguaglianza sopra, si ottiene

|uℎ − u| ⩽
𝛿ℎ

1 − 𝛿 |u1 − u0 |

da cui uℎ → u che quindi è asintoticamente stabile. □

Risulta molto utile soprattutto il seguente corollario, che è quasi una caratterizzazione dei punti di
equilibrio asintoticamente stabili.

Corollario 18.12. Se esiste un chiuso 𝐶 ⊆ R𝑛 e 𝑝 ⩾ 1 tale che F 𝑝 : 𝐶 → 𝐶 è una contrazione, allora
di nuovo il sistema dinamico discreto

uℎ+1 = F (uℎ)
ammette un unico punto di equilibrio, che inoltre è asintoticamente stabile.

Dimostrazione. Dal Teorema delle contrazioni si ha che esiste un unico punto fisso u per F 𝑝 :

F 𝑝 (u) = u.

Ma allora anche F (u) è punto fisso per F 𝑝 , infatti

F 𝑝 (F (u)) = F 1+𝑝 (u) = F (F 𝑝 (u)) = F (u) .

Per l’unicità dunque si ha F (u) = u. In particolare, u è punto fisso per F . La stabilità asintotica può
essere provata in modo simile. □

Definizione 18.13 (Raggio spettrale). Data una matrice quadrata A con autovalori (complessi)
𝜆1, . . . , 𝜆𝑘 ∈ C, chiamiamo raggio spettrale di A il numero

𝜌 (A) = max{|𝜆1 |, . . . , |𝜆𝑘 |}.

Chiamiamo norma spettrale di A la norma

∥A∥ = sup
x≠0

|Ax|
|x| = sup

|x |=1
|Ax|

dove |𝜆 𝑗 | denota il modulo complesso. ★
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Si ha ovviamente che ∥A∥ è il più piccolo numero positivo tale che

∀x ∈ R𝑛 : |Ax| ⩽ ∥A∥|x|.

Inoltre si può dimostrare che ∥A∥ =
√︁
𝜌 (ATA) e vale il seguente lemma, che diamo senza dimostra-

zione.

Lemma 18.14 (Lemma di Gelfand). Per ogni matrice quadrata A si ha che 𝜌 (A) < 1 se e solo se
lim
ℎ
∥Aℎ ∥ = 0.(11)

Ora possiamo enunciare e dimostrare il seguente importante teorema per i sistemi dinamici discreti
lineari.

Teorema 18.15. Data una matrice quadrata A, consideriamo il sistema dinamico discreto lineare

uℎ+1 = Auℎ .

Se 𝜌 (A) < 1, allora 0 è l’unico punto di equilibrio ed è asintoticamente stabile.

Dimostrazione. Poiché 𝜌 (A) < 1, dal lemma precedente si ha che A𝑘 è una contrazione per qualche
𝑘 ⩾ 1. Applicando il Corollario 18.12 si ottiene la tesi. □

Si può anche dimostrare che se 𝜌 (A) > 1, allora possono esserci più punti di equilibrio ma sono tutti
instabili.
Chiudiamo la sezione con il teorema più importante:

Teorema 18.16. Sia ū un punto di equilibrio per il sistema dinamico discreto uℎ+1 = F (uℎ). Se
𝜌 (∇F (ū)) < 1, allora ū è asintoticamente stabile.

Dimostrazione. Dalla formula di Gelfand esiste 𝑘 ⩾ 1 tale che ∥∇F (ū)𝑘 ∥ < 1. Ma poiché ū è un
punto fisso per F , segue che

∇F (ū)𝑘 = ∇(F 𝑘 ) (ū),

quindi ∥∇(F 𝑘 ) (ū)∥ < 1.
Ora sviluppiamo la funzione F 𝑘 secondo Taylor attorno a ū:

F 𝑘 (u) = F 𝑘 (ū) + ∇(F 𝑘 ) (ū) (u − ū) + 𝑅(u − ū);

quindi per differenza esiste un intorno𝑈 di ū tale che

∀u, v ∈ 𝑈 : F 𝑘 (u) − F 𝑘 (v) = ∇(F 𝑘 ) (ū) (u − v) + 𝑅(u, v)

dove 𝑅(u, v) := 𝑅(u − ū) − 𝑅(v − ū) è una funzione piccola in 𝑈 . Quindi F 𝑘 è una contrazione su
𝑈 e dal Corollario 18.12 segue la tesi. □

(11)La formula di Gelfand dice più precisamente che 𝜌 (A) = limℎ ∥𝐴ℎ ∥1/ℎ
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Osservazione 18.17. Diventa importante trovare un criterio per stabilire se 𝜌 (A) < 1, ovvero se
gli autovalori complessi di una matrice stanno tutti nel cerchio unitario aperto oppure no. Senza
risolvere il polinomio caratteristico, si può applicare il criterio di Jury (anche detto di Schur-Cohn),
che funziona in modo molto simile alla tabella di Routh per la stabilità nei sistemi continui.
Nel caso 𝑛 = 2, si può dimostrare che la condizione 𝜌 (A) < 1 equivale a

| tr A| < 1 + det A < 2

(si provi a dimostrarlo usando la formula risolutiva delle equazioni di secondo grado e distinguendo i
casi di soluzioni reali o soluzioni complesse coniugate).
Nel caso 𝑛 = 3, scrivendo il polinomio caratteristico come 𝜆3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3, si mostra che la
condizione di stabilità equivale alle disuguaglianze

|𝑎1 + 𝑎3 | < 1 + 𝑎2, |𝑎2 − 𝑎1𝑎3 | < 1 − 𝑎2
3.

C’è anche un altro modo, un po’ più laborioso, per procurarsi un criterio di stabilità, ed è quello di
ricondursi al criterio di Routh-Hurwitz o a quello di Liénard-Chipart per le ODE. È possibile infatti
dimostrare che la trasformazione involutoria sui complessi

𝑧 =
𝑤 + 1
𝑤 − 1 , 𝑤 =

𝑧 + 1
𝑧 − 1

manda l’interno del cerchio di raggio unitario {𝑤 ∈ C : |𝑤 | < 1} nel semipiano sinistro {𝑧 ∈ C :
Re 𝑤 < 0} (si veda [Ogata, pp. 191-192]). Quindi si può applicare la trasformazione al polinomio
caratteristico in𝑤 del sistema discreto, moltiplicando poi tutto per (𝑧 − 1)𝑛 e ottenendo così un altro
polinomio, a cui si possono applicare i criteri di stabilità delle ODE. Tale metodo però risulta in genere
più lungo della diretta applicazione del criterio di Schur-Cohn. ★

Si può dare, in modo ovvio, anche la definizione di stabilità asintotica di un 𝑝-ciclo. In questo caso
vale il seguente corollario.

Corollario 18.18 (Stabilità di un 𝒑-ciclo). Un 𝑝-ciclo {u0, . . . ,u𝑝−1} è asintoticamente stabile se

𝜌 (∇F (u𝑝−1)∇F (u𝑝−2) · · · ∇F (u0)) < 1.(12)

Esercizio 18.19 (Mathematical Monthly Challenge). Siano 𝑥1, 𝑥2 numeri reali positivi arbitra-
riamente scelti, con 𝑥1 + 𝑥2 ≠ 0. Consideriamo la successione così definita:

𝑥𝑛+2 =
2

𝑥𝑛 + 𝑥𝑛+1 , 𝑛 = 1, 2 . . .

Dimostrate che la successione converge (a che cosa?).

(12)Si noti che l’insieme degli autovalori, e quindi il raggio spettrale, di un prodotto di matrici non cambiano se si effettua
una permutazione ciclica del prodotto. Quindi si può calcolare il prodotto dei gradienti a partire da un qualsiasi elemento
del ciclo e andando all’indietro sul ciclo.
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~ = � (G)

~ = G

G0

Figura 20: Da questa figura si capisce che a partire dalla posizione 𝑥0 si andrà a convergere verso una
certa posizione, che è data dall’intersezione del grafico di 𝑓 con la bisettrice, ovvero da un punto di
equilibrio.

19 Mappe iterate unidimensionali

19.1 Il metodo della ragnatela

Sia 𝑥ℎ+1 = 𝐹 (𝑥ℎ) un sistema dinamico discreto unidimensionale; esiste un metodo grafico semplice
ma potente per capire dove vanno a finire le condizioni iniziali:

• si disegna la funzione 𝐹 (𝑥);

• si traccia la bisettrice del I-III quadrante 𝑦 = 𝑥 ;

• si parte sull’asse 𝑥 dalla condizione iniziale 𝑥0, muovendosi poi in verticale fino al grafico di 𝐹 e
in orizzontale fino alla bisettrice;

• si continua così per un po’ di volte, cercando di capire cosa succede alla traiettoria.

Ogni volta che si interseca il grafico di 𝐹 , si ottiene il valore della successione al passo successivo,
quindi ci si può fare un’idea, anche se informale, su cosa succede alla successione all’aumentare di ℎ.
Si vedano le Figure 20 e 21.
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~ = � (G)

~ = G

Figura 21: Da questa figura non è ben chiaro dove vada a finire la posizione iniziale 𝑥0. Ci si avvicina
un po’ a un punto fisso, ma sembra che si tenda verso un “quadrato” (ovvero un 2-ciclo).

19.2 Stabilità per sistemi discreti unidimensionali

Sia 𝑥ℎ+1 = 𝐹 (𝑥ℎ) un sistema dinamico discreto unidimensionale con 𝐹 di classe 𝐶1 e 𝑥 ∈ R punto di
equilibrio. Usando il metodo della ragnatela, si può dimostrare che

|𝐹 ′(𝑥) | < 1 ⇒ 𝑥 è asintoticamente stabile
|𝐹 ′(𝑥) | > 1 ⇒ 𝑥 è instabile.

Definizione 19.1 (Punti e cicli iperbolici). I punti di equilibrio in cui |𝐹 ′(𝑥) | ≠ 1 vengono detti
punti iperbolici. Allo stesso modo, i 𝑝-cicli per cui | (𝐹𝑝)′(𝑥) | ≠ 1 vengono detti cicli iperbolici. ★

Se un equilibrio non è iperbolico, si hanno i seguenti casi:

(1) se 𝐹 ′(𝑥) = 1 e 𝐹 è di classe 𝐶2 con 𝐹 ′′(𝑥) ≠ 0, allora 𝑥 è instabile;

(2) se 𝐹 ′(𝑥) = 1 e 𝐹 è di classe 𝐶3 con 𝐹 ′′(𝑥) = 0, allora si ha

𝐹 ′′′(𝑥) < 0 ⇒ 𝑥 è asintoticamente stabile
𝐹 ′′′(𝑥) > 0 ⇒ 𝑥 è instabile.

(3) se 𝐹 ′(𝑥) = −1 e 𝐹 è di classe 𝐶3, allora

2𝐹 ′′′(𝑥) + 3𝐹 ′′(𝑥)2 > 0 ⇒ 𝑥 è asintoticamente stabile
2𝐹 ′′′(𝑥) + 3𝐹 ′′(𝑥)2 < 0 ⇒ 𝑥 è instabile.
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Figura 22: Il caso 𝐹 (𝑥) = 1 con (𝐹 (𝑥) − 𝑥) (𝑥 − 𝑥) < 0.

I casi (1) e (2) si dimostrano con la ragnatela, mentre per mostrare (3) si usa un curioso criterio: se
𝐹 ′(𝑥) = −1, allora 𝑥 è asintoticamente stabile per 𝐹 se e solo se lo è per 𝐹 2. A questo punto, nel caso
𝐹 ∈ 𝐶3 si usa il punto precedente, studiando il segno di (𝐹 2)′′′(𝑥).
Si noti che nel caso 𝐹 ′(𝑥) = −1 la quantità 2𝐹 ′′′(𝑥) + 3𝐹 ′′(𝑥)2 ha il segno opposto alla derivata
schwarziana di 𝐹 in 𝑥 , definita da:

𝐹 ′′′(𝑥)
𝐹 ′(𝑥) −

3
2

(
𝐹 ′′(𝑥)
𝐹 ′(𝑥)

)2
.

Nel caso 𝐹 ′(𝑥) = 1, una condizione sufficiente per la stabilità asintotica che non richiede ulteriore
regolarità è la seguente:

(𝐹 (𝑥) − 𝑥) (𝑥 − 𝑥) < 0 per 𝑥 ≠ 𝑥 in un intorno di 𝑥 . (18)

Si veda la Figura 22.

Esempio 19.2. Si può verificare che l’origine è:

• instabile di tipo sorgente per la mappa 𝐹 (𝑥) = 𝑥 + 𝑥3;

• instabile di tipo sella per la mappa 𝐹 (𝑥) = 𝑥 + 𝑥2;

• stabile asintoticamente per la mappa 𝐹 (𝑥) = 𝑥 − 𝑥3.

Si noti che in nessun caso l’origine è un punto iperbolico. ★
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19.3 Alcuni esempi di mappe iterate unidimensionali

Esempio 19.3 (La mappa a tenda). Sia 𝐹 : [0, 1] → [0, 1] data da{
𝐹 (𝑥) = 2𝑥 per 0 ⩽ 𝑥 ⩽ 1

2
𝐹 (𝑥) = 2 − 2𝑥 per 1

2 ⩽ 𝑥 ⩽ 1,

ovvero 𝐹 (𝑥) = 1 − 2
��𝑥 − 1

2
��.

Allora il sistema dinamico 𝑥ℎ+1 = 𝐹 (𝑥ℎ) ha due punti di equilibrio: 0 e 2/3, entrambi instabili. Inoltre
il grafico delle iterate 𝐹ℎ è facile da disegnare e si vede che ogni 𝐹ℎ ha esattamente 2ℎ intersezioni
con la bisettrice. Da ciò ne segue che la mappa a tenda ammette cicli di ogni ordine (e sono tutti
instabili).(13)

Esempio 19.4 (Shift di Bernoulli). Sia 𝐹 : [0, 1[→ [0, 1[ definita da{
𝐹 (𝑥) = 2𝑥 per 0 ⩽ 𝑥 < 1

2
𝐹 (𝑥) = 2𝑥 − 1 per 1

2 ⩽ 𝑥 < 1,

ovvero 𝐹 (𝑥) = 2𝑥 − ⌊2𝑥⌋, dove ⌊𝑥⌋ è la parte intera di 𝑥 .
Si può verificare che, scrivendo lo sviluppo di 𝑥 in binario, si ha

𝑥 =
∞∑︁
𝑗=1

𝑑 𝑗

2𝑗
, 𝑑 𝑗 ∈ {0, 1} ⇒ 𝐹 (𝑥) =

∞∑︁
𝑗=1

𝑑 𝑗+1
2𝑗

,

ovvero 𝐹 toglie la prima cifra dello sviluppo binario. Quindi:

• se 𝑥0 è razionale, il sistema termina in un ciclo (1/3 dà luogo a un 2-ciclo, 1/4 a un 3-ciclo, 1/5
a un 4-ciclo. . . );

• se 𝑥0 = (2𝑛 + 2)/2𝑚 , si raggiunge 0 in𝑚 passi;

• se 𝑥0 è irrazionale, si ha un’orbita non periodica. In particolare, l’orbita uscente

𝑥0 = 0.0 1 00 01 10 11 000 001 010 011 100 101 110 111 . . .

passa arbitrariamente vicino ad ogni punto dell’intervallo [0, 1]. Si dice che l’orbita è densa.

Anche per questo sistema è facile disegnare le iterate 𝐹ℎ . ★

(13)È facile vedere che, se 𝑝 è un numero primo, il numero di 𝑝-cicli della mappa a tenda è (2𝑝 − 2)/𝑝 . Più in generale, per
𝑛 ⩾ 1 si può dimostrare che il numero di 𝑛-cicli della mappa a tenda è dato dalla formula

1
𝑛

∑︁
𝑑 |𝑛

𝜇 (𝑛/𝑑)2𝑑
★

dove la somma è estesa a tutti i divisori di 𝑛 e 𝜇 è la funzione di Möbius. I primi dieci valori sono dati da 2, 1, 2, 3, 6, 9, 18, 30,
56, 99.
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Figura 23: I grafici di alcune iterate della mappa a tenda.
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Esempio 19.5 (Metodo di Newton-Raphson). Per trovare gli zeri di una funzione 𝑔 ∈ 𝐶2, il meto-
do di Newton della tangente prevede di costruire la tangente a 𝑔 passante per (𝑥ℎ, 𝑔(𝑥ℎ)) e intersecarla
con l’asse delle ascisse:

𝑦 = 𝑔′(𝑥ℎ) (𝑥 − 𝑥ℎ) + 𝑔(𝑥ℎ) ⇒ 𝑥ℎ+1 := 𝑥ℎ −
𝑔(𝑥ℎ)
𝑔′(𝑥ℎ)

.

Quindi definiamo il sistema dinamico discreto 𝑥ℎ+1 = 𝐹 (𝑥ℎ) con

𝐹 (𝑥) = 𝑥 − 𝑔(𝑥)
𝑔′(𝑥) .

Questo sistema è in equilibrio se 𝑔(𝑥) = 0. Poiché si ha

𝐹 ′(𝑥) = 1 − 𝑔
′(𝑥)2 − 𝑔(𝑥)𝑔′′(𝑥)

𝑔′(𝑥)2 ,

si vede subito che 𝐹 ′(𝑥) = 0 per 𝑔′(𝑥) ≠ 0, e quindi in questo caso l’equilibrio è asintoticamente
stabile. ★

20 La mappa logistica discreta

Partiamo da un modello discreto di dinamica delle popolazioni di tipo logistico

𝑥ℎ+1
𝑥ℎ

= 𝑓 (𝑥ℎ),

dove 𝑓 (𝑥) è lineare, decrescente e soddisfa 𝑓 (0) = 𝑎 > 1 e 𝑓 (𝐾) = 1 (𝐾 quindi è la capacità ottimale
del sistema). Si ha

𝑓 (𝑥) = 𝑎 − 𝑎 − 1
𝐾

𝑥

e ne risulta il modello
𝑥ℎ+1 = 𝑎𝑥ℎ −

𝑎 − 1
𝐾

𝑥2
ℎ
,

che descrive l’andamento di una popolazione mediante un modello discreto.
Supponiamo ora di normalizzare le variabili mediante un coefficiente𝑀 , che rappresenta la capacità
massima del sistema: introduciamo

𝑥 := 𝑥

𝑀
, 𝐾̃ := 𝐾

𝑀
,

in modo che 0 ⩽ 𝑥 ⩽ 1 e 0 < 𝐾̃ < 1. Allora l’equazione diventa

𝑥ℎ+1 = 𝑎𝑥ℎ −
𝑎 − 1
𝐾̃

𝑥2
ℎ
= 𝑎𝑥ℎ − 𝑏𝑥2

ℎ

che può essere studiato al variare delle costanti. Un caso matematicamente interessante è quello per
cui 𝐾̃ = 𝑎−1

𝑎
, che porta ad avere 𝑏 = 𝑎 e quindi all’equazione discreta

𝑥ℎ+1 = 𝑎𝑥ℎ (1 − 𝑥ℎ), 1 < 𝑎 ⩽ 4.
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Notiamo che non ha senso supporre 𝑎 > 4, poiché si arriverebbe a un valore negativo per la
popolazione. Il caso in cui 𝑎 = 4 corrisponde a 𝐾̃ = 3

4 .
Rinominando per comodità le variabili, chiamiamo mappa logistica discreta il sistema dinamico dato
da 𝐹 : [0, 1] → [0, 1]

𝐹 (𝑥) = 𝑎𝑥 (1 − 𝑥) con 1 < 𝑎 ⩽ 4.

Si verifica subito che ci sono due posizioni di equilibrio: la posizione 𝑥1 = 0 è di equilibrio instabile,
mentre 𝑥2 = 1 − 1

𝑎
è stabile per 1 < 𝑎 < 3.

Per 𝑎 = 3, la posizione 𝑥2 = 2/3 è ancora stabile (si provi a verificare con le derivate successive), ma
per 𝑎 > 3 diventa instabile. In questo caso nasce un 2-ciclo, infatti:

𝐹 2(𝑥) = 𝑎2𝑥 (1 − 𝑥) (1 − 𝑎𝑥 (1 − 𝑥)) = 𝑎2𝑥 (1 − 𝑥) (1 − 𝑎𝑥 + 𝑎𝑥2) .

Ponendo 𝐹 2(𝑥) = 𝑥 ed eliminando le soluzioni già note 𝑥 = 0 e 𝑥 = 1 − 1
𝑎
, si trova

𝑎2𝑥2 − 𝑎(𝑎 + 1)𝑥 + 𝑎 + 1 = 0,

da cui si hanno le soluzioni nuove

𝑥3,4 =
1 + 𝑎 ±

√︁
(𝑎 − 3) (𝑎 + 1)
2𝑎

che esistono per 𝑎 > 3. Inoltre si ha

𝐹 ′(𝑥3)𝐹 ′(𝑥4) = 𝑎2(1 − 2𝑥3) (1 − 2𝑥4) = 𝑎2(1 − 2(𝑥3 + 𝑥4) + 4𝑥3𝑥4) = −𝑎2 + 2𝑎 + 4,

quindi il 2-ciclo è stabile per 3 < 𝑎 < 1 + √6 ∼ 3, 45.
Continuando così, si trova una successione crescente (𝑎𝑘 ), i cui primi valori sono 𝑎1 = 1, 𝑎2 = 3,
𝑎3 = 1 + √6, tale che

per 𝑎𝑘 < 𝑎 < 𝑎𝑘+1 c’è un 2𝑘−1-ciclo asintoticamente stabile.

Il fenomeno prende il nome di raddoppio del periodo. Tale successione è limitata e converge:

lim
𝑘
𝑎𝑘 = 𝑎∗ ≃ 3, 56994.

Oltre tale valore, la mappa logistica può assumere un comportamento caotico. Inoltre, sempre
numericamente si trova che

lim
𝑘

𝑎𝑘 − 𝑎𝑘−1
𝑎𝑘+1 − 𝑎𝑘

= 𝑘∗ ≃ 4.669

e la costante 𝑘∗ è detta costante di Feigenbaum.

20.1 Il caso 𝑎 = 4

Studiamo ora nel dettaglio il caso 𝑎 = 4, in cui la mappa logistica è caotica:

𝑥ℎ+1 = 4𝑥ℎ (1 − 𝑥ℎ).

Le soluzioni si possono scrivere in forma esplicita come

𝑥ℎ = sin2(2ℎ arcsin
√
𝑥0), (19)
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Figura 24: I grafici di alcune iterate della mappa logistica per 𝑎 = 4.

infatti, usando la formula di duplicazione del seno:

𝑥ℎ+1 = sin2(2ℎ+1 arcsin
√
𝑥0) =

(
2 sin(2ℎ arcsin

√
𝑥0) cos(2ℎ arcsin

√
𝑥0)

)2

= 4 sin2(2ℎ arcsin
√
𝑥0) (1 − sin2(2ℎ arcsin

√
𝑥0)) = 4𝑥ℎ (1 − 𝑥ℎ).

Tracciando i grafici delle iterate di 𝐹 , è facile vedere che c’è un comportamento simile a quello della
mappa a tenda, per cui esistono cicli di qualsiasi ordine (si veda la Figura 24). In particolare, anche il
numero di 𝑛-cicli della mappa logistica discreta con 𝑎 = 4 è dato dalla formula nella nota a pagina 71.
Mostriamo ora che tale mappa ammette un ciclo di ordine 3. Dobbiamo risolvere l’equazione

𝑓 3(𝑥) = 𝑥, 𝑓 (𝑥) = 4𝑥 (1 − 𝑥),

che è di grado 8, nell’intervallo [0; 1]. Una volta ridotta eliminando le due soluzioni banali 𝑥 = 0 e
𝑥 = 3/4, e fattorizzando il polinomio rimanente, troviamo

(64𝑥3 − 112𝑥2 + 56𝑥 − 7) (64𝑥3 − 96𝑥2 + 36𝑥 − 3) = 0,

quindi dobbiamo risolvere due equazioni di terzo grado. Purtroppo la soluzione esplicita di tali
equazioni è difficile, anche se numericamente si vede che ognuna delle due cubiche si annulla tre volte
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sull’intervallo (0; 1). Procediamo allora in altro modo: usando la (19), dobbiamo risolvere l’equazione

𝑥3 = 𝑥0 ⇒ sin(8 arcsin
√
𝑥0) = ±

√
𝑥0

escludendo le soluzioni 𝑥0 = 0 e 𝑥0 = 3/4, da cui abbiamo

8 arcsin
√
𝑥0 = ± arcsin

√
𝑥0 + 2𝑘𝜋, 8 arcsin

√
𝑥0 = 𝜋 ∓ arcsin

√
𝑥0 + 2𝑘𝜋 .

Dalla prima segue
arcsin

√
𝑥0 =

2
7𝑘𝜋 ⇒ 𝑥0 = sin2 2

7𝑘𝜋

e anche
arcsin

√
𝑥0 =

2
9𝑘𝜋 ⇒ 𝑥0 = sin2 2

9𝑘𝜋 .

Dalla seconda
arcsin

√
𝑥0 =

2𝑘 + 1
9 𝜋 ⇒ 𝑥0 = sin2 2𝑘 + 1

9 𝜋

e anche
arcsin

√
𝑥0 =

2𝑘 + 1
7 𝜋 ⇒ 𝑥0 = sin2 2𝑘 + 1

7 𝜋.

Da tutte queste equazioni si trovano le due famiglie di soluzioni non banali{
sin2 𝜋

7 , sin2 2
7𝜋, sin2 3

7𝜋
}
,

{
sin2 𝜋

9 , sin2 2
9𝜋, sin2 4

9𝜋
}
.

Quindi abbiamo trovato due 3-cicli. Verifichiamo il primo:

𝑥0 = sin2 𝜋

7
𝑥1 = 4 sin2 𝜋

7

(
1 − sin2 𝜋

7

)
=

(
2 sin 𝜋7 cos 𝜋7

)2
= sin2 2

7𝜋

𝑥2 = 4 sin2 2
7𝜋

(
1 − sin2 2

7𝜋
)
= sin2 4

7𝜋 = sin2 3
7𝜋

𝑥3 = 4 sin2 3
7𝜋

(
1 − sin2 3

7𝜋
)
= sin2 6

7𝜋 = sin2 𝜋

7 = 𝑥0.

Quindi abbiamo trovato il 3-ciclo

sin2 𝜋

7 → sin2 2
7𝜋 → sin2 3

7𝜋 → sin2 𝜋

7 .

Allo stesso modo si verifica che l’altro 3-ciclo è dato da

sin2 𝜋

9 → sin2 2
9𝜋 → sin2 4

9𝜋 → sin2 𝜋

9 .

21 Il Teorema di Sharkovsky

Questa sezione è stata presa da [Tosi]. Sia 𝐼 un intervallo in R (che può anche essere illimitato) e
fissiamo una funzione continua 𝐹 : 𝐼 → 𝐼 .
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Il teorema di Sharkovsky prevede l’utilizzo del seguente ordinamento dell’insieme N dei numeri
naturali, che è noto come ordinamento di Sharkovsky:

3 ⊳ 5 ⊳ 7 ⊳ 9 ⊳ 11 ⊳ · · · ⊳ 3 · 2 ⊳ 5 · 2 ⊳ · · · ⊳ 3 · 22 ⊳ 5 · 22 ⊳ · · · ⊳ 23 ⊳ 22 ⊳ 2 ⊳ 1.

La relazione 𝑎 ⊳ 𝑏 significa che 𝑎 precede 𝑏 nell’ordinamento. I primi puntini sottintendono tutti i
numeri dispari in ordine crescente, poi i dispari per potenze basse di 2, poi i dispari per potenze
sempre più alte di 2, poi le potenze di 2 in ordine decrescente. Ad esempio 9 · 23 ⊳ 7 · 24.
Ogni numero naturale 𝑛 può essere scritto in modo unico nella forma 𝑛 = 2𝑘 (2𝑚 + 1). L’ordinamento
di Sharkovsky dei numeri naturali si ottiene in questo modo: dati 𝑎 = 2𝑘𝑎 (2𝑚𝑎 + 1) e 𝑏 = 2𝑘𝑏 (2𝑚𝑏 + 1),
allora 𝑎 ⊳ 𝑏 se e solo se vale una delle seguenti:

• 𝑚𝑎 =𝑚𝑏 = 0 e 𝑘𝑎 > 𝑘𝑏 ;

• 𝑚𝑏 = 0 e𝑚𝑎 ≠ 0;

• 𝑚𝑎,𝑚𝑏 ≠ 0 e 𝑘𝑎 < 𝑘𝑏 ;

• 𝑚𝑎,𝑚𝑏 ≠ 0, 𝑘𝑎 = 𝑘𝑏 e𝑚𝑎 < 𝑚𝑏 .

Ogni numero naturale compare esattamente una ed una sola volta nell’ordinamento di Sharkovsky
che quindi è un ordinamento totale. L’ordinamento di Sharkovsky individua per quali numeri interi 𝑝
la mappa iterata 𝐹 ammette un 𝑝-ciclo:

Teorema 21.1 (Primo teorema di Sharkovsky). Se 𝑝 è un periodo per 𝐹 e 𝑝 ⊳𝑞, allora anche 𝑞 è un
periodo per 𝐹 .

Questo teorema, noto anche come Sharkovsky Forcing Theorem, dimostra che un insieme di periodi
per una mappa continua definita su un intervallo è una coda dell’ordinamento di Sharkovsky, ovvero
un insieme 𝑇 della forma 𝑇 = {𝑡 ∈ N : 𝑠 ⊳ 𝑡} per qualche 𝑠 ∈ N.
Teorema 21.2 (Secondo teorema di Sharkovsky). Per ogni coda𝑇 dell’ordinamento di Sharkovsky
esiste una mappa continua 𝐹 : 𝐼 → 𝐼 che ammette tutti e soli gli elementi di 𝑇 come periodi.

Il secondo risultato è noto come Sharkovsky Realization Theorem ed è una sorta di inverso del primo.
Entrambi i teoremi sono stati dimostrati nel lavoro (in russo)
A.N. Sharkovsky, Co-existence of the cycles of a continuous mapping of the line into itself, Ukrainian
Mathematical Journal, 16, n.1, 1964.
Non daremo la loro dimostrazione che, anche se elementare, è abbastanza articolata. È interessante
osservare come il primo elemento dell’ordinamento sia 3; questo significa che, se una mappa continua
ammette un 3-ciclo, allora essa ammette un 𝑝-ciclo per ogni 𝑝 ⩾ 1.

22 Definizioni di caos

Diamo una definizione di sistema caotico, dovuta a [Devaney], nel caso di mappe iterate unidimensio-
nali.
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Definizione 22.1. Sia 𝐼 ⊂ R un intervallo limitato e 𝑓 : 𝐼 → 𝐼 una funzione continua. Il sistema
dinamico discreto 𝑥ℎ+1 = 𝑓 (𝑥ℎ) è caotico secondo Devaney se

(1) i punti periodici di 𝑓 , cioè i punti fissi di qualche iterata 𝑓 𝑘 , sono densi in 𝐼 ;

(2) 𝑓 è transitiva su 𝐼 , cioè

∀𝑥,𝑦 ∈ 𝐼 ,∀𝜀 > 0 ∃𝑧 ∈ 𝐼 , |𝑥 − 𝑧 | < 𝜀, ∃ℎ ∈ N t.c. |𝑓 ℎ (𝑧) − 𝑦 | < 𝜀;

(3) 𝑓 ha una dipendenza sensibile dalle condizioni iniziali, cioè

∃𝛽 > 0 t.c. ∀𝑥 ∈ 𝐼 ,∀𝜀 > 0, ∃𝑦 ∈ 𝐼 , |𝑥 − 𝑦 | < 𝜀, ∃ℎ ∈ N : |𝑓 ℎ (𝑥) − 𝑓 ℎ (𝑦) | > 𝛽. ★

Si può dimostrare che la mappa a tenda e la mappa logistica nel caso 𝑎 = 4 sono mappe caotiche
secondo Devaney. Anche lo shift di Bernoulli, opportunamente reinterpretato come mappa continua
(ad esempio su una circonferenza), è associato a una mappa continua e risulta caotico secondo
Devaney.
È interessante notare come, tra le tre proprietà che caratterizzano il caos secondo Devaney, la terza
sia quella più classicamente associata all’imprevedibilità di un sistema, ovvero la dipendenza sensibile
dalle condizioni iniziali. Eppure nel 1992 nel breve lavoro Banks, Brooks, Cairns, Davis & Stacey, On
Devaney’s Definition of Chaos, The American Mathematical Monthly, Vol. 99 No. 4, gli autori hanno
dimostrato in maniera elementare che la terza condizione è una conseguenza delle prime due!
Un’altra definizione di caos, in generale un po’ più debole, era stata proposta precedentemente nel
1975 in Li & Yorke, Period Three Implies Chaos, The American Mathematical Monthly, Vol. 82 No. 10.

Definizione 22.2. Sia 𝐼 ⊂ R un intervallo limitato e 𝑓 : 𝐼 → 𝐼 una funzione continua. Il sistema
dinamico discreto 𝑥ℎ+1 = 𝑓 (𝑥ℎ) è caotico secondo Li-Yorke se

(1) esistono orbite periodiche di qualsiasi periodo;

(2) esiste un insieme non numerabile 𝑆 ⊂ 𝐼 , non contenente punti periodici, tale che

• per ogni 𝑥,𝑦 ∈ 𝑆 , 𝑥 ≠ 𝑦,

lim sup
ℎ

|𝑓 ℎ (𝑥) − 𝑓 ℎ (𝑦) | > 0, lim inf
ℎ
|𝑓 ℎ (𝑥) − 𝑓 ℎ (𝑦) | = 0;

• per ogni 𝑥 ∈ 𝑆 e per ogni punto periodico 𝑧 ∈ 𝐼 ,

lim sup
ℎ

|𝑓 ℎ (𝑥) − 𝑓 ℎ (𝑧) | > 0.
★

In quel lavoro, Li e Yorke hanno dimostrato che, se esiste un punto 𝑥0 tale che

𝑥3 ⩽ 𝑥0 < 𝑥1 < 𝑥2 oppure 𝑥3 ⩾ 𝑥0 > 𝑥1 > 𝑥2, 𝑥ℎ = 𝑓 ℎ (𝑥0),

allora 𝑓 è caotica nel senso della definizione sopra. In particolare, se 𝑓 ha un ciclo di ordine 3 allora è
caotica secondo Li-Yorke, da cui il titolo del loro articolo.
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